
THE GAUSSIAN LAW OF ERRORS IN THE THEORY OF ADDITIVE 
NUMBER THEORETIC FUNCTIONS.* 1 

The present paper concerns itself with the applications of statistical 

methods to some number-theoretic problems. Recent inrestigations of Erdiis 

and Wintrier ? have shown the importance of the notion of statistical in- 

dependence in number theory ; the purpose of this paper is to emphasize this 

fact once again. 

It may be mentioned here that we get as a particular case of our main 

theorem the following result : 
If v(m) denotes the number of prime divisors of ~1, and En the number 

of those integers from 1 up to 12 for which V(W) < lg lg ~1 + WV 2 lg lg )1 

(W an arbitrary real number): then 

This theorem refines some known results of Hardp, Ramanujan 3 and 

ErdGs.” 

1. In what follows p will denote a prime and w will denote a real number. 

Let f(m) be an additive number-theoretic function, SO that f(~~l) 
= f(v2.) + f(n) if (.E!: 11) f 1. Suppose that f(l)“) = f(P) and / f(P) 1 2 1. 
Obriously 

f(m) =pTmf(p). 

Furthermore put 2 p-If(p) = A,, and ( S p-lf2(p))sh = R,,. Then our main 
?<n P< n 

theorem may be stated as follows: 
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THEOREM. If B, + CO as n --z cc, ami? A, denotes the number of integers 
m from 1 up to n for which 

f(m) < -4, + d%t 
then 

w 

lini En = p-h 
,l-+rn n S exp(- cC)dU = D(W). 

-05 

2. We first prove the following 

LEMMA 1. Let 

b(m) =p% f(P)* 
P<l 

Then delzotilzg by 61 the detuity of the set of integers m for which fl(m) 

< -4l+ wvFB1 one has 
lim 61 = D(o). 
Z-X0 

Let ~~(71) be 0 or f(p) according as p does not or does divide n. Then 

Since the pp(,n) are statistically independent, f 1 (m) behaves like a sum of 
independent random variables and consequently the distribution function of 

fl(m) --AJv%B E is a convolution (Faltung) of the distribution functions 
of pP( m.) - p-If (p)/\/!2Bl 5 (p < 2). It is easy to see that the “ central limit 
theorem of the calculus of probability” can be applied to the present case,6 

and this proves our lemma. 

3. Lemma 1 is the only “ statistical ” lemma in the proof. Using this 

iemma, the main result will be established by purely number-theoretical 

methods. 

LENMA 2,. If m,, teds to co {as G-Z-+ CO) more rapidly than any fixed 

5 LX. cit. 2, where statistical independence of arithmetical functions is defined 
and discussed. See also P. Hartman, E. R. van Kampen and A. Wintner, dmwkz~a 
Jozrmal of Mathematics, vol. 61 (1939), pp. 477-486. 

8 Cf. for instance the first chapter of S. Bernstein’s paper, “ Sur I’extension du 
thCor&me limite du calcul des probabilitAs aux sommes de quantitis dhpendantes,” Mathe- 

matischc Annalen, vol. 97, pp. l-59. See also M. Kac and H. Steinhans, “Sur les 
fonctions indPpendantes II,” Studin Nath., vol. G (1936), pp. 59-66. 



power of s,~; then the number of integers from 1 up to mn which are not 

di&ible by any prime less than s,, is equal to 

where C denotes Euler’s confident. 

The proof of thie etatement 1, ‘9 implicitly contained in the reasoning< of 

V. Brun on page “1 of his famous memoir “ Le crible d’Erasosth&ne et le 

th6ortime de Goldbach ” i and may therefore be omitted. 

Let (p(fz) represent a function which tends, as n + co, to 0 in such a 
w-a- that II@!““) -+ x. The function no’ will be denoted by a, and TV@ 

by /A. Let cc1 ( )I), cl2 (11): . . be the integers whose prime factors are all less 

than z,1. and let $( m : II) be the greatest n, which dirides m. We then have 

rhe follorring 

This is a direct consequence of Lemma ‘2. For consider all those integers s n 

which are of the form 1’ 11, (11) and cuch that ‘I’ is not divisible by any prime 

< an. ECdPntly, the integers thus defined are all the integers 5 n for which 
&(m; 11) = n,(n). Their number is equal to the number of integers T which 

are ( n/n,(n) and not diCsible by any prime < a,. The restrictioa 

Q (71) < /3,, makes n/a< (11) tend to w more rapidly than any power of an 
and therefore Lemma 2 can be applied (put mh = n/ai (n) and sn = a,). 

This completes the pro&. 

LEXXY 4. Thr nxmbcr y of integers 5 Jr dikible by an U;(Q) > pfL 

is less fha/l O.li\/+(k ). rchere 0 is nn absolute constant. (It follows from tkiS 

thd the densify of the infegers Which are divisible by an a,(n,) > Pn is less ___. 
t11nn bV#B(n).) 

and Since 
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one has 

IIence, finally 

4. LEMXA 5. Denote by 1, the number of integers from 1 up to n 

for which 

(i> fa,,(nl> < Aan -l- TV’%,. 
Then 

I&= D(0). 

Divide the integers from 1 up to TZ which satisfy (i) into classes E,, Ep, * . . 
so that m belongs to Ec if and only if $( m ; 1~) = ai (iz) ; and denote by / Ec 1 

the number of integers in Ei. One obviously has 

L = : 1 3; I = n4%30i Ei 1 + a.T3l Ei 1. 
I n 

By Lemma 4 2 / Bc I < bnV+(n) and therefore it is sufficient to prove 
a&>!% 

that n-l L jEi14D(w) as 1b3co. 
a,53, 

On the other hand by Lemma 3 

(ii) 2 
a is?” 

I E’i I = (#$y;; 1~ + O (c#a(n;llg n >> 
I?,’ 

1 

sig, n,o . 

where the dash in the summation indicates that it is extended over the aa’s 

satisfying fa,4(ai) < A,, f ~v/2B,,,. In order to evaluate S’, divide all the 

integers into classes I;i, F,. * * having the property that m belongs to Fi 

if and only if I$( m ; n) = ni (12) and let (Pi} denote the density of F,. 

Consider now the set 8’Fi, where the dash in summation has the same meaning 

as above, By putting I= a, and using Lemma 1 v;e have that {YFd} + D(a) 
as TZ + cc or {S’Pi] = D(W) + o(l). pll’ow 

(iii) B’Fi = 2’ Fi + 8’ Pi 
as3n Ui>i% 

and by Lemma 4 

(iv> ‘,,y3 Fi) < W/(4. 
n 

Furthermore there is only a finite number of ai’s which are less than Pn and 

therefore { ai:6 Pi} = adTs.{Fi}. But 
n 



and this implies that 

Finally (iii), (iv) and (v) give 

The combination of this formula with (ii) completes the proof of our Lemma. 

5. We nom come to the proof of the main theorem. Notice first 

that for 777,S n, 1 jc(v7) -ffa,,(ti.)! < l/+(n). In fact, 1 f(p)] 5 1 implies 
that ) f(m) --fan(M) i is less than the number of those prime divisors of m 

which are 2 3%. This number is obviously < l/+(12), since (z,)*‘$(~) = ,n. 

Notice furthermore that / f(p) 1 5 1 and the well known results concerning 

the sum ,~+~~-i imply that j 14,,,- A.&,& j < - C1 lg + (.n) and ( B, - &, ( 

< --c,lg+(~~)), h w ere C, and C, are absolute constants. 

Kow choose +(,Pz.) so that I/+ (it,) = o (23%). Evidently every M ~2 7~ 
satisfying the inequality f(m) < & + CO\/?? B,% also satisfies, for sufficiently 

large n, the inequality fa,( m) < A,, + (W f c) v% Ba,. In addition every 

m I 12 satisfying fa,,(nb) < ii,;, + (W - F) qZBirc,, satisfies, for sufficiently 
large 12; the inequality f( ,nz j < 8, + WV’~. B,. Hence, by Lemma 5, 

Rrk D (OJ - E) 5 lim inf - 5 lim sup - 
?a 

7 sD(w+e); 

and this proves the theorem, since E > 0 is arbitrary. 

6. The theorem mentioned in the introduction is obviously a particular 
case of our main theorem. It corresponds to the case f(p) = 1. Because of 
the large number of applications of I it is of special interest. It should 

be mentioned that the assumption f (pa) = f(p) can be removed ; also 

) f(p) ) C= 1 may be replaced by a much weaker condition. This however, would 
complicate the statement of the main theorem 

We may perhaps point out that Lemma 2, (Brun) is the “ deepest ” part 

of the proof and that the cc statistical ” part is relatively superficial. However, 

the statistical considerations seemed to be suggestive and fruitful in’leading to 
new and perhaps striking results. 

INSTITUTE FOE ADVANCED Sm~n AND CORXELL UITIWR~ITT~ 


