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Abstract
This paper presents the spectral analysis of 1-dimensional Schrödinger operator on

the half-line whose potential is a linear combination of the Coulomb term 1/r and

the centrifugal term 1=r2. The coupling constants are allowed to be complex, and all

possible boundary conditions at 0 are considered. The resulting closed operators are

organized in three holomorphic families. These operators are closely related to the

Whittaker equation. Solutions of this equation are thoroughly studied in a large

appendix to this paper. Various special cases of this equation are analyzed, namely

the degenerate, the Laguerre and the doubly degenerate cases. A new solution to the

Whittaker equation in the doubly degenerate case is also introduced.

Keywords Schrödinger operators � Coulomb potential � boundary conditions �
Whittaker equation

Mathematics Subject Classification 34L40 � 81Q10

1 Introduction

This paper is devoted to 1-dimensional Schrödinger operators with Coulomb and

centrifugal potentials. These operators are given by the differential expressions
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jan.derezinski@fuw.edu.pl

Extended author information available on the last page of the article

Advances in Operator Theory (2020) 5:1132–1192
https://doi.org/10.1007/s43036-020-00082-6(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0002-6268-1935
http://crossmark.crossref.org/dialog/?doi=10.1007/s43036-020-00082-6&amp;domain=pdf
https://doi.org/10.1007/s43036-020-00082-6


Lb;a :¼ �o2
x þ a� 1

4

� �
1

x2
� b

x
: ð1:1Þ

The parameters a and b are allowed to be complex valued. We shall study real-

izations of Lb;a as closed operators on L2ðRþÞ, and consider general boundary

conditions.

The operator given in (1.1) is one of the most famous and useful exactly solvable

models of Quantum Mechanics. It describes the radial part of the Hydrogen Hamiltonian.

In the mathematical literature, this operator goes back to Whittaker, who studied its

eigenvalue equation in [32]. For this reason, we call (1.1) the Whittaker operator.
This paper is a continuation of a series of papers [2, 6, 7] devoted to an analysis of

exactly solvable 1-dimensional Schrödinger operators. We follow the same philosophy

as in [6]. We start from a formal differential expression depending on complex

parameters. Then we look for closed realizations of this operator on L2ðRþÞ. We do not

restrict ourselves to self-adjoint realizations—we look for realizations that are well-
posed, that is, possess non-empty resolvent sets. This implies that they satisfy an

appropriate boundary condition at 0, depending on an additional complex parameter.

We organize those operators in holomorphic families.

Before describing the holomorphic families introduced in this paper, let us recall

the main constructions from the previous papers of this series. In [2, 6] we

considered the operator

La :¼ �o2
x þ a� 1

4

� �
1

x2
: ð1:2Þ

As is known, it is useful to set a ¼ m2. In [2] the following holomorphic family of

closed realizations of (1.2) was introduced:

Hm; with � 1\ReðmÞ;
defined by Lm2 with boundary conditions � x

1
2
þm:

It was proved that for ReðmÞ� 1 the operator Hm is the only closed realization of

Lm2 . In the region �1\ReðmÞ\1 there exist realizations of Lm2 with mixed

boundary conditions. As described in [6], it is natural to organize them into two

holomorphic families:

Hm;j; with � 1\ReðmÞ\1; m 6¼ 0; j 2 C [ f1g;
defined by Lm2 with boundary conditions � x

1
2
þm þ jx

1
2
�m;

and

Hm
0; with m 2 C [ f1g;
defined by L0 with boundary conditions � x

1
2

�
mþ lnðxÞ

�
:

Note that related investigations about these operators have also been performed in

[30, 31].
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In [7] and in the present paper we study closed realizations of the differential operator

(1.1) on L2ðRþÞ. Again, it is useful to set a ¼ m2. In [7] we introduced the family

Hb;m; with b 2 C; �1\ReðmÞ;

defined by Lb;m2 with boundary conditions � x
1
2
þm 1 � b

1 þ 2m
x

� �
:

It was noted in this reference that this family is holomorphic except for a singularity

at ðb;mÞ ¼
�
0;� 1

2

�
, which corresponds to the Neumann Laplacian.

For ReðmÞ� 1 the operator Hb;m is also the only closed realization of Lb;m2 . In

the region �1\ReðmÞ\1 there exist other closed realizations of Lb;m2 . The

boundary conditions corresponding to Hb;m are distinguished—we will call them

pure. The goal of the present paper is to describe the most general well-posed

realizations of Lb;m2 , with all possible boundary conditions, including the mixed

ones.

We shall show that it is natural to organize all well-posed realizations of Lb;m2 for

�1\ReðmÞ\1 in three holomorphic families: The generic family

Hb;m;j; with b 2 C; �1\ReðmÞ\1; m 62
�
� 1

2
; 0;

1

2

�
; j 2 C [ f1g;

defined by Lb;m2 with boundary conditions

� x
1
2
þm 1 � b

1 þ 2m
x

� �
þ jx

1
2
�m 1 � b

1 � 2m
x

� �
;

the family for m ¼ 0

Hm
b;0; with b 2 C; m 2 C [ f1g;

defined by Lb;0 with boundary conditions � x
1
2ð1 � bxÞ

�
mþ lnðxÞ

�
þ 2bx

3
2;

and the family for m ¼ 1
2

Hm
b;1

2
; with b 2 C; m 2 C [ f1g

defined by Lb;14
with boundary conditions � 1 � bx lnðxÞ þ mx:

The above holomorphic families include all possible well-posed realizations of Lb;m2

in the region jReðmÞj\1 with one exception: the special case ðb;m; jÞ ¼
�
0;� 1

2
; 0
�

which corresponds to the Neumann Laplacian H�1
2
¼ H�1

2
;0 ¼ H1

2
;1, and which is

already covered by the families Hm and Hm;j.

After having introduced these families and describing a few general results, we

provide the spectral analysis of these operators and give the formulas for their

resolvents. We also describe the eigenprojections onto eigenfunctions of these

operators. They can be organized into a single family of bounded 1-dimensional

projections Pb;mðkÞ such that Lmax
b;m Pb;mðkÞ ¼ kPb;mðkÞ. Here Lmax

b;m denotes the

maximal operator which is introduced in Sect. 2.3.

There exists a vast literature devoted to Schrödinger operators with Coulomb

potentials, including various boundary conditions. Let us mention, for instance, an
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interesting dispute in Journal of Physics A [10, 21, 22] about self-adjoint extensions

of the 1-dimensional Schrödinger operator on the real line with a Coulomb potential

(without the centrifugal term). Papers [11, 20, 23] discuss generalized Nevanlinna

functions naturally appearing in the context of such operators, especially in the

range of parameters jReðmÞj� 1. See also [4, 9, 12–18, 24–28] and references

therein. However, essentially all these references are devoted to real parameters b;m
and self-adjoint realizations of Whittaker operators. The philosophy of using

holomorphic families of closed operators, which we believe should be one of the

standard approaches to the study of special functions, seems to be confined to the

series of paper [2, 6, 7], which we discussed above.

The main reason why we are able to analyze the operator (1.1) so precisely is the fact

that it is closely related to an exactly solvable equation, the so-called Whittaker
equation

�o2
z þ m2 � 1

4

� �
1

z2
� b

z
þ 1

4

� �
f ðzÞ ¼ 0:

Its solutions are called Whittaker functions, which can be expressed in terms of

Kummer’s confluent functions. The theory of the Whittaker equation is the second

subject of the paper. It is extensively developed in a large appendix to this paper. It can

be viewed as an extension of the theory of Bessel and Whittaker equation presented in

[6, 7]. We discuss in detail various special cases: the degenerate, the Laguerre and the

doubly degenerate cases. Besides the well-known Whittaker functions Ib;m and Kb;m,

described for example in [7], we introduce a new kind of Whittaker functions, denoted

Xb;m. It is needed to fully describe the doubly degenerate case.

The Whittaker equation and its close cousin, the confluent equation, are

discussed in many standard monographs, including [1, 3, 29]. Nevertheless, it

seems that our treatment contains a number of facts about the Whittaker

equation, which could not be found in the literature. For example, we have never

seen a satisfactory detailed treatment of the doubly degenerate case. The

function Xb;m seems to be our invention. Without this function it would be

difficult to analyze the doubly degenerate case. Figures 1 and 2, which illustrate

the intricate structure of the degenerate, Laguerre and doubly degenerate cases,

apparently appear for the first time in the literature. Another result that seems to

be new is a set of explicit formulas for integrals involving products of solutions

of the Whittaker equation. These formulas are related to the eigenprojections of

the Whittaker operator.

2 The Whittaker operator

In this section we define the main objects of our paper: the Whittaker operators

Hb;m;j, Hm
b;1

2

and Hm
b;0 on the Hilbert space L2

�
�0;1½

�
.
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2.1 Notations

We shall use the notations Rþ ¼�0;1½, N ¼ f0; 1; 2; . . .g and N� ¼ f1; 2; . . .g.

Likewise, we set C� ¼ C n f0g and R� ¼ R n f0g. We will often consider

functions on the Riemann sphere C [ f1g with the convention 1
0
¼ 1, 1

1 ¼ 0.

Besides, a1 ¼ 1 for any a 2 C n f0g and 1þ s ¼ 1.

The Hilbert space L2ðRþÞ is endowed with the scalar product

ðh1jh2Þ ¼
Z 1

0

h1ðxÞh2ðxÞdx:

We will also use the bilinear form defined by

hh1jh2i ¼
Z 1

0

h1ðxÞh2ðxÞdx:

The Hermitian conjugate of an operator A is denoted by A�. Its transpose is denoted

by A#. If A is bounded, then A� and A# are defined by the relations

ðh1jAh2Þ ¼ ðA�h1jh2Þ;
hh1jAh2i ¼ hA#h1jh2i:

The definition of A� has the well-known generalization to the unbounded case. The

definition of A# in the unbounded case is analogous.

The following holomorphic functions are understood as their principal branches,

that is, their domain is Cn� �1; 0� and on �0;1½ they coincide with their usual

definitions from real analysis: lnðzÞ, ffiffi
z

p
, zk. We set argðzÞ :¼ Im

�
lnðzÞ

�
. Sometimes

it will be convenient to include in the domain of our functions two copies of

� �1; 0½, describing the limits from the upper and lower half-plane. They

correspond to the limiting cases argðzÞ ¼ 	p.

The Wronskian of two continuously differentiable functions f and g on Rþ is

denoted by Wðf ; g; �Þ and is defined for x 2 Rþ by

Wðf ; g; xÞ :¼ f ðxÞg0ðxÞ � f 0ðxÞgðxÞ: ð2:1Þ

2.2 Zero-energy eigenfunctions of the Whittaker operator

In order to study the realizations of the Whittaker operator Lb;a one first needs to

find out what are the possible boundary conditions at zero. The general theory of

1-dimensional Schrödinger operators says that there are two possibilities:

(i) there is a 1-parameter family of boundary conditions at zero,

(ii) there is no need to fix a boundary condition at zero.

One can show that (i),(i0) and (ii),(ii0), where

(i0) for any k 2 C the space of solutions of ðLb;a � kÞf ¼ 0 which are

square integrable around zero is 2-dimensional,
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(ii0) for any k 2 C the space of solutions of ðLb;a � kÞf ¼ 0 which are

square integrable around zero is at most 1-dimensional.

We refer to [5] and references therein for more details.

In the above criterion one can choose a convenient k. In our case the simplest

choice corresponds to k ¼ 0. Therefore, we first discuss solutions of the zero

eigenvalue Whittaker equation

�o2
x þ m2 � 1

4

� �
1

x2
� b

x

� �
f ¼ 0 ð2:2Þ

for m and b in C. As analyzed in more details in Sect. B.7, solutions of (2.2) can be

constructed from solutions of the Bessel equation. More precisely, for b 6¼ 0, let us

define the following function for x 2 Rþ :

jb;mðxÞ :¼
Cð1 þ 2mÞffiffiffi

p
p b�

1
4
�mx1=4J 2m

�
2
ffiffiffiffiffi
bx

p �
;

where J m is defined in Sect. B.6. For b ¼ 0 we set

j0;mðxÞ :¼ xmþ1
2:

Then, the equation (2.2) is solved by the functions jb;m, see [7, Sec. 2.8] and

Sect. B.7. For 2m 62 Z, jb;m and jb;�m span the space of solutions of (2.2). They are

square integrable around zero if and only if jReðmÞj\1.

We still need to consider the special cases m 2
�
� 1

2
; 0; 1

2

�
. In fact, we shall not

consider separately m ¼ � 1
2

because Eq. (2.2) with m ¼ � 1
2

coincides with the case

m ¼ 1
2
. As companions to jb;0 and jb;1

2
for b 6¼ 0 we introduce

yb;0ðxÞ :¼ b�
1
4x1=4

ffiffiffi
p

p
Y0

�
2
ffiffiffiffiffi
bx

p �
� ðlnðbÞ þ 2cÞffiffiffi

p
p J 0

�
2
ffiffiffiffiffi
bx

p �	 

;

yb;1
2
ðxÞ :¼ b

1
4x1=4 �

ffiffiffi
p

p
Y1

�
2
ffiffiffiffiffi
bx

p �
þ ðlnðbÞ þ 2c� 1Þffiffiffi

p
p J 1

�
2
ffiffiffiffiffi
bx

p �	 

;

where c is Euler’s constant and Ym is defined in Sect. B.6. For b ¼ 0 we set

y0;0ðxÞ :¼ x
1
2 lnðxÞ and y0;1

2
ðxÞ :¼ 1:

Then jb;0; yb;0 and jb;1
2
; yb;1

2
span the space of solutions of (2.2) for m ¼ 0 and for

m ¼ 1
2

respectively. Indeed, a short computation leads to

Wðjb;0; yb;0; xÞ ¼ 1 and Wðjb;1
2
; yb;1

2
; xÞ ¼ �1:

Since the solutions jb;0; yb;0 and jb;1
2
; yb;1

2
are also square integrable around zero, for

any m 2 C with jReðmÞj\1 the space of solutions of Lb;af ¼ 0 is 2-dimensional.

Let us describe the asymptotics of these solutions near zero. The following

results can be computed based on the expressions provided in the appendix of [6].

For any m 2 C with �2m 62 N� one has
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jb;mðxÞ ¼ x
1
2
þm 1 � b

1 þ 2m
x þ O

�
x2
�� �

: ð2:3Þ

In the exceptional cases one has

jb;0ðxÞ ¼ x
1
2

�
1 � bx

�
þ O

�
x

5
2

�
;

jb;1
2
ðxÞ ¼ x 1 � b

2
x

� �
þ O

�
x3
�
;

together with

yb;0ðxÞ ¼ x
1
2 lnðxÞ

�
1 � bx

�
þ 2bx

3
2 þ O

�
x

5
2j lnðxÞj

�
;

yb;12ðxÞ ¼ 1 � bx lnðxÞ þ O
�
x2j lnðxÞj

�
:

2.3 Maximal and minimal operators

For any a and b 2 C we consider the differential expression

Lb;a :¼ �o2
x þ a� 1

4

� �
1

x2
� b

x

acting on distributions on Rþ. The corresponding maximal and minimal operators in

L2ðRþÞ are denoted by Lmax
b;a and Lmin

b;a , see [7, Sec. 3.2] for the details. The domain of

Lmax
b;a is given by

DðLmax
b;a Þ ¼ f 2 L2ðRþÞ j Lb;af 2 L2ðRþÞ

� �
;

while Lmin
b;a is the closure of the restriction of Lb;a to C1

c

�
�0;1½

�
, the set of smooth

functions with compact supports in Rþ. The operators Lmin
b;a and Lmax

b;a are closed and

we have

�
Lmin
b;a

�� ¼ Lmax
�b;�a and

�
Lmin
b;a

�# ¼ Lmax
b;a :

We say that f 2 DðLmin
b;a Þ around 0, (or, by an abuse of notation, f ðxÞ 2 DðLmin

b;a Þ
around 0) if there exists f 2 C1

c

�
½0;1½

�
with f ¼ 1 around 0 such that

f f 2 DðLmin
b;a Þ. The following result follows from the theory of one-dimensional

Schrödinger operators.

Proposition 2.1 Let a; b;m 2 C.

(i) If f 2 DðLmax
b;a Þ, then f and f 0 are continuous functions on Rþ and converge

to 0 at infinity.

(ii) If f 2 DðLmin
b;a Þ, then near 0 one has:

(a) f ðxÞ ¼ o
�
x

3
2j lnðxÞj

�
and f 0ðxÞ ¼ o

�
x

1
2j lnðxÞj

�
if a ¼ 0,

(b) f ðxÞ ¼ o
�
x

3
2

�
and f 0ðxÞ ¼ o

�
x

1
2

�
if a 6¼ 0.
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(iii:a) If jReðmÞj\1 with m 62
�
� 1

2
; 0; 1

2

�
, then for any f 2 DðLmax

b;m2Þ there exists

a unique pair a; b 2 C such that

f � ajb;m � bjb;�m 2 DðLmin
b;m2Þ around 0:

(iii:b) If f 2 DðLmax
b;0 Þ, then there exists a unique pair a; b 2 C such that

f � ajb;0 � byb;0 2 DðLmin
b;0 Þ around 0:

(iii:c) If f 2 DðLmax
b;1

4

Þ, then there exists a unique pair a; b 2 C such that

f � ajb;1
2
� byb;1

2
2 DðLmin

b;1
4
Þ around 0:

(iv) If jReðmÞj\1, then

DðLmin
b;m2Þ ¼ f 2 DðLmax

b;m2Þ j Wðf ; g; 0Þ ¼ 0 for all g 2 DðLmax
b;m2Þ

n o

¼ f 2 DðLmax
b;m2Þ j f ðxÞ ¼ o

�
x

1
2
þjReðmÞj� near 0

n o
:

(v) If jReðmÞj > 1, then DðLmin
b;m2Þ ¼ DðLmax

b;m2Þ.

Proof The statements (i)–(iii) and (v) are a reformulation of [7, Prop. 3.1] with the

current notations. Only (iv) requires elaboration. The first equality in (iv) follows

from [5, Thm. 3.4], given that Wðf ; g;1Þ ¼ 0 for all f ; g 2 DðLmax
b;m2Þ by (i).

The inclusion DðLmin
b;m2Þ 


�
f 2 DðLmax

b;m2Þ j f ðxÞ ¼ o
�
x

1
2
þjReðmÞj� near 0

�
is a con-

sequence of (ii). To prove the converse inclusion, let f 2 DðLmax
b;m2Þ. Assuming for

instance that m 62
�
� 1

2
; 0; 1

2

�
and applying (iii.a), one can write

f f ¼ ajb;mfþ bjb;�mfþ fmin;

for some f 2 C1
c

�
½0;1½

�
such that f ¼ 1 around 0, a; b 2 C and fmin 2 DðLmin

b;m2Þ.
From (2.3) and (ii), we deduce that if f ðxÞ ¼ o

�
x

1
2
þjReðmÞj� near 0 then, necessarily,

a ¼ b ¼ 0. Hence we have proved that
�

f 2 DðLmax
b;m2Þ j f ðxÞ ¼ o

�
x

1
2
þjReðmÞj� near 0

�

 DðLmin

b;m2Þ in the case where m 62
�
� 1

2
; 0; 1

2

�
. The same argument applies if m ¼

	 1
2

or m ¼ 0, using (iii.b) or (iii.c) instead of (iii.a). h

2.4 Families of Whittaker operators

We can now provide the definition of three families of Whittaker operators. The first

family covers the generic case. The Whittaker operator Hb;m;j is defined for any

b 2 C, for any m 2 C with jReðmÞj\1 and m 62
�
� 1

2
; 0; 1

2

�
, and for any

j 2 C [ f1g:
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DðHb;m;jÞ ¼ f 2 DðLmax
b;m2Þ j for some c 2 C;

n

f � c
�
jb;m þ j jb;�m

�
2 DðLmin

b;m2Þ around 0
o
; j 6¼ 1;

DðHb;m;1Þ ¼ f 2 DðLmax
b;m2Þ j for some c 2 C;

n

f � c jb;�m 2 DðLmin
b;m2Þ around 0

o
:

The second family corresponds to m ¼ 0:

DðHm
b;0Þ ¼ f 2 DðLmax

b;0 Þ j for some c 2 C;
n

f � c
�
yb;0 þ m jb;0

�
2 DðLmin

b;0 Þ around 0
o
; m 2 C;

DðH1
b;0Þ ¼ f 2 DðLmax

b;0 Þ j for some c 2 C;
n

f � c jb;0 2 DðLmin
b;0 Þ around 0

o
:

Finally, in the special case m ¼ 1
2

we have the third family:

DðHm
b;1

2
Þ ¼ f 2 DðLmax

b;1
4
Þ j for some c 2 C;

n

f � c
�
yb;1

2
þ m jb;1

2

�
2 DðLmin

b;1
4
Þ around 0

o
; m 2 C;

DðH1
b;1

2
Þ ¼ f 2 DðLmax

b;1
4
Þ j for some c 2 C;

n

f � c jb;1
2
2 DðLmin

b;1
4
Þ around 0

o
:

Remark 2.2 Observe that the above boundary conditions could be described with

the help of simpler functions. For example, in the above definitions we can replace

jb;mðxÞ with x
1
2
þm 1 � b

1 þ 2m
x

� �
if � 1\ReðmÞ� 0;

jb;mðxÞ with x
1
2
þm if 0\ReðmÞ\1;

yb;0ðxÞ with x
1
2 lnðxÞð1 � bxÞ þ 2bx

3
2;

yb;1
2
ðxÞ with 1 � bx lnðxÞ:

Note that this can be seen directly, without passing through Bessel functions. We

describe this approach below, and refer to [5] for the general theory.

The idea is to look for elements of DðLmax
b;m2Þ with a nontrivial behavior near 0.

First we consider the general case and observe that

Lb;m2 x
1
2
þm ¼ �bx�

1
2
þm; ð2:4Þ

Lb;m2 x
1
2
þm 1 � b

1 þ 2m
x

� �
¼ b2

1 þ 2m
x

1
2
þm: ð2:5Þ
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Clearly, the function in the r.h.s. of (2.4) is in L2 near 0 for ReðmÞ[ 0 but not for

ReðmÞ� 0. On the other hand, the r.h.s. of (2.5) is in L2 near 0 for ReðmÞ[ � 1.

Thus, for m 6¼ 	 1
2
, we obtain two elements of the boundary space

DðLmax
b;m2Þ=DðLmin

b;m2Þ. For m 6¼ 0 these elements are linearly independent since

lim
x&0

W x
1
2
þm 1 � b

1 þ 2m
x

� �
; x

1
2
�m 1 � b

1 � 2m
x

� �
; x

� �

¼ lim
x&0

W x
1
2
þm; x

1
2
�m 1 � b

1 � 2m
x

� �
; x

� �

¼ �2m:

It remains to find a second element of DðLmax
b;m2Þ when m ¼ 0 or when m ¼ 1

2
(as

already mentioned we disregard m ¼ � 1
2
). Firstly, we try to find the simplest pos-

sible elements of DðLmax
b;0 Þ with a logarithmic behavior near 0. We add more and

more terms:

Lb;0 lnðxÞx1
2 ¼ �bx�

1
2 lnðxÞ; ð2:6Þ

Lb;0 lnðxÞx1
2ð1 � bxÞ ¼ 2bx�

1
2 þ b2x

1
2 lnðxÞ; ð2:7Þ

Lb;0
�

lnðxÞx1
2ð1 � bxÞ þ 2bx

3
2

�
¼ b2x

1
2ðlnðxÞ � 2Þ: ð2:8Þ

For b 6¼ 0, the r.h.s. of (2.6) and of (2.7) are not in L2 near 0. However the r.h.s. of

(2.8) is in L2 near 0. We have thus obtained two elements of DðLmax
b;0 Þ=DðLmin

b;0 Þ
which are linearly independent since

lim
x&0

W x
1
2ð1 � bxÞ;

�
lnðxÞx1

2ð1 � bxÞ þ 2bx
3
2

�
; x

� �
¼ 1:

Finally, let us look for the simplest possible elements of DðLmax
b;1

4

Þ with a logarithmic

behavior near 0:

Lb;1
4
1 ¼ �bx�1; ð2:9Þ

Lb;1
4

�
1 � bx lnðxÞ

�
¼ b2 lnðxÞ: ð2:10Þ

For b 6¼ 0, the r.h.s. of (2.9) is not in L2 near 0, but the r.h.s. of (2.10) is in L2 near

0. We have thus obtained two elements of DðLmax
b;1

4

Þ=DðLmin
b;1

4

Þ which are linearly

independent since

lim
x&0

W x;
�
1 � bx lnðxÞ

�
; x

� �
¼ �1:
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The three families Hb;m;j, Hm
b;1

2

and Hm
b;0 cover all possible well-posed extensions

of Lb;m2 with jReðmÞj\1. As already mentioned, we do not introduce a special

family for m ¼ � 1
2
, since it is covered by the family corresponding to m ¼ 1

2
. For

convenience, we also extend the definition of the first family to the exceptional

cases by setting for b 2 C and any j 2 C [ f1g

Hb;�1
2
;j :¼ H1

b;1
2
; Hb;0;j :¼ H1

b;0; and Hb;1
2
;j :¼ H1

b;1
2
:

An invariance property follows directly from the definition:

Proposition 2.3 For any b 2 C, jReðmÞj\1 and j 2 C [ f1g the following
relation holds

Hb;m;j ¼ Hb;�m;j�1 :

It is also convenient to introduce another two-parameter family of operators,

which cover only special boundary conditions, which we call pure:

Hb;m :¼ Hb;m;0 ¼ Hb;�m;1: ð2:11Þ

With this notation, for any b 2 C, one has

Hb;�1
2
¼ H1

b;1
2
; Hb;0 ¼ H1

b;0; and Hb;1
2
¼ H1

b;1
2
:

Remark 2.4 The family Hb;m is essentially identical to the family denoted by the

same symbol introduced and studied in [7]. The only difference with that reference

is that the operator corresponding to ðb;mÞ ¼
�
0;� 1

2

�
was left undefined in [7].

This point corresponds to a singularity, nevertheless in the current paper we have

decided to set H0;�1
2
:¼ H0;1

2
.

Here is a comparison of the above families with the families Hm;j, Hm
0 introduced

in [6] when b ¼ 0. In the first column we put one of the newly introduced family, in

the second column we put the families from [6, 7].

H0;m;j ¼ Hm;j jReðmÞj\1; m 62
�
� 1

2
;

1

2

�
; j 2 C [ f1g;

Hm
0;0 ¼ Hm

0 m 2 C [ f1g;
Hm

0;1
2
¼ H�1

2
;m ¼ H1

2
;1m

m 2 C [ f1g:

For completeness, let us also mention two special operators which are included in

these families (for clarity, the indices are emphasized). The Dirichlet Laplacian on

Rþ is given by

Hb¼0;m¼�1
2
¼ Hb¼0;m¼1

2
¼ H1

0;1
2
¼ Hm¼1

2
;j¼0 ¼ Hm¼�1

2
;j¼1

while the Neumann Laplacian is given by

1142 J. Dereziński et al.



H0
b¼0;m¼1

2
¼ Hm¼�1

2
;j¼0 ¼ Hm¼1

2
;j¼1:

Note that the former operator was also described in [6] by Hm¼1
2

while the latter

operator was described by Hm¼�1
2
.

We now gather some easy properties of the operators Hb;m;j.

Proposition 2.5 For m 2 C with jReðmÞj\1 one has

�
Hb;m;j

�� ¼ H�b; �m;�j;
�
Hb;m;j

�# ¼ Hb;m;j j 2 C [ f1g;�
Hm

b;0

�� ¼ H �m
�b;0;

�
Hm

b;0

�# ¼ Hm
b;0; m 2 C [ f1g;�

Hm
b;1

2

�� ¼ H �m
�b;1

2

;
�
Hm

b;1
2

�# ¼ Hm
b;1

2
m 2 C [ f1g:

Proof Let us prove the first statement, the other ones can be obtained similarly.

Recall from Proposition 2.1 (see also [2, Prop. A.2]) that for any f 2 DðLmax
b;m2Þ and

g 2 DðLmax
�b; �m2Þ, the functions f ; f 0; g; g0 are continuous on Rþ. In addition, the

Wronskian of �f and g, as introduced in (2.1), possesses a limit at zero, and we have

the equality

ðLmax
b;m2 f jgÞ � ðf jLmax

�b; �m2 gÞ ¼ �Wð �f ; g; 0Þ:

In particular, if f 2 DðHb;m;jÞ one infers that

ðHb;m;jf jgÞ ¼ ðf jLmax
�b; �m2 gÞ �Wð �f ; g; 0Þ:

Thus, g 2 D
�
ðHb;m;jÞ�

�
if and only if Wð �f ; g; 0Þ ¼ 0, and then ðHb;m;jÞ�g ¼ Lmax

�b; �m2 g.

By taking into account the explicit description of DðHb;m;jÞ, straightforward compu-

tations show that Wð �f ; g; 0Þ ¼ 0 if and only if g 2 DðH�b; �m;�jÞ. One then deduces that

ðHb;m;jÞ� ¼ H�b; �m;�j. The property for the transpose of Hb;m;j can be proved similarly. h

By combining Propositions 2.3 and 2.5 one easily deduces the following

characterization of self-adjoint operators contained in our families:

Corollary 2.6 The operator Hb;m;j is self-adjoint if and only if one of the following

sets of conditions is satisfied:

(i) b 2 R, m 2� � 1; 1½ and j 2 R [ f1g,

(ii) b 2 R, m 2 iR� and jjj ¼ 1.

The operators Hm
b;0 and Hm

b;1
2

are self-adjoint if and only if b 2 R and m 2 R [ f1g.

Let us finally mention some equalities about the action of the dilation group. For

that purpose, we recall that the unitary group fUsgs2R of dilations acts on f 2
L2ðRþÞ as

�
Usf
�
ðxÞ ¼ es=2f ðesxÞ. The proof of the following lemma consists in an

easy computation.

On radial Schrödinger operators with a Coulomb potential 1143



Proposition 2.7 For m 2 C with jReðmÞj\1 one has

UsHb;m;jU�s ¼ e�2sHesb;m;e�2smj

UsH
m
b;0U�s ¼ e�2sHmþs

esb;0

UsH
m
b;1

2
U�s ¼ e�2sH

esðm�bsÞ
esb;1

2

with the conventions a1 ¼ 1 for any a 2 C n f0g and 1þ s ¼ 1.

3 Spectral theory

In this section we investigate the spectral properties of the Whittaker operators.

3.1 Point spectrum

The point spectrum is obtained by looking at general solutions of the equation

Lb;m2 f ¼ �k2f

for k 2 C with ReðkÞ� 0, and by considering only the solutions which are in the

domain of the operators Hb;m;j, Hm
b;1

2

, or Hm
b;0.

In the following statement, C stands for the usual gamma function, w is the

digamma function defined by wðzÞ ¼ C0ðzÞ=CðzÞ and c ¼ �wð1Þ. Since the special

case b ¼ 0 has already been considered in [6], we assume that b 6¼ 0 in the

following statement, and recall in Theorem 3.4 the results obtained for b ¼ 0. It is

also useful to note that the condition b 62 ½0;1½ guarantees that either

þImð
ffiffiffi
b

p
Þ[ 0 or �Imð

ffiffiffi
b

p
Þ[ 0, due to our definition of the square root.

Theorem 3.1

1. Let b 2 C�, jReðmÞj\1 with m 62
�
� 1

2
; 0; 1

2

�
, and let j 2 C [ f1g. Then the

operator Hb;m;j possesses an eigenvalue k 2 C in the following cases:

(i) k ¼ �k2, ReðkÞ[ 0, b
2k þ m � 1

2
62 N and

j ¼ ð2kÞ�2m Cð2mÞ
Cð�2mÞ

C
�

1
2
� m � b

2k

�
C
�

1
2
þ m � b

2k

� ; ð3:1Þ

(ii) k ¼ l2, 0\l\	 ImðbÞ and

j ¼ e	ipmð2lÞ�2m Cð2mÞ
Cð�2mÞ

C
�

1
2
� m � i b

2l

�
C
�

1
2
þ m � i b

2l

� ;

(iii) k ¼ 0, b 62 ½0;1½, and

j ¼ Cð2mÞ
Cð�2mÞ ð�bÞ2m

:
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2. Let b 2 C� and m 2 C [ f1g. Then Hm
b;1

2

possesses an eigenvalue k in the

following cases:

(i) k ¼ �k2, ReðkÞ[ 0, b
2k 62 N and

m ¼ �b
1

2
w 1 � b

2k

� �
þ 1

2
w � b

2k

� �
þ 2c� 1 þ lnð2kÞ

� �
;

(ii) k ¼ l2, 0\l\	 ImðbÞ, and

m ¼ �b
1

2
w 1 � i

b
2l

� �
þ 1

2
w �i

b
2l

� �
þ 2c� 1 þ lnð2lÞ � i

p
2

� �
;

(iii) k ¼ 0, 	Imð
ffiffiffi
b

p
Þ[ 0, and

m ¼ �b
�

lnðbÞ þ 2c� 1 � ip
�
:

3. Let b 2 C� and m 2 C [ f1g. Then Hm
b;0 possesses an eigenvalue k in the

following cases:

(i) k ¼ �k2, ReðkÞ[ 0, b
2k � 1

2
62 N and

m ¼ w
1

2
� b

2k

� �
þ 2cþ lnð2kÞ;

(ii) k ¼ l2, 0\l\	 ImðbÞ, and

m ¼ w
1

2
� i

b
2l

� �
� i

p
2
þ 2cþ lnð2lÞ;

(iii) k ¼ 0, 	Imð
ffiffiffi
b

p
Þ[ 0, and

m ¼ lnðbÞ þ 2cþ 2 lnð2Þ � ip:

Proof We start with the special case k ¼ �k2 ¼ 0. The two solutions of the

equation Lb;m2 f ¼ 0 are provided by the functions
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x 7!h	
b;mðxÞ :¼ x1=4H	

2m

�
2
ffiffiffiffiffi
bx

p �
; ð3:2Þ

with H	
m the Hankel function for dimension 1, see [6, App. A.5]. We then infer from

[6, App. A.5] that for any z with �p\ argðzÞ� p, one has as z ! 0

H	
mðzÞ

¼

	i

ffiffiffi
2

p
ffiffiffi
p

p z
1
2

�
lnðzÞ þ c� i

p
2

�
þ O

�
jzj

5
2 lnðjzjÞ

�
if m ¼ 0;

�i
1ffiffiffi
p

p
�

z

2

��1
2

	 i
2ffiffiffi
p

p ln
� z

2

�
þ c� 1

2
� i

p
2

� ��
z

2

�3
2

þ O
�
jzj

7
2 lnðjzjÞ

�
if m ¼ 1;

�i

ffiffiffi
p

p

sinðpmÞ
z

2

� �1
2 1

Cð1 � mÞ

�
z

2

��m

� e�ipm

Cð1 þ mÞ

�
z

2

�m� �
þ Oðjzj

5
2
�jReðmÞjÞ if m 62 Z:

8>>>>>>>><
>>>>>>>>:

For jReðmÞj\1, this implies that the two functions h	
b;m belong to L2ðRþÞ near 0. On

the other hand, for large z and j argð�izÞj\p� e, e[ 0, one has

H	
mðzÞ ¼ e	iðz�1

2
pm�1

4
pÞ�1 þ Oðjzj�1Þ

�
:

Since j argð2
ffiffiffiffiffi
bx

p
Þj� p=2, it follows that

h	
b;mðxÞ ¼ x1=4e	ið2

ffiffiffiffi
bx

p
�pm�1

4
pÞ�1 þ Oðjxj�

1
2Þ
�
;

Hence if Imð
ffiffiffi
b

p
Þ ¼ 0, then h	

b;m do not belong to L2 near infinity, while if

	Imð
ffiffiffi
b

p
Þ[ 0, then h	

b;m belongs to L2 near infinity, and h�
b;m does not. For

	Imð
ffiffiffi
b

p
Þ[ 0, we thus have that h	

b;m 2 L2ðRþÞ and hence, since in addition

Lb;m2 h	
b;m ¼ 0, we deduce that h	

b;m 2 DðLmax
b;m2Þ. It only remains to check in which

domain of the operators Hb;m;j, Hm
b;1

2

, or Hm
b;0 does h	

b;m belong to. By Proposition 2.1,

it suffices to determine the asymptotic expansion near 0 of h	
b;m up to remainder

terms of order oðx1
2
þjReðmÞ�Þ. This can easily be obtained from the expansion provided

above, and yields to the statements 1.(iii), 2.(iii) and 3.(iii).

Let us now prove the statements 1.(ii), 2.(ii) and 3.(ii). We consider the equation

Lb;m2 f ¼ l2f for some l[ 0. Two linearly independent solutions are provided by

the functions x 7!H	
b

2l;m
ð2lxÞ introduced in [7, Sec. 2.7], see also (A.29). From the

asymptotic expansion near infinity given by

H	
b

2l;m
ð2lxÞ ¼ e�ip

2
1
2
þmð Þe

pb
4lð2lxÞ	i

b
2l e	ilx

�
1 þ Oðx�1Þ

�
; ð3:3Þ

one infers that at most one of these functions is in L2 near infinity, depending on the

sign of ImðbÞ. More precisely, for ImðbÞ[ 0, the map x 7!Hþ
b

2l;m
ð2lxÞ belongs to L2

near infinity if l\ImðbÞ and does not belong to L2 near infinity otherwise. Under

the same condition ImðbÞ[ 0, the map x 7!H�
b

2l;m
ð2lxÞ never belongs to L2 near

infinity. Conversely, for ImðbÞ\0, the map x 7!H�
b

2l;m
ð2lxÞ belongs to L2 near
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infinity if l\� ImðbÞ and does not belong to L2 near infinity otherwise. Under the

same condition ImðbÞ\0, the map x 7!Hþ
b

2l;m
ð2lxÞ never belongs to L2 near infinity.

Finally, for ImðbÞ ¼ 0, none of these functions belongs to L2 near infinity.

For the asymptotic expansion near 0, the information on H	
d;m provided in [7,

Eq. (2.31)] is not sufficient. However, the appendix of the current paper contains all

the necessary information on these special functions. By taking into account the

Taylor expansion of I d;m near 0 provided in (A.3) and the equality CðaÞCð1 � aÞ ¼
p

sinðpaÞ one infers that for jReðmÞj\1 and m 62
�
� 1

2
; 0; 1

2

�
one has

Id;mðzÞ ¼
z

1
2
þm

Cð1 þ 2mÞ 1 � d
1 þ 2m

z þ Oðz2Þ
� �

ð3:4Þ

and

H	
d;mðzÞ ¼ � ie�ipm Cð�2mÞ

C
�

1
2
� m � id

� z
1
2
þm 1 � d

1 þ 2m
z

� �

� i
Cð2mÞ

C
�

1
2
þ m � id

� z
1
2
�m 1 � d

1 � 2m
z

� �
þ o
�
z

3
2

�
:

For 2m 2 Z one has to consider the expression for Kd;1
2

and Kd;0 provided in (A.18)

and (A.19) respectively. Then, by considering the Taylor expansion near 0 of these

functions one gets

Kd;1
2
ðzÞ ¼ 1

Cð1 � dÞ þ
1

Cð�dÞ z lnðzÞ

þ 1

Cð�dÞ
1

2
wð1 � dÞ þ 1

2
wð�dÞ þ 2c� 1

� �
z þ o

�
z

3
2

�
;

ð3:5Þ

Kd;0ðzÞ ¼ � 1

C
�

1
2
� d
� z

1
2 lnðzÞ þ w

1

2
� d

� �
þ 2c

� �
z

1
2 � dz

3
2 lnðzÞ

	

�d w
1

2
� d

� �
þ 2c� 2

� �
z

3
2



þ o
�
z

3
2

�
:

ð3:6Þ

From Equation (A.29) one finally deduces the relations

H	
d;1

2
ðzÞ ¼ � i

1

Cð1 � idÞ �
1

Cð�idÞ z lnðzÞ

� 1

Cð�idÞ
1

2
wð1 � idÞ þ 1

2
wð�idÞ þ 2c� 1 � i

p
2

� �
z þ o

�
z

3
2

�

H	
d;0ðzÞ ¼ 	 i

1

C
�

1
2
� id

� z
1
2 lnðzÞ þ w

1

2
� id

� �
� i

p
2
þ 2c

� �
z

1
2 � dz

3
2 lnðzÞ

	 

þ O

�
z

3
2

�
:

To show 1.(ii) we consider the function x 7!Hþ
b

2l;m
ð2lxÞ if ImðbÞ[ 0 and
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x 7!H�
b

2l;m
ð2lxÞ if ImðbÞ\0, and check for which j these functions belong to

DðHb;mjÞ. For jReðmÞj\1 and m 62
�
� 1

2
; 0; 1

2

�
one has

H	
b

2l;m
ð2lxÞ ¼ � ie�ipm Cð�2mÞ

C
�

1
2
� m � i b

2l

� ð2lxÞ
1
2
þm

1 � b
1 þ 2m

x

� �

� i
Cð2mÞ

C
�

1
2
þ m � i b

2l

� ð2lxÞ
1
2
�m

1 � b
1 � 2m

x

� �
þ o
�
x

3
2

�

¼� ic
�
jb;m þ jjb;�mðxÞ

�
þ o
�
x

3
2

�

with c :¼ e�ipm Cð�2mÞ
Cð1

2
�m�i

b
2lÞ
ð2lÞ

1
2
þm

and

j :¼ 1

c

Cð2mÞ
C
�

1
2
þ m � i b

2l

� ð2lÞ1
2
�m ¼ e	ipmð2lÞ�2m Cð2mÞ

Cð�2mÞ
C
�

1
2
� m � i b

2l

�
C
�

1
2
þ m � i b

2l

� :
Note that the conditions 	ImðbÞ[ 0, jReðmÞj\1, and l\	 ImðbÞ imply that

	i b
2l þ m � 1

2
62 N.

The proof of 2.(ii) and 3.(ii) can be obtained similarly once the following

expressions are taken into account:

H	
b
2l;

1
2

ð2lxÞ ¼ 2l
b

1

C
�
� i b

2l

� �1 � bx lnðxÞ
�
� 2l

C
�
� i b

2l

� 1

2
w 1 � i

b
2l

� �	

þ 1

2
w �i

b
2l

� �
þ 2c� 1 þ lnð2lÞ � i

p
2



x þ o

�
x

3
2

�
;

H	
b
2l;0

ð2lxÞ ¼ 	 i
ð2lÞ

1
2

C
�

1
2
� i b

2l

� x
1
2 lnðxÞ þ w

1

2
� i

b
2l

� �
� i

p
2
þ 2cþ lnð2lÞ

� �
x

1
2 � bx

3
2 lnðxÞ

	 

þ O

�
x

3
2

�
:

We shall now turn to the generic case (statements 1.(i), 2.(i) and 3.(i)), namely the

equation Lb;m2 f ¼ �k2f for some k 2 C with ReðkÞ[ 0. In the non-degenerate case,

solutions of this equation are provided by the functions

x 7!K b
2k;m

ð2kxÞ and x 7!I b
2k;	m

ð2kxÞ: ð3:7Þ

We refer again to the appendix for an introduction to these functions. The behavior

for large z of the function Kd;mðzÞ has been provided in (A.7), from which one infers

that the first function in (3.7) is always in L2 near infinity. On the other hand, since

for j argðzÞj\ p
2

one has

Id;	mðzÞ ¼
1

C
�

1
2
	 m � d

� z�d e
z
2

�
1 þ Oðz�1Þ

�

it follows that the remaining two functions in (3.7) do not belong to L2 near infinity

as long as b
2k � m � 1

2
62 N. Still in the non-degenerate case and when the condition

b
2k þ m � 1

2
2 N holds, it follows from relation (A.8) that the functions K b

2k;m
ð2k�Þ
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and I b
2k;�mð2k�Þ are linearly dependent, but still I b

2k;m
ð2k�Þ does not belong to L2 near

infinity. Similarly, when b
2k � m � 1

2
2 N it is the function I b

2k;�mð2k�Þ which does

not belong to L2 near infinity.

Let us now turn to the degenerate case, when m 2
�
� 1

2
; 0; 1

2

�
. In this situation

the two functions Id;m and I d;�m are no longer independent, as a consequence of

(A.4). In the non-doubly degenerate case (see the appendix for more details), which

means for
� b

2k ;m
�
62
�
Z;	 1

2

�
or for

� b
2k ;m

�
62
�
Zþ 1

2
; 0
�
, the above arguments can

be mimicked, and one gets that only the function K b
2k;m

ð2k�Þ belongs to L2 near

infinity. In the doubly degenerate case, the function Xd;m, introduced in (A.9), has to

be used. This function is independent of the function Kd;m, as shown in (A.24).

However, this function explodes exponentially near infinity, which means that

X b
2k;m

ð2k�Þ does not belong to L2 near infinity. Once again, only the function

K b
2k;m

ð2k�Þ plays a role.

As a consequence of these observations, it will be sufficient to concentrate on the

function K b
2k;m

ð2k�Þ and to check for which j or m does this function belong to the

domain of the operators Hb;m;j, Hm
b;1

2

, or Hm
b;0 respectively. For the behavior of this

function near 0 one infers from (A.6) and (3.4) that for m 62
�
� 1

2
; 0; 1

2

�

K b
2k;m

ð2kxÞ ¼ � p
sinð2pmÞ

I b
2k;m

ð2kxÞ

C
�

1
2
� m � b

2k

�� I b
2k;�mð2kxÞ

C
�

1
2
þ m � b

2k

�
 !

¼ð2kÞ
1
2
þm Cð�2mÞ

C
�

1
2
� m � b

2k

� x
1
2
þm 1 � b

1 þ 2m
x

� �

þ ð2kÞ
1
2
�m Cð2mÞ

C
�

1
2
þ m � b

2k

� x
1
2
�m 1 � b

1 � 2m
x

� �
þ oðx3

2Þ:

Similarly, it follows from (A.18) and (A.19) that

K b
2k;

1
2
ð2kxÞ ¼ � 1

b
2k

C
�
� b

2k

� �1 � bx lnðxÞ
�
þ 2k

C
�
� b

2k

� 1

2
w 1 � b

2k

� �
þ 1

2
w � b

2k

� �	

þ2c� 1 þ lnð2kÞ



x þ o
�
x

3
2

�
;

ð3:8Þ

K b
2k;0

ð2kxÞ ¼ � ð2kxÞ
1
2

C
�

1
2
� b

2k

� ð1 � bxÞ lnðxÞ þ w
1

2
� b

2k

� �
þ 2cþ lnð2kÞ

	

�b w
1

2
� b

2k

� �
þ 2c� 2 þ lnð2kÞ

� �
x



þ o
�
x

3
2

�
:

ð3:9Þ

The statements 1.(i), 2.(i), and 3.(i) follow then straightforwardly. h
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Remark 3.2 A special feature of positive eigenvalues described in Theorem 3.1 is

that the corresponding eigenfunctions have an inverse polynomial decay at infinity,

and not an exponential decay at infinity, as it is often expected. This property can be

directly inferred from the asymptotic expansion provided in (3.3).

Remark 3.3 Self-adjoint operators that are included in the families Hb;m;j, Hm
b;1

2

and

Hm
b;0 do not have eigenvalues in �0;1½. Indeed, in Theorem 3.1 a necessary

condition for the existence of strictly positive eigenvalues is that ImðbÞ 6¼ 0. This

automatically prevents these operators to be self-adjoint, as a consequence of

Corollary 2.6.

For completeness let us recall the results already obtained in [6, Sec. 5] for

b ¼ 0.

Theorem 3.4

(i) If jReðmÞj\1, m 62
�
� 1

2
; 0; 1

2

�
and j 2 C [ f1g, the eigenvalues of the

operator H0;m;j are of the form �k2 with ReðkÞ[ 0, where

j ¼ k

2

� ��2m CðmÞ
Cð�mÞ ;

(ii) If m 2 C [ f1g, the eigenvalues of the operator Hm
0;1

2

are of the form �k2

with ReðkÞ[ 0, where m ¼ �k,

(iii) If m 2 C [ f1g, the eigenvalues of the operator Hm
0;0 are of the form �k2

with ReðkÞ[ 0, where

m ¼ cþ ln
k

2

� �
:

Remark 3.5 Note that Theorem 3.4 can be derived from Theorem 3.1. Indeed, for

m 62
�
� 1

2
; 0; 1

2

�
we infer from the Legendre duplication formula

CðzÞC 1

2
þ z

� �
¼ 21�2z

ffiffiffi
p

p
Cð2zÞ;

that

ð2kÞ�2m Cð2mÞ
Cð�2mÞ

C
�

1
2
� m � b

2k

�
C
�

1
2
þ m � b

2k

� 
b¼0

¼ k

2

� ��2m CðmÞ
Cð�mÞ :

For m ¼ 1
2
, we first note that C

�
1
2

�
¼

ffiffiffi
p

p
and C

�
� 1

2

�
¼ �2

ffiffiffi
p

p
. Then we use the

relations wð1 þ zÞ ¼ wðzÞ þ 1
z and wð1Þ ¼ �c, and infer that
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lim
b!0

�b
1

2
w 1 � b

2k

� �
þ 1

2
w � b

2k

� �
þ 2c� 1 þ lnð2kÞ

� �

¼ k

2

� �
C
�
� 1

2

�
C
�

1
2

� ¼ �k:

Finally for m ¼ 0, from the equality w
�

1
2

�
¼ �2 lnð2Þ � c one gets

w
1

2
� b

2k

� �
þ 2cþ lnð2kÞ


b¼0

¼ cþ ln
k

2

� �
:

As a consequence of the expressions provided in Theorem 3.1, the discreteness of

the spectra of all operators can be inferred in C n ½0;1½.

3.2 Green’s functions

Let us now turn our attention to the continuous spectrum. We shall first look for an

expression for Green’s function. We will use the well-known theory of 1-dimen-

sional Schrödinger operators, as presented for example in the appendix of [2] or in

[5]. We begin by recalling a result on which we shall rely.

Let ACðRþÞ denote the set of absolutely continuous functions from Rþ to C, that

is functions whose distributional derivative belongs to L1
locðRþÞ. Let also AC1ðRþÞ

be the set of functions from Rþ to C whose distributional derivatives belong to

ACðRþÞ. If V 2 L1
locðRþÞ, it is not difficult to check that the operator �o2

x þ V can

be interpreted as a linear map from AC1ðRþÞ to L1
locðRþÞ. The maximal operator

associated to �o2
x þ V is then defined as

DðLmaxÞ :¼ f 2 L2ðRþÞ \ AC1ðRþÞ j
�
� o2

x þ V
�
f 2 L2ðRþÞ

� �
Lmaxf :¼

�
� o2

x þ V
�
f ; f 2 DðLmaxÞ:

The minimal operator Lmin is the closure of Lmax restricted to compactly supported

functions. Note that Lmax ¼ ðLminÞ#.

As before, we say that a function f : Rþ ! C belongs to L2 around 0

(respectively around 1) if there exists f 2 C1
c

�
½0;1½

�
with f ¼ 1 around 0 such

that f f 2 L2ðRþÞ (respectively f ð1 � fÞ 2 L2ðRþÞ).
The following statement contains several results proved in [5].

Proposition 3.6 Let V 2 L1
locðRþÞ. Let k 2 C and suppose that uðk; �Þ; vðk; �Þ 2

AC1ðRþÞ solve �
� o2

x þ V
�
uðk; �Þ ¼ �k2uðk; �Þ;�

� o2
x þ V

�
vðk; �Þ ¼ �k2vðk; �Þ:
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Assume that uðk; �Þ, vðk; �Þ are linearly independent and that uðk; �Þ 2 L2 around 0,

vðk; �Þ 2 L2 around 1. Let WðkÞ :¼ W
�
uðk; �Þ; vðk; �Þ; x

�
be the Wronskian of these

two solutions. Set

Rð�k2; x; yÞ :¼ 1

WðkÞ
uðk; xÞvðk; yÞ for 0\x\y;

uðk; yÞvðk; xÞ for 0\y\x;

�

and assume that Rð�k2; x; yÞ is the integral kernel of a bounded operator Rð�k2Þ.
Then there exists a unique closed realization H of �o2

x þ V with the boundary
condition at 0 given by uðk; �Þ and at 1 given by vðk; �Þ in the sense that

DðHÞ ¼
�

f 2 DðLmaxÞ; f � uðk; �Þ 2 DðLminÞ around 0
�
;

¼
�

f 2 DðLmaxÞ; f � vðk; �Þ 2 DðLminÞ around 1
�
;

Hf ¼
�
� o2

x þ V
�
f ; f 2 DðHÞ:

Moreover �k2 belongs to the resolvent set of H and Rð�k2Þ ¼ ðH þ k2Þ�1
.

By using such a statement, it has been proved in [7] that, for k 2 C such that

ReðkÞ[ 0 and b
2k � 1

2
� m 62 N, we have that �k2 62 rðHb;mÞ and Rb;mð�k2Þ :¼

ðk2 þ Hb;mÞ�1
has the integral kernel

Rb;mð�k2; x; yÞ

¼ 1

2k
C 1

2
þ m � b

2k

� � I b
2k;m

ð2kxÞK b
2k;m

ð2kyÞ for 0\x\y;

I b
2k;m

ð2kyÞK b
2k;m

ð2kxÞ for 0\y\x:

(

Let us now describe the integral kernel of the resolvent of all operators under

investigation. We recall that our parameters are b 2 C, j 2 C [ f1g,

m 2 C [ f1g, and m 2 C satisfying �1\ReðmÞ\1.

Theorem 3.7 Let k 2 C with ReðkÞ[ 0. We have the following properties.

(i) For j 6¼ 1 and m 62
�
� 1

2
; 0; 1

2

�
set

cb;mðkÞ :¼
ð2kÞ�m

C
�

1
2
þ m � b

2k

�
Cð1 � 2mÞ

;

xb;m;jðkÞ :¼
cb;mðkÞ þ jcb;�mðkÞ

jcb;�mðkÞ
p

sinð2pmÞ :
ð3:10Þ

If cb;mðkÞ þ jcb;�mðkÞ 6¼ 0, then �k2 62 rðHb;m;jÞ and the integral kernel of

Rb;m;jð�k2Þ :¼ ðHb;m;j þ k2Þ�1 is given by
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Rb;m;jð�k2; x; yÞ

¼ 1

cb;mðkÞ þ jcb;�mðkÞ
cb;mðkÞRb;mð�k2; x; yÞ þ jcb;�mðkÞRb;�mð�k2; x; yÞ
� �

¼ Rb;mð�k2; x; yÞ þ
C
�

1
2
þ m � b

2k

�
C
�

1
2
� m � b

2k

�
2kxb;m;jðkÞ

K b
2k;m

ð2kyÞK b
2k;m

ð2kxÞ:

ð3:11Þ

If j ¼ 1 and b
2k þ m � 1

2
62 N, then �k2 62 rðHb;m;1Þ and

Rb;m;1ð�k2Þ ¼ Rb;�mð�k2Þ.
(ii) For m 6¼ 1, m ¼ 1

2
and b

2k 62 N� set

xm
b;1

2
ðkÞ :¼ � 1

2
w 1 � b

2k

� �
� 1

2
w � b

2k

� �
� 2c� lnð2kÞ þ 1 � m

b
:

If xm
b;1

2

ðkÞ 6¼ 0, then �k2 62 rðHm
b;1

2

Þ and the integral kernel of Rm
b;1

2

ð�k2Þ :¼
ðHm

b;1
2

þ k2Þ�1 is given by

Rm
b;1

2
ð�k2; x; yÞ

¼ Rb;1
2
ð�k2; x; yÞ þ

C
�
� b

2k

�
C
�
1 � b

2k

�
2kxm

b;1
2

ðkÞ K b
2k;

1
2
ð2kxÞK b

2k;
1
2
ð2kyÞ:

ð3:12Þ

If m ¼ 1 and b
2k 62 N�, then �k2 62 rðH1

b;1
2

Þ and R1
b;1

2

ð�k2Þ ¼ Rb;1
2
ð�k2Þ.

(iii) For m 6¼ 1, m ¼ 0 and b
2k � 1

2
62 N set

xm
b;0ðkÞ :¼ w

1

2
� b

2k

� �
þ 2cþ lnð2kÞ � m:

If xm
b;0ðkÞ 6¼ 0, then �k2 62 rðHm

b;0Þ and the integral kernel of Rm
b;0ð�k2Þ :¼

ðHm
b;0 þ k2Þ�1 is given by

Rm
b;0ð�k2; x; yÞ

¼ Rb;0ð�k2; x; yÞ þ
C
�

1
2
� b

2k

�2

2kxm
b;0ðkÞ

K b
2k;0

ð2kxÞK b
2k;0

ð2kyÞ:
ð3:13Þ

If m ¼ 1 and b
2k � 1

2
62 N, then �k2 62 rðH1

b;0Þ and R1
b;0ð�k2Þ ¼ Rb;0ð�k2Þ.

For the proof of this theorem, we shall mainly rely on a similar statement which

was proved in [7, Sec. 3.4]. The context was less general, but some of the estimates

turn out to be still useful.

Proof of Theorem 3.7 The proof consists in checking that all conditions of

Proposition 3.6 are satisfied.
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For (i) we need to show that the integral kernel Rb;m;jð�k2; x; yÞ defines a

bounded operator on L2ðRþÞ. This follows from (3.11), because all numerical

factors are harmless and because by [7, Thm. 3.5] Rb;mð�k2; x; yÞ and

Rb;�mð�k2; x; yÞ are the kernels defining bounded operators.

Moreover, we can write

Rb;m;jð�k2; x; yÞ ¼ 1

2k
�
cb;mðkÞ þ jcb;�mðkÞ

�

�

ð2kÞ�m

Cð1 � 2mÞ I b
2k;m

ð2kxÞ þ j
ð2kÞm

Cð1 þ 2mÞ I b
2k;�mð2kxÞ

� �
K b

2k;m
ð2kyÞ for 0\x\y;

ð2kÞ�m

Cð1 � 2mÞ I b
2k;m

ð2kyÞ þ j
ð2kÞm

Cð1 þ 2mÞ I b
2k;�m

ð2kyÞ
� �

K b
2k;m

ð2kxÞ for 0\y\x:

8>>><
>>>:

ð3:14Þ

Since K b
2k;m

ð2k�Þ belongs to L2ðRþÞ, this solution is L2 around 1. For the other

solution, one verifies by (3.4) that

ð2kÞ�m

Cð1 � 2mÞ I b
2k;m

ð2kxÞ þ j
ð2kÞm

Cð1 þ 2mÞ I b
2k;�mð2kxÞ

¼ ð2kÞ
1
2

Cð1 þ 2mÞCð1 � 2mÞ x
1
2
þm 1 � b

1 þ 2m
x

� �
þ jx

1
2
�m 1 � b

1 � 2m
x

� �	 


þ O
�
x

5
2
�jReðmÞj�:

Therefore, this function belongs to L2 around 0 and satisfies the same boundary

condition at 0 as jb;m; þ jjb;�m. By Proposition 3.6, this proves (i) when j 6¼ 1.

Note that in the special case j ¼ 1, it is enough to observe that Hb;m;1 ¼ Hb;�m;0

and to apply the previous result.

To prove (ii), consider first m 6¼ 1 and b
2k 62 N�. It has been proved in [7,

Thm. 3.5] that the first kernel of (3.12) defines a bounded operator. The second

kernel corresponds to a constant multiplied by a rank one operator defined by the

function K b
2k;m

ð2k�Þ 2 L2ðRþÞ and therefore this operator is also bounded. Next we

write

Rm
b;12
ð�k2; x; yÞ ¼

C
�
� b

2k

�
C
�
1 � b

2k

�
2kxm

b;1
2

ðkÞ

�

xm
b;1

2

ðkÞ

C
�
� b

2k

� I b
2k;

1
2
ð2kxÞ þ K b

2k;
1
2
ð2kxÞ

0
B@

1
CAK b

2k;
1
2
ð2kyÞ for 0\x\y;

xm
b;12
ðkÞ

C
�
� b

2k

� I b
2k;

1
2
ð2kyÞ þ K b

2k;
1
2
ð2kyÞ

0
B@

1
CAK b

2k;
1
2
ð2kxÞ for 0\y\x:

8>>>>>>>>><
>>>>>>>>>:

ð3:15Þ

We deduce from (3.4) and (3.8) that
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xm
b;1

2

ðkÞ

C
�
� b

2k

� I b
2k;

1
2
ð2kxÞ þ K b

2k;
1
2
ð2kxÞ

¼ 1

C
�

1 � b
2k

� �1 � bx lnðxÞ þ mx
�
þ o
�
x

3
2

�
;

which belongs to L2 around 0 and corresponds to the boundary condition defining

Hm
b;1

2

.

The proof of (iii) is analogous. We use first (3.13) for the boundedness. Then we

rewrite Green’s function as

Rm
b;0ð�k2; x; yÞ ¼

C
�

1
2
� b

2k

�2

2kxm
b;0ðkÞ

�

xm
b;0ðkÞ

C
� 1

2
� b

2k

� I b
2k;0

ð2kxÞ þ K b
2k;0

ð2kxÞ

0
B@

1
CAK b

2k;0
ð2kyÞ for 0\x\y;

xm
b;0ðkÞ

C
� 1

2
� b

2k

� I b
2k;0

ð2kyÞ þ K b
2k;0

ð2kyÞ

0
B@

1
CAK b

2k;0
ð2kxÞ for 0\y\x:

8>>>>>>>>><
>>>>>>>>>:

ð3:16Þ

We check that

xm
b;0ðkÞ

C
�

1
2
� b

2k

� I b
2k;0

ð2kxÞ þ K b
2k;0

ð2kxÞ

¼ � ð2kÞ
1
2

C
�

1
2
� b

2k

� �x1
2ð1 � bxÞ lnðxÞ þ 2bx

3
2 þ mx

1
2ð1 � bxÞ

�
þ O

�
x

5
2j lnðxÞj

�
;

by (3.4) and (3.9), see also (A.19). h

Strictly speaking, the formulas of Theorem 3.7 are not valid in doubly degenerate

points, when the functions Kb;m and Ib;m are proportional to one another, and the

operator Hb;m has an eigenvalue. To obtain well defined formulas one needs to use

the function Xb;m defined in (A.9), as described in the following proposition:

Proposition 3.8 Let k 2 C with ReðkÞ[ 0. We have the following properties.

(ii0) For m ¼ 1
2
, m 6¼ 1 and b

2k 2 N�, set

nmb;1
2
ðkÞ :¼ 1

2
w 1 þ b

2k

� �
þ 1

2
w

b
2k

� �
þ 2cþ lnð2kÞ � 1 þ m

b
:

Then �k2 62 rðHm
b;1

2

Þ and the integral kernel of Rm
b;1

2

ð�k2Þ is given by
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Rm
b;1

2
ð�k2;x;yÞ

¼ 1

2k

ð�1Þ
b
2kX b

2k;
1
2
ð2kxÞþ

nmb;1
2
ðkÞ

C
� b

2k

�
C
�

1þ b
2k

�K b
2k;

1
2
ð2kxÞ

0
B@

1
CAK b

2k;
1
2
ð2kyÞ; for 0\x\y;

ð�1Þ
b
2kX b

2k;
1
2
ð2kyÞþ

nmb;1
2
ðkÞ

C
� b

2k

�
C
�

1þ b
2k

�K b
2k;

1
2
ð2kyÞ

0
B@

1
CAK b

2k;
1
2
ð2kxÞ; for 0\y\x:

8>>>>>>>>><
>>>>>>>>>:

(iii0) For m ¼ 0, m 6¼ 1, and b
2k � 1

2
2 N, set

nmb;0ðkÞ :¼ �w
1

2
þ b

2k

� �
� 2c� lnð2kÞ þ m:

Then �k2 62 rðHm
b;0Þ and the integral kernel of Rm

b;0ð�k2Þ is given by

Rm
b;0ð�k2; x; yÞ

¼ 1

2k

ð�1Þ
b
2kþ1

2X b
2k;0

ð2kxÞ þ
nmb;0ðkÞ

C
� 1

2
þ b

2k

�2
K b

2k;0
ð2kxÞ

0
B@

1
CAK b

2k;0
ð2kyÞ; for 0\x\y;

ð�1Þ
b
2kþ1

2X b
2k;0

ð2kyÞ þ
nmb;0ðkÞ

C
� 1

2
þ b

2k

�2
K b

2k;0
ð2kyÞ

0
B@

1
CAK b

2k;0
ð2kxÞ; for 0\y\x:

8>>>>>>>>><
>>>>>>>>>:

Proof (ii0) is proved similarly as (ii) of Theorem 3.7, by using for m ¼ 1
2
, m 6¼ 1

and b
2k 2 N� that

ð�1Þ
b
2kX b

2k;
1
2
ð2kxÞ þ

nmb;1
2
ðkÞ

Cð b
2kÞCð1 þ b

2kÞ
K b

2k;
1
2
ð2kxÞ

¼ ð�1Þ
b
2kþ1

C
�
1 þ b

2k

� �1 � bx ln x þ mx þ oðxÞ
�
:

This follows from (A.24), (A.20), and (3.5).

(iii0) is proved similarly as (iii) of Theorem 3.7. In particular, using (A.24),

(A.21), and (3.6) one verifies that

ð�1Þ
b
2kþ1

2X b
2k;0

ð2kxÞ þ
nmb;0ðkÞ

Cð1
2
þ b

2kÞ
2
K b

2k;0
ð2kxÞ

¼ ð�1Þ
b
2k�1

2
ð2kÞ

1
2

C
�

1
2
þ b

2k

� x
1
2

�
ð1 � bxÞ lnðxÞ þ 2bx þ mð1 � bxÞ

�
þ o
�
x

3
2

�
:

h
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3.3 Holomorphic families of closed operators

In this section we show that the families of operators introduced before are

holomorphic for suitable values of the parameters. A general definition of a

holomorphic family of closed operators can be found in [19], see also [8]. Actually,

we will not need its most general definition. For us it is enough to recall this concept

in the special case where the operators possess a nonempty resolvent set.

Let H be a complex Banach space. Let fHðzÞgz2H be a family of closed

operators on H with nonempty resolvent set, where H is an open subset of Cd.

fHðzÞgz2H is called holomorphic on H if for any z0 2 H, there exist k 2 C and a

neighborhood H0 
 H of z0 such that, for all z 2 H0, k belongs to the resolvent set

of HðzÞ and the map H0 3 z 7!ðHðzÞ � kÞ�1 2 BðHÞ is holomorphic on H0. Note

that if H0 3 z 7!ðHðzÞ � kÞ�1 2 BðHÞ is locally bounded on H0 and if there exists a

dense subset D 
 H such that, for all f ; g 2 D, the map H0 3 z 7!ðf jðHðzÞ � kÞ�1gÞ
is holomorphic on H0, then H0 3 z 7!ðHðzÞ � kÞ�1 2 BðHÞ is holomorphic on H0.

Besides, by Hartog’s theorem, z 7!ðf jðHðzÞ � kÞ�1gÞ is holomorphic if and only if it

is separately analytic in each variable.

This definition naturally generalizes to families of operators defined on ðC [
f1gÞd

instead of Cd, recalling that a map u : C [ f1g ! C is called holomorphic

in a neighborhood of 1 if the map w : C ! C, defined by wðzÞ ¼ /ð1=zÞ if z 6¼ 0

and wð0Þ ¼ /ð1Þ, is holomorphic in a neighborhood of 0.

Recall that the family Hb;m has been defined on C� fm 2 C j ReðmÞ[ � 1g in

[7], see also (2.11). However, it is not holomorphic on the whole domain. The

following has been proved in [7].

Theorem 3.9 The family of closed operators ðb;mÞ7!Hb;m is holomorphic on

C� fm 2 C j ReðmÞ[ � 1gn
��

0;�1

2

��
:

However, it cannot be extended by continuity to include the point
�
0;� 1

2

�
.

Let us sketch what happens at
�
0;� 1

2

�
. Recall that in [2, 6] a holomorphic family�

m 2 C j ReðmÞ[ � 1
�
3 m 7!Hm has been introduced, and satisfies Hm ¼ H0;m

for m 6¼ � 1
2
. Note also that for any b we have Hb;�1

2
¼ Hb;1

2
. It then turns out that

lim
b!0

Hb;�1
2
¼ H1

2
6¼ H�1

2
¼ lim

m!�1
2

H0;m;

where these limits have to be understood as weak resolvent limits. Note that in the

sequel and in particular in (3.19), (3.20), and (3.21), the limits should be understood

in such a sense.

Let us consider now the families of operators involving mixed boundary

conditions. To this end, it will be convenient to introduce the notation
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P :¼ fm 2 C j �1\ReðmÞ\1g:

Recall that ðb;m; jÞ7!fHb;m;jg has been defined on C�P� ðC [ f1gÞ. However,

it is not holomorphic on this whole set:

Theorem 3.10

(i) The family of closed operators fHb;m;jg is holomorphic on C�P�
�
C [

f1g
�

except for

�
0;�1

2

�
�
�
C [ f1g

�
[
�
0;

1

2

�
�
�
C [ f1g

�
[ C� ð0;�1Þ: ð3:17Þ

(ii) The family of closed operators fHm
b;0g is holomorphic on C�

�
C [ f1g

�
.

(iii) The family of closed operators
�

Hm
b;1

2

�
is holomorphic on C�

�
C [ f1g

�
.

Proof For shortness, let us set

gb;m;jðkÞ :¼ cb;mðkÞ þ jcb;�mðkÞ: ð3:18Þ

This expression appears in the numerator of (3.10) and plays an important role in the

expression (3.14) for the resolvent of Hb;m;j.

(i) Let ðb0;m0; j0Þ belong to the domain C�P�
�
C [ f1g

�
. First assume that

m0 62
�
� 1

2
; 0; 1

2

�
and that j0 2 C. Let k 2 C with ReðkÞ[ 0 such that

gb0;m0;j0
ðkÞ 6¼ 0, where gb;m;jðkÞ is defined in (3.18). By continuity of the map

ðb;m; jÞ7!gb;m;jðkÞ, there exists a neighborhood 0U0 of ðb0;m0; j0Þ such that for all

ðb;m; jÞ in this neighborhood, we have gb;m;jðkÞ 6¼ 0. Hence, by Theorem 3.7, we

infer that �k2 62 rðHb;m;jÞ, and the resolvent ðHb;m;j þ k2Þ�1 2 B
�
L2ðRþÞ

�
is the

operator whose kernel is given by (3.14). It then easily follows from the analyticity

properties of the maps ðb;m;jÞ7!I b
2k;	mð2kxÞ and ðb;m; jÞ7!K b

2k;m
ð2kxÞ (for fixed

x[ 0 and k) that, for all f ; g 2 L2ðRþÞ, the map ðb;m; jÞ7!ðf jðHb;m;j þ k2Þ�1gÞ is

holomorphic on U0. Hence fHb;m;jg is holomorphic on U0.

If m0 62
�
� 1

2
; 0; 1

2

�
and j0 ¼ 1, the statement directly follows from the equality

Hb;m;1 ¼ Hb;�m;0.

Suppose now that m0 ¼ 0 and that j0 2 C n f�1g. We extend by continuity the

definition of gb;m;jðkÞ in (3.18) for m ¼ 0 by setting

gb;0;jðkÞ :¼
1 þ j

C
�

1
2
� b

2k

� :

We also choose k 2 C with ReðkÞ[ 0 such that
b0

2k � 1
2
62 N. This latter requirement

implies that gb0;m0;j0
ðkÞ 6¼ 0, and by continuity of the map ðb;m; jÞ7!gb;m;jðkÞ, there

exists a neighborhood U0 of ðb0; 0; j0Þ such that for all ðb;m; jÞ in this neighbor-

hood, gb;m;jðkÞ 6¼ 0. In particular, by Theorem 3.7, one verifies that, for all

f ; g 2 L2ðRþÞ, the map ðb;m; jÞ7!ðf jðHb;m;j þ k2Þ�1gÞ is well-defined and
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holomorphic on U0 provided that (3.14) is extended to U0 \ fðb; 0; jÞ j b 2 C; j 2
Cg by

Rb;0;jð�k2; x; yÞ ¼
C
�

1
2
� b

2k

�
2k

I b
2k;0

ð2kxÞK b
2k;0

ð2kyÞ for 0\x\y;

I b
2k;0

ð2kyÞK b
2k;0

ð2kxÞ for 0\y\x:

(

Note that this corresponds to the integral kernel of ðHb;0;0 þ k2Þ�1 ¼ ðH1
b;0 þ k2Þ�1

.

This shows that fHb;m;jg is holomorphic on U0 (provided that U0 is chosen small

enough so that ðb; 0;�1Þ 62 U0).

If m0 ¼ 0 and j0 ¼ 1, the argument is similar once it is observed that

ðHb;0;1 þ k2Þ�1 ¼ ðH1
b;0 þ k2Þ�1 ¼ ðHb;0;0 þ k2Þ�1:

It remains to consider the cases m0 ¼ 	 1
2

and b0 6¼ 0. Assume for instance that

m0 ¼ � 1
2
, b0 6¼ 0, and j0 2 C. We extend by continuity the definition of gb;m;jðkÞ in

(3.18) for m ¼ � 1
2

by setting

gb;�1
2
;jðkÞ :¼

ð2kÞ
1
2

C
�
� b

2k

� :

We also choose k 2 C with ReðkÞ[ 0 such that
b0

2k 62 N. Then we have

gb0;�1
2;j0

ðkÞ 6¼ 0, and by continuity of ðb;m; jÞ7!gb;m;jðkÞ there exists a neighbor-

hood U0 of ðb0;� 1
2
; j0Þ such that gb;m;jðkÞ 6¼ 0 for all ðb;m; jÞ in U0. By Theo-

rem 3.7, one then verifies that for all f ; g 2 L2ðRþÞ, the map

ðb;m; jÞ7!ðf jðHb;m;j þ k2Þ�1gÞ is well-defined and holomorphic on U0 provided

that (3.14) is extended to U0 \
��

b;� 1
2
; j
�
j b 2 C; j 2 C

�
by

Rb;�1
2
;jð�k2; x; yÞ ¼ 1

2kgb;�1
2
;jðkÞ

ð2kÞ
1
2I b

2k;�1
2
ð2kxÞK b

2k;�1
2
ð2kyÞ for 0\x\y;

ð2kÞ
1
2I b

2k;�1
2
ð2kyÞK b

2k;�1
2
ð2kxÞ for 0\y\x;

8<
:

¼
C
�
1 � b

2k

�
2k

I b
2k;

1
2
ð2kxÞK b

2k;
1
2
ð2kyÞ for 0\x\y;

I b
2k;

1
2
ð2kyÞK b

2k;
1
2
ð2kxÞ for 0\y\x:

(

Note that this corresponds to the integral kernel of
�
Hb;1

2
;0 þ k2

��1 ¼
�
H1

b;1
2

þ k2
��1

.

This shows that fHb;m;jg is holomorphic on U0. The argument easily adapts to the

case m0 ¼ 1
2

and b0 6¼ 0.

As before, if m0 ¼ 	 1
2
, b0 6¼ 0, and j0 ¼ 1, the statement follows from the

equalities

�
Hb;	1

2
;1 þ k2

��1 ¼
�
H1

b;1
2
þ k2

��1 ¼
�
Hb;	1

2
;0 þ k2

��1
:

The second part of the statement (i) follows directly from [7, Thm. 3.5]. To prove

(ii) and (iii), the argument is analogous and simpler: it suffices to use the formulas

(3.15) to prove (ii) and (3.16) to prove (iii). h
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The following statement shows that the domains of holomorphy obtained in

Theorem 3.10 are maximal for m 2 P. In particular, we will prove that (3.17) are

sets of non-removable singularities of the family ðb;m; jÞ7!fHb;m;jg.

Proposition 3.11

(i) For any fixed j 2 C�, the family of closed operators ðb;mÞ7!Hb;m;j defined

on C�P n fð0;� 1
2
Þ; ð0; 1

2
Þg cannot be extended by continuity at ð0;� 1

2
Þ

and ð0; 1
2
Þ. If j ¼ 0, the family ðb;mÞ7!Hb;m;0 defined on C�P n fð0;� 1

2
Þg

cannot be extended by continuity at ð0;� 1
2
Þ, and for j ¼ 1 the family

ðb;mÞ7!Hb;m;1 defined on C�P n fð0; 1
2
Þg cannot be extended by conti-

nuity at ð0; 1
2
Þ.

(ii) For any fixed b 2 C, the family ðm; jÞ7!Hb;m;j defined on P�
�
C [ f1g

�
n

fð0;�1Þg cannot be extended by continuity at ð0;�1Þ.

Proof (i) Let us first consider b ¼ 0. Recall that in [6] the family of closed

operators P� ðC [ f1gÞ 3 ðm; jÞ7!Hm;j has been introduced, and that this family

is holomorphic on P� ðC [ f1gÞ n f0g � ðC [ f1gÞ. Here is its relationship to

the families from the present article:

Hm;j :¼

H0;m;j if m 62 � 1

2
;
1

2

� �

Hj�1

0;1
2

if m ¼ 1

2

Hj
0;1

2

if m ¼ � 1

2

8>>>>>><
>>>>>>:

Let us now focus on m ¼ � 1
2

and on m ¼ 1
2
. We have for any j 2 C [ f1g

Hb;�1
2
;j ¼ Hb;1

2
;j ¼ Hb;1

2
¼ H1

b;1
2
:

Therefore, for j 6¼ 0,

lim
b!0

Hb;1
2
;j ¼ H1

0;1
2

6¼ Hj�1

0;1
2

¼ lim
m!1

2

H0;m;j: ð3:19Þ

Similarly, for j 6¼ 1,

lim
b!0

Hb;�1
2
;j ¼ H1

0;1
2
6¼ Hj

0;1
2
¼ lim

m!�1
2

H0;m;j: ð3:20Þ

This proves (i) when j 62 f0;1g. The proof in these special cases is similar.

(ii) Let us first consider a fixed parameter b 2 C and m ¼ 0. By definition we

have

Hb;0;j ¼ Hb;0 ¼ H1
b;0;

independently of j 2 C [ f1g. We now consider a fixed parameter b 2 C and

j ¼ �1. Choosing k 2 C with ReðkÞ[ 0 such that b
2k � 1

2
62 N, it follows from
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(3.14) that for any m 6¼ 0 in a complex neighborhood of 0, the integral kernel of the

resolvent of Hb;m;�1 is given by

Rb;m;�1ð�k2;x;yÞ ¼ 1

2kgb;m;�1ðkÞ

�

ð2kÞ�m

Cð1� 2mÞI b
2k;m

ð2kxÞ � ð2kÞm

Cð1þ 2mÞI b
2k;�mð2kxÞ

� �
K b

2k;m
ð2kyÞ for 0\x\y;

ð2kÞ�m

Cð1� 2mÞI b
2k;m

ð2kyÞ � ð2kÞm

Cð1þ 2mÞI b
2k;�mð2kyÞ

� �
K b

2k;m
ð2kxÞ for 0\y\x;

8>>><
>>>:

where gb;m;�1ðkÞ is defined in (3.18). One then infers that

gb;k;xðmÞ :¼ 1

gb;m;�1ðkÞ
ð2kÞ�m

Cð1 � 2mÞ I b
2k;m

ð2kxÞ � ð2kÞm

Cð1 þ 2mÞ I b
2k;�mð2kxÞ

� �

¼
ð2kÞ

1
2

Cð1�2mÞCð1þ2mÞ
�
x

1
2
þm � x

1
2
�m
�

ð2kÞ�m

Cð1
2
þm� b

2kÞCð1�2mÞ �
ð2kÞm

Cð1
2
�m� b

2kÞCð1þ2mÞ

þ Oðx3
2
�jReðmÞjÞ; x ! 0:

By using this expression, one can verify that the map m7!gb;k;xðmÞ, defined in a

punctured complex neighborhood of 0, can be analytically extended at 0 with

gb;k;xð0Þ ¼ �
ð2kÞ

1
2C
�

1
2
� b

2k

�
lnð2kÞ þ w

�
1
2
� b

2k

�
þ 2c

x
1
2 lnðxÞ þ oðx1

2Þ; x ! 0:

Thus, the family of operators f ~Hb;m;�1g defined by

~Hb;m;�1 ¼
Hb;m;�1 if m 6¼ 0

H0
b;0 if m ¼ 0;

(

is holomorphic for m 2 P. It thus follows that

lim
j!�1

Hb;0;j ¼ H1
b;0 6¼ H0

b;0 ¼ lim
m!0

Hb;m;�1; ð3:21Þ

which concludes the proof. h

3.4 Blowing up the singularities at m= 0 and at m= – 1
2

As presented above, the boundary conditions for m ¼ 0 and m ¼ 	 1
2

are described

by separate holomorphic families of operators Hm
b;0 and Hm

b;1
2

. One can however view

these exceptional families as limiting cases of the generic family Hb;m;j. What is

more, after an appropriate change of parameters near the points m ¼ 0 and m ¼ 	 1
2

one can holomorphically pass from the generic family to the exceptional families.

Such a procedure is referred to as blowing up a singularity.

More precisely, let us define two new families of operators:
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H
ð0Þ;m
b;m :¼

Hb;m;j; m 6¼ 0; j ¼ jð0Þðm; mÞ :¼ � 1

ð1 þ 2mmÞ ;

Hm
b;0; m ¼ 0;

8<
: ð3:22Þ

H
ð1

2
Þ;m

b;m :¼

Hb;m;j; m 6¼ 1

2
; j ¼ jð

1
2
Þðb;m; mÞ :¼ 1�

� b
ð2m � 1Þ þ m

� ;

Hm
b;1

2

; m ¼ 1

2
:

8>>>><
>>>>:

ð3:23Þ

Thus H
ð0Þ;m
b;m includes both Hm

b;0 and Hb;m;j, and H
ð1

2
Þ;m

b;m includes both Hm
b;1

2

and Hb;m;j.

Theorem 3.12

(i) The family fH
ð0Þ;m
b;m g is holomorphic on C�P�

�
C [ f1g

�
except for

�
0;�1

2

�
�
�
C [ f1g

�
[
�
0;

1

2

�
�
�
C [ f1g

�
:

(ii) The family fH
ð1

2
Þ;m

b;m g is holomorphic on C�P�
�
C [ f1g

�
except for

�
0;�1

2

�
�
�
C [ f1g

�
[ fðb; 0;�1 � bÞ j b 2 Cg:

Proof For any fixed m 2 P, Theorem 3.10 shows that ðb; mÞ7!H
ð0Þ;m
b;m is holomorphic

on C� ðC [ f1gÞ if m 6¼ 	 1
2

and on ðC n f0gÞ � ðC [ f1gÞ if m ¼ 	 1
2
.

Likewise, ðb; mÞ7!H
ð1

2
Þ;m

b;m is holomorphic in C� ðC [ f1gÞ if m 62
�
� 1

2
; 0
�

, on

C� ðC [ f1gÞ n fb; 1 � b j b 2 Cg if m ¼ 0, and on ðC n f0gÞ � ðC [ f1gÞ if

m ¼ � 1
2
. It remains to study holomorphy in m for fixed ðb; mÞ.

Recall that in Theorem 3.7 we introduced the functions xb;m;jðkÞ, xm
b;0ðkÞ, and

xm
b;1

2

ðkÞ. Let us now define two more functions

xð0Þ;m
b;m ðkÞ :¼

xb;m;jðkÞ; m 6¼ 0; j ¼ jð0Þðm; mÞ;
xm

b;0ðkÞ; m ¼ 0;

(

x
ð1

2
Þ;m

b;m ðkÞ :¼
xb;m;jðkÞ; m 6¼ 1

2
; j ¼ jð

1
2
Þðb;m; mÞ;

xm
b;1

2

ðkÞ; m ¼ 1

2
:

8><
>:
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Clearly, by Theorem 3.7 one has

R
ð0Þ;m
b;m ð�k2; x; yÞ

¼ Rb;mð�k2; x; yÞ þ
C
�

1
2
þ m � b

2k

�
C
�

1
2
� m � b

2k

�
2kxð0Þ;m

b;m ðkÞ
K b

2k;m
ð2kyÞK b

2k;m
ð2kxÞ

and

R
ð1

2
Þ;m

b;m ð�k2; x; yÞ

¼ Rb;mð�k2; x; yÞ þ
C
�

1
2
þ m � b

2k

�
C
�

1
2
� m � b

2k

�
2kx

ð1
2
Þ;m

b;m ðkÞ
K b

2k;m
ð2kyÞK b

2k;m
ð2kxÞ:

Let us show that, for fixed ðb; mÞ such that b
2k � 1

2
62 N, the map

m 7!
C
�

1
2
þ m � b

2k

�
C
�

1
2
� m � b

2k

�
2kx

ð1
2
Þ;m

b;m ðkÞ
ð3:24Þ

is holomorphic for m near 0. It is clearly holomorphic in a punctured neighborhood

of 0. Hence it suffices to show that it is continuous at m ¼ 0. Recall from (3.10) that

xb;m;jðkÞ ¼ 1 þ
ð2kÞ�2mC

�
1
2
� m � b

2k

�
Cð1 þ 2mÞ

jC
�

1
2
þ m � b

2k

�
Cð1 � 2mÞ

 !
p

sinð2pmÞ : ð3:25Þ

Then, by inserting j ¼ jð0Þðm; mÞ for m 6¼ 0 into (3.25) we obtain

xð0Þ;m
b;m ðkÞ ¼ p

C
�

1
2
þ m � b

2k

�
Cð1 � 2mÞ � ð2kÞ�2mC

�
1
2
� m � b

2k

�
Cð1 þ 2mÞ

C
�

1
2
þ m � b

2k

�
Cð1 � 2mÞ sinð2pmÞ

� m
ð2kÞ�2mC

�
1
2
� m � b

2k

�
Cð1 þ 2mÞ2pm

C
�

1
2
þ m � b

2k

�
Cð1 � 2mÞ sinð2pmÞ

!
m!0

w
1

2
� b

2k

� �
þ 2cþ lnð2kÞ � m

¼ xð0Þ;m
b;0 ðkÞ:

Thus (3.24) is holomorphic for m near 0.

Similarly, let us show that, for fixed ðb; mÞ such that b
2k 62 N, the map

m 7!
C
�

1
2
þ m � b

2k

�
C
�

1
2
� m � b

2k

�
2kx

ð1
2
Þ;m

b;m ðkÞ
ð3:26Þ

is holomorphic for m near 1
2
. By inserting j ¼ jð

1
2
Þðb;m; mÞ for m 6¼ 1

2
into (3.25) we

obtain
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x
ð1

2
Þ;m

b;m ðkÞ ¼ p
C
�

1
2
þ m � b

2k

�
Cð2 � 2mÞ þ bð2kÞ�2mC

�
1
2
� m � b

2k

�
Cð1 þ 2mÞ

C
�

1
2
þ m � b

2k

�
Cð2 � 2mÞ sinð2pmÞ

� m
ð2kÞ�2mC

�
1
2
� m � b

2k

�
Cð1 þ 2mÞpð2m � 1Þ

C
�

1
2
þ m � b

2k

�
Cð2 � 2mÞ sinð2pmÞ

!
m!1

2

� 1

2
w 1 � b

2k

� �
� 1

2
w � b

2k

� �
� 2c� lnð2kÞ þ 1 � m

b

¼ x
ð1

2
Þ;m

b;12
ðkÞ;

which proves that (3.26) is holomorphic for m near 1
2
.

The remaining restrictions on the domain of holomorphy are inferred directly

from Theorem 3.10. h

3.5 Eigenprojections

Let us now describe a family of projections fPb;mðkÞg which is closely related to the

Whittaker operator. We will define it by specifying its integral kernel.

We first introduce a holomorphic function for m 62 f� 1
2
; 0; 1

2
g by

ðb;m; kÞ7!fb;mðkÞ :¼
p 2m þ b

2k w
�

1
2
þ m � b

2k

�
� b

2k w
�

1
2
� m � b

2k

�� �
sinð2pmÞ :

One easily observes that fb;mðkÞ ¼ fb;�mðkÞ. We can extend this function continu-

ously to m 2 f� 1
2
; 0; 1

2
g by

fb;0ðkÞ ¼ 1 þ b
2k

w0 1

2
� b

2k

� �
;

fb;�1
2
ðkÞ ¼ fb;12ðkÞ :¼ � 1 þ b

4k
w0 1 � b

2k

� �
þ b

4k
w0 � b

2k

� �� �
:

We now consider k 2 Cn½0;1½, and as usual we write k ¼ �k2 with ReðkÞ[ 0. We

then define the integral kernel Pb;mðk; x; yÞ:

Pb;mð�k2; x; yÞ :¼
kC
�

1
2
þ m � b

2k

�
C
�

1
2
� m � b

2k

�
fb;mðkÞ

K b
2k;m

ð2kxÞK b
2k;m

ð2kyÞ: ð3:27Þ

The definition (3.27) naturally extends to k 2�0;1½, where we distinguish between

points coming from the upper and lower half-plane by writing k	 i0 ¼ �ð�ilÞ2

with l[ 0. Thus, let us set k ¼ �il and

fb;mð�ilÞ :¼
p 2m 	 i b

2l w
�

1
2
þ m � i b

2l

�
� i b

2l w
�

1
2
� m � i b

2l

�� �
sinð2pmÞ

which can be naturally extended to m 2 f� 1
2
; 0; 1

2
g by
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fb;0ð�ilÞ ¼ 1 	 i
b

2l
w0 1

2
� i

b
2l

� �
;

fb;�1
2
ð�ilÞ ¼ fb;1

2
ð�ilÞ :¼ � 1 	 i

b
4l

w0 �i
b

2l

� �
	 i

b
4k

w0 1 � i
b

2l

� �� �
:

For k ¼ �il we can then rewrite (3.27) as

Pb;mðl2 	 i0; x; yÞ :¼
e	ipmlC

�
1
2
þ m � i b

2l

�
C
�

1
2
� m � i b

2l

�
fb;mð�ilÞ H	

b
2l;m

ð2lxÞH	
b

2l;m
ð2lyÞ:

Finally, to handle k ¼ 0 we shall use the function
sinð2pmÞ

mð4m2�1Þ extended to f� 1
2
; 0; 1

2
g by

sinð2pmÞ
mð4m2 � 1Þ


m¼0

¼ �2p and
sinð2pmÞ

mð4m2 � 1Þ


m¼	1

2

¼ �p:

We set, for 	Imð
ffiffiffi
b

p
Þ[ 0,

Pb;mð0; x; yÞ :¼ 3e	ip2mb
sinð2pmÞ

mð4m2 � 1Þ ðbxÞ
1
4H	

2mð2
ffiffiffiffiffi
bx

p
ÞðbyÞ

1
4H	

2mð2
ffiffiffiffiffi
by

p
Þ:

The integral kernel Pb;mð�k2; x; yÞ defines an operator-valued map ðb;m; kÞ7!
Pb;mð�k2Þ described in the following proposition.

Proposition 3.13 On the set

C�P� fk 2 C j ReðkÞ[ 0g

[ fðb;m;�ilÞ j b 2 C; m 2 P; 0\l\	 ImðbÞg

[ fðb;m; 0Þ j b 2 C; m 2 P; 0\	 Imð
ffiffiffi
b

p
Þg;

ð3:28Þ

the function ðb;m; kÞ7!Pb;mð�k2Þ has values in bounded projections. Moreover, it is

continuous on

C�P� fk 2 C j ReðkÞ[ 0g

[ fðb;m;�ilÞ j b 2 C; m 2 P; 0\l\	 ImðbÞg;
ð3:29Þ

and holomorphic on C�P� fReðkÞ[ 0g. It satisfies

Pb;mð�k2Þ ¼ Pb;�mð�k2Þ; ð3:30Þ

Pb;mð�k2Þ# ¼ Pb;mð�k2Þ; ð3:31Þ

Pb;mð�k2Þ� ¼ P�b; �mð�k2Þ; ð3:32Þ

for all ðb;m; kÞ in the set (3.28).

Proof The fact that Pb;mð�k2Þ are rank-one projections follows directly from their

expressions together with Corollaries A.3 and A.5 and Proposition B.5. Continuity
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on the domain (3.29) and holomorphy on C�P� fReðkÞ[ 0g, as well as the

relations (3.30)–(3.32), follow again from the expressions involved in the definitions

of Pb;mð�k2Þ. h

We recall from Proposition 2.5 that the operators Hb;m;j, Hm
b;0 and Hm

b;1
2

are self-

transposed. Moreover, it follows from Theorem 3.1 and its proof that all eigenvalues

of these operators are simple. If k is a simple eigenvalue of a self-transposed

operator H associated to an eigenvector u such that hujui ¼ 1, we define the self-
transposed eigenprojection associated to k as

P ¼ huj�iu:

In the case where k is in addition an isolated point of the spectrum, it is then easy to

see that the self-transposed eigenprojection P coincides with the usual Riesz pro-

jection corresponding to k.

Theorem 3.14 Let b 2 C, m 2 P n
�
� 1

2
; 0; 1

2

�
, j 2 C [ f1g and m 2 C [ f1g.

Let k 2 C be an eigenvalue of Hb;m;j, Hm
b;0 or Hm

b;1
2

respectively. Then the self-

transposed eigenprojection is Pb;mðkÞ for the corresponding value of m.

Proof We prove the theorem in the case where k ¼ �k2 with ReðkÞ[ 0 and

m 62
�
� 1

2
; 0; 1

2

�
. The other cases are similar.

From the proof of Theorem 3.1, we know that if k is an eigenvalue of Hb;m;j, then

a corresponding eigenstate is given by x 7!K b
2k;m

ð2kxÞ. Corollary A.3 shows that

�
K b

2k;m
ð2k�Þ j K b

2k;m
ð2k�Þ

�
¼ p

sinð2pmÞ
2m þ b

2k w
�

1
2
þ m � b

2k

�
� b

2k w
�

1
2
� m � b

2k

�
kC
�

1
2
þ m � b

2k

�
C
�

1
2
� m � b

2k

� :

This proves that Pb;mð�k2Þ is the self-transposed eigenprojection corresponding to

k, as claimed. h

The point k ¼ 0 is rather special for the family Pb;mð�k2Þ, as shown in next

proposition.

Proposition 3.15 Let m 2 P and b 2 C such that 	Imð
ffiffiffi
b

p
Þ[ 0. Then the map

k 7!Pb;mð�k2Þ is not continuous at k ¼ 0.

Proof We consider the case where m 62 f� 1
2
; 0; 1

2
g. The other cases are similar.

First, we claim that for all continuous and compactly supported function f,

lim
k!0

�
f jPb;mð�k2Þf

�
¼
�
f jPb;mð0Þf

�
;

where k 2 C is chosen such that ReðkÞ[ 0 and 	
�

argðbÞ � argðkÞ
�
2�e; p� e½ with

e[ 0. To shorten the expressions below, we set in this proof

gb;m;kðxÞ :¼ �i
C
�

1
2
þ m � b

2k

�
ffiffiffi
p

p b
2k

� �1
2
�m

K b
2k;m

ð2kxÞ;
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and

gb;m;0ðxÞ :¼ ðbxÞ
1
4H	

2mð2
ffiffiffiffiffi
bx

p
Þ:

We show that gb;m;k is uniformly bounded, for k satisfying the conditions above, by

a locally integrable function. From the definition (A.3) of Ib;m and proceeding as in

the proof of Proposition B.2, we obtain that, for k 2 C such that ReðkÞ[ 0, jkj\1,

and 	
�

argðbÞ � argðkÞ
�
2�e; p� e½ with e[ 0,

b
2k

� �1
2
þm

I b
2k;m

ð2kxÞ


 ¼ ðbxÞ
1
2
þm

e�kx
X1
j¼0

�
1
2
þ m � b

2k

�
j

Cð1 þ 2m þ jÞ
ð2kxÞj

j!




� jbxj
1
2
þm
X1
j¼0

cjxj

jCð1 þ 2m þ jÞj ;

for some constant c[ 0 depending on b and m but independent of k and x. Using

that

gb;m;kðxÞ ¼
�i

ffiffiffi
p

p

sinð2pmÞ
b
2k

� �1
2
�m

�
C
�

1
2
þ m � b

2k

�
C
�

1
2
� m � b

2k

� I b
2k;m

ð2kxÞ þ I b
2k;�m

ð2kxÞ
 !

;

together with Lemma B.3, one then deduces thatgb;m;kðxÞ
� c1ec2x;

for some positive constants c1, c2 independent of k and x.

The previous bound together with the dominated convergence theorem and

Proposition B.2 show that

lim
k!0

�
gb;m;kjf

�
¼
�
gb;m;0jf

�
;

for all continuous and compactly supported function f, and for k satisfying the

conditions exhibited above. We then have that

�
f jPb;mð�k2Þf

�

¼
k sinð2pmÞC

�
1
2
þ m � b

2k

�
C
�

1
2
� m � b

2k

�
p
�
2m þ b

2k w
�

1
2
þ m � b

2k

�
� b

2k w
�

1
2
� m � b

2k

�� �K b
2k;m

ð2k�Þjf
�2

¼ � k sinð2pmÞ
2m þ b

2k w
�

1
2
þ m � b

2k

�
� b

2k w
�

1
2
� m � b

2k

�C
�

1
2
� m � b

2k

�
C
�

1
2
þ m � b

2k

� b
2k

� �2m�1�
gb;m;kjf

�2

¼ 2k2 sinð2pmÞ
b
� b

2k

�
2k
b

�3 m
6
ð�1 þ 4m2Þ þ oð1Þ

�C
�

1
2
� m � b

2k

�
C
�

1
2
þ m � b

2k

� b
2k

� �2m�
gb;m;kjf

�2

!
k!0

3b sinð2pmÞ
mð4m2 � 1Þ e	ip2m

�
gb;m;0jf

�2

¼
�
f jPb;mð0Þf

�
;

where we used Lemma B.7 in the third equality.
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Now, we claim that Pb;mð�k2Þ is not continuous at k ¼ 0 for the strong operator

topology. Indeed, using that Pb;mð�k2Þ is a self-transposed projection, we infer that,

for f continuous and compactly supported,��
Pb;mð�k2Þ � Pb;mð0Þ

�
f j
�
Pb;mð�k2Þ � Pb;mð0Þ

�
f
�

¼
�
Pb;mð�k2Þf jf

�
þ
�
Pb;mð0Þf jf

�
� 2
�
Pb;mð0Þf jPb;mð�k2Þf

�
:

A similar computation as above gives

�
Pb;mð0Þf jPb;mð�k2Þf

�

¼ 3b sinð2pmÞ
me�ip2m

�
4m2 � 1

� 2k2 sinð2pmÞ
b
� b

2k

�
2k
b

�3 m
6
ð�1 þ 4m2Þ þ oð1Þ

�C
�

1
2
� m � b

2k

�
C
�

1
2
þ m � b

2k

� b
2k

� �2m

� hf jgb;m;kihgb;m;kjgb;m;0ihgb;m;0jf i
!

k!0
0;

since lim
k!0

hgb;m;kjgb;m;0i ¼ 0 by Remark B.6, while the other terms converge.

Therefore,

��
Pb;mð�k2Þ � Pb;mð0Þ

�
f j
�
Pb;mð�k2Þ � Pb;mð0Þ

�
f
�
!

k!0
2
�
Pb;mð0Þf jf

�
6¼ 0;

for suitably chosen compactly supported functions f. This proves that Pb;mð�k2Þ is

not continuous at k ¼ 0. h
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A The Whittaker equation

A.1 General theory

In this section we collect basic information about the Whittaker equation. This

should be considered as a supplement to [7, Sec. 2].

The Whittaker equation is represented by the equation
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Lb;m2 þ 1

4

� �
f :¼ �o2

z þ m2 � 1

4

� �
1

z2
� b

z
þ 1

4

� �
f ¼ 0: ðA:1Þ

We observe that the equation does not change when we replace m with �m. It has

also another symmetry:

Lb;m2 þ 1

4

� �
f ðzÞ ¼ 0 ) L�b;m2 þ 1

4

� �
f ð�zÞ ¼ 0: ðA:2Þ

Solutions of (A.1) are provided by the functions z 7!Ib;	mðzÞ which are defined by

Ib;mðzÞ ¼ z
1
2
þme�

z
2

1F1

�
1
2
þ m � b; 1 þ 2m;	z

�
Cð1 þ 2mÞ

¼ z
1
2
þme�

z
2

X1
k¼0

1
2
þ m � b

� �
k

Cð1 þ 2m þ kÞ
ð	zÞk

k!
;

ðA:3Þ

where ðaÞk :¼ aða þ 1Þ � � � ða þ k � 1Þ and ðaÞ0 ¼ 1 are the usual Pochhammer’s

symbols and 1F1 is Kummer’s confluent hypergeometric function. For ReðmÞ[ � 1
2

and Re
�
m � bþ 1

2

�
[ 0 the function Ib;m has also an integral representation given

by

Ib;mðzÞ ¼
z

1
2
þm

C
�

1
2
þ m þ b

�
C
�

1
2
þ m � b

�
Z 1

0

e	zðs�1
2
Þsm�b�1

2ð1 � sÞm	b�1
2 ds:

Based on (A.3) one easily gets

W
�
Ib;m; Ib;�m; x

�
¼ � sinð2pmÞ

p
ðA:4Þ

as well as the following identity

Ib;mðzÞ ¼ e�ipð1
2
þmÞI�b;m

�
e	ipz

�
: ðA:5Þ

Another solution of (A.1) is provided by the function z 7!Kb;mðzÞ. For m 62 1
2
Z it can

be defined by the following relation:

Kb;m ¼ p
sinð2pmÞ � Ib;m

C
�

1
2
� m � b

�þ Ib;�m

C
�

1
2
þ m � b

�
 !

: ðA:6Þ

For the remaining m we can extend the definition of Kb;m by continuity, see

Sect. A.3. Note that Kb;�m ¼ Kb;m, and that the function Kb;m can also be expressed

in terms of the function 2F0, namely:

Kb;mðzÞ ¼ zbe�
z
22F0

�1

2
þ m � b; 1

2
� m � b;�;�z�1

�
:

An alternative definition of Kb;m can be provided by an integral representation valid

for Re
�
� b� m þ 1

2

�
[ 0 and ReðzÞ[ 0:
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Kb;mðzÞ ¼
z

1
2
�me�

z
2

C
�

1
2
� b� m

�
Z 1

0

e�zss�
1
2
�b�mð1 þ sÞ�

1
2
þb�m

ds:

Note that the function Kb;m decays exponentially for large ReðzÞ, more precisely, if

e[ 0 and argðzÞj j\ 3
2
p� e, then one has

Kb;mðzÞ ¼ zb e�
z
2

�
1 þ Oðz�1Þ

�
: ðA:7Þ

By using the relation (A.6) one also obtains that

W
�
Ib;m;Kb;m; x

�
¼ � 1

C
�

1
2
þ m � b

� : ðA:8Þ

We would like to treat Ib;m, Ib;�m and Kb;m as the principal solutions of the

Whittaker equation (A.1). There are however cases for which this is not sufficient.

Therefore, we introduce below a fourth solution, which we denote by Xb;m. To the

best of our knowledge, this function has never appeared elsewhere in the literature.

The function Kb;m is distinguished by the fact that it decays exponentially, while

the solutions Ib;	mðzÞ explode exponentially, see [7, Eq. (2.14) and (2.22)]. This is

also the case for the analytic continuations of K�b;m by the angles 	p, which by the

symmetry (A.2) are also solutions of (A.1). It will be convenient to introduce a

name for a solution constructed from these two analytic continuations. There is

some arbitrariness for this choice, but we have decided on:

Xb;mðzÞ :¼ 1

2
e�ipð1

2
þmÞK�b;m

�
eipz
�
þ eipð1

2
þmÞK�b;m

�
e�ipz

�� �
: ðA:9Þ

As a consequence of this definition and of (A.5) one gets the relations

Xb;mðzÞ ¼ � p
sinð2pmÞ

Ib;mðzÞ
C
�

1
2
� m þ b

�� cosð2pmÞIb;�mðzÞ
C
�

1
2
þ m þ b

�
 !

; ðA:10Þ

and

e�ipð1
2
þmÞK�b;m

�
e	ipz

�
¼ Xb;mðzÞ �

ipIb;�mðzÞ
C
�

1
2
þ m þ b

� :
In addition, by using the equalities

cos
�
pðm � bÞ

�
¼ cos

�
2pm � pðm þ bÞ

�
¼ cosð2pmÞ cos

�
pðm þ bÞ

�
þ sinð2pmÞ sin

�
pðm þ bÞ

�
;

ðA:11Þ

one infers from (A.6) and (A.10) that

cosð2pmÞKb;m

C
�

1
2
þ m þ b

�� Xb;m

C
�

1
2
þ m � b

�
¼ 1

sinð2pmÞ cos
�
pðm � bÞ

�
� cosð2pmÞ cos

�
pðm þ bÞ

�� �
Ib;m

¼ sin
�
pðm þ bÞ

�
Ib;m;
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which finally leads to the relation

Ib;m ¼ 1

sinðpðm þ bÞÞ
cosð2pmÞ

C
�

1
2
þ m þ b

�Kb;m � 1

C
�

1
2
þ m � b

�Xb;m

 !
: ðA:12Þ

By taking formulas (A.6), (A.10), and (A.11) into account, one infers that the

Wronskian is provided by

WðKb;m;Xb;m; xÞ ¼ � sin
�
pðm þ bÞ

�
:

Hence for m þ b 2 Z the solutions Kb;m and Xb;m are proportional to one another. In

fact, for such b;m, we have

Xb;mðzÞ ¼
C
�

1
2
� m � b

�
C
�

1
2
� m þ b

�Kb;mðzÞ:

Note that this corresponds to the lines m þ b ¼ n 2 Z. However in our applications,

we need Xb;m on the lines m þ b� 1
2
¼ n 2 Z, where Kb;m and Xb;m are linearly

independent.

A.2 The Laguerre cases

Let us now consider two special cases, namely when � 1
2
� m þ b :¼ n 2 N and

when � 1
2
� m � b :¼ n 2 N. In the former case, observe that the Wronskian of Ib;m

and Kb;m vanishes, see (A.8). It means that in such a case these two functions are

proportional to one another. In order to deal with this situation we define, for p 2 C

and n 2 N, the Laguerre polynomials by the formulas

LðpÞ
n ðzÞ ¼ z�pez

n!

dn

dzn

�
e�zzpþn

�

¼
Xn

k¼0

ðp þ k þ 1Þn�kð�zÞk

ðn � kÞ!k!

¼ ðp þ 1Þn

n!
1F1ð�n; p þ 1; zÞ

¼ ð�1Þn

n!
zn

2F0ð�n;�p � n;�;�z�1Þ:

Then, by setting 2m ¼ p, we get

I 1þp
2
þn;p

2
¼ n!z

1þp
2 e�

z
2

Cð1 þ p þ nÞ LðpÞ
n :
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Note that this solution can also be expressed in terms of the Kb;m function, namely

K1þp
2
þn;p

2
¼ ð�1Þnn! z

1þp
2 e�

z
2LðpÞ

n : ðA:13Þ

We shall call this situation the decaying Laguerre case. In this case the relation

(A.12) reduces to

I 1þp
2
þn;p

2
¼ ð�1Þn

Cð1 þ p þ nÞK1þp
2
þn;p

2
; ðA:14Þ

and more generally for ‘ 2 Z one has

I 1þp
2
þ‘;p

2
¼ ð�1Þ‘

Cð1 þ p þ ‘ÞK1þp
2
þ‘;p

2
þ ð�1Þ‘þ1

cosðppÞCð�‘Þ X 1þp
2
þ‘;p

2
:

In the special case � 1
2
� m � b :¼ n 2 N a similar analysis with p ¼ 2m leads to

I�1þp
2
�n;p

2
ðzÞ ¼ n!z

1þp
2 e

z
2

Cð1 þ p þ nÞ LðpÞ
n ð�zÞ

and to

X�1þp
2
�n;p

2
ðzÞ ¼ e�i

1þp
2 pK1þp

2
þn;p

2

�
e	ipz

�
¼ ð�1Þnn!z

1þp
2 e

z
2LðpÞ

n ð�zÞ: ðA:15Þ

We shall call this situation the exploding Laguerre case. In this case the relation

(A.12) reduces to

I�1þp
2
�n;p

2
¼ ð�1Þn

Cð1 þ p þ nÞ X�1þp
2
�n;p

2
; ðA:16Þ

and more generally for ‘ 2 Z one has

I�1þp
2
�‘;p

2
¼ ð�1Þ‘þ1

cosðppÞ
Cð�‘Þ K�1þp

2
�‘;p

2
þ ð�1Þ‘

Cð1 þ p þ ‘Þ X�1þp
2
�‘;p

2
:

A.3 The degenerate case

In this section we consider the special case m 2 1
2
Z, which will be called the

degenerate case, see Fig. 1. In this situation the Wronskian of Ib;m and Ib;�m

vanishes, see (A.4). More precisely, for any p 2 N one has the identity

Ib;�p
2
¼ �b� p � 1

2

� �
p

Ib;p
2
;

or equivalently,

1

C
�

1þp
2

� b
� Ib;�p

2
¼ 1

C
�

1�p
2

� b
� Ib;p2

:
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Based on this equality and by a limiting procedure, one can provide an expression

for the functions Kb;p
2

(see [7, Thm. 2.2]), namely

Kb;p
2
ðzÞ ¼

ð�1Þpþ1
lnðzÞIb;p

2
ðzÞ

C
�

1�p
2
� b
�

þ ð�1Þpþ1
e�

z
2z

1þp
2

C
�

1�p
2

� b
� X1

k¼0

�
1þp

2
� b
�

k
zk

ðp þ kÞ!k!

� w
�1 þ p

2
� bþ k

�
� wðp þ 1 þ kÞ � wð1 þ kÞ

� �

þ ð�1Þpþ1
e�

z
2z

1þp
2

C
�

1�p
2

� b
� Xp

j¼1

�
1þp

2
� b
�
�j
ð�1Þj�1ðj � 1Þ!z�j

ðp � jÞ! ;

ðA:17Þ

β

m−4 −3 −2 −1 0 1 2 3 4

−4

−3

−2

−1

4

3

2

1

1 2 3 4

Fig. 1 The vertical lines correspond to the degenerate cases, the lines with slope 1 to the decaying
Laguerre case, the lines with slope �1 with the exploding Laguerre case
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where w is the digamma function defined by wðzÞ ¼ C0ðzÞ
CðzÞ . Note that the equality (or

definition) ðaÞj ¼
CðaþjÞ
CðaÞ has also been used for arbitrary j 2 Z. For our applications

the most important functions correspond to m ¼ 1
2

and m ¼ 0:

Kb;1
2
ðzÞ ¼

lnðzÞIb;1
2
ðzÞ

C
�
� b
� þ e�

z
2

Cð1 � bÞ

þ e�
z
2

C
�
� b
�X1

k¼0

�
1 � b

�
k
z1þk

ð1 þ kÞ!k! w
�
1 � bþ k

�
� wð2 þ kÞ � wð1 þ kÞ

� �
;

ðA:18Þ

Kb;0ðzÞ ¼ � lnðzÞIb;0ðzÞ
C
�

1
2
� b
�

� e�
z
2

C
�

1
2
� b
�X1

k¼0

�
1
2
� b
�

k
z

1
2
þk

ðk!Þ2
w
�1

2
� bþ k

�
� 2wð1 þ kÞ

� �
:

ðA:19Þ

Let us still provide the expression for the function Xb;p
2
. Starting from its definition

in (A.9) and by using the expansion (A.17) as well as the identity provided in (A.5)

one gets

Xb;p
2
ðzÞ ¼

ð�1Þpþ1
lnðzÞIb;p

2
ðzÞ

C
�

1�p
2
þ b
�

þ ð�1Þpþ1
e

z
2z

1þp
2

C
�

1�p
2

þ b
� X1

k¼0

�
1þp

2
þ b
�

k
ð�1Þkzk

ðp þ kÞ!k!

� w
�1 þ p

2
þ bþ k

�
� wðp þ 1 þ kÞ � wð1 þ kÞ

� �

� ð�1Þpþ1
e

z
2z

pþ1
2

C
�

1�p
2

þ b
� Xp

j¼1

�
1þp

2
þ b
�
�j
ðj � 1Þ!z�j

ðp � jÞ! :

In particular, the expansions for m ¼ 1
2

and m ¼ 0 will be useful:

Xb;1
2
ðzÞ ¼ � 1

Cð1 þ bÞ þ
1

CðbÞ z lnðzÞ

þ 1

CðbÞ
1

2
wð1 þ bÞ þ 1

2
wðbÞ þ 2c� 1

� �
z þ oðzÞ

ðA:20Þ

Xb;0ðzÞ ¼ � z
1
2

C
�

1
2
þ b
� ð1 � bzÞ lnðzÞ þ w

�1

2
þ b
�
þ 2c

� �h

�b w
1

2
þ b

� �
þ 2c� 2

� �
z



þ o
�
z

3
2

�
:

ðA:21Þ

Note also that the following identity holds:
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Xb;�p
2
¼ ð�1ÞpXb;p

2
;

as a consequence of (A.9).

A.4 The doubly degenerate case

We shall now consider the region

ðm; bÞ j b 2 1

2
Z; m 2 1

2
Z; bþ m þ 1

2
2 Z

n o
: ðA:22Þ

In other words, we consider m 2 Z, b 2 Zþ 1
2
, or m 2 Zþ 1

2
, b 2 Z. This situation

will be called the doubly degenerate case. We will again set m ¼ p
2

with p 2 Z. Note

that for ðm; bÞ in (A.22) we have the identity

Ib;m ¼ ð�1Þbþmþ3
2
þp

C
�

1
2
þ m þ b

�Kb;m þ ð�1Þbþmþ1
2

C
�

1
2
þ m � b

�Xb;m; ðA:23Þ

which is a special case of (A.12). In this case we also have

WðKb;m;Xb;m; xÞ ¼ ð�1Þmþbþ1
2: ðA:24Þ

Hence Kb;m and Xb;m always span the space of solutions in the doubly degenerate

case.

In order to analyze the doubly degenerate case more precisely, let us divide

(A.22) into 4 distinct regions (see Fig. 2).

Region I�. bþ m 2 �
�
Nþ 1

2

�
; �bþ m 2 �

�
Nþ 1

2

�
:

We have

Ib;m ¼ 0;

which follows for example from (A.23). By setting n1 :¼ b� m � 1
2
2 N and

n2 ¼ �b� m � 1
2
2 N, then Kb;m ¼ K1þp

2
þn1;

p
2

is the decaying Laguerre solution, see

(A.13), and Xb;m ¼ X�1þp
2
�n2;

p
2

is the exploding Laguerre solution, see (A.15).

Region Iþ. bþ m 2 Nþ 1
2
; �bþ m 2 Nþ 1

2
:

First note that ðm; bÞ 2 I� if and only if ð�m; bÞ 2 Iþ. By setting n1 :¼
bþ m � 1

2
2 N and n2 :¼ �bþ m � 1

2
2 N, one has b ¼ n1�n2

2
, m ¼ n1þn2þ1

2
, and the

equality (A.23) can be rewritten as

Ib;m ¼ ð�1Þn2þ1

n1!
Kb;m þ ð�1Þn1þ1

n2!
Xb;m:

Note then that Kb;m ¼ K1�p
2
þn1;

p
2
¼ K1�p

2
þn1;

�p
2

corresponds to the decaying Laguerre

solution, while Xb;m ¼ X�1�p
2
�n2;

p
2
¼ ð�1ÞpX�1�p

2
�n2;�p

2
¼ ð�1ÞpX�1�p

2
�n2;

�p
2

corre-

sponds to the exploding Laguerre solution. In this region, the space of solutions can

also be spanned by the pair Kb;m and Ib;m, or by the pair Ib;m and Xb;m.

Region II�. bþ m 2 �
�
Nþ 1

2

�
; �bþ m 2 Nþ 1

2
:
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By setting n :¼ �b� m � 1
2
2 N, then the equality (A.16) reduces to

I�pþ1
2
�n;p

2
¼ ð�1Þn

ðp þ nÞ!X�pþ1
2
�n;p

2
:

Thus Ib;m is proportional to Xb;m and corresponds to the exploding Laguerre case.

The second solution is Kb;m. It decays exponentially and has a logarithmic singu-

larity at zero, therefore we call this function the decaying logarithmic solution.

Region IIþ. bþ m 2 Nþ 1
2
; �bþ m 2 �

�
Nþ 1

2

�
:

By setting n :¼ b� m � 1
2
2 N, then the equality (A.14) reduces to

I pþ1
2
þn;p

2
¼ ð�1Þn

ðp þ nÞ!Kpþ1
2
þn;p

2
:

Thus Ib;m is proportional to Kb;m and corresponds to the decaying Laguerre case.

The second solution is Xb;m. It explodes exponentially and has a logarithmic sin-

gularity at zero, therefore we call this function the exploding logarithmic solution.

The results of this section are summarized in Fig. 2.

A.5 Recurrence relations

Solutions of the Whittaker equation satisfy interesting recurrence relations. These

relations can be checked by using the series provided in (A.3). The computations are

straightforward, but rather lengthy. These relations read

ffiffi
z

p
oz þ

� 1
2
� mffiffi
z

p �
ffiffi
z

p

2

� �
Ib;mðzÞ ¼ � 1

2
� m � b

� �
Ibþ1

2
;mþ1

2
ðzÞ;

ffiffi
z

p
oz þ

� 1
2
þ mffiffi
z

p þ
ffiffi
z

p

2

� �
Ib;mðzÞ ¼ Ib�1

2
;m�1

2
ðzÞ;

ffiffi
z

p
oz þ

� 1
2
þ mffiffi
z

p �
ffiffi
z

p

2

� �
Ib;mðzÞ ¼ Ibþ1

2
;m�1

2
ðzÞ;

ffiffi
z

p
oz þ

� 1
2
� mffiffi
z

p þ
ffiffi
z

p

2

� �
Ib;mðzÞ ¼

1

2
þ m � b

� �
Ib�1

2
;mþ1

2
ðzÞ;

zoz þ b� z

2

� �
Ib;mðzÞ ¼

1

2
þ m þ b

� �
Ibþ1;mðzÞ;

zoz � bþ z

2

� �
Ib;mðzÞ ¼

1

2
þ m � b

� �
Ib�1;mðzÞ:

By using the relation between the functions Kb;m and the functions Ib;m provided in

(A.6), one infers from the above relations the following ones:
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ffiffi
z

p
oz þ

� 1
2
� mffiffi
z

p �
ffiffi
z

p

2

� �
Kb;mðzÞ ¼ �Kbþ1

2
;mþ1

2
ðzÞ;

ffiffi
z

p
oz þ

� 1
2
þ mffiffi
z

p þ
ffiffi
z

p

2

� �
Kb;mðzÞ ¼ � 1

2
þ m þ b

� �
Kb�1

2
;m�1

2
ðzÞ;

ffiffi
z

p
oz þ

� 1
2
þ mffiffi
z

p �
ffiffi
z

p

2

� �
Kb;mðzÞ ¼ �Kbþ1

2
;m�1

2
ðzÞ;

ffiffi
z

p
oz þ

� 1
2
� mffiffi
z

p þ
ffiffi
z

p

2

� �
Kb;mðzÞ ¼ � 1

2
� m þ b

� �
Kb�1

2
;mþ1

2
ðzÞ;

zoz þ b� z

2

� �
Kb;mðzÞ ¼ �Kbþ1;mðzÞ;

zoz � bþ z

2

� �
Kb;mðzÞ ¼

1

2
þ m � b

� �
1

2
� m � b

� �
Kb�1;mðzÞ:

β

m

I− I+

II+

II−

−4 −3 −2 −1 0 1 2 3 4

−4

−3

−2

−1

4

3

2

1

1 2 3 4

Fig. 2 Solutions for the doubly degenerate case: Region I�: the decaying Laguerre and the exploding
Laguerre solutions. Region Iþ: any of the three solutions. Region IIþ: the decaying Laguerre and the
exploding logarithmic solutions. Region II�: the exploding Laguerre and the decaying logarithmic
solutions
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A.6 Integral identities

Let us start with a general fact about 1-dimensional Schrödinger operators, see for

example [5, Eq. (3.24)].

Lemma A.1 For i 2 f1; 2g, suppose that vi 2 DðLmax
b;a Þ satisfies Lb;avi ¼ kivi for

some ki 2 C. Then, for all a; b 2�0;1½,

ðk1 � k2Þ
Z b

a

v1ðxÞv2ðxÞdx ¼ Wðv1; v2; bÞ �Wðv1; v2; aÞ; ðA:25Þ

where W is the Wronskian introduced in (2.1).

As a consequence of this lemma one has:

Proposition A.2 Let k; p 2 C with ReðkÞ[ 0 and ReðpÞ[ 0.

(i) If �1\ReðmÞ\1, m 62
�
� 1

2
; 0; 1

2

�
, then

ðk2 � p2Þ
Z 1

0

K b
2k;m

ð2kxÞK b
2p;m

ð2pxÞdx

¼ p
sinð2pmÞ

ffiffiffiffiffiffiffi
4kp

p kmp�m

C
�

1
2
þ m � b

2p

�
C
�

1
2
� m � b

2k

�
 

� pmk�m

C
�

1
2
þ m � b

2k

�
C
�

1
2
� m � b

2p

�
!
:

(ii) If m ¼ 0, then

ðk2 � p2Þ
Z 1

0

K b
2k;0

ð2kxÞK b
2p;0

ð2pxÞdx

¼
ffiffiffiffiffiffiffi
4kp

p w
�

1
2
� b

2k

�
� w

�
1
2
� b

2p

�
þ lnðkÞ � lnðpÞ

C
�

1
2
� b

2p

�
C
�

1
2
� b

2k

� :

(iii) If m ¼ 	 1
2
, then

ðk2 � p2Þ
Z 1

0

K b
2k;

1
2
ð2kxÞK b

2p;
1
2
ð2pxÞdx

¼ b
1
2
w
�
1� b

2k

�
þ 1

2
w
�
� b

2k

�
� 1

2
w
�
1� b

2p

�
� 1

2
w
�
� b

2p

�
þ lnðkÞ � lnðpÞ

C
�
1� b

2p

�
C
�
1� b

2k

� :

Proof The proof consists in an application of Lemma A.1. Consider k; p 2 C with

ReðkÞ[ 0, ReðpÞ[ 0 and set k1 ¼ �k2 and k2 ¼ �p2. As shown in the proof of

Theorem 3.1 the functions vi defined by

v1ðxÞ ¼ K b
2k;m

ð2kxÞ and v2ðxÞ ¼ K b
2p;m

ð2pxÞ
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belong to DðLmax
b;m2Þ and are eigenfunctions of Lb;m2 associated with the eigenvalues

ki. Let us then set Wðv1; v2; 0Þ :¼ lim
x&0

Wðv1; v2; xÞ and observe that

lim
x!þ1

Wðv1; v2; xÞ ¼ 0, as a consequence of Proposition 2.1. This yields directly

ðk2 � p2Þ
Z 1

0

v1ðxÞv2ðxÞdx ¼ Wðv1; v2; 0Þ: ðA:26Þ

Let us now set

u1;	ðxÞ ¼ I b
2k;	mð2kxÞ and u2;	ðxÞ ¼ I b

2p;	mð2pxÞ:

Then, the identity (A.6) leads to

v1ðxÞ ¼
p

sinð2pmÞ � u1;þðxÞ
C
�

1
2
� m � b

2k

�þ u1;�ðxÞ
C
�

1
2
þ m � b

2k

�
 !

;

v2ðxÞ ¼
p

sinð2pmÞ � u2;þðxÞ
C
�

1
2
� m � b

2p

�þ u2;�ðxÞ
C
�

1
2
þ m � b

2p

�
 !

;

and with the expansion provided in A.3 one directly infers that

Wðu1;þ; u2;þ; 0Þ ¼ Wðu1;�; u2;�; 0Þ ¼ 0;

Wðu1;þ; u2;�; 0Þ ¼ � 4mk
1
2þmp

1
2�m

Cð1 þ 2mÞCð1 � 2mÞ ¼ � 2 sinð2pmÞ
p

k
1
2
þmp

1
2
�m;

Wðu1;�; u2;þ; 0Þ ¼ 4mk
1
2
�mp

1
2
þm

Cð1 þ 2mÞCð1 � 2mÞ ¼
2 sinð2pmÞ

p
k

1
2
�mp

1
2
þm:

As a consequence of these equalities one gets

Wðv1; v2; 0Þ

¼ p
sinð2pmÞ

2k
1
2þmp

1
2�m

C
�

1
2
� m � b

2k

�
C
�

1
2
þ m � b

2p

�� 2k
1
2�mp

1
2þm

C
�

1
2
þ m � b

2k

�
C
�

1
2
� m � b

2p

�
 !

:

This proves (i). The equalities (ii) and (iii) can be proved similarly by using (A.18)

and (A.19). h

By using the L’Hospital’s rule one directly obtains:

Corollary A.3 Let ReðkÞ[ 0.

(i) For �1\ReðmÞ\1, m 62
�
� 1

2
; 0; 1

2

�
one has

Z 1

0

K b
2k;m

ð2kxÞ2
dx ¼ p

sinð2pmÞ
2m þ b

2k w
�

1
2
þ m � b

2k

�
� b

2k w
�

1
2
� m � b

2k

�
kC
�

1
2
þ m � b

2k

�
C
�

1
2
� m � b

2k

� :
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(ii) For m ¼ 0,

Z 1

0

K b
2k;0

ð2kxÞ2
dx ¼

1 þ b
2k w

0� 1
2
� b

2k

�
kC
�

1
2
� b

2k

�2
:

(iii) For m ¼ 1
2
,

Z 1

0

K b
2k;

1
2
ð2kxÞ2

dx ¼ �
1 þ b

4k w
0�� b

2k

�
þ b

4k w
0�1 � b

2k

�
kC
�
� b

2k

�
C
�
1 � b

2k

� :

A.7 The trigonometric type Whittaker equation

Along with the standard Whittaker equation (A.1), sometimes called hyperbolic
type, it is natural to consider the trigonometric type Whittaker equation

Lb;m2 � 1

4

� �
f ¼ �o2

z þ m2 � 1

4

� �
1

z2
� b

z
� 1

4

� �
f ¼ 0: ðA:27Þ

In [7, Sec. 2.6 and 2.7] we introduced the functions

J b;mðzÞ ¼ e�ip
2
ð1

2
þmÞI�ib;m

�
e	ip

2z
�

ðA:28Þ

and

H	
b;mðzÞ ¼e�ip

2
1
2
þmð ÞK	ib;mðe�ip

2zÞ

¼ 	ip
sinð2pmÞ

e�ipmJ b;mðzÞ
C 1

2
� m � ib

� �� J b;�mðzÞ
C 1

2
þ m � ib

� �
 !

;
ðA:29Þ

which solve (A.27). Note that the function H	
b;m has been used in the proof of

Theorem 3.1 when dealing with positive eigenvalues of the Whittaker operators.

A.8 Integral identities in the trigonometric case

Here are the analogues of Proposition A.2 and Corollary A.3 in the trigonometric

case. The approach can be mimicked from Sect. A.6 because of the identity

Lb;m2 H	
b

2l;m
ð2lxÞ ¼ l2H	

b
2l;m

ð2lxÞ

valid for any l[ 0.

Proposition A.4 Let l; g[ 0 with l\	 Im
�
bÞ and g\	 Im

�
bÞ.

(i) If �1\ReðmÞ\1, m 62
�
� 1

2
; 0; 1

2

�
, then
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ðl2 � g2Þ
Z 1

0

H	
b

2l;m
ð2lxÞH	

b
2g;m

ð2gxÞdx

¼ pe�ipm

sinð2pmÞ
ffiffiffiffiffiffiffiffi
4lg

p lmg�m

C
�

1
2
þ m � i b

2g

�
C
�

1
2
� m � i b

2l

�
 

� gml�m

C
�

1
2
þ m � i b

2l

�
C
�

1
2
� m � i b

2g

�
!
:

(ii) If m ¼ 0, then

ðl2 � g2Þ
Z 1

0

H	
b

2l;0
ð2lxÞH	

b
2g;0

ð2gxÞdx

¼
ffiffiffiffiffiffiffiffi
4lg

p w
�

1
2
� i b

2l

�
� w

�
1
2
� i b

2g

�
þ lnðlÞ � lnðgÞ

C
�

1
2
� i b

2l

�
C
�

1
2
� i b

2g

� :

(iii) If m ¼ 1
2
, then

ðl2 � g2Þ
Z 1

0

H	
b

2l;
1
2

ð2lxÞH	
b
2g;

1
2

ð2gxÞdx

¼ b
1
2
w
�
1 � i b

2l

�
þ 1

2
w
�
� i b

2l

�
� 1

2
w
�
1 � i b

2g

�
� 1

2
w
�
� i b

2g

�
þ lnðlÞ � lnðgÞ

C
�
1 � i b

2g

�
C
�
1 � i b

2l

� :

Corollary A.5 Let 0\l\	 ImðbÞ.

(i) For �1\ReðmÞ\1, m 62
�
� 1

2
; 0; 1

2

�
one hasZ 1

0

H	
b

2l;m
ð2lxÞ2

dx

¼ pe�ipm

sinð2pmÞ
2m 	 i b

2l w
�

1
2
þ m � i b

2l

�
� i b

2k w
�

1
2
� m � i b

2l

�
lC
�

1
2
þ m � i b

2l

�
C
�

1
2
� m � i b

2l

�
 !

:

(ii) For m ¼ 0,

Z 1

0

H	
b

2l;0
ð2lxÞ2

dx ¼
1 	 i b

2l w
0� 1

2
� i b

2l

�
lC
�

1
2
� i b

2l

�2
:

(iii) For m ¼ 1
2
,

Z 1

0

H	
b

2l;
1
2

ð2lxÞ2
dx ¼

	i � b
4l w

0�� i b
2l

�
� b

4l w
0�1 � i b

2l

�
lC
�
� i b

2l

�
C
�
1 � i b

2l

� :
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B The Bessel equation

B.1 The modified Bessel equation

The modified (or hyperbolic type) Bessel equation for dimension 1

�o2
z þ m2 � 1

4

� �
1

z2
þ 1

� �
f ¼ 0; ðB:1Þ

is up to a trivial rescaling, a special case of the Whittaker equation with b ¼ 0. Its

theory was discussed at length in [6, App. A]. Nevertheless, we briefly discuss some

of its elements here, explaining the parallel elements to the theory of the Whittaker

equation, as well as the differences.

Let the modified Bessel function for dimension 1 be

ImðzÞ ¼
X1
n¼0

ffiffiffi
p

p
z
2

� �2nþmþ1
2

n!Cðm þ n þ 1Þ

¼
ffiffiffi
p

p

Cðm þ 1Þ
z

2

� �mþ1
2

0F1 m þ 1;
z

2

� �2
� �

:

ðB:2Þ

The Eq. (B.1) is invariant with respect to m ! �m. At the level of the function

(B.2) this property is reflected by

ImðzÞ ¼ e�ipð1
2
þmÞImðe	ipzÞ:

For the Wronskian we have

WðIm; I�m; zÞ ¼ � sinðpmÞ:

The function Km can be introduced for m 62 Z by

KmðzÞ ¼
1

sinðpmÞ
�
� ImðzÞ þ I�mðzÞ

�
:

For m 2 Z the definition is extended by continuity. Note that the relation KmðzÞ ¼
K�mðzÞ holds, and that

WðKm; Im; zÞ ¼ 1:

To make our presentation of the hyperbolic Bessel equation as much parallel to that

of the Whittaker equation as possible, we introduce the function

XmðzÞ :¼
1

2
e�ipð1

2
þmÞKm

�
eipz
�
þ eipð1

2
þmÞKm

�
e�ipz

�� �
:

Then the following relations hold:
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Xm ¼ � 1

sinðpmÞ
�
Im � cosð2mpÞI�m

�
;

Im ¼ 1

2 sinðmpÞ
�

cosð2mpÞKm � Xm

�
:

ðB:3Þ

The precise relations between the Whittaker functions for b ¼ 0 and Bessel-type

functions are of the form

I0;mðzÞ ¼
2

C
�

1
2
þ m

� Im
z

2

� �
;

K0;mðzÞ ¼ Km
z

2

� �
;

X 0;mðzÞ ¼ Xm
z

2

� �
:

ðB:4Þ

B.2 Recurrence relations

For the functions Im and Km, the following recurrence relations hold:

oz þ m � 1

2

� �
1

z

� �
ImðzÞ ¼ Im�1ðzÞ;

oz þ �m � 1

2

� �
1

z

� �
ImðzÞ ¼ Imþ1ðzÞ;

oz þ m � 1

2

� �
1

z

� �
KmðzÞ ¼ �Km�1ðzÞ;

oz þ �m � 1

2

� �
1

z

� �
KmðzÞ ¼ �Kmþ1ðzÞ:

B.3 Integral identities

It is proved for example in [6, Sec. A.8] that for jReðmÞj\1, m 6¼ 0 and for Reða þ
bÞ[ 0 one has Z 1

0

KmðaxÞKmðbxÞdx ¼ ða2m � b2mÞa1
2
�mb

1
2
�m

sinðpmÞða2 � b2Þ : ðB:5Þ

Observe that the r.h.s. of (B.5) can be extended by continuity to a ¼ b and m ¼ 0

since

lim
m!0

ða2m � b2mÞa1
2
�mb

1
2
�m

sinðpmÞða2 � b2Þ ¼ 2

p

�
lnðaÞ � lnðbÞ

�
a

1
2b

1
2

a2 � b2
;

lim
b!a

ða2m � b2mÞa1
2
�mb

1
2
�m

sinðpmÞða2 � b2Þ ¼ m

sinðpmÞa ;

lim
m!0

lim
b!a

ða2m � b2mÞa1
2
�mb

1
2
�m

sinðpmÞða2 � b2Þ ¼ 1

pa
:
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We shall need another integral identity:

Proposition B.1 For jReðmÞj\1 and Reða þ bÞ[ 0 one hasZ 1

0

x2KmðaxÞKmðbxÞdx

¼
4a

1
2
�mb

1
2
�m
�
ðm � 1Þða2mþ2 � b2mþ2Þ þ ðm þ 1Þa2b2ðb2m�2 � a2m�2Þ

�
sinðpmÞðb2 � a2Þ3

:

ðB:6Þ

In addition, the following limiting cases hold:

Z 1

0

x2K0ðaxÞK0ðbxÞdx ¼� 8a
1
2b

1
2

pðb2 � a2Þ2
þ 8a

1
2b

1
2ða2 þ b2Þ

pðb2 � a2Þ3

�
lnðbÞ � lnðaÞ

�
;

Z 1

0

x2KmðaxÞ2
dx ¼ 2mð1 � m2Þ

3a3 sinðpmÞ ;Z 1

0

x2K0ðaxÞK0ðaxÞdx ¼ 2

3pa3
:

Proof Assume first that �1\ReðmÞ\0. By using twice the recurrence relations of

Sect. B.2 one gets

Z 1

0

x2KmðaxÞKmðbxÞdx ¼ � obþ
mþ 1

2

b

� �Z 1

0

xKmðaxÞKmþ1ðbxÞdx;

and

Z 1

0

xKmðaxÞKmþ1ðbxÞdx ¼ � oaþ
mþ 1

2

a

� �Z 1

0

Kmþ1ðaxÞKmþ1ðbxÞdx:

Then, we infer that

Z 1

0

x2KmðaxÞKmðbxÞdx

¼ oaþ
mþ 1

2

a

� �
obþ

mþ 1
2

b

� �Z 1

0

Kmþ1ðaxÞKmþ1ðbxÞdx

¼ oaþ
mþ 1

2

a

� �
obþ

mþ 1
2

b

� �
ða2mþ2 � b2mþ2Þa�1

2
�mb�1

2
�m

sinðpmÞðb2 � a2Þ

 !

¼ a�1
2
�mb�1

2
�moaob

a2mþ2 � b2mþ2

sinðpmÞðb2 � a2Þ

� �

where we have used (B.5) with m þ 1 instead of m, and the fact that

oaða�1
2
�mÞ ¼ � mþ1

2

a a�1
2
�m. Clearly, a similar relation holds for a replaced by b. By
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computing the derivatives, one gets the expressions provided in the statement. This

proves (B.6) for �1\ReðmÞ\0. We then extend the equality to jReðmÞj\1 by

analytic continuation. Finally, the limiting cases are obtained by taking the limit

m ! 0 in the first case, the limit b ! a in the second case, and from this result the

limit m ! 0. Note that the same result is obtained if we take the limits in the reverse

order. h

B.4 The degenerate case

For m 2 Z the following relation holds:

I�mðzÞ ¼ ImðzÞ:

Assuming that m 2 N, we also have

ImðzÞ ¼
z

2

� �mþ1
2
X1
k¼0

ffiffiffi
p

p

k!ðm þ kÞ!
z

2

� �2k

;

and

KmðzÞ ¼ ð�1Þmþ1 2

p
ln

z

2

� �
ImðzÞ

þ ð�1Þmffiffiffi
p

p z

2

� �mþ1
2
X1
k¼0

wðk þ 1Þ þ wðm þ k þ 1Þ
k!ðm þ kÞ!

z

2

� �2k

þ ð�1Þmffiffiffi
p

p z

2

� �mþ1
2
Xm

j¼1

ð�1Þ j ðj � 1Þ!
ðm � jÞ!

z

2

� ��2j

:

B.5 The half-integer case

The half-integer case of the hyperbolic Bessel equation is a special case of the

doubly degenerate case of the Whittaker equation. However, it is worthwhile to

discuss it separately. In particular, for n 2 N the function I�1
2
�n is not proportional

to the function I 0;�1
2
�n, which is identically 0 by (B.4).

By analogy of the presentation of Sect. A.4 we can divide the half-integer case

into two regions, namely Region I� with m 2 � 1
2
�N, and Region Iþ with

m 2 1
2
þN. The following schematic diagram (Fig. 3) of various special cases for

the Bessel equation is an analog of Fig. 2.

m−4 −3 −2 −1 0 1 2 3 41 2 3 4

Fig. 3 The two regions in the half-integer case
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Note that unlike for the Whittaker equation, in both regions I� and Iþ the

functions Im, I�m and Km are well defined and distinct, and any two of them form a

basis of solutions of (B.1). In this case all solutions are elementary functions: For

n 2 N and m ¼ 	ð1
2
þ nÞ one has

K	ð1
2
þnÞðzÞ ¼ ð�1Þnn!ð2zÞ�n

e�zLð�1�2nÞ
n ð2zÞ;

X	ð1
2
þnÞðzÞ ¼ 	ð�1Þnn!ð2zÞ�n

ezLð�1�2nÞ
n ð�2zÞ;

I 1
2
þnðzÞ ¼ � 1

2
n!ð2zÞ�n

e�zLð�1�2nÞ
n ð2zÞ � ezLð�1�2nÞ

n ð�2zÞ
� �

;

ðB:7Þ

I�1
2
�nðzÞ ¼

1

2
n!ð2zÞ�n

e�zLð�1�2nÞ
n ð2zÞ þ ezLð�1�2nÞ

n ð�2zÞ
� �

: ðB:8Þ

Note also that (B.7) and (B.8) are special cases of (B.3), namely

I 1
2
þnðzÞ ¼

ð�1Þnþ1

2

�
K1

2
þnðzÞ � X 1

2
þnðzÞ

�
;

I�1
2
�nðzÞ ¼

ð�1Þn

2

�
K1

2
þnðzÞ þ X 1

2
þnðzÞ

�
:

B.6 The standard Bessel equation

The standard (or trigonometric-type) Bessel equation for dimension 1

�o2
z þ

�
m2 � 1

4

� 1

z2
� 1

� �
f ¼ 0; ðB:9Þ

is up to a trivial rescaling, a special case of the trigonometric-type Whittaker

equation with b ¼ 0. One can introduce the following functions which solve this

equation (see [6, App. A] for more information) :

J mðzÞ ¼ e	ip
2
ðmþ1

2
ÞImðe�ip

2zÞ ¼
X1
n¼0

ð�1Þn ffiffiffi
p

p
z
2

� �2nþmþ1
2

n!Cðm þ n þ 1Þ ;

H	
mðzÞ ¼ e�ip2ðmþ1

2ÞKmðe�ip2zÞ ¼ 	i
e�ipmJ mðzÞ � J �mðzÞ

sinðpmÞ ;

and

YmðzÞ :¼
cosðpmÞJ mðzÞ � J �mðzÞ

sinðpmÞ :

B.7 The zero eigenvalue Whittaker equation

The zero eigenvalue Whittaker equation is provided by the equation
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Lb;m2 f :¼ �o2
z þ m2 � 1

4

� �
1

z2
� b

z

� �
f ¼ 0: ðB:10Þ

It is easy to see that if v solves the trigonometric Bessel equation of dimension 1

(B.1) with parameter 2m, then the function f defined by f ðxÞ :¼ ðbxÞ
1
4vð2

ffiffiffiffiffi
bx

p
Þ

solves the equation (B.10).

One can also obtain solutions of (B.10) by rescaling solutions of the hyperbolic-

type or trigonometric-type Whittaker equation:

Proposition B.2 For any fixed x 2 Rþ, m 2 P and b 2 C�, one has

lim
k!0

1

2k

� �1
2
þm

I b
2k;m

ð2kxÞ ¼ b�m�1
2
ðbxÞ

1
4ffiffiffi

p
p J 2mð2

ffiffiffiffiffi
bx

p
Þ; ðB:11Þ

lim
k!0

1

2k

� �1
2
þm

J b
2k;m

ð2kxÞ ¼ b�m�1
2
ðbxÞ

1
4ffiffiffi

p
p J 2mð2

ffiffiffiffiffi
bx

p
Þ: ðB:12Þ

For any fixed x 2 Rþ, any m 2 P and b 2 C�, one has

lim
k!0

�i
C
�

1
2
þ m � b

2k

�
ffiffiffi
p

p b
2k

� �1
2
�m

K b
2k;m

ð2kxÞ ¼ ðbxÞ
1
4H	

2mð2
ffiffiffiffiffi
bx

p
Þ; ðB:13Þ

lim
l!0

C
�

1
2
þ m � i b

2l

�
ffiffiffi
p

p b
2l

� �1
2
�m

H	
b

2l;m
ð2lxÞ ¼ ðbxÞ

1
4H	

2mð2
ffiffiffiffiffi
bx

p
Þ: ðB:14Þ

where the first limit is taken such that 	
�

argðbÞ � argðkÞ
�
2�e; p� e½ with e[ 0,

and the second limit is taken with l[ 0 and is valid if ReðbÞ[ 0.

Proof Using the definition of Pochhammer’s symbol recalled in Sect. A.1, one

infers that

lim
k!0

1

2
þ m � b

2k

� �
j

ð	2kÞj ¼ ð�bÞj:

In addition, for all k 2 C with jkj\1, one has

1

2
þ m � b

2k

� �
j

ð	2kÞj


� cjj!

for some constant c independent of k and j. Hence, by an application of the version

of the Lebesgue dominated convergence theorem for series, one gets

lim
k!0

X1
j¼0

�
1
2
þ m � b

2k

�
j
ð	2kxÞj

Cð1 þ 2m þ jÞj! ¼
X1
j¼0

ð�bxÞj

Cð1 þ 2m þ jÞj! ;

which leads directly to the equality (B.11). The equality (B.12) can then be deduced

from (B.11) by using the relation (A.28) between the functions Ib;m and J b;m.
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For (B.13), by using successively (A.6), (B.15), (B.11), and [6, App. A.5] one

gets

� i
C
�

1
2
þ m � b

2k

�
ffiffiffi
p

p b
2k

� �1
2
�m

K b
2k;m

ð2kxÞ

¼ �i
ffiffiffi
p

p

sinð2pmÞ
b
2k

� �1
2
�m

�
C
�

1
2
þ m � b

2k

�
C
�

1
2
� m � b

2k

� I b
2k;m

ð2kxÞ þ I b
2k;�mð2kxÞ

 !

¼ �i
ffiffiffi
p

p

sinð2pmÞ �e�ip2m b
2k

� �1
2
þm

I b
2k;m

ð2kxÞ þ b
2k

� �1
2
�m

I b
2k;�mð2kxÞ

 !
þ oð1Þ

¼ �i

sinð2pmÞ �e�ip2mðbxÞ
1
4J 2mð2

ffiffiffiffiffi
bx

p
Þ þ ðbxÞ

1
4J�2mð2

ffiffiffiffiffi
bx

p
Þ

� �
þ oð1Þ

¼ ðbxÞ
1
4H	

2mð2
ffiffiffiffiffi
bx

p
Þ þ oð1Þ;

where we have used that 	 arg
� b

2k

�
2�0; p� and that

 arg
�
� b

2k

�\p� e for e[ 0.

The equality (B.14) can then be deduced from (B.13) by using the relation (A.29)

between the functions Kb;m and H	
b;m. h

The following lemma plays a key role in the above proof.

Lemma B.3 Let a; b 2 C. For jzj ! 1 with j argðzÞj\p� e and e[ 0 one has

lim
z!1

Cða þ zÞ
Cðb þ zÞ zb�a ¼ 1: ðB:15Þ

Proof Recall first the logarithmic version of Stirling formula [1, Eq. 6.1.41] :

ln
�
CðzÞ

�
¼ z lnðzÞ � z þ 1

2
lnð2pÞ � 1

2
lnðzÞ þ O

1

z

� �
:

This readily implies that

ln
�
Cða þ zÞ

�
� ln

�
Cðb þ zÞ

�
þ ðb � aÞ lnðzÞ !

z!1
0:

After exponentiation it leads to the statement. h

B.8 Integrals for zero eigenvalue solutions of the Whittaker equation

Based on the results of the previous sections and on Lemma A.1, one easily gets:

Proposition B.4 Let k 2 C with ReðkÞ[ 0 and let b 2 C with 	Imð
ffiffiffi
b

p
Þ[ 0. If

m 2 C with jReðmÞj\1, one has
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Z 1

0

ðbxÞ
1
4H	

2mð2
ffiffiffiffiffi
bx

p
ÞK b

2k;m
ð2kxÞdx

¼ �i
ð2pkbÞ

1
2

sinð2pmÞ

� b
2k

��m

C
�

1
2
� m � b

2k

�� e�i2pm

� b
2k

�m

C
�

1
2
þ m � b

2k

�
 !

:

ðB:16Þ

Observe that the r.h.s. of (B.16) can be extended by continuity to m 2
�

0; 1
2

�
with

B:16

m¼0

¼� i
1ffiffiffi
p

p ð2kbÞ
1
2

C
�

1
2
� b

2k

� w
1

2
� b

2k

� �
� ln

b
2k

� �
	 ip

� �
;

B:16

m¼1

2

¼	 i
1ffiffiffi
p

p 2k

C
�
� b

2k

� 1

2
w � b

2k

� �
þ 1

2
w 1 � b

2k

� �
� ln

b
2k

� �
	 ip

� �
:

In the next proposition, we consider the integral of
�
ðbxÞ

1
4H	

2mð2
ffiffiffiffiffi
bx

p
Þ
�2

which

cannot be computed by the same means.

Proposition B.5 Let b 2 C with 	Imð
ffiffiffi
b

p
Þ[ 0. For all �1\ReðmÞ\1, one has

Z 1

0

ðbxÞ
1
4H	

2mð2
ffiffiffiffiffi
bx

p
Þ

� �2

dx ¼
m
�
4m2 � 1

�
e�ip2m

3b sinð2pmÞ : ðB:17Þ

Proof Let us consider for jReðmÞj\2 the integral
R1

0
y2K2mðyÞ2

dy. After a change

of variable and by taking into account the relation between the MacDonald function

for dimension 1 and the usual MacDonald function one infers from [33] thatZ 1

0

y2K2mðyÞ2
dy ¼ 2

3p
Cð2 � 2mÞCð2 þ 2mÞ

¼ 4m

3p
ð1 � 2mÞð1 þ 2mÞCð1 � 2mÞCð2mÞ

¼ 4m

3 sinð2pmÞ
�
1 � 4m2

�
:

ðB:18Þ

Note that this result can also be obtained by an analytic continuation of the result

obtained in (B.6). By a contour integration with a vanishing contribution at infinity,

one gets that for 	Imð
ffiffiffi
b

p
Þ[ 0,

Z 1

0

ðbxÞ
1
4H	

2mð2
ffiffiffiffiffi
bx

p
Þ

� �2

dx

¼ 1

2

Z 1

0

2
ffiffiffiffiffi
bx

p
e�ipð2mþ1

2
ÞK2m

�
e�ip

22
ffiffiffiffiffi
bx

p �2
dx

¼ � e�ip2m

4b

Z 1

0

y2K2mðyÞ2
dy:
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This leads to the statement of the proposition. h

Remark B.6 Curiously, a naive computation suggests incorrectly thatZ 1

0

ðbxÞ
1
4H	

2mð2
ffiffiffiffiffi
bx

p
Þ

� �2

dx ¼ 0:

Indeed, for m 62
�
� 1

2
; 0; 1

2

�
and k 2 C with ReðkÞ[ 0, and such that 	

�
argðbÞ �

argðkÞ
�
2�e; p� e½ with e[ 0, one has

Z 1

0

ðbxÞ
1
4H	

2mð2
ffiffiffiffiffi
bx

p
Þ �i

C
�

1
2
þ m � b

2k

�
ffiffiffi
p

p b
2k

� �1
2
�m

K b
2k;m

ð2kxÞ
" #

dx

¼ �i
C
�

1
2
þ m � b

2k

�
ffiffiffi
p

p b
2k

� �1
2
�mZ 1

0

ðbxÞ
1
4H	

2mð2
ffiffiffiffiffi
bx

p
ÞK b

2k;m
ð2kxÞdx

¼ � b
sinð2pmÞ

C
�

1
2
þ m � b

2k

�
C
�

1
2
� m � b

2k

� b
2k

� ��2m

�e�ip2m

 !
:

ðB:19Þ

By taking a limit as k ! 0, one obtains from Lemma B.3 that

lim
k!0

C
�

1
2
þ m � b

2k

�
C
�

1
2
� m � b

2k

� b
2k

� ��2m

�e�ip2m

 !
¼ 0: ðB:20Þ

Although by (B.13) the term in the square bracket of (B.19) converges pointwise to

ðbxÞ
1
4H	

2mð2
ffiffiffiffiffi
bx

p
Þ, a limit limk!0 and the integral in (B.19) can certainly not be

exchanged, since otherwise it would lead to a contradiction.

To conclude, we give a lemma which was used in the proof of Proposition 3.15.

Lemma B.7 For jzj ! 1 with j argðzÞj\p� e and e[ 0 one has

wðb þ zÞ � wðc þ zÞ ¼ b � c

z
þ ðb � cÞð1 � b � cÞ

2z2

þ ðb � cÞ½1 � 3ðb þ cÞ þ 2ðb2 þ bc þ c2Þ�
6z3

þ O
1

z4

� �
:

Proof The asymptotic expansion of the w function is provided in [1, Eq. 6.3.18] and

reads as jzj ! 1 with j argðzÞj\p� e and e[ 0 :

wðzÞ ¼ lnðzÞ � 1

2z
� 1

12z2
þ O

1

z4

� �
:

Hence
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wðb þ zÞ � wðc þ zÞ

¼ lnðb þ zÞ � 1

2ðb þ zÞ �
1

12ðb þ zÞ2
� lnðc þ zÞ þ 1

2ðc þ zÞ þ
1

12ðc þ zÞ2
þ O

1

z4

� �

¼ ln 1 þ b

z

� �
� 1

2zð1 þ b
zÞ
� 1

12z2ð1 þ b
zÞ

2

� ln 1 þ c

z

� �
þ 1

2zð1 þ c
zÞ
þ 1

12z2ð1 þ c
zÞ

2
þ O

1

z4

� �

¼ b � c

z
þ c2 � b2 þ b � c

2z2
þ b � c � 3b2 þ 3c2 þ 2b3 � 2c3

6z3
þ O

1

z4

� �

which leads directly to the statement. h
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