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Abstract

Let r and m be real numbers so that the sum Sr,m(x) =
∑

p≤x p
r logm p diverges

as x → ∞. Here p runs over all primes not exceeding x. In this paper, we give an
asymptotic formula for each Sr,m(x) as x → ∞. The case where x is the nth prime
number is of particular interest. Here we use a method developed by Salvy to give
an asymptotic formula for Sr,m(pn) as n → ∞, which generalizes, for instance, the
previously known one for S1,0(pn), the sum of the first n prime numbers.

1 Introduction

Let m and r be real numbers and let Sr,m : [0,∞) → R be defined by

Sr,m(x) =
∑

p≤x

pr logm p,

where p runs over all primes not exceeding x. The sum Sr,m(x) diverges as x → ∞ if and
only if

(i) r > −1 and m ∈ R or (ii) r = −1 and m ≥ 0.

The aim of this paper is to find the asymptotic behaviour of the sum Sr,m(x) in the case
where m and r satisfy conditions (i) or (ii). First, we study the case (i). Let π(x) denote the

1

christian.axler@hhu.de


number of primes not exceeding x. A well-known result (see [10]) concerning this function
is the prime number theorem, which states that

π(x) = li(x) +O(xe−a
√
log x) (1)

as x → ∞, where a is a positive absolute constant, and the logarithmic integral li(x) is
defined for every real x ≥ 0 as follows:

li(x) =

∫ x

0

dt

log t
= lim

ε→0+

{
∫ 1−ε

0

dt

log t
+

∫ x

1+ε

dt

log t

}

. (2)

Denoting the sum of the first prime numbers not exceeding x by S(x), Szalay [9, Lemma 1]
used (1) and Stieltjes integration to find

S(x) = li(x2) +O(x2e−a
√
log x) (3)

as x → ∞. The case x = pn, where pn denotes the nth prime number, is of particular
interest. Here, S(x) =

∑

k≤n pk is equal to the sum of the first n prime numbers. Massias
and Robin [4, p. 217] found that

n
∑

k=1

pk = li((li−1(n))2) +O(n2e−c
√
log n) (4)

as n → ∞, where c is a positive absolute constant and li−1(x) is the inverse function of li(x).
Then they [4, p. 217] used (4) and a result of Robin [7] to derive the asymptotic expansion

n
∑

k=1

pk =
n2

2

(

log n+
N
∑

i=0

Ai+1(log log n)

logi n

)

+ON

(

n2(log log n)N+1

logN+1 n

)

(5)

as n → ∞, where N is a nonnegative integer and the polynomials Ak satisfy the formulas
A0(x) = 1 and

A′
i+1 = A′

i − (i− 1)Ai. (6)

It follows that deg(A0) = 0, deg(A1) = 1, and deg(Ai) = i − 1 for every integer i ≥ 2.
Unfortunately, the recursive formula (6) for the derivatives does not yield a description of the
polynomials Ai, since the constant coefficient of the polynomials Ai remains undetermined by
this equation. This problem was fixed in [3, Theorem 1.4] by applying a method developed
by Salvy [8, Theorem 2]. We use the same method to give the following result concerning
the sum Sr,m(pn) in the case where r > −1 and m ∈ R. Here, we use the notation

(

δ

0

)

= 1 and

(

δ

k

)

=
δ(δ − 1) · · · (δ − k + 1)

k!

for a real number δ and a positive integer k.
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Theorem 1. Let r and m be real numbers with r > −1 and let N be a nonnegative integer.

As n → ∞, we have

n
∑

k=1

prk log
m pk =

nr+1 logr+m n

r + 1

(

N
∑

i=0

Ar,m,i(log log n)

logi n
+Or,m,N

(

(log log n)N+1

logN+1 n

)

)

, (7)

where the polynomials Ar,m,i ∈ R[x] are defined by

Ar,m,0 = 1, A′
r,m,i+1 = A′

r,m,i + (m+ r − i)Ar,m,i. (8)

The polynomials Ar,m,i can be computed explicitly. In particular,

Ar,m,1(x) = (r +m)x−
m− 1

r + 1
− r − 1

and

Ar,m,2(x) =

(

r +m

2

)

x2 +
(−r3 −mr2 + (−2m+ 3)r −m2 + 2m)x

r + 1
+ λr,m,

where

λr,m =
(m− 1)(m− 2)

(r + 1)2
+

r(r − 3)

2
− 2.

Remark 2. The polynomials Ai given in (6) and Ar,m,i are connected by the formula Ai =
A1,0,i.

Remark 3. Since S1,0(pn) = S(pn), Theorem 1 yields a generalization of (5).

Remark 4. For some alternative asymptotic formulae for S(pn), see [2, Theorems 1 and 2].

In the second part of this paper, we study the case (ii); i.e. r = −1 and m ≥ 0. If m = 0,
we see that Sr,m(x) is equal to the sum of the reciprocals of all prime numbers not exceeding
x. Mertens [5, p. 52] proved that log log x is the right order of magnitude for this sum by
showing

∑

p≤x

1

p
= log log x+ B +O

(

1

log x

)

as x → ∞. Here B denotes the Mertens’ constant and is defined by

B = γ +
∑

p

(

log

(

1−
1

p

)

+
1

p

)

= 0.261 . . . ,

where γ = 0.577 . . . denotes the Euler–Mascheroni constant. So it suffices to consider the
case where r = −1 and m > 0. Here, we find the following result.
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Theorem 5. Let m be a positive real number and let N be a nonnegative integer. As n → ∞,

we have

n
∑

k=1

logm pk
pk

=
logm n

m

(

N
∑

i=0

Bm,i(log log n)

logi n
+ON,m

(

(log log n)N+1

logN+1 n

)

)

, (9)

where the polynomials Bm,i ∈ R[x] are defined by

Bm,0 = 1, B′
m,i+1 = B′

m,i + (m− i)Bm,i.

The polynomials Bm,i can be computed explicitly. For example, we have

Bm,1(x) = mx and Bm,2(x) =

(

m

2

)

x2 +mx−m.

2 Proof of Theorem 1

In order to prove Theorem 1, we first note Abel’s summation formula, which can be found
in [1].

Lemma 6 (Abel’s summation formula). Let a : N → C be a function, and let A(x) =
∑

n≤x a(n), where A(x) = 0 if x < 1. If g has a continuous derivative on the interval [y, x],
where 0 < y < x, then

∑

y<n≤x

a(n)g(n) = A(x)g(x)− A(y)g(y)−

∫ x

y

A(t)g′(t) dt.

Proof. See [1, Theorem 4.2].

Using this Lemma, we get the following result.

Proposition 7. Let r and m be real numbers with r > −1 and let N be a nonnegative

integer. For a nonnegative integer j, we set

χr,m,j =
(−1)jj!

(r + 1)j

(

m− 1

j

)

. (10)

As x → ∞, we have

∫ x

2

tr logm−1 t dt =
xr+1 logm−1 x

r + 1

N
∑

j=0

χr,m,j

logj x
+ χr,m,N+1

∫ x

2

tr logm−2−N t dt+O(1).

Proof. Integration by parts and induction.
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Remark 8. In the case where m is a positive integer and N ≥ m − 1, we get χr,m,N+1 = 0.
Here, Proposition 7 gives

∫ x

2

tr logm−1 t dt =
xr+1 logm−1 x

r + 1

N
∑

j=0

χr,m,j

logj x
+O(1)

as x → ∞.

Proposition 7 implies the following asymptotic formula.

Corollary 9. Let r and m be real numbers with r > −1 and let N be a nonnegative integer.

As x → ∞, we have

∫ x

2

tr logm−1 t dt =
xr+1 logm−1 x

r + 1

(

N
∑

j=0

χr,m,j

logj x
+Or,m,N

(

1

logN+1 x

)

)

.

Proof. Using L’Hospital’s rule, we see that

∫ x

2

tr logm−2−N t dt = Or,m,N

(

xr+1

logN+2−m x

)

as x → ∞, and it suffices to apply this equation to Proposition 7.

Now we apply Corollary 9 to find the following result.

Proposition 10. Let r and m be real numbers with r > −1 and let N be a nonnegative

integer. Then

∑

p≤x

pr logm p =
xr+1 logm−1 x

r + 1

(

N
∑

j=0

χr,m,j

logj x
+Or,m,N

(

1

logN+1 x

)

)

as x → ∞, where χr,m,j is defined by (10).

Proof. For x ≥ 2, let R(x) = π(x)− li(x). As x → ∞, the asymptotic fomula (1) implies

R(x) = O(xe−a
√
log x) (11)

for some positive absolute constant a. Furthermore, let y = 3/2, g(x) = xr logm x, and

a(n) =

{

1, if n is prime;

0, otherwise.

We use Lemma 6 to get

∑

p≤x

pr logm p = (li(x) +R(x))xr logm x−

∫ x

2

(li(t) +R(t))tr−1(r logm t+m logm−1 t) dt.
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If we combine this with (11) and
∫ x

2

tr logm−1 t dt = li(x)xr logm x−

∫ x

2

li(t)tr−1(r logm t+m logm−1 t) dt+O(1)

as x → ∞, we see that

∑

p≤x

pr logm p =

∫ x

2

tr logm−1 t dt+O(xr+1e−b
√
log x) +O

(
∫ x

2

tre−b
√
log t dt

)

(12)

as x → ∞, where the real number b satisfies 0 < b < a. Using L’Hospital’s rule, we get
∫ x

2

tre−a
√
log t dt = O(xr+1e−a

√
log x)

as x → ∞. So we can rewrite (12) as

∑

p≤x

pr logm p =

∫ x

2

tr logm−1 t dt+O(xr+1e−b
√
log x) (13)

as x → ∞. Finally, we apply Corollary 9 to complete the proof.

In the following corollary, we give a generalization of (3).

Corollary 11. Let r be a real number with r > −1 and let m be a nonnegative integer. As

x → ∞, we have

∑

p≤x

pr

logm p
=

(r + 1)m

m!

(

li(xr+1)−
m−1
∑

j=0

j! xr+1

(r + 1)j+1 logj+1 x

)

+O(xr+1e−a
√
log x).

Proof. Induction over m and integration by parts gives

∫ x

2

tr

logm+1 t
dt =

(r + 1)m

m!

(

li(xr+1)−
m−1
∑

j=0

j! xr+1

(r + 1)j+1 logj+1 x

)

+O(1)

as x → ∞. Now it suffices to apply the equation (13).

To give a proof of Theorem 1, we also need the following result of Salvy [8]. Here we use
the notation from Robin [7].

Proposition 12 (Salvy). Let y = y(x) satisfies eyy−αD(1/y) ≈ x as x → ∞, with D(u) =
∑

n≥0 dnu
n a formal power series, α 6= 0, and D(0) 6= 0. Then for any formal power series

G with nonzero constant term the following asymptotic expansion hold:

eβyyγG(1/y) ≈

(

x

d0

)β

(log x)αβ+γ
∑

n≥0

Qn(log log x)

logn x
(x → ∞).

Here Qn are polynomials with Q0 = G(0) and Q′
n+1/α = Q′

n + (αβ + γ − n)Qn.
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Proof. See [8, Theorem 2].

Now we can give a proof of Theorem 1.

Proof of Theorem 1. Let N be a nonnegative integer and let DN(u) =
∑N

j=0 j! u
j . We define

the formal power series

D(u) =
∞
∑

j=0

j! uj .

Then D(0) = 1. First, we note that repeated integration by parts in (2) gives

li(x) ≈
x

log x
D

(

1

log x

)

(14)

as x → ∞. For x > 1, the logarithmic integral li(x) is increasing with li((1,∞)) = R. Thus,
we can define the inverse function li−1 : R → (1,∞) by

li(li−1(x)) = x. (15)

We combine (14) and (15) to obtain

eyy−1D(1/y) ≈ n (16)

as n → ∞, where y = log li−1(n). Next, we define δ(n) by pn = li−1(n) + δ(n). By Massias
and Robin [4, p. 217], we have

δ(n) = O(ne−c
√
logn) (17)

as n → ∞, where c is a positive absolute constant. Since pn ∼ n log n as n → ∞ (see, for
example, [8]), we see that li−1(n) ∼ n log n as n → ∞. Substituting x = pn in Proposition
10, we get

n
∑

k=1

prk log
m pk =

pr+1
n logm−1 pn

r + 1

(

N
∑

j=0

χr,m,j

logj pn
+Or,m,N

(

1

logN+1 pn

)

)

(18)

as n → ∞. Using the mean value theorem and (17), we deduce

logm−1(pn) = ym−1 +O(e−d
√
logn) (19)

as n → ∞, where d is a real number satisfying 0 < d < c. Combined with (18), this gives

n
∑

k=1

prk log
m pk =

pr+1
n ym−1

r + 1

(

N
∑

j=0

χr,m,j

logj pn
+Or,m,N

(

1

yN+1

)

)

(20)

as n → ∞. By the binomial theorem, we have

pr+1
n = (li−1(n) + δ(n))r+1 = li−1(n)r+1 +Or(n

r+1e−c
√
logn)
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as n → ∞. Applying this to (20), we see that

n
∑

k=1

prk log
m pk =

e(r+1)yym−1

r + 1

(

N
∑

j=0

χr,m,j

logj pn
+Or,m,N

(

1

yN+1

)

)

as n → ∞. Let f(x) = 1/ logk x, where k is an integer with 0 ≤ k ≤ m − 1. Again,
by the mean value theorem there exists a real ξ ∈ (min{pn, li

−1(n)},max{pn, li
−1(n)}) such

that f(pn) = f(li−1(n)) + δ(n)f ′(ξ). Since f ′(x) = O(1/(x logk+1 x)) as x → ∞, we get
f(pn) = f(li−1(n)) +O(e−c

√
log n) as n → ∞. Hence

n
∑

k=1

prk log
m pk =

e(r+1)yym−1

r + 1

(

G(1/y) +Or,m,N

(

1

yN+1

))

(21)

as n → ∞, where

G(u) = Gr,m,N(u) =
N
∑

j=0

χr,m,j u
j.

Since (16) holds, we can apply Proposition 12 with α = 1, β = r + 1, and γ = m− 1 to see
that

e(r+1)yym−1G(1/y)

r + 1
=

nr+1 logr+m n

r + 1

(

N
∑

i=0

Ar,m,i(log2 n)

logi n
+Or,m,N

(

(log2 n)
N+1

logN+1 n

)

)

(22)

as n → ∞, where log2 x = log log x and the polynomials Ar,m,i ∈ R[x] are defined by (8).
If we combine (21) and (22), we arrive at the end of the proof of (7). Again, we apply
the symbolic algebra system Maple to compute the polynomials Ar,m,1, . . . , Ar,m,N from the
appendices of [8]. It suffices to write, in Maple,

’sum’(p^r*log(p)^m) = 1/(r+1)*theorem2 part2(1,r+1,m-1,D N,G {r,m,N},n,N);

with N = 2 to get the polynomials Ar,m,1 and Ar,m,2. This completes the proof.

Remark 13. We define lc(P ) to be the leading coefficient of a polynomial P ∈ R[x]. If
r +m ∈ N, we can use (8) to see that the polynomials Ar,m,0, . . . , Ar,m,N ∈ R[x] satisfy

deg(Ar,m,i) =

{

i, if i ≤ r +m;

i− 1, otherwise,

and

lc(Ar,m,i) =















(

r +m

i

)

, if i ≤ r +m;

(−1)i−1−r−m

(

i− 1

r +m

)−1

, otherwise.
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In the case where r +m ∈ R \ (N ∪ {0}), we deduce from (8) that

deg(Ar,m,i) = i and lc(Ar,m,i) =

(

r +m

i

)

.

If r+m = 0, the equation in (8) implies that A′
r,m,1 = 0 and we are not able to say anything

in general about the degree or the leading coefficient of the polynomials Ar,m,i, where i ≥ 1.

Example 14. Let log2 x = log log x. We write

’sum’(p^r*log(p)^m) = 1/(r+1)*theorem2 part2(1,r+1,m-1,D N,G {r,m,N},n,N);

with (r,m,N) = (1,−1, 2), (r,m,N) = (1,−2, 2), and (r,m,N) = (1,−3, 2) respectively. As
n → ∞, this gives the asymptotic formulae

n
∑

k=1

pk
log pk

=
n2

2

(

1−
1

log n
+

log2 n− 3/2

log2 n
+O

(

(log2 n)
2

log3 n

))

,

n
∑

k=1

pk

log2 pk
=

n2

2 log n

(

1−
log2 n+ 1/2

log n
+

(log2 n)
2

log2 n
+O

(

(log2 n)
3

log3 n

))

,

n
∑

k=1

pk

log3 pk
=

n2

2 log2 n

(

1−
2 log2 n

log n
+

3(log2 n)
2 − 2 log2 n+ 2

log2 n
+O

(

(log2 n)
3

log3 n

))

,

respectively.

Remark 15. We have A1,1,0 = 1. The last example implies that lc(A1,1,1) = 1. Now we can
use (8) and induction to get lc(A1,1,i) = 1 for all integers i with i ≥ 0.

Chebyshev’s ϑ-function is defined by ϑ(x) =
∑

p≤x log p, where p runs over primes not
exceeding x. Notice that the prime number theorem (1) is equivalent to

ϑ(x) = x+O(xe−c1
√
log x)

as x → ∞, where c1 is a positive absolute constant. Applying a well-known asymptotic
expansion for the nth prime number (see [8]), we see that

ϑ(pn) = n

(

log n+ log2 n− 1 +
log2 n− 2

log n
−

(log2 n)
2 − 6 log2 n+ 11

2 log2 n
+O

(

(log2 n)
3

log3 n

))

as n → ∞, where log2 x = log log x, which gives the asymptotic expansion for Sr,m(pn) in
the case r = 0 and m = 1. For some other cases, we apply again the method developed by
Salvy [8, Theorem 2] to get the following further results.

Example 16. Let log2 x = log log x. Again, it suffices to write

’sum’(p^r*log(p)^m) = 1/(r+1)*theorem2 part2(1,r+1,m-1,D N,G {N,r,m},n,N);
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with (r,m,N) = (0, 2, 2), (r,m,N) = (1, 1, 2), and (r,m,N) = (1, 2, 1), respectively. As
n → ∞, this gives the asymptotic formulae

n
∑

k=1

log2 pk = n log2 n

(

1 +
2 log2 n− 2

log n
+

(log2 n)
2 − 2

log2 n
+O

(

(log2 n)
2

log3 n

))

,

n
∑

k=1

pk log pk =
n2 log2 n

2

(

1 +
2 log2 n− 2

log n
+

(log2 n)
2 − 3

log2 n
++O

(

(log2 n)
2

log3 n

))

,

n
∑

k=1

pk log
2 pk =

n2 log3 n

2

(

1 +
3 log2 n− 5/2

log n
+O

(

(log2 n)
2

log2 n

))

,

respectively.

3 Proof of Theorem 5

In 1857, de Polignac [6, part 3] stated without proof that log x is the right asymptotic
behaviour for

∑

p≤x log p/p as x → ∞, where p runs over primes not exceeding x. A rigorous
proof of this statement was given by Mertens [5]. He showed that

∑

p≤x

log p

p
= log x+O(1)

as x → ∞. We find the following generalization of this asymptotic formula.

Proposition 17. Let m be a positive real number. As x → ∞, we have

∑

p≤x

logm p

p
=

logm x

m
+O(1).

Proof. Similar to Proposition 10.

Finally, we use Proposition 17 to find the following proof of Theorem 5.

Proof of Theorem 5. We apply Proposition 17 with x = pn and use (19) to see that

n
∑

k=1

logm pk
pk

=
ym

m
+O(1)

as n → ∞, where y = log li−1(n). Since (16) holds, we can apply Proposition 12 with
α = 1, β = 0, and γ = m to get the asymptotic expansion (9). In order to compute the
polynomials Bm,1, . . . , Bm,N , we use the Maple code given in the appendices of [8]. It suffices
to write

’sum’(log(p)^m/p) = 1/(r+1)*theorem2 part2(1,0,m,D N,1,n,N);.

In particular, we get the desired polynomials Bm,1 and Bm,2.
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