
ON LOMMEL AND BESSEL POLYNOMIALS

DAVID DICKINSON1

1. Introduction. The Lommel "polynomials" P„,„(x) arise in the

theory of Bessel functions. See Watson [10, §9.6-9.73].2 If we define

the modified Lommel polynomials hn,,(x) by

K,,(x) = Rn,y(l/x),

we have a polynomial set that obeys

hn,,(x) = 2x(n + v — l)/z„_i,,,(x) — Zj„_2,,(x).

It was noted by Hahn [5] that this is an orthogonal type recurrence

relation. In this paper, we shall establish explicitly the orthogonality

of the hn,r(x) and will present some properties of the Bessel poly-

nomials yn(x), a polynomial set that is orthogonal in a special sense

and whose theory in many ways parallels that of the modified Lommel

polynomials.

From some formulas involving Lommel polynomials (see Watson

[10, §9.6]), we may define the modified Lommel polynomials hn,v(x)

in terms of Bessel functions by

(1) 7„+„(l/x) = J,(l/x)hn,v(x) - 7„_i(l/x)A„_i,,+i(x),

where n is an integer and v is not a nonpositive integer, or by

ir~1(2x sin Tv)hniV(x)

= 7„+n(l/x)7_,+i(l/x) + (-l)"7_,_„(l/x)/,_i(l/x),

for n integral and v not an even integer. The polynomials have the

hypergeometric representation (for n > 1)

K,,(x) = (v)n(2x)"2F3( - n/2, (-n+ l)/2;p, - n, 1 - v - n; -1/x2),

where

T(v + n)

Explicitly, the first few polynomials are
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h-!,,(x) = 0,

h,,(x) = 1,

hi,,(x) = 2vx,

*i,(*) = - 1 + (v)(v + 1)22*2,

hz,v(x) = - 2(v + 1)2* + (p)(p + 1)(» + 2)2'*'.

2. The orthogonality of the h„,y(x). In this section we shall always

take n to be a non-negative integer and v to be a positive number.

If we multiply both sides of (1) by x'/J,-i(i/x) where 5 is a non-

negative integer, we get

**7,+»(l/*) 7,(1/*)
(3) ~r—771~T = x'hn,,(x) -——— ~ *'A„_l,,+l(*).

7_i(l/*) 7„_i(l/*)

Now the two terms involving the Bessel function quotients are

analytic outside any circle that contains the finite zeros of 7„_i(l/x).

Hence each possesses a Laurent expansion about the origin that

converges uniformly on and in any annulus whose inside boundary

has the finite zeros of 7„_i(l/x) in its interior. If we integrate these

expansions around a contour Cv that encircles the origin in a positive

direction and that lies within the annulus, all of the terms vanish

except, if such exists, the term involving 1/x. Since

*«7,+„(l/*) *-»-1     / (n + 1) 1
(4) - =-< 1 -\-h • • • > ,

/_i(l/«)        2»+1W„+1  I        4(v)(v + n+ l)*2 j

the integral around C, of the left member of (3) vanishes for (s — n)

<0. Since the second member of the right side of (3) is a poly-

nomial, its integral around Cv vanishes. Thus we are left with

0 for s < n,
1   r J,(1/x)

(5) - I     x*hn,,(x) —■-• dx = \ 1
2riJ c J,-i(l/x) —-for s = n.

If we set n = 0 in (4) it is not hard to see that for the moments of

rtn,v\Xj,

1    r        J,(\/x)   j
ma,, =-I    x'-dx,

2-wiJc,    /,-i(l/x)

we have

7,(1/*) "
(6) _     .. . .   =  2-, ma,yx-x-'.

7,_i(l/*)       ,=o
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The question naturally arises as to whether the complex integral

(5) can be replaced by a real one. To find some necessary properties

of such a real integral, let us first investigate the zeros of hn,„(x).

That the zeros of hn,v(x) are all real follows from the recurrence re-

lation (see Szego [8, §3.3, (4)] or Sheffer [7, Theorem 3]).

We have from a theorem of Hurwitz (see Watson  [10, §9.65])

that

(2x)1-"-"A„,„(x)
(7) lim —--^- = 7,_i(l/x)

n-»»       T(n + v)

uniformly for all x in any closed and bounded annular region centered

about the origin. This implies, from another theorem of Hurwitz (see

Titchmarsh [9, p. 119]), that if [c, d] is any real closed interval not

containing any zeros of J„_i(l/x), then for n sufficiently large,

hn,,(x) has no zeros in [c, d]. But this implies (see Szego [8, Theorem

6.1.1]) that if the /z»,v(x) are orthogonal over a real interval [a, b]

with respect to a nondecreasing distribution dav(x), the integral of

dctv(x) over any subinterval, such as the interval [c, d], vanishes.

Hence it is necessary that dav(x) be a step function with points of

increase at the zeros of 7„_i(l/x).

To summarize, we have that if the h„,,(x) are orthogonal with re-

spect to a nondecreasing distribution dav(x), we must have

(8) m„,v =  I   x>dav(x) = E InPn
J n

where the distribution da,(x) has an increase of 7„ at the point p„

and where the integration and summation are taken over appropriate

domains.

When p=l/2, the quotient of Bessel functions appearing in (6)

becomes tan 1/x and we have

- "   4*+l(4i+1 - l)Bi+i
(9) tan 1/x = E ra2,M/2*_1-2i = E —-x-1-21

,=o ,'_o (2i + 2)\

where the Bi are the Bernoulli numbers. The coefficients in (9) may

be expressed in terms of the generalized zeta function (see [ll,

§13.151, Ex. 1; §13.13, Ex. 2]). Thus we have that

(10) m.,m = -^ «s + 2, 1/2) = 2 E \
7r,+2 n=o   [(n + l/2)irjs+2

provided s is even. Now (10) is not true when s is odd since the odd

moments vanish. We consider the expression
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(11) ms,i/2 =   52   7-r~;-7" ■
n±«   [(n + 1/2)*]'[(» + l/2)^]2

When s is even, the summation in (11) reduces to that of (10) and,

when s is odd, the sum vanishes. But (11) is a sum of the form of

(8). Hence we have that

0 for m 7^ n,

hn,i/2(x)hm,i/2(x)dai/2(x) = \       2nn\
-2/r - for m = n,

l(2n+l)l

where dai/2(x) is a nondecreasing step function having an increase of

[(«+l/2)7r]-2at the point x= [(«+)1/2tt]-1 for « = 0, ±1, ±2, • • • .

Using as a guide this last paragraph, we may proceed to a real

integral representation of the moments of the general hn,,(x).

Let all of the nonvanishing zeros _/„,„ of 7„(x) have the order they

have on the real line and let, in particular, j,,i be the smallest positive

one. From the well known recurrence relation for Bessel functions

x7„_i(x) = (v — l)7„_i(*) — xJ,(x)

we may write, provided 0<*</,_i,i,

j',-i(x)       d (v - 1)        7„(*)
(13) -— = — In 7,_!(x) =-— ■

7„_i(*)      dx x Jy-i(x)

From Watson [10, §15.41], we have

(x/2)'~l  ™( x2  \

7_1(*)=^-n(i--—)
T(f) »=1 \ Jy-1,„ /

and hence, again provided 0<x<j,_i,i, we have the uniformly con-

vergent series of analytic functions

(x/2)'-1        '       / *2   \
(14) In /„_!(*) = In     ' +  £ In    1-).

T(v) „_i \ Jp-l.n/

Taking the derivative of both sides of (14), we have

d v - 1 »  / -2*\ / *2   \-»
- In J^(x) = -— + E h—) (l - j—)
ax X n=l \Jr-i„ /   \ ],-l,n r

and hence

d                        v - 1        "   »   2x2*+1
— In 7-i(«) =-2^ 2-, -^rr •
dx X »1H   fyljl
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Now all the summands in the convergent double series are positive

and we may interchange the order of summation. If we interchange

the summations and compare the resulting expression with (13), we

see that

7„(x) " /    "       1    \
——— = yi 2 v — i v~*+i/,-!(*)   h\ h a»/

or, from (6),
»       1

m,, — 2 E -
i   i2,+2n=l   Jv-l,n

for s even. To find an expression for the mBiP valid for all s, we use the

reasoning that led from (10) to (11). This leads to the expression

+ 00

v->     .-'-2
»!.,» =    2-1   J'-l.rt,

n=—oo

valid for all 5. Hence we have

0 for m 9^ n,
J'~\-l,X

hn,r(x)hm,y(x)da,(x) = \         1
rl -       for m = n,

1 2«+1W„+i

where dav(x) is a nondecreasing step function having an increase of

h-i,n at the point x=j~fhn for n = 0, +1, +2, • •

Approaching the problem from a different angle, H. O. Pollak and

G. H. Wannier have independently established the integral (15).

3. Some relations between the Bessel polynomials and the modi-

fied Lommel polynomials. The Bessel polynomials yn(x) may be de-

find by the relation (see [6])

(16) 7„+1/2(l/x) = (x/27r)1'2[j-'*-1ei'Iy„(ix) + i^e-v^-ix)]

for n integral. They have the hypergeometric representation

Vn(x) = 2Fo(-n, n+ 1; —; -x/2)

and hence

yn(x) = y_„_i(x).

If we use (16) to express the right member of (2) in terms of ex-

ponentials and Bessel polynomials, the exponentials drop out and we

have

(17) hn,s+i,2(x) = 2-1[t-"y„+s(jx);ys_i(-*'x) + inyn+s(-ix)ys-i(ix)]
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for 5 integral. An interesting special case of (17) is

(18) hn,il2(x) = 2-1 [i-"yn(ix) + i»y„(-t*)].

Now (17) may be used to find an expression for the product of two

Bessel polynomials in terms of a sum of two modified Lommel poly-

nomials. In (17), we shift the parameter 5 to 5 —1 and the index n to

«+2s-l:

hn+2a-i,-3+z/2(x) = 2~l[i~n-2s+lyn+,(ix)y^a( — ix)

+ in+2>-1yn+,(-ix)y-,(ix)].

Since

y_8(*) = y._i(*),

we may eliminate one of the Bessel polynomial products between

(17) and (19). This gives us

(20)       hn,s+i,2(x) + i2s+1hn+2s-i,-s+3/2(x) = inyn+s( — ix)y,_i(ix).

4. Some generating functions. We may use the known generating

functions for the y„(x) to form some new generating functions for the

hn,i/2(x). For example, from [6] we have the divergent generating

function for the y»(x):

1 / —2xt \        °°
— A(l. 1/2; -.^—J-T >.M".

From this generating function, we may form a generating function

for the right member of (18). It follows that

1 / 2xt    \
—-2F0[l, 1/2; -;-)
1 - it       \      ' (1 - it)2

(21)
1 / 2x1    \ °°

+ 7—^7 ^o(l,l/2;-; ~ 2 2Z K,il2(x)t".
1 + it \ (1  + It)2/ n=0

Similarly, we may use (16) to form some apparently new generat-

ing functions for 7n+i/2(x). For example, from the divergent generat-

ing function (see [l]),

/                       t - (t2 + 2*/)1'2\

zFol a, 1 — a; — ; —- —J

_ /     . [ + Q2 + 2*Q'/^ -    (a)n(l - «).
- 2F01 a, 1 - a; - ;-I ~ 2-, -■ yn(x)ln

\ 2 /       n_0 n\

where a is an arbitrary parameter, we may write
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/ -u - (-t2 + 2t/xy2\
- i(27rx)-1'V-27of a, 1 - a; - ;-J

/                         -it+(-t2+2t/xyi\
•27o( a, 1 — a; — ;-J

/ it - (-t2 + 2t/xyi2\
(22) + i(2*x)-V2e-™2Fo la, 1 - a; - ;---^—J

( u + (-t2 + 2t/xyi\
•:Po( a, 1 — a; — ;-J

-    (a)n(l - «)„
~ E-;-Jn+w(x)tn.

n=0 »!

When a is a negative integer —/>, (22) is no longer divergent and is a

finite generating function, the summation stopping at n=p.

5. A general theorem on finite sums of Bessel polynomials. Follow-

ing a technique that Nielsen used in working with Lommel poly-

nomials (see [10, §9.62]), we have the

Theorem. If

(23) E /n(x)7„+,+i/2(x) = 0

where the f„(x) are algebraic functions of s, where s is an integer, and

where the sum is taken over D, a finite set of integers, then it follows that

(24) E Ml/ix)i"yn+.(x) m 0

and

(25) E fn(-l/ix)i-nyn+s(x) = 0.
nE.D

Proof. From (16), (23) may be written

E fn(x)(2Txyii2[i-«-'-1ei*yn+s(-l/ix) + J"+«+1e-«y„+s(l/ix)] = 0
.Si

or

(26) e2i* E Mx)i-«-yn+.(-l/ix) - E /»(*)*"+*?»+.( 1/**) = 0.

But (26) is an expression of the form AB — C = 0 where A is trans-

cendental and B and C are algebraic. Hence B and C are zero.

For example, from an algebraic relation between any three Bessel
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functions whose orders differ by integers [lO, §9.64] we may write

Jn+l/i(x) hp-m-i,m+3/2(l/ x)

+ Jm+l/2(x)hn-p-l,p+3/2(l/x)

+ 7p+i/2(x)Am_„_i,„+3/2(l/x) = 0.

From this it follows that

inyH(x) hp-m-i,m+3ii(ix)

(27) + imym(x)hn-p-.i,p+3/2(ix)

+ i'pyp(x)hm-n-i,n+i/i(ix) = 0.

Also, setting ju = 5 + l/2 in Watson [10, §5.21, (2)], we have

" / n\    (2k + s + 1/2)
(x/2)-"7„+8+l/2(x)   =   E(    .   )--,     ,     ,     ,   ■ „■- Js+V2+2k(x)

k=o\k/(s+k+ l/2)n+i

and hence

n /n\  (2k + s + 1/2)
(28) (-2Xyyn+3(x) = E( .),,,_,_'    y^+2k^)-

k=o\k/(s+ k + l/2)n+i

Invoking the relation yn(x) =y_„_i(x), we have, after some algebraic

manipulation of (28), a relation involving the yn(x) with non-nega-

tive indices only:

"   n\(2n - 2k+ 1)2"(—1)*
(29) x" = E ^—,-.':.      yn-k(x).

k=o (2n — k + l)lk\

Expression (29) may be used to express formally in terms of Bessel

functions any function given as a power series.

6. Concerning the zeros of the Bessel polynomials. If we set n = 0

in (20), we have

(30) 1 + i2,+1A2s_i,_s+3/2(x) = y,( — ix)y.-i(ix).

Since, for v or s real, all the Lommel polynomials have real coefficients,

the left member and hence also the right member of (30) have no real

zeros. Therefore no Bessel polynomial y„(x) has a purely imaginary

zero.

We may now show that no two Bessel polynomials have a zero in

common. For suppose there were a number a such that yn(a) =ym(oc)

= 0 where m>n>0. Then, by (27),

ipyP(a) ft^_„_ilB+8/8(ta)' = .0
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for an arbitrary integer p. Now /fm_„_i,„+3/2(ix), having a non-

negative index and a positive parameter, has, from §2, only purely

imaginary zeros. But from the preceding paragraph, yn(x) has no

purely imaginary zeros. Thus yp(a) =0 or, in particular, yo(«) = 1=0

which is absurd.

If, in (20), we set 5 = 0, we obtain the relation

hn,i/2(x) + ihn-i,t/i(x) = inyn( — ix).

Hence, from this and (7), we have Grosswald's limit [4]:

^'2(2x)-"yn(x)
hm-= ellx

«-.»     T(n + 1/2)

uniformly in any closed and bounded annular region A centered about

the origin. From a theorem of Hurwitz (see Titchmarsh [9, p. 119])

it follows that for any such region A, the zeros of yn(x), for a suffi-

ciently large n, will not lie in A. Since the zeros of yn(x) are bounded

(see [4]), it follows that for any e>0, the zeros of yn(x), for suffi-

ciently large n, lie within |x| =e.

7. A characterization of orthogonality. If we set w = 0 in (17), we

obtain after some simplification

(31) 2 = y,(*)y,_i(—*) + y,(—*)y,_i(*).

This last expression is almost enough to imply the existence of an

orthogonal type recurrence relation. Specifically, we have the theo-

rem and corollary:

Theorem. For a set of polynomials pn(x), n = 0, 1, • • • , where each

p„(x) is of degree precisely n, to have the property

(32) an  =   pn~l(x)pn(—x)   +  pn-l(-x)pn(x)

for some o„^0, » = 1, 2, • • • , it is necessary and sufficient that there

exist a recurrence relation of the form

(33)       pn(x) = xBnpn-i(x) + Cnpn-2(x),   Cn^0       (n = 2, 3, • • • )

and that pi(0) ?*0.

Necessity proof. After setting x = 0 in (32), it becomes evident

that (32) may be written

2pn(0)p^i(0) = pn-i(x)pn(-x) + pn-i(-x)pn(x)     (n = 1, 2, • ■ • ).

Shifting the index «to«-l,we obtain

2pn-2(0)p„..i(0) = pn-i(x)pn-2(-x) + pn-i(-x)p„-2(x)

(n = 2, 3, • • • ).
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By Cramer's rule, we may now write

Pn(-X) Pn(X) pn_l{x)   =   2pMpn_i{Q)pn_i{x)

,,„, Pn-l(-X)    pn-i(x)
(34)

- 2pn_2(0)pn^i(0)pn(x)       (n = 2, 3, • • • ).

The right member of (34) when evaluated at x = 0 vanishes. Since

pn-i(0)^0 (for otherwise we would have an = 0), it must be the de-

terminant in the left member of (34) that has the factor x. Moreover,

by comparing the degrees of each member of (34), it is apparent that

the determinant is a linear function of x. Hence we have, where f„

is some nonvanishing function of n,

xfnpn-i(x) = 2pn(0)pn-i(0)pn_2(x) - 2pn-2(0)pn_i(0)pn(x)

or

— Xfn                                                Pn(0)
Pn(x)   = -'-■-'-'-' Pn-l(x)  -\-' p„-2(x).

2Pn_2(0)pn_i(0) V" ^„_2(0) r*

Sufficiency proof. From (33), we may write

pn(x)pn-i(— x) = xBnpn_i(x)pn-i(—x) + Cnpn-.2(x)pn-i( — x)

and also

Pn(—X)pn_i(x)   =   —   xBnpn_i(— X)pn-l(x)  + Cnpn-i(— X)pn-l(x).

If we add these two equations, we obtain

pn(x)pn-l(—x)  + pn(— X)pn-l(x)

= Cn[pn-2(x)pn-l(— X)   + pn-l(— X)pn-l(x)],

By iterating (35) it is evident that

pn(x)pn-l(-X) + pn(~x)pn-i(x)

n

= [pi(x)po(-x) + pi(-x)po(x)]HCk.
k—t

For w = l, the right member is af = 2Pi(0)p0(0) and for «^2, it is

an = 2Pi(0)pQ(0)th,2 Ck.

Corollary. For a set of polynomials pn(x), n = 0, 1, • • • , where

each pn(x) is of degree precisely n, to be orthogonal, it is sufficient that

there exist a relation of the form

an = pn(x)pn-i(x) + pn(-x)pn-i(x)

where ( — i)naian<0 for n^2.
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Proof. The condition (-l)"aian<0 implies that Cn<0 for » = 2.

The orthogonality then follows from a theorem of Favard [3].

The conditions of this theorem and corollary are met in the spe-

cialized Jacobi polynomials 7^'-a(x) where a2<l. They have the

properties

(«,-«)    .        x(2n - 1)   „(«,-«), (n - l)2 - a2      f«,-«). N
Pn        (x) = —-■ P„_i    (x)- P„_2    (x),

n n(n — l)

» = 2, 3, • • ■ ,

and

2(-i)-(«).(-«). m P<r*>,x)P^,_x) + Prjra,(x)pr-a,(x),
an\(n — l)\

n = 1, 2, • • • .
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