NOTE ON IRREGULAR PRIMES

L. CARLITZ

1. We recall that a prime p is irregular if it divides the numerator of at least one of the numbers

$$
\begin{equation*}
B_{2}, B_{4}, \cdots, B_{p-3} \tag{1.1}
\end{equation*}
$$

where B_{m} denotes a Bernoulli number in the even-suffix notation. Jensen has proved that there exist infinitely many irregular primes of the form $4 n+3$ (for the proof see [3, p. 82]; see also [4]).

In this note we give a simple proof of the weaker result that the number of irregular primes is infinite. We also prove a like result corresponding to the prime divisors of the Euler numbers.

The letter p will always denote a prime >2.
2. We shall make use of the following well known properties of Bernoulli numbers. For proofs see [2, Chaps. 13, 14].

$$
\begin{align*}
B_{m} & \equiv 0\left(\bmod p^{r}\right) & \left(p^{r} \mid m, p-1 \nmid m\right) . \tag{2.1}\\
p B_{m} & \equiv-1(\bmod p) & (p-1 \mid m) . \tag{2.2}\\
\frac{B_{m+r(p-1)}}{m+r(p-1)} & \equiv \frac{B_{m}}{m}(\bmod p) & (p-1 \nmid m) . \tag{2.3}
\end{align*}
$$

(2.2) is contained in the Staudt-Clausen theorem, while (2.3) is a special case of Kummer's congruence for the Bernoulli numbers. Note that both members of (2.3) are integral $(\bmod p)$.

A prime divisor of the numerator of B_{m} / m may be called a proper divisor of B_{m}; this is not quite the terminology of [4].

It follows from (2.3) that if p is a proper divisor of B_{m} then it is also a divisor of B_{s}, where

$$
m \equiv s(\bmod p-1) \quad(0<s<p-1) ;
$$

that $s \neq 0$ is a consequence of (2.2). Thus a proper divisor of any B_{m} is certainly irregular. Now assume that there are only a finite number of irregular primes p_{1}, \cdots, p_{k}, and consider the number B_{M}, where

$$
\begin{equation*}
M=2 t \prod_{i=1}^{k}\left(p_{i}-1\right) \tag{2.4}
\end{equation*}
$$

If we put
Received by the editors August 23, 1953.

$$
\begin{equation*}
B_{M} / M=N_{M} / D_{M} \quad\left(\left(N_{M}, D_{M}\right)=1\right) \tag{2.5}
\end{equation*}
$$

it follows from the above and (2.2) that $N_{M}= \pm 1$. For, as already remarked, a prime divisor of N_{M} is a proper divisor of B_{M} and therefore irregular; but by (2.2) and (2.4) the irregular primes p_{1}, \cdots, p_{k} occur in the denominator of B_{M}. On the other hand it is clear from

$$
\frac{B_{2 m}}{2 m}=(-1)^{m-1} \frac{2(2 m-1)!}{(2 \pi)^{2 m}} \sum_{r=1}^{\infty} \frac{1}{r^{2 m}}
$$

that $\left|B_{2 m} / 2 m\right| \rightarrow \infty$ as $m \rightarrow \infty$. Since t in (2.4) is at our disposal, it is evident that this contradicts $\left|N_{M}\right|=1$.
3. Some criteria in terms of Euler numbers for the first case of Fermat's last theorem have been given. Vandiver [5] has proved that if

$$
x^{p}+y^{p}=z^{p}
$$

is satisfied, then

$$
\begin{equation*}
E_{p-3} \equiv 0(\bmod p) \tag{3.1}
\end{equation*}
$$

Gut [1] has proved that if

$$
x^{2 p}+y^{2 p}=z^{2 p}
$$

is satisfied, then

$$
\begin{equation*}
E_{p-3} \equiv E_{p-5} \equiv E_{p-7} \equiv E_{p-9} \equiv E_{p-11} \equiv 0(\bmod p) \tag{3.2}
\end{equation*}
$$

Here the E_{m} denote Euler numbers in the even suffix notation.
We accordingly define a prime p as irregular with respect to the Euler numbers if it divides at least one of the numbers

$$
\begin{equation*}
E_{2}, E_{4}, \cdots, E_{p-3} \tag{3.3}
\end{equation*}
$$

We shall prove that the number of such primes is infinite.
Analogous to (2.3) we now have [2, Chap. 14]

$$
\begin{equation*}
E_{m+r(p-1)} \equiv E_{m}(\bmod p) \quad(m \geqq 1) \tag{3.4}
\end{equation*}
$$

We have also the property [2, p. 273]: if $p-1 \mid m$,

$$
E_{m} \equiv \begin{cases}0(\bmod p) & (p \equiv 1(\bmod 4)) \tag{3.5}\\ 2(\bmod p) & (p \equiv 3(\bmod 4))\end{cases}
$$

We shall say that p is a proper divisor of E_{m} provided $p \mid E_{m}$ and $p-1 \nmid m$; clearly in view of (3.5) only primes of the form $4 n+1$ can be improper divisors.

It follows from (3.4) that if p is a proper divisor of E_{m} then it is also a divisor of E_{s}, where

$$
m \equiv s(\bmod p-1) \quad(0<s<p-1)
$$

Let us now assume that there are only a finite number of irregular primes (relative to the Euler numbers) p_{1}, \cdots, p_{k}, and consider the number E_{M}, where

$$
\begin{equation*}
M=4 t \prod\left(p_{i}-1\right)+2 . \tag{3.6}
\end{equation*}
$$

By (3.4)

$$
E_{M} \equiv E_{2} \equiv-1\left(\bmod p_{i}\right) \quad(i=1, \cdots, k)
$$

Thus

$$
\left(E_{M}, p_{1} p_{2} \cdots p_{k}\right)=1 ;
$$

also since $M \equiv 2(\bmod 4)$, it is clear that E_{M} has no improper divisors. Consequently $E_{M}= \pm 1$. But since

$$
E_{2 m}=(-1)^{m} \frac{4(2 m)!2^{2 m}}{\pi^{2 m+1}} \sum_{r=0}^{\infty} \frac{(-1)^{r}}{r^{2 m+1}},
$$

it is evident that $\left|E_{M}\right| \rightarrow \infty$.

References

1. M. Gut, Eulersche Zahlen und grosser Fermat'scher Satz, Comment. Math. Helv. vol. 24 (1950) pp. 73-99.
2. N. Nielsen, Traité élémentaire des nombres de Bernoulli, Paris, 1923.
3. H. S. Vandiver and G. E. Wahlin, Algebraic numbers II, Bulletin of the National Research Council, no. 62, 1928.
4. H. S. Vandiver, Note on the divisors of the numerators of Bernoulli's numbers, Proc. Nat. Acad. Sci. U. S. A. vol. 18 (1932) pp. 594-597.
5. ——, Note on Euler number criteria for the first case of Fermat's last theorem, Amer. J. Math. vol. 62 (1940) pp. 79-82.

Duke University

