OVERVIEW
RIEMANN HYPOTHESIS
the central idea
RH 2010-2014
RH 2010-2012
RH 2nd proof 2011
RH 1st proof 2010
GOLDBACH CONJECTURE
NAVIER-STOKES EQUATIONS
YANG-MILLS EQUATIONS
GROUND STATE ENERGY
WHO I AM
LITERATURE

The Millenium problem solution enabled by a Dawson function based Zeta function theory

The Riemann Hypothesis states that the non-trivial zeros of the Zeta function all have real part one-half. The Hilbert-Polya conjecture states that the imaginary parts of the zeros of the Zeta function corresponds to eigenvalues of an unbounded self-adjoint operator.

There is only a formal representation of the Zeta function as transform of a Gaussian function based operator ((EdH) 10.3). The operator has no Mellin transform at all as the integrals do not converge due to the not vanishing constant Fourier term of the Gaussian.

The Hilbert transformation of the Gaussian has a vanishing constant Fourier term. It is given by the Dawson function. We propose an alternatively Zeta function theory based on this function. Corresponding confluent hypergeometric functions with related singularity behaviors at the critical line and at s=0,1 enable appreciated convergence behavior of the Zeta function to apply existing RH criteria.

original version (August 2015)


Braun K., A Kummer function based Zeta function theory to prove the Riemann Hypothesis

Changes

August 2016

        "Appendix": "Opportunity notes", new

September 2016

       "Abstract": updated

       "Appendix": "Opportunity notes" updated, Note S26, new

       "Appendix": "Transcendental values of some Dirichlet series", new