THE GAUSSIAN LAW OF ERRORS IN THE THEORY OF ADDITIVE
NUMBER THEORETIC FUNCTIONS.**

By P. Ernis and M. Kac.

The present paper concerns itself with the applications of sfatistical
methods to some number-theoretic problems. Reecent investigations of Erdos
and Wintner * have shown the importance of the notion of statistical in-
dependence in number theory; the purpose of this paper is to emphasize this
fact once again.

It may be mentioned here that we get as a particular case of our main
theorem the following result:

If v(m) denotes the number of prime divisors of m, and K, the number
of those integers from 1 up to n for which v(m) <lglgn+ oVy2lglgn

(w an arbitrary real number), then
wt

B % 3 f exp (— u*) du.
n—oo I

This theorem refines some known results of Hardy, Ramanujan® and
Erdas?

1. TIn what follows p will denote a prime and » will denote a real number.

Let f(m) be an additive number-theoretic function, so that f(mn)
=f(m) + f(n) if (1m.n) = 1. Suppose that f(p®) =7(p) and | f(p)| = 1.
Obviously

Fm) = 3£(p).

Furthermore put = p7'f(p) = 4, and ( = p7'f*(p))* = B,. Then our main
p<n b 13

theorem may be stated as follows:

* Received December 7, 1939.

1A preliminary account appeared in the Proceedings of ithe National Academy.
vol. 25 (1939), pp. 206-207.

2P, Erdos and A. Wintner, “ Additive arithmetie functions and statistical in-
dependence,” American Journal of Mathemaitics, vol. 61 (1938). pp. 713-T22.

? Brinivasa Ramanujan, Collected Papers (1927}, pp. 262-275.

+P. Erdis, “Note on the number of prime divisors of integers,” Journal of the
London Mathematical Sociefy, vol. 12 (1937). pp. 508-314.
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THEOREM. [f Ba—> oo as n—> «, and K, denotes the number of integers
m from 1 up to n for which

f(m) < dp+ 0V By
then

w

lim s o xd J‘ exp(— w?)du = D(w).
n—oc 1
-00

2. We first prove the following

LEMMA 1. Let

fi(m) = 2 f(p).
e

Then denoting by 8 the density of the set of integers m for which fi(m)
< Ay + /2 By one has
lim 8; = D(w).

=00

Let py(n) be 0 or f(p) according as p does not or does divide n. Then
fi(m) = 3 py(m).
p<l

Since the py(n) are statistically independent. f;(m) behaves like a sum of
independent random variables and consequently the distribution function of
fr(m) — A3/V2 By is a convolution (Faltung) of the distribution functions
of pp(m) — p‘lf(p)/'\/':&-B; 5 (p < 1). It is easy to see that the « central limit
theorem of the calculus of probability ” can be applied to the present case®
and this proves our lemma.

3. Lemma 1 is the only “statistical ” lemma in the proof. Using this
iemma, the main result will be established by purely number-theoretical
methods,

LemMa 2. If m, tends to oo (as n—> o) more rapidly than any fized

5 Loe. eit. 2, where statistical independence of arithmetical functions is defined
and discussed. See also P. Hartman, E. R. van Kampen and A. Wintner, American
Journal of Mathematics, vol. 61 (1939), pp. 477-486.

¢ Cf, for instance the first chapter of S. Bernstein’s paper, “Sur l'extension du
théoréme limite du caleul des probabilités aux sommes de quantités dépendantes,” Mathe-
matische Annalen, vol. 97, pp. 1-59. See also M. Kac and H. Steinhaus, “Sur les
fonetions indépendantes I1,” Studie Meth., vol. G (1936). pp. 59-66.
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power of sy, then the number of integers from 1 up to m, which are not
divisible by any prime less than s, is equal to

; -C
Myt dg Men
lg s, lgsa )7

where O denotes Euler's constant.

The proof of this statement is implicitly contained in the reasoning of
V. Brun on page 21 of hiz famous memoir “Le crible d’Erasosthéne et le
théoréme de Goldbach 77 and may therefore be omitted.

Let ¢(n) represent a function which tends, as n—> oo, to 0 in such a
way that n¢™ — . The function n¢" will be denoted by @, and nVe()
by Bn. Let ay(n).az(n). - - be the integers whose prime factors are all less
than z,. and let y(m: #) be the greatest q; which divides m. We then have

the following

Leyayta 3. The number of integers m = n for which g (m; n) =a;(n),
where ; (1) = B, 1s equed {0

e Cn . n
ai(n)p(n)legn v ai(nye(n)lgn /'

This iz a direct consequence of Lemma 2. For consider all those integers = n
which arve of the form 7 - «;(n) and such that » iz not divisible by any prime
< @, Lividently, the integers thus defined are all the integers = n for which
v(m;n) =a;(u). Their number is equal to the number of integers » which
are = n/a;(n) and not divisible by any prime < @, The restriction
a;(n) < By makes n/a;(n) tend to e« more rapidly than any power of ay
and therefore Lemma 2 can be applied (put my=n/a;(n) and s, = ).
This eompletes the proot.

Leyvya 4. The number y of integers = M dwisible by an a;(n) > B
is less than b)Y\ é(n). where b is an absolute constant. (It follows from this
that the density of the inlegers which are divisible by an ai(n) > Ba is less
than by ¢ (n).)

We have

M e
I y(m;n)=Tp El [M/p] < I piti;
" m=1 Pl Gn P < dn
and since

]g 11 P'_'Jf,.fp =92 = p-l ]g p~ 2‘u¢ (n) lg n

Dl Gn D <Z dn

T 8krifter Videns, Kristiania, 1920,
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one has

M
I y{m; n) < ndMetn),
m=1

Hence, finally
(Br)Y = (n\fc}_tn_))ﬂ < phM | e, y< b-lf\/m,

4. LemyMa 5. Denote by l, the number. of integers from 1 wp fo n
for which
(i) fou(m) < Ao, + wV? B,
Then

. 1
v PR
Divide the integers from 1 up to n which satisfy (i) into classes B4, E,,- - -
so that m belongs to E; if and only if ¢(m: n) —a: () ; and denote by | Z; |
the number of integers in #i. One obviously has
L—=3|E|= 3= |B:|+4+ = |E:il
i ar>h

ai=8n n

By Lemma 4 I |E;| <bnV¢(n) and therefore it is sufficient to prove
1> B

that vt 5 | E; | — D{(w) as n— w. On the other hand by Lemma 3
aiﬁ.sn

.. eC-n n < 1
SHEN 8 (¢=(n) Tgn T° (qb(n) Iz n) )ﬁ;:‘s,, T (n)

where the dash in the summation indicates that it iz extended over the a;’s
satisfying fa,(1:) < 4q, + 0V 2 Bg,. In order to evaluate 3, divide all the
integers into classes [y, F.: - - having the property that m belongs to F;
it and only if ¢(m; n) =a;(n) and let {F;} denote the density of Fi.
Consider now the set 3'F;, where the dash in summation has the same meaning
as above. By putting ! = @, and using Lemma 1 we have that {3'F,} — D{w)
as n—> ¢ or {¥F;} = D(w) +0(1). Now

(iii) iy= 3 F;4+ X Fy
2:=PBn [
and by Lemma 4
(iv) {3 R} < bV é(n).
2{>Pn

Furthermore there is only a finite number of a;’s which are less than B, and
therefore { & F;} = 3 {F;}. But
@i < Ba

i< fn

1 1 1 1‘3'(" 1
{Fi} = ai(n) ?J-:E[Ga (Iﬁ :Ur) = i) (¢(:?} lg n T2 (!?5(”']' lgﬂ'))
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and this implies that

, e C 1 . 1
¥ {m:iﬁuFi} - (f#('ﬂJ lgn A (¢(") lg fl))aiiﬂn ti(m)

Finally (iii), (iv) and (v) give

i — et 1 5 1
Ple) IR < (¢>(”) Ig n )+ ’ (ﬁb(ﬂ-) lg 'n))miﬁ,ﬂ-e(??) < Bie) +0(3)-

The combination of this formula with (ii) completes the proof of our Lemma.

5. We now come to the proof of the main theorem.  Notice first
that for m =n, | f(m) —fo, (m)| < 1/¢(n). In fact, | f(p)] =1 implies
that | f(m) — fa,(m)| is less than the number of those prime divisors of m
which are = 2,. This number is obviously < 1/¢(n), since (2,)*?" = n.
Notice furthermore that | f(p)| = 1 and the well known results concerning

the sum X p* imply that |4, —dq, | < —Cilgg(n) and | By— By, |
pn
< — (5 lg ¢(n), where € and €, are absolute constants,

Now choose ¢(n) so that 1/¢(n) —o(Bn). Evidently every m =n
satisfying the inequality f(m) < An + oV/2 B, also satisfies, for sufficiently
large n, the inequality fs,(m) < Aa, + (04 ¢) V2 Ba,. In addition every
m=n satisfying fo (m) < Ag, + (0 —e) V2 B,, satisfies, for sufficiently
large n, the inequality f(m) < An 4 @V 2 B,. Hence, by Lemma 5,

D(w—e) = lim inf '-I—z—"-i:]im sup % =D(v-+t¢€);
i1 i
and this proves the theorem, since e > 0 iz arbitrary.

6. The theorem mentioned in the introduction iz obviously a particular
case of our main theorem. It corresponds to the case f(p) = 1. Because of
the large number of applications of v(m) it is of special interest. It should
be mentioned that the assumption f(p®) = f(p) ean be removed; also
| f(p)| = 1 may be replaced by a much weaker condition. This however, would
complicate the statement of the main theorem

We may perhaps point out that Lemma 2 (Brun) is the “ deepest” part
of the proof and that the “ statistical ” part is relatively superficial. However,
the statistical considerations seemed to be suzgestive and fruitful in leading to
new and perhaps striking results.
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