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Next quarter, in Mth 516, we will discuss the Tauberian theorem of Ikehara
and Landau and its connection with the prime number theorem (among other
things). The notion of a Tauberian theorem is not all that precise – it is
described by a philosophy rather than a definition. Therefore in this notes I
will present a discussion of the classification of some theorems as Abelian or
Tauberian and present a few examples (without proofs) to give you a feeling
for the concept.

The classification into Abelian (or direct) and Tauberian (or converse) theo-
rems occurs in the following context: one has a map (usually linear with some
continuity properties) between function spaces, T :X → Y . An Abelian the-
orem is a theorem that deduces some property (usually asymptotic) of T (f)
from a property (usually asymptotic) of f .

A Tauberian theorem is a converse theorem: one deduces a property of f from
a corresponding property of T (f). One might object if T is injective there is no
real difference between these classifications, but in practice the classification
only arises in situations where the inverse of T lacks precisely the properties
one might need for the desired conclusion. Thus extra hypotheses and delicate
arguments are often needed for the Tauberian theorems.

Another consideration which tends to distinguish T from its inverse in this
context is that T is frequently distinguished by tradition and popular usage.
For example, we normally discuss the Laplace transform, and then its inverse,
though there is no technical reason one could not reverse the order of presen-
tation.

Finally let us note that Abelian theorems are hardly ever identified as such
unless there is a corresponding Tauberian theorem, whereas Tauberian theo-
rems are frequently identified without reference to any corresponding Abelian
theorem.

Our story begins with Abel and the prototype of all Abelian theorems. Since
divergent series and integrals often occur in practice, it is of interest to try
to assign some meaning to some of them. There are many interesting ideas,
for example principal values, finite parts, or summation techniques of Gauss,
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Weierstrass, Cesaro, Abel, Poisson, and so forth. One idea, due to Abel, is
as follows: suppose (an) is a bounded sequence. Then

∑
an may diverge of

course, but the power series
∑
anz

n has radius of convergence at least 1. Thus
may we not assign some meaning to limr→1

∑
n anr

n provided this limit exists?
And will not this limit have some relation to

∑
an? When the limit exists it

is called the Abel sum of the series
∑
an.

As an example we see the Abel sum of the divergent series
∑

n(−1)n is 1
2 .

It is difficult to reconcile such ideas with Abel’s assertion (1826),

The divergent series are the invention of the devil, and it is a shame
to base on them any demonstration whatsoever. By using them one
may draw any conclusion he pleases ...

except that later he notes of the conclusions drawn from arguments involving
divergent series

That most of these things are correct in spite of that is extraor-
dinarily surprising. I am trying to find a reason for this; it is an
exceedingly interesting question. (See [7].)

For the Abel summation to be a reasonable concept it ought to assign the
ordinary sum to a convergent series. This leads us to Abel’s theorem.

Theorem 1 (Abel, 1826). Suppose
∑

n an exists and is A. Then
∑

n anz
n

has radius of convergence ≥ 1 and

lim
r→1

∞∑
n=1

anr
n = A.

Here our mapping T sends the sum
∑

n an to the power series
∑

n anz
n. As an

application of Abel’s theorem we see that the sum of the alternating harmonic
series

∑
n(−1)n−1/n is the natural logarithm of 2.

A proof of Abel’s theorem may be found in Knopp’s little book on series [8].
Note that r here approaches 1 along the real line. We can actually obtain
the conclusion for nontangentail convergence in the disk – see, for example,
Knopp’s big book on series [9], item 233 in section 54. Abel’s theorem in the
form above is also proved in [9], item 100 in section 20, where in a footnote,
Knopp states that Gauss stated and used Abel’s theorem with nontangential
convergence as early as 1812, but there was an error in Gauss’ proof of it.

The prototype for all Tauberian theorems is Tauber’s converse to Abel’s the-
orem [12]:

Theorem 2 (Tauber, 1897). If the power series
∑

n anz
n has radius of con-

vergence 1, if limn→∞ nan = 0, and if limr→1

∑
anr

n = A then
∑∞

n=1 an = A.
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In the presence of positivity we can weaken the hypotheses:

Theorem 3. If the power series
∑

n anz
n has radius of convergence 1, if an ≥

0 for each n, if limn→∞ an = 0, and if limr→1

∑
anr

n = A then
∑∞

n=1 an = A.

A stronger version of Tauber’s theorem is due to Littlewood:

Theorem 4 (Littlewood). If the power series
∑

n anz
n has radius of con-

vergence 1, if there exists a constant M such that n | an | ≤M for each n, and
if limr→1

∑
anr

n = A then
∑∞

n=1 an = A.

A proof of Littlewood’s Tauberian theorem [11] based on Weiner’s General
Tauberian theorem [14] is given in [14], [2]. For Wiener’s program to prove a
great number of Tauberian theorems from the general one, see [13]. A nice pre-
sentation of Wiener’s Tauberian theorem is given in Lars G̊arding’s beautiful
book [3].

Wiener’s General Tauberian theorem(s) follow from what G̊arding [3] calls the
Wiener density theorem:

Theorem 5 (Wiener 1932). If K ∈ L1(Rn ) and M is the linear span of all
translates of K, then M is dense in L1(Rn ) if and only if the Fourier transform
K̂(ξ) 6= 0 for each ξ ∈ R

n .

It is pretty difficult to detect the Tauberian character of this theorem but the
following consequence makes it clearer:

Theorem 6 (Tauberian Theorem, Wiener 1932). Let K ∈ L1(Rn ) sat-
isfy K̂(ξ) 6= 0 for each ξ ∈ R

n . Let f ∈ L∞(Rn ) and assume

lim
| x |→∞

(K ∗ f)(x) = AK̂(0)

exists (this equation then defines A). Then for any G ∈ L1(Rn ) we have

lim
| x |→∞

(G ∗ f)(x) = AĜ(0).

If we view the theorem as making an assertion about f the Tauberian character
becomes clear.

Wiener’s theorem may be used to prove the prime number theorem – the
number of primes ≤ x is asymptotically equal to x/ log x, a result discovered
by Gauss empirically in 1793 and proved in 1896 by Jacques Hadamard [4]
and Charles-Jean del la Vallée Poussin [1]. A proof may also be based on the
Ikehara Tauberian theorem [6] which is based on a theorem of Landau, [10].
See also Hardy–Littlewood [5], Wiener [14] and Donoghue [2].

Theorem 7 (Ikehara, 1931). Let µ be a monotone nondecreasing function
on (0,∞) and let

F (s) =
∫ ∞

1

x−sdµ(x).
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If the integral converges absolutely for <e s > 1 and there is a constant A such
that

F (s) − A

s− 1
extends to a continuous function in <e s ≥ 1 then

µ(x) ∼ Ax.

The statement above is in terms of the Mellin transform – we may also state
the theorem in terms of the Fourier–Laplace transform:

Theorem 8 (Ikehara, 1931). Let µ be a monotone nondecreasing function
on (0,∞) and let

F (s) =
∫ ∞

0

e−sxdµ(x).

If the integral converges absolutely for <e s > 1 and there is a constant A such
that

F (s) − A

s− 1
extends to a continuous function in <e s ≥ 1 then

µ(x) ∼ Aex

Here φ(x) ∼ ψ(x) means asymptotic equality, that is, φ(x)/ψ(x) has limit 1 as
x→ ∞.

I hope I have given you a bit of the flavor of what is a Tauberian theorem, but
I do not want to leave you with the impression that all Tauberian theorems are
deep and difficult. Here is a calculus Tauberian theorem that you may enjoy
trying to prove as an exercise:

Exercise 1. Let f be a function on [2,∞) and suppose xf(x) is monotone
nondecreasing on [2,∞). Let m and n be real numbers, n 6= −1. If∫ x

2

f(t)dt ∼ xn+1

(log x)m
, x→ ∞,

then

f(x) ∼ (n+ 1)xn

(log x)m
, x→ ∞.
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