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TAUBERIAN THEOREMS FOR INTEGRAL
TRANSFORMS OF DISTRIBUTIONS

S. PILIPOVIC and B. STANKOVIC (Novi Sad)

1. Introduction

Integral transforms of Schwartz’s distributions and other generalized
functions have been used in the last thirty years as a powerful tool especially
in mathematical physics. The monograph of Zemanian [18] is the first one
which gives systematic and general approach to different integral transforms
of generalized functions. Tauberian type results, with the use of generalized
asymptotic behaviours, have been elaborated only for some special integral
transforms of distributions. Vladimirov, Drozhinov and Zav’yalov have given
in [15] Abelian and Tauberian theorems for the Laplace transform. Various
generalized asymptotics as well as Abelian and Tauberian type results for
the Stiejtjes transform are investigated in [7]. Wiener type theorems (cf.
[17], [10]) were studied in [6] and [8] via integral transforms with appropriate
kernels.

We will give in this paper Tauberian theorems for integral transforms
which are of Mellin convolution type and whose kernels belong to suitable
test function spaces. The results are based on the Wiener—Tauberian theo-
rems for distributions which are proved in {8]. The integral transforms under
consideration will be the Laplace, Stieltjes, Weierstrass and Poisson trans-
forms. We will give Tauberian type results for all these transforms.

2. Notation and definitions

We denote by L a slowly varying function ([1]). Then L is measurable
and positive on (0,00) and

L(zh)
L(z)

—1, h— oo, forevery z € Ry =(0,00).

As usual (cf. [11]), D(R) and D'(R) denote spaces of test functions and
of Schwartz’s distributions, respectively, and Dy1(R) is the space of smooth
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136 $. PILIPOVIC and B. STANKOVIC

functions ¢ on R (¢ € C*®°(R)) such that
”‘P(i)”m < o0, i€Ng={0,1,...}.

The strong dual of D;:(R) is denoted by B’. The space of tempered distribu-
tions with the support contained in [0, 00) is denoted by S’,.. It is isomorphic
to the strong dual of the space Sjp o) = S4. Elements of S, are smooth
functions ¢ on {0, 00) whose all derivatives admit continuous extensions onto
[0,00) and all the norms

lelle = sup {(1+ 2%} O(@)];2 € 0,00),i Sk}, k€ No,

are finite.
Recall ([15]), an f € 8! has the gquasiasymptotics related to some posi-
tive measurable function pzik) k > 0, if there exists g € S, g # 0, such that

(1) kig{.lo<f((k,£),¢( )> ={g.4), #€S.

We write it in short: f < ¢ related to p.
In this case, it is well known (cf. [15]) that there are o € R, slowly vary-
ing function L and C # 0 such that p(k) = k*L(k), k¥ > 0, and g = Cy41,

where
Hf:z:kx"
bay1(z) = { Hat1)? o«

D"Oa.;.nﬂ(m), a+n>-1,ne N,z €R;

H is the Heaviside function and D is the symbol for the derivative.
REMARK. It is enough to take ¢ € Sy in (1) (cf. [15] p. 50-51).

We denote by 7 a smooth function which is equal to 1 in a neighbourhood
of 400 and to 0 in a neighbourhood of —o0.
Put

L(expz)exp(az), z 20,

2) o(e) = {exp(ﬁ:z:), z <0,

with the assumption a > .
We need a smooth approximation ¢* of ¢. Let
1
w € C®R), suppwC[-1,1], w20 and / w(t)dt = 1.

-1
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TAUBERIAN THEOREMS FOR INTEGRAL TRANSFORMS OF DISTRIBUTIONS 137

Put L*(expz) = ( L{expt)*w(t)) (z), = € R. We define ¢* to be smooth and
positive on R and

o {2
It is easy to see that for every z
L*{exp(z +h))/L{exph) = 1, h— cc.
We denote by e and e* the functions
(4) e(z) = c(logz) and e€*(z)=c*(logz), =z >0.

The functions 7, ¢, ¢*, ¢ and €* will be used in the sequel.
The Fourier transform of an f € L}(R) is defined by

FIFNE) = J(€) = fR et f(t)d, EER,

and if f € L (R4), then the Mellin transform is defined by

1
loc
M{f)(s) = /O " fa)yestde,

for those s € C for which this integral exists.

3. Some relations between the basic spaces on the real line
and the half line

We denote by Dy:1(R.) the space of smooth functions ¢ defined on R
for which all the seminorms

re(@) = /R |(Da)(x)| dz, K € No,

are finite, where (Dz)@(z) = £ (zd(z)).

Note that rg is a norm. This sequence of seminorms defines the topolog-
ical structure in Dy (Roy).

Define

X1:CPRy) — CP(R), Ha)— e¥P(e?), z=¢€¥ yeER,
1 ‘
x2 : CT(R) - C®(Ry), ¥(y) = ;d}(logx), y=logz, ze€R,.
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Clearly, they are inverse to each other and thus, they are bijections.
ProrositioN 1. The mapping X1 is a topological isomorphism of D(R.)
onto D(R), and of D1 (R.y) onto D11 (R). Its inverse is xa.

Proo¥. We shall prove only that x; : Dp:(R4) — D (R) is a topolog-
ical isomorphism.
The following formulae can be simply proved:

k
(D$)k¢(x) = Zak,j$j¢(j)($), z € Ry, ke N,
=0

? .
PtV gl (e¥) = pr,g(e%(ey)) O ye R, peNo, ¢€C®R,),

=0

where all the coefficients a; ; and b, ; are different from zero. This implies

s k o ,
/o {(Dx)k@"(a:)( dz < ; Ck.j [m ’(eyd)(ey)) w; dy, k€ Ng

and

O

0 14 0 R
/ 1(63’@5(63’)) (P)l dy < de’é/() |(Dz) ¢(x)| dz, pe€ Ny,
- 1=20

where ¢ ; and dp; are suitable positive constants. This implies that x; is a
topological isomorphism. [

Proposition 1 and D(R) < Dz:(R) imply that D(R.) — Dri(Ry),
where — means that the left space is dense in the right one and that the inclu-
sion mapping is continuous. Clearly, Sy is a subspace of D1 (R..) and since
it contains D(Ry.), it follows S4 < Dp:1(Ry). This implies that D/;1(R,)
C D'(R4) and that all the elements of D' (R ) are tempered distributions

with the support contained in [0, o).
Let o, € R, 6§ > 0 and ¢ € C°(R,) such that

7o g <z <1/e,
o= {7, sl
z~ z>1.

Denote by Eq45,4 the vector space of smooth functions ¢ on Ry such
that all the seminorms

(5) ax($) = /R a(2)e*|¢¥)(2)| de, & € No,
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are finite.

PRrOPOSITION 2. (i) The mapping x3 : é(z) — q(e ¥)P(e™V), z = €79,
¥ € R, is a topological isomorphism of E,.53 onto Dr:1(R)
(i) Ifk e Eoys,p and K(t) = k(e?), t € R, then nRe(a+5) (1 - n)KeP
€ Pra(R), where K denotes the function defined by K (z) = K(—z), = € R.
(iii) If k € Eqys5 and c* is given by (3), then x3(k)c*(-+ h) € Dp1(R) for
every h € R.

PROOF. (i) One can prove by induction that for m € Ng and ¢ € Eyys.4,

(q(e—t)¢(€~t)) {m) — Z akwme(a-i-&—k)tqs{k)(e-—t)) t>1
k=0

and
m
(q(e“t)gé(e”t)) (m) Z &k,me(‘s’&)té(k)(e_t), t < 0.
k=0
This implies that there is a constant ¢ > 0 such that

|(ateee) ™ < Zam,

where a; are seminorms (5).

Thus the mapping E,458 — Dri(R) is continuous. Let us prove the
continuity of D1 (R) — Eyy4s.8.

Let ¢ € Dp1(R). Then, there exists ¢ € Fo458 such that g(e=¥)p(e )
= ¥(y), y € R. Indeed, we have to prove that ¢(z) = ;I—(l;)‘zb(log z),z € Ry,
is in Eapsg.

It is easy to prove that

k
g(z)e* 1) (2) = Zci,ka:“lz/)(i}(log z) for z>1fe

=0

which implies

fl g(z)ah 1}¢(k)(3’)ld$<2133k1 / |9 (log )| 2

=0
k 00
: ()
s £§=0 Ics,klfo [ (9| dy.
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In the same way we can prove that

b

”

/01 q(m)wk“llqﬁ(k)(mﬂ dz < C’Zk: Hw"')

which completes the proof of (i).
(it) It follows by direct computation of Dy:-seminorms for given func-
tions.

(iii) Let ¢,7 € Ng, h € R be fixed and z¢ = max(1 —h,h). Then 2+~ > 1
when ¢ > zg and z + h < 0 when z < —zg.
Let K(t) = k(e*), t € R. By using the estimate
cijexplez + 62)| KW(z)|, z+h>1

* (4) i (9)
[C (33 + h)K I (.’3){ g {C;’,j exp(ﬂx)lf{{j)(x)l’ T+ h<0

for a fixed h, which is proved in [8], p. 512, it follows that ¢*(- + h)K €
Dri(R).

4. Tauberian theorems for the Mellin convolution type
transforms

First, we recall the results from [8] (Theorems A and B and Proposition
A) which will be used in the sequel. For the notation see Section 2.

THEOREM A. Let f€B' and K € Dpi(R) such that F[K)(£)# 0,
EeR. If

%li_}ngb(f*K)(m):a/RK(t)dt, a€R,

then for every 1 € D1 (R)
Jim (£ 2 9)(@) =a [ wit)dr.

THEOREM B. For f € D'(R) and K € C®(R) we assume:
(1) The set { f(-+ h)/c(h); h € R} is bounded in D'(R.).
(i) There exisis § > 0 such that

nK exp ((a+8)-),(1 = n)K exp(8-) € D (R).

Then:
a) F| K exp(—a)] (&) = FIK|(£ — ia), £ € R, exists.
b) The convolution f * K exists,
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Moreover, if we assume:

(iii) F[K)(€ - ia) #0, £ € R, and

(iv) limz— oo 'E(Eg?:%g%%a?) =a [y K(t)exp(—at)dt, a € R,
then

c) for every ¥ € C°(R) for which nPexp ((a +6) - ) (11— r/){bexp(ﬂ-)
€ D11 (R), there holds

(f*9)(z

z—oo L(exp z)exp(azx

] = a/[;w(t) exp(—at) dt.

PROPOSITION A. Let f and k be in L] (R); «,8 € R, o > 3 such that

a) f/c € L=(R), .

b) kexp ((a+8)-) € L'((a,)) and kexp(B-) € L' ((—00,b)) for some
a,be R, and some § > 0. 5

Then (f * k)(z), = € R, exists and kexp(a-) € L}(R). If Flkexp(~a
() #0,y€R, and

(frh)a)  _
z—00 L(exp I)eXp(a:c) =a /Rk(t) exp(-—at) dt, a€R,

then for every ¢ € LL (R) such that pexp ((a+6)-) € L* ((a,00)) and

loc

{pexp(ﬂ-)'e LY((—o0,b)), there holds
(f *¥)(=)

z—oo L(exp z)exp(az

) = aL¢(t) exp(—at) dt.

Particularly, if 3+ 1 > 0, then

/0 f(ogt)dt ~ — i -2 L(z), 7= .
Suppose that k € C*°(R ) and that the function
1., T
tr Se (O (7) te Ry,

belongs to Dri(Ry) for every € Ry. Let F € D'(Ry) such that F/e*
€ D'11(R, ). We define the Mellin convolution by

(©) (F 5 @) = (FO e, 30k () )

= <F(zt)/e*(a:t),%e*(xt)k G)> , z€Ry.
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We refer to [18], Chapter 4, for this convolution. Note that several important
integral transforms of distributions are of this form.

THEOREM 1. Let F € D'(Ry),k € C®°(Ry) and o > (3 such that
(i)' the set %(%l; v € Ry} is bounded in D'(R4) and
(i)' the kernel k belongs to E,isp for some é > 0.

Then,

a) Mlz=%k(2)](:€),€ € R, exists and
b)’ (F};k/[k), z € Ry, exists as well.

Moreover, if we assume that

(iii) Mz~ (z)](€) # 0,£ € R, and
(iv)' limg oo (F ¥ k)(z)/e(2) =

lim — <::((tt)),e*(t)k(f)> - A/ t=*-lk(t)dt, A€ R,

z—o0 e(z) t t
then,
c) the Mellin convolution (F;}g)(z), r € Ry, exists for every g € Eo15p
and
: (F x 9)(z) ) g
7 —_— 1T () dt, *— >
( (@) - ()

(e and e* are defined in (4)).

Proor. We will show that the assumptions of Theorem 1 imply those
of Theorem B. Then we will prove the assertions of Theorem 1 by using the
conclusions of Theorem B.

Put K(t) = k(e'),t € R. By Proposition 2 (ii), assumption (i)’ implies
that

nkelet9) (1 - n)kef € D (R).

Assumptions a > 3 and k € E,,s3 imply that

/ e™%k(2)z % de
0

is finite for every £ € R. Thus we proved a)'.
Let us prove the existence of F;{ k.

Since k € Eq45p, it follows that for every z € Ry the function

£ %e*(t)k (5). tery,
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belongs to Dy1(R.y). Proposition 2 (iii) gives that ¢*(- + A)K € D (R) for

every h € R.
Since

. 1
[+ BE] () = Jelogt +log k(™) = Jeok (),
t€ Ry, 2 =¢" heR, it follows that for every z € R,
t > %—e*(tx)k (%\) , TERy,

belongs to Dri(Ry). )
Next, we prove that F/e* belongs to D';:(Ry). Proposition 1 implies
that

- (F@). Joog)) 4 € D(R)

defines a distribution f € D'(R). Assumption (i)’ and

(1) ) - (562 ). =i 750

imply that for every ¢ € D(R)

Wiy eo)s rer)

is a bounded set of continuous functions on R (c is defined in (2)). This
implies that f/¢* € B'. In fact, this is proved in [8] p. 512. Let ¢ € D(Ry).

We have
(&) = ().

Proposition 1 implies that

—f—z-“‘* -é*f;()xl on D(R+).

Since D(R. ) is dense in Dp:(R), we have

g:goxl on Dpi(Ry)-
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Hence, the Mellin convolution F ;! k exists and
(8) (f+K)(h)=(Fxk)p), p=¢", heR.

Thus, we have proved b). Note that assumption (iii)’ is equivalent to the
assumption F[K](€ —ia) # 0, £ € R. By (8) we have that (iv)’ implies (iv)
in Theorem B. Now, Theorem B c¢) and (8), with g instead of K, imply the
assertions in Theorem 1 ¢)’. O

CoROLLARY TO THEOREM 1. If in Theorem 1, F €S8), A#0 and
a > > —1, then the assumptions (1)'-(iv)’ imply that F has the quasiasymp-
totics related to e with the limit AT'(a + 1)8441.

Proor. Formally, we have
(F * g)(z) 1 1 /2 1
i = L (Rt (2)) = o (e, ),

where ¥(z) = -i—g (%), z€R;.

Let § > 0. If we prove that for every 1 € S, there exists g € E,44, such
that

z7'g(27) = ¥(z), = €Ry,

the above formal calculation holds (since F € §;) and the assertion of
the corollary follows from (7) because it implies that for every ¢ € Sy

h e )<F(t.7:) ,¥(z)) exists.

So we have to prove that g(z) = (1/z)¢(1/z), x € R, belongs to E 45 4.
Since for k € N and z € R4,

k
1 1 /1
k) ;1;) = oy Zai'k_m_iw( ) (;) ;o Gik (S R, ke No,
=0

where a; ;, are suitable numbers, we have

| a(2)2*¢W(2)] < Zla slpmAmimen?

i=0

z/)()( )'<C 0<z<el,

and

la(2)e*g®(2)] < Zla P

i=0

<Cz 7% z>1.

(3)
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This proves that ¢ € Eqysp,ifa> 8> ~1. O

Let {8,; € R} be the family of distributions given in Section 2 and
Fed&l. Let

F-®) =g «F, acR.
IfpeSy,and m € N, then

© T (FE(), ¢(€)) = (F(u€), (6n(8), 06+ 1))

where the mapping ¢ — (0,,(t), (- +1)) is an automorphism on S (cf. [15],
p- 52).
The next theorem is accomodated to later use.
THEOREM 2. Let f € S}, m € Ny and o > . Assume:
(i) The set {E:%%(lﬂ! u € Ry} is bounded in S
(ii”) The kernel k, belongs to Eqys5 for some & > 0.
Then,
a”) Mz %, (z)](i€), £ € R exists and
b (f(‘"‘)ékm)(z), z € Ry, ezists, as well,

Moreover, if
(1ii") Mz™km(2)}(i€) # 0, € R, and
(iv") lima,_,m(f(”‘m)%km}(z)/e(x) = A(m) frq 1k (1) 2% dz, where A(m)
€ R, then:
") For every g € Eoy5, the Mellin convolution (f(‘“”m);/}g)(m),x € Ry,

ezists and
. (7 xg)(2) ,

d”) limyeo —~—;{~§— = A(m) fﬂé g (1) dt.

Particularly, if B > —1 and A(m) # 0, then F 2 A(m)T(a + Dusi-m
related to u=™e(u).

Proor. H f satisfies (i”), then (9) implies that {%@, u€ Ry} is
a bounded set in D'(R.), as well. Thus, f(~™) satisfies condition (i') in
Theorem 1. By applying Theorem 1 to f(-™) and k,, we obtain a), b"), )

and d”) in Theorem 2. By the Corollary of Theorem 1 it follows that
fem L A(m)I'(a + 1)0,441 related to  e(u).
Theorem 1, Section 3.1 in [15], implies
F A AT (a+ 1)Bas1—m related to 2" e(u).
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Proposition A, and the change of variables t = ¢, z € R, imply the next
theorem.

THEOREM 3. Let F and k € L (Ry) and o > 3, § > 0, be such that
i) Ffe € L(Ry), .
it) k(£)t= e+ € L1((0,1)) and k(t)t=P+D) € L1((1,00)).

Then, there exist

dt

(F g b= [ TFok(D L, sery,

and Mz==k(2))(i€), € € R. If
iii) M[z7%(2)l(:€) # 0, { €R, and
iv) hmx_,oo(F;Ik)(z)/e(w) = A [;° k(t)t—>1 dt,

then
lim (F;}zb)(x)/e(:c) = A/oo Y6t~ "tdt, A€ER,
T—+00 i}

Jor every ¢ € Li (Ry) such that y(t)t=(«+8+1) ¢ L1((0,1)) and ¢(t)t~51

loc

€ L*((1,00)) hold. In particular, if 3 > —1, then

A
a4 1

*ML(z), 7 — .

/: F(t)dt ~

REMARK. Theorem 1.7.5 in [1], gives conditions which together with the
last relation imply that F(z) ~ Az*L(z),2 — oo.

In the context of Theorem 3 see also [4] and Theorem 4.8.3 in [1].

5. Applications on special integral transforms

Theorems A and B and in Proposition A are concerned with the so-called
convolution transforms. Integral transforms, to which Theorems 2 and 3 can
be applied, are of Mellin convolution type.

5.1. Integral transforms with kernels in the Zemanian spaces L, and
M, p. Zemanian introduced in [18] the spaces L,5 and M,y in order to
define the Laplace and Mellin integral transforms of generalized functions.
Recall

Lop = {80 € C(R); () = ilelf}: | Hap ()P ()| < 0, ke No} ,

where H, (1) = €%, 1 2 0 and Ho (1) = €%, ¢ < 0.
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Note that 7x; £ € N are seminorms and 7o is a norm in L, .
If the kernel K belongs to L, then it satisfies condition (ii) of Theorem
B for a > @ > 8 > b. This follows from

(n(z) exp ((a + 6)z) K (2))™
-2 (7) @+ prietemezeeng e, 250,
1=0
and
(1= n(2)) exp(B2)K ()™ = 3 (T)ﬁm»fe(ﬁ—b)xebx kO(), =< -w,

k2

where 0 < § < a — o and w is a large enough positive number.

In such a way Theorem B can be applied to all transforms of convolution
type whose kernels belong to Loy witha >a >>b,0<b6<a—a.

The space M, is defined as follows (cf. [18]). Let

Cap(z)=27% 0<zS1; &Lp(z)= % 1<z< oo

Then
Map = {0 € C¥Ra); sy Eus@e 169 < o0, k€ No}.
O <o

The mapping: 6(z) — e~*f(e~), x = €7, is an isomorphism of M, ; onto
Lop. H YEM,yp and a>a+1>84+1>b, 0<d<a—a-1, then
¥ € Eqy63. This follows from

lxk—lq(x)¢(k)(x)| < x—(oz—a+5+2)|zk+1-«a¢(k)(m)l
o G N WP
}mk“lq(x)zp(’“)(x)‘ < x—(ﬁ—b+2)lzk+1—b¢(k}(m)|
S Cpr= B840 g5 e,

Hence, Theorem 2 can be applied to transforms which are of Mellin con-
volution type with kernels in Myp, a > a+1>84+1>b,0<é<a—a—1.

5.2. Laplace transform. The most precise Tauberian theorem for the
Laplace transform of distributions can be found in [15]. We refer to [13] and
[14] for the Tauberian theorems concerning positive measures.
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Recall that the Laplace transform of an S € S is defined by
8(z) = (S(t~),e,52i) , z=z+iy€R+IR,.

THEOREM 4. Let f € 84, m € No, a > > —1. Assume:
a) The set {u—f,(,,%(%, u € Ry} is bounded in 8.

b) Im —L (f(t),e¥) = A / et di, A€R.
y0+ m, [ 1 0
ve ()
Then f £ AT'(o + 1)8y—m41 related to e.
Proor. If y > 0, then e™¥ € S and

(F), ey = y™(fE™@),e7¥), y> 0.
Put k,(t) =t lexp(—1/t), t€ Ry. Then ky € Eqysp for any a > 8,
B > —1 and & > 0. Therefore,

(™ ga) (3) =07 10, 7)
and
Mt %, (1)) (i) = /000 ettt gt = T(a+ 1+ i€) £ 0,

EeR, a+1>0.

Now Theorem 4 follows from Theorem 2 (with k = ky,.)

REMARK. In [15], Section 7, Theorem 2, the authors proved the asser-
tion of Theorem 4 under the assumptions b) and, instead of a) the following
one:

There are M > 0, 0 > 0 and yo > 0 such that

yn—m-{-l _
""""T‘( f(t)v € yt)
(3)

¥

(10) SMnaln?, 0<yS<wyw, neN.

5.3. Stieltjes transform. Lavoine and Misra [3] defined the Stieltjes
transform by introducing the space J/(r), r € R\ (=N). It is the space of
all distributions f € &', such that there exist m € Ny and a locally integrable
function F', supp F' C [0, 00) such that f = D™ F and

/ |F@)|(t+B)" "™ dt < o0 forsome > 0.
Ry
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The Stieltjes transform of an f € J'(r) is defined by

(1) S =+, [ FOE+97 ™ s€C\(-0,0)

where

I'(r+m+1)

Ty D) (r+1),=1.

(r+1),=0+1...(r+m)=

Relation (11) can be written in the form

S:f1(s) = (r+ 1), (SE™(@),(t +9)7771), s € C\(~o00,0].

We shall use the identity

rtm+1 ~r-m=—1
(12) "(fm)‘;'gr[fl(s) = <f(_m)(t)v (‘2‘ + 1) > , SE R+‘

The next theorem follows from Theorem 2.

THEOREM 5. Let f€S,, mENg, r+m+1>a+1>F+1>0 and
& > 0. Assume: ,

a) The set {a‘j“r(n_:(lﬁ? u >0} is bounded in 8.
Then, S.[fl(u), u € Ry, exists. If moreover,

b) oo s=grrmreyy SrL/1(w) = Cm, Cm € R,

then for every g € Eqys3,

(13) |
m (@) 1NN Tt D) 1.(L
“%< W e (£>> = Onir oy (P39 (g))-
Hence,
(14) fiem) & Cmf%i#:)“&‘j‘ga+1 related to  e(u)
and

(15)  fRACH(T(r+1)/T(r+m - a))bay1-m related to v ™e(u).
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ProOF. Let F = f(-™) and

1 1 —(T+m+1)
km(t)-——?(;le) , teRy.

Sincer+m+1>a+1>p+1>0and

~(r+m+i+1)
) 9 TE R+7

P
_ —ia 1
g(2)zP kP (z) = Z a; pq(z)z ™2 (; +1

i=0

it follows that kp € Eqts4. Note that t 1k, (t71) = (t+ 1)~ s e R,
This and (12) imply

(o) (S % kn)(w) = (S (Ew), (€ + 170 H)

_ 1/ em) <£ )”(Hm“) _ T eem)
= u <f (t)v ” + 1 - (7‘ T l)m Sr[f ](u), S R+'

We shall show that the conditions of Theorem 2 hold for f and k = %,,. In
fact (i) is a) and (iii”) follows from

o o Da+ 1+ (r +m ~ a— i)
Condition b) and (16) imply (iv”) of Theorem 2:
) (f(‘m);!km)(") ) urtm
= e U
Cm *1 1
——dt = A, ~km “d
(,,, + 1) / (t + 1)r+m+l [) (.’l:) T ar
CmI'(r
where Ay, = 577 +mfi .

Theorem 2 implies (13) and (14) since S4 C Eq45,3- As in the proof of
Theorem 2 we have that the quasiasymptotic behaviour of f(~™) implies the

appropriate quasiasymptotic behaviour of ( f("m)) (m) _ f and this is given
in (15).
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8.4. Weierstrass transform. The Weierstrass transform is related to the
space K] ([2]). Recall

Ki= {¢ € C=(R);

Il = sup {{gb(“)(a:){ exp (kiz) } <o, ke No}.

xER,D§a§k

Let
k(s, 1) = . 1)1/2exp( s2/4t), s€C, t>0.

The Weierstrass transform, Wi(f), t > 0, of f € K} is defined by

Wi(£)(s) = ( (), k(s —2,0)) = (F4k(,D)(s), s€C, |args| < r/4.

A Tauberian type theorem for this transform, in the case when ¢(h) = 1,
is given in [9]. The next one is more general.

THEOREM 6. Let f € D'(R), o > 8, and let the set { LM h c R} pe
a)

bounded in D'(R). Then Wi{(f)(s) ezists for s € C, |args| < < /4 and t > 0.
Moreover, if we assume

lim —- Wi, [£)(h) =

h—oo c(h) Alto) /Z exp(—z%/4ty) exp(—az) dz

(llr'll'to)l/2 -
= A(t) exp(a’ty) = B(to),
then

flz+h)
c(h)

for every 1 € C*® such that g exp ((a+6)-) and (1 - n)¢rexp(8-) belong
to DrL(R).

The proof follows by showing that the conditions of Theorem B are sa-
tisfied. We omit the details.

ReMARK. If A(tp) # 0, then (17) 1mphes that f has the §- -asymptotics
related to ¢ with the limit B(tg)exp(wa to) exp(az) in D'(R) and in K]. We
refer to [7] for the S-asymptotic behaviour of distributions.

(17) hiirxgo < ,¢(m)> = B(tg)exp(—a2to)(e°’“’,¢(m))
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5.5. The Poisson transform. The Poisson transform of a distribution
f € D'(R) is defined by

P[f](wyy):(f(t)*z%gf>(m)=<f(t)’m>’ y>0, z€R

(cf. [16], p. 179). The equality

e —et Y -
[_we mdi-—é {yEE, y>0, £€eR,

and Theorem 1 imply:
THEOREM 7. Let f € B'. If for some y > 0

® Y
lim P{f](z,y) = a/ dt, a€R,

T 00 o 12 + y2

then

lim (f(t+2),9()) = (a,9(1))

for every ¥ € Dpi(R).

REMARK. If a # 0, then the last equality means that f has the S-asymp-
totics in B related to ¢ = 1.
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