OVERVIEW
RIEMANN HYPOTHESIS
the central idea
RH 2010-2014
RH 2010-2012
RH 2nd proof 2011
RH 1st proof 2010
GOLDBACH CONJECTURE
NAVIER-STOKES EQUATIONS
YANG-MILLS EQUATIONS
GROUND STATE ENERGY
WHO I AM
LITERATURE

The Millenium problem solution enabled by a Dawson function based Zeta function theory

The Riemann Hypothesis states that the non-trivial zeros of the Zeta function all have real part one-half. The Hilbert-Polya conjecture states that the imaginary parts of the zeros of the Zeta function corresponds to eigenvalues of an unbounded self-adjoint operator.

There is only a formal representation of the Zeta function as transform of a Gaussian function based operator ((EdH) 10.3). The operator has no Mellin transform at all as the integrals do not converge due to the not vanishing constant Fourier term of the Gaussian.

The Hilbert transformation of the Gaussian has a vanishing constant Fourier term. It is given by the Dawson function. We propose an alternatively Zeta function theory based on the Mellin transform of this function showing same singularity behavior (s=0,1) as the Zeta function (in contrast to the Gamma function, which is the Mellin transform of the Gaussian function). The Dawson function asymptotics provides appreciated convergence behavior (in contrast to the Gaussian function) overcoming current related RH criteria challenges.

The same concept can be applied to the fractional part function resp. its Hilbert transform.

Essentially we propose a three pillar concept based on Hilbert scale, Hilbert transforms and Hilbert-Polya conjecture, which we therefore call "triple H" concept. The Bagchi criterion is somehow the Hilbert-Polya conjecture based on the fractional part function and its related Hilbert transform.

The “triple H” concept is proposed also to be applied to existing challenges in theoretical physics models, e.g. Bose-Einstein statistics and the related Planck black body radiation law, Boltzman statistics, Yukawan potential theory, magnetized Bose plasma, Boltzman equation and Landau damping, non-local transport theory (Notes O52 ff. and sections NSE, YME, GSE).



Braun K., A Kummer function based Zeta function theory to prove the Riemann Hypothesis


Change history

January 2017: "§2 The Central Properties & Summary, page 1-8" revised, §2 split into §2,§3,§4; "Notes O71/72", new, "Notes S48/49", new

December 2016: "Notes O53-O70 (Yukawa potential, plasma dispersion function = Dawson function, Landau damping, reduced Hilbert transform, related Schrödinger (commutator) differential operator properties)", new

November 2016: "Summary" update; "Notes S36-47, Note O52" new

October 2016: "Summary": new;  "Note S19" updated;  "Notes S29-35, O50-51", new

August 2015: "original version"