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ABSTRACT If H denotes the classical Hilbert trans-
form and Hu(x) = v(x), then the functions u(x) and v(x)
are the values on the real axis of a pair of conjugate func-
tions, harmonic in the upper half-plane. This note gives a
generalization of the above concepts in which the Laplace
equation Au = 0 is replaced by the Yukawa equation
Au = /A2u and in which the Cauchy-Riemann equations
have a corresponding generalization. This leads to a gen-
eralized Hilbert transform H,,. The kernel function of this
new transform is expressable in terms of the Bessel func-
tion K0. The transform is of convolution type.

Introduction and formulation oftwo theorems

Boudjelkha and Diaz begin a paper [1] with a caution to
prospective readers that the mathematical results to follow
stem from a rather naive method. Hadamard characterized
this method by the phrase, "He who can do more can do less."
The same caution may be appropriate here.
Of concern are solutions u(x,y) of the Yukawa equation

+ y=Aft (1)OJX2 bJy2

Here 1A is a positive constant. In a previous paper [31, a func-
tion u(x,y) satisfying this equation in a region was termed
panharmonic. Moreover, an ordered pair [u,v] of panharmonic
functions was termed a (right) conjugate pair if they satisfy
the following analog of the Cauchy-Riemann equations

- + - = -Mv,ax by

av _ = -Mu.
by ax

(2a)

(2b)

Here, I wish to study conjugate pairs that are panharmonic in
the upper half-plane. Thus, let u(x) and v(x) be boundary
values of such a conjugate pair, u(x,y) and v(x,y). Thus,

u(x) = lim u(x,y) and v(x) = lim v(x,y) (3)

as y -.> 0+. Under suitable restrictions, I show that these
boundary values satisfy the following convolution transforms

v(x) = f h+(x - x')u(x')dx', (4a)

u(x) = f o h(x - x')v(x')dx'. (4b)
_ c

Here the kernel functions h are given by

h4(x) = (u/ir) [Ko(pux) + Ki(Mux)],

where Ko(x) is the modified Bessel function of the second kind
and K,(x) = -dKo(x)/dx.

In the limit A = 0 Eqs. (2) become the classical Cauchy-
Riemann for conjugate harmonic functions. Moreover, the
standard series expansion of the Bessel function Ko shows that

h±(x) 4- 1i/rx as O-- 0.

Hence, relations (4a) and (4b) become the classical Hilbert
transforms.
The first result to be proved is

THEOREM 1. The generalized Hilbert transform (4) is a
unitary transformation of the space L2(- O, a) ). MJoreover an
arbitrary transform pair [u(x),v(x) ] in the space L2 are boundary
values (in mean) of a conjugate pair [u(x,y),v(x,y) ] of panhar-
monicfunctions in the open y half-plane y > 0.

In the converse direction the following result is proved.

THEOREM 2. Let [u(x,y),v(x,y) ] be a conjugate pair that is
panharmonic and uniformly bounded in the closed half-plane
y> 0. Then the boundary values [u(x),v(x) I are a transform pair
of the generalized Hilbert transform.

Application of Fourier analysis

The Fourier transform formulae are

ox
u(x)= (2X) - 1/2 i eixw(2)dt,

w(2) = (2ir) - f/2 e izu(x)dx.-co

(5a)

(5b)

It is convenient to abbreviate these relations as u(x) = Tw(x)
and w(2) = T*u(x). To insure the simultaneous validity of
(5a) and (5b), attention is confined (at first) to functions of the
space L2(- a , =) ). Then the integrals (5a) and (5b) are known
to converge in mean. Moreover, according to Parseval's
theorem u and w have the same norm, so

w(x)j2dx = lu(x) 2dx.co "o (6)

A unitary transformation is defined to be a transformation
that has an inverse and that preserves the norm. Thus, the
Fourier transform T is a unitary transformation.

Let a transformation v = H,,u be defined as

v(x) = T[(u - it)p-lT*u(x)], (7a)

where p = (MA2 + t2)l/2. The inverse transformation H,,1 is

u(x) = T[(M + iX)p-lT*v(x)].(4c)
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To prove this, note that I(u - i)p-'I = 1 so multiplication by
(u - i)p-' does not change the norm. Thus v is expressed as
a product of three norm-preserving transformations applied to
u, hence v and u have the same norm. It is apparent that
(7a) substituted in (7b) yields the identity transformation.
This result proves that HA is a unitary transformation. [It will
result that H., can be represented in the form (4a). ]

Given an arbitrary function u(x) of L2, let v(x) be defined by
(7a). Then define

v(x,y) = T[e -'P(A -i)p-lT*u(x)], (8a)

u(x,y) = T[e-YI(s + it)p-lT*v(x)I. (8b)

For y > 0 it is apparent that the factor e-8YP in the integrand
decays exponentially at +- o . Thereby it is seen that for y > 0
the functions u(x,y) and v(x,y) defined by (8a) and (8b)
have partial derivatives of all orders. Moreover (7b) gives

(At + it)p-TT*v(x) = T*u(x) = w(x)

so we may write (8b) in the form

u(x,y) = T[e-yPw(t)]. (8c)

Thus

bV + au = (iz + t2 - p2)p-'w(t)] = -,'V(Xy)-+ - lTe~ipax by

--- = T[e-VP(-,u + i-ix)w(X)] = -,uU(x,y).
ay a

This shows that u(x,y) and v(x,y) defined by (8) are a con-
jugate pair of panharmonic functions in the half-plane y > 0.
Now apply the Parseval relation (6) to the Fourier trans-

forms (7) and (8) to obtain

Jv(x) - v(xy)2dx (1 e-YP)21w(x#2dt,
Ju(x) - u(xy)2dx= (1 -YP)2w(.)/2dX.-~~~~~d(1sea

Hence, as y -- O+ the function v(x,y) converges in mean to
v(x) and u(x,y) converges in mean to u(x). Thus v(x) and
u(x) are boundary values. Q.E.D.

Application of the convolution theorem

It is an easy deduction from the Parseval relation (6) that if
UO(x) and u(x) both belong to L2, then

T[(T*uo)(T*u)] = (27r)-1/2 uo(x - x')u(x')dx'. (9)

This is known as the convolution theorem.
To apply the convolution theorem we need the following

special Fourier transform (proved in the Appendix)

T[e-YP(M P it)p-1] = (2/w)l/2s[Ko(jlr) + K1(ur)x/r], (10)

where r = (x2 + y2)1/2. Term the right side of (10) uo and
apply the convolution theorem to the relations (8). Thus, if
X = x-x'andR = [(x-xX)2 +y2]l/2 then

u(x,y) = (u/T) [Ko (,AR) - K(,uR)X/R]v(x')dx'. (llb)

Next let y-. 0O+ in (11). Then

lim[Ko(MAR) 4 Kl(MR)x/R] = Ko(uX) ± K1(MX)

because Ko(x) is an even function of x and Kl(x) is an odd
function of x. From the series expansion of Ko it is seen that
the principal singularity of the limiting kernel is a term 1/1rX.
It then follows by the same arguments used to analyze the
classical Hilbert transform (4) that for almost all x

v(x) = (t/r) f [Ko(uX) + Kl(juX)]u(x')dx', (12a)

u(x) = (,u/ir) [Ko(,uX) - Kl(,.X)]v(x')dx'. (12b)

The integrals are to be interpreted as Cauchy principal values.
This completes the proof of Theorem 1.

Application of a Cauchy integral formula

Let u(x,y) and v(x,y) be a conjugate pair of real panharmonic
functions and define

f = u + iv.

I term f a right regular function. It is convenient to write
f = f(z), where z = x + iy. Of course this is not meant to
imply thatf is a holomorphic function of the complex variable
z. Thus suppose f(z) is a right regular function in a compact
region bounded by a simple closed contour r. Under these
conditions, it was shown [3] that the following direct analog
of the Cauchy integral formula holds

27rif(z) - f(') (R)dz'

-[I f(z')Ko(IR)dz'] (13)

Here z = x + iy is a point interior to r. R = Iz' - z1 and *
denotes the complex conjugate. But if z is exterior to r, then
the right side of (13) vanishes.
Suppose that f(z) is right regular and uniformly bounded in

the closed half-plane y > 0. Take r in (13) to be a semicircular
contour in this half-plane such that the diameter is along the
x-axis. It is well known that Ko(x) and Kl(x) vanish exponen-
tially at infinity. This means that if the center of the contour
is fixed and the radius is increased, then the contribution from
the circular portion of the contour tends to zero. Thus, if
y>O

2rif(z) = f f ) iRK1(,R)dx'

-JI f*(x')AKo(MR)dx', (14a)
_co

O= /f2x)-RKI(.LR)dx
_co

_ f*(x')suKo(uR)dxW. (14b)

Adding these last two equations and separating into real andv(x)y) = (A/7r) f [Ko(,uR) + Ki(uR)X/R]u(x')dx', (lla)_,00 imaginary parts, one again obtains the formula (lla) for
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v(x,y) and the formula (lib) for u(x,y). Then, allowing y to
approach zero, one obtains (12a) and (12b). But now these
relations hold for all x rather than for almost all x because u(x)
and v(x) are smooth functions. This completes the proof of
Theorem 2.

Conjugate harmonic functions in three-space
In another paper [2], I studied a different but greater general-
ization of the Cauchy-Riemann equations. This is the system
(in ref 2 y and z are interchanged)

v au . av
+ =-X Xax by bz

6v au .au
_- = -2.

by ax az

(15a)

(15b)

for a pair of functions [U(x,y,z),V(x,y,z)] of three real vari-
ables (xyz). If these functions have second derivatives it is
clear that they are harmonic. Then [U,V] is termed a conju-
gate pair of harmonic functions. In general such functions are
complex valued.
In the cited paper the following integral formulae were

found to relate conjugate harmonic functions in the half-space
y > 0 to their boundary values on the (x,z) plane.

V(xyz) =
I dx
2,r _

co(' [(x - XI') -i(z - z')]U(x',O Z')
JX [(X -X_)2 + y2 + (z - z')2]'/2 dz', (16a)

U(xyz) = c dx'

X , [-(x-x ) -i(Z - z')]V(X',Oz) dz'. (16b)
XJ' [(X - X')2 + y2 + (Z - Z')2]/2dz (6)

Setting y = 0 gives formulae that are a two-dimensional
generalization of the Hilbert transforms.

Now let [u(x,y),v(x,y) ] be a pair of conjugate panharmonic
functions. Define

U(x,y,z) = e-iIzu(x,y), V(x,y,z) = et-1v(x,y). (17)

Then it is clear that [U,V] so defined is a pair of conjugate
harmonic functions. Thus, substitute these functions into the
integral formulae (14) and let z = 0 to obtain

v(x) - 1 ("a ("a" [(x - x') + izlle-isz'dzl
J c J _ [(X - x')2 + y2 + (Z')2]3/2

X u(x,O)dx', (18a)

1 (' "0 [-(x - x') + iz']e i2'Idzi
u(xy) = 2r Je, J. [(x - X')2 + y2 + (Z)2]3/2

X v(x',O)dx'. (18b)
The integral relations (18) are the same as the relations (11).
To prove this, one uses formula (20) in the Appendix to ex-
press the kernel functions of (18) in terms of the Bessel func-
tion Ko. This is seen to give

o [r2 +(zA)1';/2 = 24[Ko(gr) ± KI(Atr)x/r]. (18c)

Appendix-Evaluation of a Fourier integral

Using polar coordinates, one finds that

i: c ei(X2 + zI),e_(f2 +9 2)l/2ded2 1
27r(XC2 + 2)1/2 (x2 + y2 + Z2)1/2

Operating on both sides with f eZ dz and using the

Fourier integral theorem gives

Io eize -y(r2 + A2)1/2d ( e-izdz
(x2 + I12)1/2 J - (x2 + y2 + Z2)1/2

But the modified Bessel function Ko is given by the well-known
formula

Ko(ur) = o(r2+ Z2)/2 dz.

Thus (19) and (20) give the Fourier integral

T(eYPI/p) = (2/7r)0/WKo(or)

(20)

(21)

where p = (x2 + /A2)1/2 and r = (x2 + y2)'/2. Differentiating
(21) with respect to x gives

T(-ixe-/p) = (2/r),uKj(Aur)x/r (22)

where K1 is the modified Bessel function of first order. Then
adding (21) and (22) yields the Fourier integral (10). Q.E.D.
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