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T A U B E R I A N  T H E O R E M S  F O R  I N T E G R A L  
T R A N S F O R M S  OF D I S T R I B U T I O N S  

S. PILIPOVIC and B. STANKOVIC (Novi Sad) 

1. I n t r o d u c t i o n  

Integral transforms of Schwartz's distributions and other generalized 
functions have been used in the last thirty years as a powerful tool especially 
in mathematical physics. The monograph of Zemanian [18] is the first one 
which gives systematic and general approach to different integral transforms 
of generalized functions. Tauberian type results, with the use of generalized 
asymptotic behaviours, have been elaborated only for some special integral 
transforms of distributions. Vladimirov, Drozhinov and Zav'yalov have given 
in [15] Abelian and Tauberian theorems for the Laplace transform. Various 
generalized asymptotics as well as Abelian and Tauberian type results for 
the Stiejtjes transform are investigated in [7]. Wiener type theorems (cf. 
[17], [10]) were studied in [6] and [8] via integral transforms with appropriate 
kernels. 

We will give in this paper Tauberian theorems for integral transforms 
which are of Mellin convolution type and whose kernels belong to suitable 
test function spaces. The results are based on the Wiener-Tauberian theo- 
rems for distributions which are proved in [8]. The integral transforms under 
consideration will be the Laplace, Stieltjes, Weierstrass and Poisson trans- 
forms. We will give Tauberian type results for all these transforms. 

2. N o t a t i o n  and  de f in i t ions  

We denote by L a slowly varying function ([1]). Then L is measurable 
and positive on (0, ~ )  and 

L(xh) 
L(x) 1, h--*cx~, for every x E R + = ( 0 , ~ ) .  

As usual (cf. [11]), D(R)  and D'(R)  denote spaces of test functions and 
of Schwartz's distributions, respectively, and ~L 1 (R) is the space of smooth 
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functions c 2 on t t  (~  E C~176 such that 

II# IIL1 < i N0 = { 0 , 1 , . . . } .  

The strong dual of ~DL~ (It) is denoted by B'. The space of tempered distribu- 
tions with the support contained in [0, oe) is denoted by S~_. It is isomorphic 
to the strong dual of the space S[0,oo) = 8+. Elements of S+ are smooth 
functions c 2 on (0, oc) whose all derivatives admit continuous extensions onto 
[0, oe) and all the norms 

It ollk = sup {(1 + x2)k/2lgz(1)(x)[;x E [O, oo),i =< k} ,  k E No, 

are finite. 
Recall ([15]), an f E ,S~_ has the quasiasymptotics related to some posi- 

tive measurable function p(k), k > 0, if there exists g E $~_, g ?t 0, such that 

(1) k--,ootim I ~ ) , r 1 6 2  r  

We write it in short: f ~ g related to p. 
In this case, it is well known (cf. [15]) that there are a E R, slowly vary- 

ing function L and C ~ 0 such that p(k) = k~L(k), k > 0, and g = C0~+1, 
where 

{ H z--H-(51~ a > - i  
O~+t(x) = r ( ~ + l ) ,  

DnOc~+n+l(X), a + n > -1 ,  n E N, x E R; 

H is the Heaviside function and D is the symbol for the derivative. 

REMARK. It is enough to take r E 8+ in (1) (cf. [15] p. 50-51). 

We denote by 7/a smooth function which is equal to 1 in a neighbourhood 
of +oe and to 0 in a neighbourhood of -oe .  

Put 

S L(exp x)exp(ax),  x __> O, 
(2) c ( x )  

exp(~x), x <: 0, 

with the assumption a >/~.  
We need a smooth approximation c* of c. Let 

F wECoo(R) ,  s u p p w C [ - t , 1 ] ,  w=>_O and w(t)dt=l .  
1 
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Put  L*(expx) = (L(expt)*w(t))(x) ,x  E R.  "We define c* to be smooth and 
positive on l~ and 

L*(expx)exp(ax), x > 1, 
(3) C*(X) [ exp/3x, x <: 0. 

It is easy to see that  for every x 

L * ( e •  h - ~ .  

We denote by e and e* the functions 

(4) ~(~) : c(log~) a~d ~*(x) = c*0ogx),  �9 > 0. 

The functions ~/, c, c*, e and e* will be used in the sequel. 
The Fourier transform of an f C LI (R)  is defined by 

5r[f](() = ~f(() = / R  e-iStf(t)dr, ~ E R,  

and if f C L~or , then the Mellin transform is defined by 

5 
for those s E C for which this integral exists. 

3. S o m e  relat ions b e t w e e n  the  basic spaces  on  the  real  l ine 
and the  ha l f  l ine 

We denote by 7)LI(R+) the space of smooth functions r defined on R +  
for which a~ the seminorms 

rk(r -- A [(Dx)kr dx, k e No, 
+ 

are finite, where (Dx)r = d~-,(xr 
Note that  r0 is a norm. This sequence of seminorms defines the topolog- 

ical s tructure in f)L1 (I t+).  
Define 

~2 : c ~ ( R )  -~ c ~ ( R + ) ,  r ~ ~r  
x 

X : eY~ y E I~, 

y = l o g x ,  x E t t + ,  
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Clearly, they are inverse to each other and thus, they are bijections. 

PROPOSITION 1. The mapping X1 is a topological isomorphism of/)(it+ ) 
onto I)(it), and of l)L~(I:t+) onto Z)L~(it ). Its inverse is X2. 

PROOF. We shall prove only that X1 : ~/~)L ~ (P~-b) --~ ~)L 1 ( I t )  i s  a topolog- 
ical isomorphism. 

The following formulae can be simply proved: 

k 

(Dx)kr = E ak,JxJr 
j = 0  

xER+, kENo, 

P 

e(P+l)Yr162 y e R ,  p e N 0 ,  C e C ~ ( R + ) ,  
i = 0  

where all the coefficients ak,j and bp,i are different from zero. This implies 

~0 ~176 

k 

FJ( I (Dx)kr dx <= E ckj eYr (j) dy, k E N o  

and 

(e~r dy<= dp,i I(Dx)ir p e N 0 ,  
er i--0 

where ck,j and dp,i are suitable positive constants. This implies that  ;gl is a 
topological isomorphism. [] 

Proposition 1 and /)(It)  ~-,/)LI(R) imply that 7)(R+) ~-~ 7?LI(R+) , 
where ~-~ means that the left space is dense in the right one and that the inclu- 
sion mapping is continuous. Clearly, S+ is a subspace of 0L1 (R+) and since 
it contains/ ) ( I t+) ,  it follows S+ ~ 0LI(R+).  This implies that ~ lLl ( i t+)  
C :D~(R+) and that all the elements of OsL1(it+) are tempered distributions 
with the support contained in [0, Pc). 

Let a,/3 E It,  ~ > 0 and q C C ~ ( R + )  such that 

0<x<= i/e, q(x )=  [ x -~ x > l .  

Denote by E~+6,f~ the vector space of smooth functions r on It+ such 
that  all the seminorms 

(5) ak(r = [ q(x)xk-llr dx, k C No, 
J l t  + 
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are finite. 

PROPOSITION 2. (i) The mapping X3 : r  ~-~ q(e-Y)r x = e -y, 
y E It, is a topological isomorphism of Ea+~,Z o n t o  ~)L 1 ( I t ) .  

(ii) If k E E~+6,~ and K(t)  = k(et), t E 7g, then 71ke(~+8) ", (1 - r /)ke ~" 
E 7)La(It), where k denotes the function defined by k ( x )  = K ( - x ) ,  x E It. 

(iii) I l k  E E~+~,;~ and e* is given by (3), then x3(k)c*('+ h) E 7)La(R ) for 
every h E It. 

PROOF. (i) One can prove by induction that for m E No and r E E~+5,Z, 

~Tr~ 

(q(e_t)r <m) = Z ak,me(~+~-k)t r  
k=O 

t > l  

and 

(q(e-,)r (m) = Z bk'me('G-k)lC(k)(e-t)' 
k=O 

This implies that there is a constant C > 0 such that 

t < O .  

m 

H(q(e-t)r <_ c Z ai(r 
i l l  I - -  

i=0  

where ai are seminorms (5). 
Thus the mapping E~+~,Z ~ / )L1  (R) is continuous. Let us prove the 

continuity of DLI (R) ~ E~+~,~. 
Let r E "DL~(R ). Then, there exists r E E~+~,t3 such that q(e-Y)r 

= ~(y), y E R. Indeed, we have to prove that r = q(~)r x), x E R+, 
is in E~+~,Z. 

It is easy to prove that 

k 

q(x)xk-lc(k)(X)= Zci ,kx-l~,(1)( logx) for x > 1/e 
i=0  

which implies 

q(x)xk-llr dx <= Ic~,kl 
i =0  

I r176176 x)t X 

k 

/5 <= lc ,kl t dy. 
i - 0  
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In the same way we can prove that 

fo 1 q(x)xk-llr 

k 

dx  czll ( ,lL1, 
i=0  

which completes the proof of (i). 
(ii) It follows by direct computation of iDL~-seminorms for given func- 

tions. 
(iii) Let i , j  E No, h E R be fixed and x0 = m a x ( 1 -  h,h). Then x + h > 1 

when x > x0 and x + h < 0 when x < -x0.  
Let K(t)  = k(et), t E R. By using the estimate 

le*(~)(x + h)k(J)(x)l < { c~,~exp(,~x + ~x)l/~-(J)(x)l, x + h  > 1 
= ~,jexp(~x)l~'(J)(~) l, x + h < o 

for a fixed h, which is proved in [8], p. 512, it follows that c*(- + h)J[( E 
~ . ( a ) .  

4. T a u b e r i a n  t h e o r e m s  for t h e  Mel l in  convo lu t ion  t y p e  
t r a n s f o r m s  

First, we recall the results from [8] (Theorems A and B and Proposition 
A) which will be used in the sequel. For the notation see Section 2. 

THEOREM A. Let f E B' and K e ~)LI(R) such that T[K](~) # 0, 
~ c R .  If 

l i m ( f , K ) ( x ) = a / K ( t ) d t ,  aE It,  
X - - +  OO JR 

then for every r E ~t)L1 (R) 

lira ( f  , r  = a fR  r dt. 
23.--+r 

TH]~;OREM B. Tbr f E 7)t(R) and K E C~176 we assume: 
(i) The set { f ( . +  h)/c(h); h E I t }  is bounded in 7)'(I:t). 

(ii) There exists 5 > 0 such that 

,kexp (( .  + ~). ),(1 - v)k exp(Z-) c vL1 (R). 

T h e n :  

a) .T[K exp(-a-)]  (~ )=  9t-[K](~- ia), ~ E R,  exists. 
b) The convolution f �9 K exists. 
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Moreover, if we assume: 
(iii) ~'[K](~ - ia) # O, ~ �9 R,  and 

(iv) limx...~ L(expx)('f*K)(X)exp(az) = a fit K(t) exp(-at)  dt, a E R,  
then 

c) for every r e Coo(R) for which , r  ((a + 5)-) , (1  - ,)r 
E ~)L 1 ( R ) ,  there holds 

( f  , ~b)(x) / a  
limoo L(exp x) exp(ax) = a ~b(t) exp(-at)  dt. 

PROPOSITION A. Let f and k be in LIon(R); a, j3 E R,  a >/3 such that 
a) f /c E Loo(R), 
b) ]r ( ( a + 5 ) . )  E Ll((a,  oc)) andkexp(~.)  E L l ( ( -oc ,b ) )  for some 

a, b E R, and some S > O. 
Then ( f  * k)(x), x E R, exists and kexp(a.) E LI(R). If f [ k e x p ( - a  

�9 )](y) # 0, y E R, and 

lim ( f  �9 k)(x) IRk( t )  exp(--at) dt, a E R, 
~--*oo L(exp x) exp(ax) = a 

then for every e E  L~oc(R ) such that e e x p ( ( a + 5 ) . )  E Ll((a,  oc)) and 
~exp(fl.) E Ll( ( -oc ,  b)), there holds 

lim (f  * ~)(x) 
L(exp x) exp(ax) = a /R  ~b(t) exp(-at) dt. 

Particularly, if/3 + 1 > O, then 

~0 x a f ( logt)dt  ~ - - x ~ + l L ( x ) ,  x --+ oc. 
a + l  

Suppose that k E C~176 and that the function 

1 
t ~ e*(t)k , t E It+, 

beiongs to 7)LI(tt+) for every x E R+. Let F E 7)'(R+) such that F/e* 
E OIL1 (R+). We define the Mellin convolution by 

(6) 
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We refer to [18], Chapter 4, for this convolution. Note that several important 
integral transforms of distributions are of this form. 

THEOREM 1. Let F E D'(R+), k G C~176 and a > 13 such that 
Fir)_. (i)' the set { ~(~) , u e R+ } is bounded in D' ( t t+)  and 

(ii)' the kernel k belongs to E~+~,Z for  some ~ > O. 

Then, 

a)' M [ x - ~ k ( x ) ] ( i ( ) , (  E It ,  exists and 
b)' (F h k), x E R+, exists as well. 

Moreover, i f  we assume that 

(iii)' .t.4[x-~'k(x)](i~) r 0,~ E R ,  and 
(iv)' l im~__,~(rhk)(x)/e(x)  = 

then, 
c)' the Mellin convolution (F  ~4g)(x), x E R+, exists for every g E E~+~,~ 

and 

(rhg)(x)  /R 
(7) e(x) + A t - a - l g ( t )  dt, x --+ oc 

+ 

(e and e = are defined in (4)). 

PROOF. We will show that the assumptions of Theorem 1 imply those 
of Theorem B. Then we will prove the assertions of Theorem 1 by using the 
conclusions of Theorem B. 

Put K ( t ) =  k(e t ) , t  E R. By Proposition 2 (ii), assumption (ii)' implies 
that 

(i - (P,.). 
Assumptions c~ >/3 and k G E~+~,~ imply that 

~0 ~176 x-~ - i~-I  dx 

is finite for every ~ C R. Thus we proved a)'. 
Let us prove the existence of F �9 k. 

M 
Since k E E~+~,~, it follows that for every x E R+ the function 
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belongs to bL, (R+). Proposition 2 (iii) gives that c*(- + h)K E "DL~ (It)  for 
every h E It.  

Since 

t E R+, x = e h, h E It,  it follows that for every x E R+ 

t~le*(tx)k(1), xER+, 

belongs t o  ~)L 1 (1~+).  

Next, we prove that  Fie* belongs to ~ 'LI(R+).  Proposition 1 implies 
that 

r162 r E :D(R), 

defines a distribution f e :D'(R). Assumption (i)' and 

f ( t + h ) , )  /F(xp),lr ) h =  logp, p > 0  c(h) r  = \  ~(p) 

imply that  for every 4) E / ) ( I t )  

{ (f(t(+)h), r ; heR} 
is a bounded set of continuous functions on R (c is defined in (2)). This 
implies that f/c* E B'. In fact, this is proved in [8] p. 512. Let 90 E :D(R+). 
We have 

Proposition t implies that 

F f 
_ oxl on : P ( R + ) .  

e* C* 

Since :D(R+) is dense in  ~)LI(R), we have 

F f 
- o X 1  on ~/)L 1 ( R + ) .  

e* e* 
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Hence, the Mellin convolution F �9 k exists and 
M 

(8) ( f . K ) ( h ) = ( F ~ 4 k ) ( p )  , p = e  h, h � 9  

Thus, we have proved b)'. Note that  assumption (iii) ~ is equivalent to the 
assumption J ' [ K ] ( ~ -  ia)  # 0, ~ �9 It .  By (8) we have that  (iv)' implies (iv) 
in Theorem B. Now, Theorem B c) and (8), with g instead of K,  imply the 
assertions in Theorem 1 c)'. [] 

COROLLARY TO THEOREM 1. If  in Theorem 1, F �9 S~+, A # 0 and 
(~ >/3 > -1 ,  then the assumptions (i)'-(iv) ' imply that F has the quasiasymp- 
totics related to e with the limit AF(a + 1)8~+1. 

PROOF. Formally, we have 

(rhg)(x) 
e(x) e(x) r(t)'7  7 =e(x) 

w ore (1), 
Let ~ > O. If we prove that  for every ~ E N+ there exists g E E~+~,~ such 

that  
x-lg(x -1) : ~3(X), X e R+, 

the above formal calculation holds (since F C S+) and the assertion of 
the corollary follows from (7) because it implies that  for every ~b C S+ 

1 
xlim ~ (F(tx) ,  ~b(x)) exists. 

So, we have to prove that  g(x) = (1 /x )~(1 /x) ,  x E It,  beloags to Ea+~,Z. 
Since for k E N and x C I t+ ,  

g(k)(x) -- xk+l E ai,k X' 
i=0  

where ai,k are suitable numbers, we have 

k 
[q(x)xk-lg(k)(x)l ~ E ai'k X-2-i-c~-5 1~2 (i) ( 1 )  1 

i=0  

< C ,  O < x < e -1 , 

and 

k 
Iq(x)xk-lg(k)(X)] ~ E]ai,klX-13-i-2 ~2(i) ( 1 )  1 ~ 

i=0  

Cx-Z  -2, x > l .  

Acta ]l~lathernatica Hungarica 74, 1997 



TAUBERIAN THEOREMS FOR INTEGRAL TRANSFORMS OF DISTRIBUTIONS 145 

This proves that g E E~+5,Z, if a >/3 > -1 .  [] 

Let {0~; c~ E R )  be the family of distributions given in Section 2 and 
F E S~.. Let 

F ( - ~ ) = 0 ~ * F ,  ~ E R .  

If ~ E S+, and m E N,  then 

( 9 )  = + 

where the mapping ~ ~ ( O,~(t),~(.+ t)) is a~ automorphism on S+ (cf. [15], 
p. 52). 

The next theorem is accomodated to later use. 

THEOREM 2. Let f E ,~ +, m E No and c~ >/3. Assume: 
(i") The set { I.___L~L_. u_,~(.), u E R+ } is bounded in Sl+. 

(ii t~) The kernel km belongs to E~+8,~ for some 5 > O. 

Then,  

a") M[x-"km(X)](i() ,  ~ E R exists and 
b") ( f ( - '~)  �9 k.~)(~),  x ~ R + ,  e~ists, as well. 

M 

Moreover, if 

(iii") M[x-~k,~(x)](i~) ~ 0,~ E It ,  and 
(iv") l i m x ~ ( f ( - m )  , km)(x)/e(x)  = d (m)  f~+ I k [ 1 -~ rn ~ ~1 x a dx, where A(m)  

M 
E R,  then: 

c") For every g E E~+r the MeIlin convolution ( f (-m) ~ g ) ( x ) , x  E It+, 

exists and 

d") l im~oo ~(~) = A(m) fp.+ !gt (1) t ~, dr. 

Particularly, if/3 > - 1  and A(m) r O, then F s A(m)F(c~ + 1)0~+~_,~ 
related to u-'~ e( u ). 

PRoof .  If f satisfies (i"), then (9) implies that  { ~(~,) , u E I t+} is 

a bounded set in Dr(R+), as well. Thus, f(-m) satisfies condition (i t) in 
Theorem 1. By applying Theorem 1 to f (-m) and km we obtain u"), b"), c") 
and d") in Theorem 2. By the Corollary of Theorem 1 it follows theft 

f ( -m) ~ A(m)r(a + 1)0~+1 related to e(u). 

Theorem 1, Section 3.1 in [15], implies 

f s A ( m ) r ( a  + 1)0~+t_m related to u-me(u).  
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Proposition A, and the change of variables t = e x, x E It, imply the next 
theorem. 

TtiEOI~EM 3. Let F and k E L~or and ~ > ~, ~f > O, be such that 
i) Fie E L~176 

ii) k(t)t -(~+6+1) e LI((0, 1)) and k(t)t-(z+I) E nl ( (1 ,  c~)). 

Then, there exist 

fo (x) dt = r(t)k T T '  x e R+, 

and A4[x-~k(x)](i~), ~ E R.  If  
iii) .~4[x-~k(x)](i() ~ O, ~ E It,  and 
iv) lim~__.~(F ~4k)(x) /e(x)= A f o  k(t) t -~- I  dt, 

then 

A e i t ,  

for every r E L/oc(R+) such that r  -(~+s E LI((0, 1)) and r  -z-1 
E n I ((1, oc)) hold. In particular, if Z > - 1, then 

fo xF( t )  dt ~ A x~+lL(x) ' X --~ OO. 

REMARK. Theorem 1.7.5 in [1], gives conditions which together with the 
last relation imply that F(x)  ~ Ax~L(x) ,  x --~ oo. 

In the context of Theorem 3 see also [4] and Theorem 4.8.3 in [1]. 

5. Applications on special integral transforms 

Theorems A and B and in Proposition A are concerned with the so-called 
convolution transforms. Integral transforms, to which Theorems 2 and 3 can 
be applied, are of Mellin convolution type. 

5.1. Integral transforms with kernels in the Zemanian spaces s and 
Ma,b. Zemanian introduced in [18] the spaces ~a,b and fl4a,b in order to 
define the Laplace and Mellin integral transforms of generalized functions. 
Recall 

where ~a,b(t) = e at, t >= 0 and ~a,b(t) = e at, t < O. 
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Note tha t  7k; k E N are seminorms and 70 is a norm in s 
If the  kernel i/" belongs to  s then  it satisfies condit ion (ii) of Theo rem 

B for a > a > ~ > b. This follows from 

exp ( ( .  + 

i=0 
x > c z ,  

and 

i=0 

where 0 < 8 < a - a and w is a large enough positive number .  
In such a way Theorem B can be applied to all transforms of  convolution 

type whose kernels belong to f~,b with a > a >/~ > b, 0 < 5 < a - a.  
The space Ma,b is defined as follows (cf. [18]). Let 

~ , b ( x ) = x - %  0 < x = < l ;  ~ , , b ( x ) = x - b ;  l < x < ~ .  

Then  

.~a ,b  = { ~ E  Cc~(P~T);0<x<c<~sup l~a,b(x)xk+l~2(k)(x)l  < OO, k E U 0 } .  

The  mapping:  O(x) ~ e- tO(e- t ) ,  x = e - t ,  is an isomorphism of Ma,b onto  
s If e E M ~ , b  and a > a + l > ~ + l > b ,  O < 8 < a - a - 1 ,  t h e n  
r E E~+~,Z. This follows from 

Ixk-lq(x)r <= 

<= Clx  -(~-~+~+2), 0 < x < e -1,  

<= 

<= C2x -(~-b+2), x > e -1.  

ttence, Theorem 2 can be applied to transforms which are of  Mellin con- 
volution type with kernels in Ma,b, a > a + 1 > ~ + 1 > b, 0 < 5 < a - (~ - 1. 

5.2.  Laplace transform. The  most  precise Tauberian theorem for the  
Laplace t ransform of distr ibutions can be found in [15]. We refer to [13] and  
[14] for the Tauber ian theorems concerning positive measures.  
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Recall that the Laplace transform of an S E 8~ is defined by 

~(z)  = ( s ( t ) , g z ~ ) ,  ~ = �9 + iy e R + iR+.  

THEOREM 4. Let f E S~_, m E No, a >/3 > - I .  Assume: 

a) The set { ](~') �9 ~_m~(u) , u E R+ } is bounded in Sl+. 

b) ~m Y ( f ( t ) , e  - ~ )  = A e-~t" dt, A e R. 

Then f q~ Ar(~ + 1)e~-m+l related to e. 

PROOF. If y > 0, then e -u" E 5:+ and 

( f ( t ) , e  -yt)  - y m ( f ( - m ) ( t ) , e - Y t ) ,  y > O. 

Put kin(t) = t - l e x p ( - 1 / t ) ,  t E I t+.  Then km E E~+~,Z for any a >/~, 
/~ :> - 1  and 5 > O. Therefore, 

( f ( -m)  ~ km) ( ; )  = y-m+l(  f ( t ) , e - y t )  

axial 

,•0 
~ 1 7 6  

.A4(t -ak,~( t ) ) ( i~)  = e - t t  a+i~ dt = F(a + 1 + i~) ~ 0, 

~ E R ,  ~ + t > 0 .  

Now Theorem 4 follows from Theorem 2 (with k = kin.) 

REMARK. In [15] , Section 7, Theorem 2, the authors proved the asser- 
tion of Theorem 4 under the assumptions b) and, instead of a) the following 
o n e :  

There are M > 0, ~ > 0 and yo > 0 such that 

yn-mT y ) 1 (10) - - ( f ( t ) , e  -yt) < M n t n  ~ 0 < y < Yo, n e N .  

5.3. Stieltjes transform. Lavoine and Misra [3] defined the Stieltjes 
transform by introducing the space J r ( r ) ,  r E I t  \ ( - N ) .  It is the space of 
all distributions f E 8~= such that there exist m E No and a locally integrable 
function ~ F,  supp F C [0, c~) such that f = D m F and 

L fF(t)l(t+/~)-r-l-'~dt<~ forsome ft>O. 
+ 
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(11) 

where 

(12) 
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t r The Stieltjes transform of an f �9 3" ( ) is defined by 

/0 sr[/](s) = (r + 1)m r(O(t + , ) -~-~-~  et, , �9 c \ ( - ~ ,  o], 

(r + 1),~ = ( r+  1) . . . ( r  +m)  = F(r + m +  1) 
r(~ +1) 

Relation (11) can be written in the form 

S~[f](s) = (r + 1)m(f(-m)(t),(t + s)-r-m-1),  

We shall use the identity 

(rsr+m+l--~ < /t )--r--m--l> 1)m,&[fl(s) = f(-m)(t), + 1 , s e R+. 

The next theorem follows from Theorem 2. 

, (r  + 1)o = 1. 

e c \ ( - ~ ,  o]. 
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f 2~ Cm(F(r + 1)/r(r + m-a))O~+l_,~ related to u-me(u). 

Acta A4athematica Hungavica 7"$, t997 

and 

(15) 

r(r + t)  
(14) f(-m) s Cm.F( r + m a) 0~+1 related to e(u) 

Hence, 

THEOREM 5. Let f E S~_, m C No, r + m + l > a + l > fl + l >0  and 
b > O. Assume: 

f .u 0} is bounded in a) The set { u > S'+. 

Then, &[/](u) ,  ~ e R+, e,~i,t,, g moreover, 

1 U b) l im~_~ u-(~+m)~(~)&[f]( ) = Cm, Cm e R, 

then for every g E Ea+~,Z, 

(13) 

I f(-m)(~u)e(u) , ~ g ( ~ ) > = C m  I'(rr(r + 1 ) +  m 7 a) / 0~+1(~)' 7gl ( ~ ) >  
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PROOF. Let F = f(-m) and 

1 ( 1 ) - ( r + m + l )  
kin(t)= T +i , t e R + .  

S i n c e r + m + l > a + l > / 3 + l  > O a n d  

P (1  ) -(rTm+i+l) 
q(x)xP-lk(mP)(x) = E ai,Pq(x)x-i-2 + 1 

i=o 
, x E R + ,  

it follows that km E E~+a,#. Note that t - l k m( t  -1) = (t + 1) -(r+m+l), t E R+. 
This and (12) imply 

(16) ( f ( -m)  * k,~)(u) = ( f ( -m) (~u) ,  (~ + 1) -('+re+a)) M 

< I t  )-(r-Fm+l) I ?s 1 f(_m)(t) ,  + 1 = u (r + 1)mS~[f(-'n)](u)' u E R+. 

We shall show that the conditions of Theorem 2 hold for f and k = km. In 
fact (i) is a) and (iii") follows from 

M[z-%m(z)](i~) = r(a + I + i()r(r + m - ~ - i() 
r ( r  + m +  1) #0 ,  ~ER.  

Condition b) and (16) imply (iv") of Theorem 2: 

( f ( - m ) ~ k m ) ( u )  u~+m 
lim = lJm S~[f](u) 

u--+o~ e(u) u . - - , ~  (r + 1)me(U ) 

(r + 1)m = Am (t + 1y +m+a dt = Am ikmx x ~ dx 

c,,r(~+l) where Am = r(~+m-~)" 
Theorem 2 implies (13) and (14) since S+ C E~+e,#. As in the proof of 

Theorem 2 we have that the quasiasymptotic behaviour of f(-m) implies the 
appropriate quasiasymptotic behaviour of ( f ( -m)) (m)  = f and this is given 
in (15). 
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5.4. Weierstruss transform. The Weierstrass transform is related to the 
space K: i ([2]). Recall 

= {r c C~176 /Cl 

Let 

k ( s , t ) -  1 exp(-s2/4t) ,  s E C, t > 0. 
(4~rt) I/2 

The Weierstrass transform, Wt(f),  t > 0, of f C E~ is defined by 

Wt( f ) ( s )= ( f ( x ) , k ( s - x , t ) )  = ( f  *k(. , t))(s) ,  s e C ,  l a r g s [ < r / 4 .  

A Tauberian type theorem for this transform, in the case when c(h) - 1, 
is given in [9]. The next one is more general. 

~ ;  R} be THEOREM 6. Let f E :P'(R), a > 8, and let the set { c(h) h E 
bounded in D'(R).  Then VVt(f)(s) exists for s e C, l args I < ~r/4 and t > O. 
Moreover, if we assume 

c•h) A(to) / ' ~  
lim Wt0[Sl(h) = ---- : i '2 exp( -x2 /4 t~  

h - ~  ( 4 ~ t o )  / oo 

= A(to)exp(a2to) = B(to), 

then 

(17) lim / f(x + h), > h~oo \ ~(h) r  = B(to)exp(-a2to)(e~X,r 

for every ~ E C ~ such that ribexp ( (a  + 5). ) and (1 - ~?)bexp(fl.) belong 
to VL(R). 

The proof follows by showing that the conditions of Theorem B are sa- 
tisfied. We omit the details. 

REMARK. If A(t0) ~ 0, then (17) implies that f has the S-asymptotics 
related to e with the limit B(to)exp(-a2to)exp(ax) in D ' (R)  and in/C~. We 
refer to [7] for the S-asymptotic behaviour of distributions. 
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5.5. 
f e :DI(R) is defined by 

P[f](x, y) = y(t) �9 t2 + y2 (z )  = f ( t ) ,  (x - t) 2 + y2 ' 

S. PILIPOVIC and B. STANKOVIC 

The Poisson transform. The Poisson transform of a distribution 

(cf. [16], p. 179). The equality 

f_ ~ e-i~ Y 
c~ t 2 + y2 

and Theorem 1 imply: 

~ d t = e  -fy~I, y > 0 ,  ~ E R ,  

THEOREM 7. Let f E B  ~. If for some y > O 

f ~ Y dt, lim P[f](x~y) = a t 2 + y2 27-'-+(3~ 

~fam ( f ( t  + x), r  = ( a, r 

y > 0 ,  x ~ R  

aER,  

then 

for every r E ~L 1 (R).  

REMARK. If a ~ 0, then the last equality means that f has the S-asymp- 
totics in B ~ related to c = 1. 
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