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On Boltzmann and Landau equations

By P.L. Lions

Ceremade, Universite Paris-Dauphine,Place de Lattre de Tassigny,
75775 Paris Cedex 16, France

We present here various compactness properties enjoyed by global solutions of the
so-called Boltzmann and Landau equations. These properties, which are crucial for

the existence of global solutions, are shown to depend heavily on the structure of the
collision operators.

1. Introduction
We study here some properties of solutions of the following kinetic equations
df/dt+v'Vxf=Q (f,f)for 0, @

where 1, f§ a non-negative function and Q(f,f) is a non-local, quadratic
operator. Physically, such equations provide a mathematical model for the statistical
evolution of a large number of particles interacting through ‘collisions'. They are
used for the description of a moderately rarefied gas or of plasmas. The unknown
function/ corresponds at each time t to the density of particles at the point x with
velocity v. If the operator Q were 0, (1) would simply mean that the particles do not
interact and/would be constant along particle paths = = 0). This conservation
no longer holds if collisions occur, in which case the rate of changes of/ has to be
specified. Such a description was introduced by Maxwell (1886, 1890) and Boltzmann
(1872) and involves an integral operator described below. This model is derived under
the assumption of stochastic independence of pairs of particles at (x, t) with different
velocities (molecular chaos assumption). For further detail on the derivation of this
model (Boltzmann collision operator), we refer the reader to Chapman & Cowling
(1952), Grad (1958), Cercignani (1988), Truesdell & Muncaster (1960) and the
references therein.

To explain the mathematical results we shall present here, we need to detail the
structure of Boltzmann collision operator B. If is a smooth function (say
CE{IRN)) of v then Qep,cp) is a function of v given by

r

€Sy o1 dLd){cp{v)(p(v")-ep{v)ep{v)IM{v-V 2)
where V' = v— — = Ve V* + (v
scalar product in IRNThe collision kernel B depends on the nature of the interacti
between particles and always satisfies at least
B"O, B a function of Xz,w)| only.
It is worth recalling the significance of the velocities are the

velocities of two ‘colliding’ particles before a collision that will bring them to have
velocities v Elastic collisions must obey the conservation of momentum and
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kinetic energy (v+v*= v +Vv* H2+ KI2= |[vT + K12 and the forn

above for v' and Vbare a description of all possible solutions of these two balance
laws.

Of course, Q{f,f) in (1) means Povided such a quant

sense or in other words provided the integrals in (2) make sense first for a smooth
and next for a solution of (1). The second part of this difficulty is of course related
to apriori estimates and regularity informations on the solutions. But, even the first
part is a serious mathematical issue since realistic collision kernels B can be rather
singular as we explain now. Indeed, if the so-called hard-spheres model where
B(z,d) = 12 w)| does not present real singularities, for inverse power intermolecular
potentials, B takes the following form

B(z,(0) = b(6)\2\~y with y= 1 1) Ip1l
where s >1is the exponent of the potential, 6 is the angle between and wmso
that cos 6= (v—v".,0)) \v—n addition, bis smooth except at
has a singularity of the form |cos#|-awith a = (s-f 1) 1)-1ifiv= 3. In other words,

B presents singularities of an arbitrary high order when (v—v*, qj) = 0, condition that
corresponds to the so-called grazing collisions. A classical approach consists in
avoiding this difficulty, neglecting thus grazing collisions, and one simply truncates
b assuming for instance

B gL\OQRRr SN~X

(see Grad 1958; Cercignani 1988; Truesdell & Muncaster 1960).

On the other hand, when almost all collisions are grazing, phenomenological
arguments introduced by Landau (see Lifschitz & Pitaerskii 1981) and by Chapman
& Cowling (1952) lead to another collision operator

Q(fJ) oM dv+atv —v*) 0| & (5)

*1

in which case (1) becomes the Landau equation (it also called the Fokker-Planck
equation). The matrix (a™(z)) is symmetric, non-negative, even in 2 and is typically
of the following form if N = 3,

au(z= («@n20){"-2t2/1z1Zp (6)
where a is even, smooth (for instance) and positive on IRN. In (5) and everywhere
below, we use the standard convention of implicit summation over repeated indices.

Justifications of the collision operator given in (5) can be found in Desvillettes
(1994) (through an asymptotic expansion of Boltzmann collision operators with
small parameters) and in Degond & Lucquin-Desreux (1994) (via an expansion of a
physically realistic Boltzmann collision operator around grazing collisions). These
works strongly suggest that, in addition to the intrinsic interest in Landau equation,
some insight on the Boltzmann equation when one does not make the angular cut-
off might be gained by an analysis of the Landau model.

This is precisely our goal here and we shall prove that solutions of the Landau
equation enjoy a rather striking compactness property and that this property does
not hold for the Boltzmann equation with angular cut-off.

Let us mention at this stage that compactness properties of solutions of nonlinear
partial differential equations are often a replacement for regularity results (that seem
out of reach) and play a fundamental role in global existence results. Even if we are
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not concerned here with existence issues, we would like to mention that this type of
compactness properties is one of the key ingredients in the results by DiPerna &
Lions (1989a, 1991) on the global existence of weak solutions for the Boltzmann
equation with general initial conditions and general collision kernels B with angular
cut-off (see also DiPerna & Lions (1988a, 19896) for results concerning related kinetic
models). References to previous work on Boltzmann equations can be found in
DiPerna & Lions (1989a).

In 82 below, we state our main compactness result for the Landau model: we prove
that sequences of solutions with natural bounds are compact in Lp(0,T;L1(IR2n))
(Y N p <00,VTg (0, 00)). And we recall a weaker compactness result for solutions of
the Boltzmann equation with angular cut-off, a result shown in DiPerna & Lions
(19894a). Finally, we also show that the result for the Landau model does not hold for
the Boltzmann equation with angular cut-off. The proofs are given in §3. We will also
mention in 83 how the method of proof also yields some apparently new results on
linear equations in cases which are related but more general than some typical
hypoelliptic equations.

2. Compactness results

We shall consider a sequence of solutions ( °f (1) corresponding to a sequence
(/o)n °finitial conditions. We shall assume natural bounds which are straightforward
consequences of the following formal identities that hold for solutions of (1) in the
case of Boltzmann collision operators (2) or Landau collision operators (5). For any
solution/ of (1) (in these two cases), we have at least formally

fijrdxdvis independent oft for ijr= 1, <1 N), |v|2, )
JJImiN

In addition,

/log/dxdv is non-increasing with respect to (8)
JJIrN

In fact, a more precise formulation of (8) is the following formal identity

rrr e
/Iog/dxdv+i_ ' dxdvav* d(0B(f% fﬁ*):mgmp )
i *

where fefov™®), /' = fitx V) P=f(txv®), in the case of the Boltzmann
model. For the Landau model, (9) is replaced by

rr
d ~ fog/dxdv+i  dxdvdvrantv- viifc(—(log/) - (log/*)

& i

xi4 oy~ (logMI=0- (0>

These conservations or identities lead to the following enatural > bounds that we
assume throughout this paper

s\;@ [+ \X— viR+ W2+|log/W] dxdv[ < + 00
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let us also recall that ff 0on [0, o00) X Ufx

To avoid unnecessary technicalities, we simply assume that fn are smooth
solutions of (1) say C@with fast decay as (x,v) goes to infinity. In fact, the results
below hold for convenient weak solutions, i.e. renormalized solutions —a notion
introduced in DiPerna & Lions (1989a)-and for various approximations or
regularizations of (1). Finally, they can be used to deduce global existence results of
such weak solutions.

We begin with the Boltzmann model with angular cut-off.

Theorem 1. Weassume that B satisfies for all e (0, oo)
Bdzdoj * CR(1+ Ij2) 5
Jz-Q<R 12,
Vze RN for some CR” 0.
Then, for each i/reLoo(Rfx Rf), jRNfnfidv
all 1 N T e (Q, 00).

Remarks, (i) This result is shown in DiPerna & Lions (1989a) with a slightly more
restrictive assumption on B and under another bound on f nnamely a bound on the
dissipation of entropy that follows from (9)). This minor improvement is explained
in DiPerna et al. (1991).

(i) The compactness stated in Theorem 1 is sufficient to pass to the limit in the
collision terms (and in the entropy inequality) as shown in DiPerna & Lions (1989a,

1991).
We next consider the Landau model and we recall that (a") is symmetric, non-
negative and even in zh addition, we assume
for all R €, 00) there exists > 0 such that” (13)
aijz)Vivi > Vit w=0,4"R, |
a,eLl+L»; N ZeJfHL™, (14)
where Jt denotes the space of bounded measures on IRN.
For instance, if N~ 3, atj(2) = (a(2)/|z|0){".-z~/1z12Z}, where 0 " 6 2, ais
smooth (say in W200(RN))and positive on  (13) and (14) hold. Notice th:
0= N—2 a= 1,

az,0z/«_  CnS*

Theorem 2. Under the assumptions (13) and (14), f n is relatively compact in
L r(0, T; L I(IRIfp)for alll ™ r < oo, Te (0, 00).

Remarks, (i) It is possible to improve a bit the assumption on 02ay/0< dzj allowing
singular integrals distributions but we will skip such a technical extension here.

(i) If we do not make the assumption (13), then Theorem 1 still holds. Also,
Theorem 2 holds if we add the Boltzmann collision and the Landau collision
operators.

(iif) As  shall see in the proof, we also prove that  f nis relatively compact in
Moc-

Of course, it isthen natural to ask whether Theorem 2 holds for Boltzmann models.
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This remains an outstanding problem if we do not make the angular cut-off but if we
do then we have

Theorem 3. Under the assumption (12), the conclusion of Theorem 2 implies in fact
that f nis relatively compact in (7(]0, and thus, in [ =17Q) is
relatively compact in L 1(IRIfv).

Theorems 2 and 3 are shown in 83.

3. Proofs of Theorems 2 and 3

We begin with the proof of Theorem 2. The first step consists in writing the Landau
equation in renormalized form in the sense of DiPerna & Lions (1989a; see also
DiPerna & Lions (19886) and Lions & Murat (1994) for similar formulations in the
case of equations involving second-order operators). Let /?e(72[0, + oo), #?). We
clearly have for any (smooth) solution/ of (1)

W )+C-V*ANW (/)W >/)-

Next, if the collision operator Q is given by (5)

where aij au(v-v*)f*dv*, 6~ dv-

Therefore, we have
mwj)= W))-*119(H)-InfK +<w >w Y

where 0y (v-v*)f*dv.
fdztdzj

In conclusion, we find for any solution of (1) and (5)

Jr(l)«,,g+W )-AW }- (is)

In particular, this equation holds for each f nwhere a®, bt, c are replaced by

aj= aij{v—v")fnd/,,

K A-{v-vAhpithirndy (16)
L dg

™ S £y -y A ) Fnt,x,vA) dA

c -i)zida{ ) fnftx,v?)
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To conclude this first step, we want to deduce a few simple bounds from (15). We
choose /3(t) = t/(1 ¥nd we find

rj.yy

1
At vdy, dv,fa, (1471

= 4eSRTUM A (r (7).

where y@® = (1—1 + .
Therefore, if we multiply (15) by (peCM(IRN
[0, T] x X (for any fixed #000)), we obtain

A "N
dXdr<p’;}-—$V(Y(/"))aa. (y(/n)

: f /- roi
fi(fn)(T)(pdxdv+ \ df dxdr —
(fn)(T)(p O L o™ e

+ pﬁNdXdV&T /?(/*)!_
We next want to prove that the three terms in the right-hand side are bounded. This

is clear for the first one in view of (11) since fi(fn)”» . The second term is also
bounded since
r' r‘ Crn)z

Flh+/w2 i+t (i+D:

is bounded inL°°(0, oo ;L°°(#f nL°°("?f))) and in view of (14), = cI*/n+ c2*/B,
where d2aij/dzidzj= cx+c2and c2eL°°, hence cI*fn is bounded in L°°(0, oo;
L1(~IN)) while ¢2*/wis bounded in L°°(0, oo \Ln

same argument applies to the term

d x Bogfyn

using (14) again. The last we have to handle is

<V/AW W
dv,a> dv,
- 17df OV ey de pdxdviebE
And we show exactly as above, using (14), that each of those terms is bounded. In
conclusion, we obtain for each ®o00)
(17)
where BR = {ze" R}L
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The second step consists in showing that averages in v of and /?(/””) are compact
in L1((0, T) xBr). We again write (15) with the choice /? = we find for all n

I W)+{-VXW ) =A(*5Jr0»(/*))-82W i)

(is)
We have shown above that 6”/?(/”), ${/?(/n)— are bounded in L°°(0, 00;
L1(Rx 'xBft)) and that
e6/n
ATK af oj

is bounded in L1(0, T;LXR”™ *BR)) for all R, Te (0, 00). We then want to show that

S
is bounded in L1(0,T;LXR™xBR) for all (0, 00). Indeed, we have by
Cauchy-Schwarz inequality
S < (S|B5h*(aS*"(Ar»™W n))

<(SK1)*(«8(i+/*)-gg)"

= (SISI)*(ag||(r<"» ™ <r (/7P

In view of (14), [0 is bounded inz/°°(0, oo ; L1(R% x B R)) for all (0, 0o) and our
claim is proved using (17).
We deduce from all these bounds

~f)(fn)+i-V*{Hfn) =W ) +09n, (19)
where of( 1~ i<N), gnare bounded in L1(0,T;L1(IR*xBR)) for all (0, 00). In
addition, /?(/) is obviously bounded in (7(J0, oo) ;'*1C\Loo(R2N)). These bounds are
enough to ensure that for each 9 eCMNIRM)

[?2(/")9%9dv s relatively compact in~((O, T) xBR) (20)
rm
for all R, §000). This is a consequence of the general velocity averaging results

shown in DiPerna et al. (1991), extending the previous results due to Golse et al.
(1985, 1988), DiPerna & Lions (19866). In fact, one can even show a Sobolev type
regularity for such averages. In view of (11) and the boundedness of /?, one sees that
(20) holds in fact for each (peL1+L a(RN). And as in DiPerna & Lions (1989a), we
can deduce from (20)

fi(fn)*(p is relatively compact in L1((0, TX X
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for all R. @, 00), cpeL1+Lao{RN).In particular, if we introduce fc
(L /8N)p{z/8), where peC™(RN),Suppp ¢ Bv Oin jrpdz = 1,

(Fe)is relatively compact in/A((O, T) xBRx

for all R, @, 00), 8 > 0, where FN= Pbo="
Let us also remark that since

/T(ozz 1/(1 +04</(02: 1/(1 -LO3
on [0, 00), (17) implies A

sup dx dv
n JO

We then want to show that (20) and (21) hold with /?(/”) replaced by f n. To this
end, we argue as in DiPerna & Lions (1989a) and observe that everything we did with

of, NN _ g 23)

ydis still true with = t/(1 +w) for any 0. In particular (20), (21) hold with

~N(/n)replaced by f3(fn)(for alIR, {0, 0o) ar

notice that for each K > 1there exists CK> 0 such that
ACT)-fIlV j-rV at log 1 >k

«CKI" + i~ PG/

This allows to deduce, using (11), the following facts

f@dvis relatively compact in (QB)R)
for all ),
f n*Pis relatively compact in Lx((0, T) xBR+BR) » 75)
for all (peLd
Let us finally point out that, using again (11), the 1compactness stated in (20) and
(24) holds in fact on (0, T) x Bofor all Te (0, 00).

We are now ready to show, in a third step, the relative compactness in 0, T) x
Brx B rpf Fn for all R,Te (0, 00). We thus fix Te (0, 00),
from (11), (20), (22), (24), (25), extracting subsequences if necessary, that

/" ~Mweakly inLx((0, TXR™), /"Oa.e. (
n

aij*fr= al an*fa.e. and in 0, xBRixBRJ

pn*p ae. and in Z4((0, T) x BRi) (28)
n
Fg">Fsa.e. and inL p((0, T¥x 00) (29)
n
for all d> 0, where R E i?0+ 1, where
- f f ndv,
Jm P

We will denote by =
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Next, we want to analyse the positivity of the matrix ay. Let pe (0, 1), for all
rijelRN, \iN = 1, we observe that (13) yields some v = > 0 such that
MV (vM (L, x, vA= v(/i) p/l(t,x,v,rf), (30)
where V(fi,r) = {vA < (IFing, \(v—v, rp\<p\v Fhen, we ¢
fi\ 1, V(fi,rj) \ IRN—v+ IRJ. Therefore, as 1, This implies, by
Dini’slemma and Lebesgue theorem, that p> as ->1
a.e. xeBR®, T) andinL1((0, T) xBRi; Ax Inpartic
Ka= {(t,x)e(0,T) xBRIJp(t,x)> a} for a > 0, we deduce from the Egorov th
that, for each e> 0, there exists ElczKwith meas
(El Difa) xBr x SN~Xp™ \&i

in that interval and remark that (30) obviously holds with atj replaced by
and p® by p”. Next, p™-*np,, uniformly in

veBRi, 7jeS N-xa.e. 0, T
and in L1((0,T)xBRi\ C(BR*x SN~X).

We may then apply again the Egorov theorem to deduce that there exists ¢Ka
such that meas (E2) < \e and on (Ec) x BR» 8N~X p™~ \cc for n large enough (n "

n0(a, e)) where E= EX E& that meas (E) < e. We have thus
and e > 0, the existence of a measurable set E c=Kasuch that meas (E) < e and for
all ( t,x)eE€\Ka, for all veBRirfeSH'l

#h(t,x,v)riinj "~ve (31)

for some v = v(ot,e), for n ™ nO(<xe).
Then, (23) implies for n ~ nQ(a, €)

dfdx | dwW™ C(a, e).

jE cf\Ka JBRi

This bound implies in turn that we have for n ™ w(a,e)

dtdx dv\FAF f\ < C(a, €) (33)
Ec(]Ka IR0

We may now show that Fnis a Cauchy sequence in Lx((0, T) %BR™B RJ. Indeed,
we have

dEdx dv\Fn-F m\< _dtdx dv(Fn+Fm)
() iR KBnao, T)xBR) R
+ dtda: dv(Fn+ Fm)+ d*dx
eclNKa 128
+ dt dx av\Fg |.
(0,T)xBR xBRo
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The first integral is bounded by

Hd
J Kan((0, T)XBR)

which converges to
2 p dtdx

JKan((o, t)xbRi)

as n and ra go to +oo0, and this last integral is bounded by Ca where C denotes
various positive constants independent of a and e.
The second integral is bounded by 2 meas (BRJ meas (E)  Ce. The third integral

is bounded for m/mo{a,e) by C'(a,e)S because of (33). And the fourth
goes to 0 and mat to + oo because of (29). Collecting all those estimates, v
limsup dtdx dv\Fn- F m\~
n, ra->+oo J (0, T)xBr~ ~Bro

And we conclude letting first $ go to 0 and then a, go to O.
We may now conclude the proof of Theorem 2. Indeed, extracting subsequences
if necessary, we may assume that F n converges a.e. on (0, 00) X X And since
0 is 1—1 we immediately see that f nonverges a.e.
conclusion of Theorem 2 follows then immediately in view of the bounds (11). O

Remark. With a little more effort, one can modify the above proof to allow the
following condition on aaplacing (13)

a ,e6.ZzGRNa"z) )&

Before proving Theorem 3, we wish to state without proof two consequences of the
method of proof used above. The first one concerns another collision model
(sometimes called Fokker—Planck model) presented for instance in Cercignani
(1988):

<?2(,)) = K(e-|jlV )AI+NAWV(pv-j)f}}, (34)

where v>0,p=j AN = JL«fvd>, e = f»/|o|2d».
Then, the bounds (11) are still available because (7), (8) are still valid and the
analogue of (9), (10) is then

dr .
. flogfdxdv + 7\ dx\(e —\j\2p 'V;P dv-N22 =0.  (35)
and (e_|j|v‘1\JR IVf,fI dv—N 22" 0 a.e.

in view of the following

Lemma 4. Let geH 1(RN) be such that J#x|g|2|y|2dv < oo. ,

|g|2|v-w |2dv \Vg\2d [ , (36)
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where \g2vdv \g\2dv
In addition, the equality holds if and only if g= N/i ¢

ue RN.

Remarks, (i) This lemma replaces the famous //-theorem for the Boltzmann model,
(ii) It is obviously one form of the Heisenberg uncertainty principle.

Proof. By a simple translation and scaling argument, we may assume without loss
of generality that

\g2vdv= 0, \g2W2dv = 1, N<72dv = 1.
Jrn
Then, we may maximize Jrn \g\2dv over all functions g satisfying

P
\g2vdv= 0, \g2W2dv< 1, \ \Vg\adv~I.

Jrn Jrn Jrn

The existence of a maximizer g0 follows from easy functional analysis con-
siderations. In addition, one can show that

f ljo'M'do=1 f MiO2dB=I

J rp Rn
(again by scaling arguments for instance) and that, by the strong maximum
principle, £g0is the ground state of an operator of the form — for some
A> 0. Therefore, g0= p {2tT)~e"" M24T for some such that2Vp2T = land
Np2 /AT =1 HenceNY =4 and Jrn\gl2 = =2 O

Then, adapting the proof of Theorem 2, we find the
Theorem 5. The conclusion of Theorem 2 holds for the collision model given by (34).

Another applications of the method of proof of Theorem 2 concerns linear
equations having certain hypoelliptic features (but which are not in general
hypoelliptic). Let (f n)n be a sequence of smooth solutions of

r +,.V/x-awm(M )~ r =0, (37)
where a”eLioc((0, 00) x R%)-We assume that
fnis bounded in L"¢((0, 00) x IRAv)if L< < 00
f nis bounded inL~¢((0, 00) x |*,) and (38)
uniformly locally integrable if 1 ;
and
a.-e. (t,x)e{0, o00) x (39)
aif(t,x) JO0 for all eSN~X
Then, the method of proof of Theorem 2 yields the following result
Theorem 6. The sequence ( f n)relatively compact in Lfoc((0, 0o) x

g<p ifp > 1landfor g=1 ifp=1
Phil. Trans. R. Soc. Loud. A (1994)
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Remarks, (i) If atj is smooth and if p =,
hypoelliptic theory (see Hormander 1985). Indeed, f n is then uniformly locally

smooth on the open set

0 = {t, X, V)e(0, 00) x X) ffir > 0 for all 7e SN~1}.

In particular,/” is relatively compact in an
inequalities since (39) implies that meas (toc=
(i) Notice also that /” is not in general smooth nor compact in Lfoc. Indeed,
consider afj(t,x) = WX\28tjBy a simple scaling argument, it is easy

sequence of solutions such that \fn\p converges weakly in the sense of measures to a
Dirac mass at x=0, v= 0.

(iii) This result also holds for stationary equations and in fact for more general
operators. However, we will not pursue this direction (by the lack of applications).
Also, one could include other terms in the equation (37) (right-hand sides bounded
in  L\ocfirst-order terms, sequences of a).

(iv) Even if p =2, the remark (ii) above shows that this type of col
phenomena cannot be handled by the //-measures of Tartar (1990) and Gerard
(1991). O

We now conclude this paper with the proof of Theorem 3. We begin with the case
when BeL1(RNx SN 1)Indeed, by the arguments introduced in DiPerna & Lio
(1989a), one sees that Q~(fn, fnfl+/")-1> 1+ 1w
pectively in //"'(O, oo ;LYIRIN)/O, T

Q {PP = dv, dtoBgxp*?
Q+(pp) = dtoBcp'tp™™.
In addition, we have for each 1,

(40)
where Dn is bounded in L X0, co ;LXRXV)).The estimate
Lions (1989a). Therefore, if we set P” = (L1llog (1 + $/”), observing that we have

oP 1
if+rv'/?2=TTrw '-f)’
we deduce from the bounds recalled above and (40) for all A0
H(V) (4
where aka continuous, non-negative, non-decreasing function on [0, oo) such tf

w(0), and to depends on 8 but is independent on n. Here and below, we denote, as in
DiPerna & Lions (1989a), g*(x, v, t) = g(x +wt, t) for any function on [0, 00) X R%
Using (11) in the second step of the proof of Theorem 2, we deduce from (41) letting

8 go to 0 that (41) also holds with/” replaced by/. Next, if/ " is relatively compact

in Zd((0, TX R ANjfor some T 6 (/7)#isals
And this combined with the fact that (41) holds for (/”)# yields the relative

Phil. Trans. R. Soc. Lond. A (1994)


http://rsta.royalsocietypublishing.org/

Downloaded from http://rsta.royalsocietypublishing.org/ on January 15, 2018

On Boltzmann and Landau equations 203
compactness in (7([0, TINLYRAN)IF/ . In particular, is
relatively compact in L 1(ffi™v).

We now conclude the proof of Theorem 3 by adapting the above argument. We
consider, instead of fs’fs,R= €1l°g (1+ 8fn) 1 for Re (0, 00) and we have
= TTslb>>-
then Q-{fnd n){~+dfn)-1\BR{v) is bounded in L*(0, oo This bound

combined with (40) implies (41) with/” replaced by And letting goto 0+ go

to + oo and using (11) (as we sketched above), we recover the fact that (41) hold for
fnand we conclude as above. O
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