SCIENTIA Series A: Mathematical Sciences, Vol. 11 (2005), 13–24 Universidad Técnica Federico Santa María Valparaíso, Chile ISSN 0716-8446 © Universidad Técnica Federico Santa María 2005

Sums of arctangents and some formulas of Ramanujan

George Boros and Victor H. Moll

ABSTRACT. We present diverse methods to evaluate arctangent and related sums.

1. Introduction

The evaluation of arctangent sums of the form

(1.1)
$$\sum_{k=1}^{\infty} \tan^{-1}h(k)$$

for a rational function h reappear in the literature from time to time. For instance the evaluation of

(1.2)
$$\sum_{k=1}^{\infty} \tan^{-1} \frac{2}{k^2} = \frac{3\pi}{4}$$

was proposed by Anglesio [1] in 1993. This is a classical problem that appears in [7, 9, 13], among other places. Similarly the evaluation of

(1.3)
$$\sum_{k=1}^{\infty} \tan^{-1} \frac{1}{k^2} = \tan^{-1} \frac{\tan(\pi/\sqrt{2}) - \tanh(\pi/\sqrt{2})}{\tan(\pi/\sqrt{2}) + \tanh(\pi/\sqrt{2})}$$

was proposed by Chapman [6] in 1990. This was solved by Sarkar [15] using the techniques described in Section 3.

The goal of this paper is to discuss the evaluation of these sums. Throughout $\tan^{-1} x$ will always denote the principal value.

We make use of the addition formulas for $\tan^{-1} x$:

(1.4)
$$\tan^{-1} x + \tan^{-1} y = \begin{cases} \tan^{-1} \frac{x+y}{1-xy} & \text{if } xy < 1, \\ \tan^{-1} \frac{x+y}{1-xy} + \pi \text{ sign } x & \text{if } xy > 1, \end{cases}$$

²⁰⁰⁰ Mathematics Subject Classification. Primary 33.

Key words and phrases. Arctangent, Series.

The second author acknowledges the partial support of NSF-DMS 0070567, Project number 540623.

¹³

and

(1.5)
$$\tan^{-1} x + \tan^{-1} \frac{1}{x} = \frac{\pi}{2} \operatorname{sign} x.$$

2. The method of telescoping

The closed-form evaluation of a finite sum

$$S(n) := \sum_{k=1}^{n} a_k$$

is elementary if one can find a sequence $\{b_k\}$ such that

$$a_k = b_k - b_{k-1}.$$

Then the sum S(n) telescopes, i.e.,

$$S(n) := \sum_{k=1}^{n} a_k = \sum_{k=1}^{n} b_k - b_{k-1} = b_n - b_0.$$

This method can be extended to situations in which the telescoping nature of a_k is hidden by a function.

THEOREM 2.1. Let f be of fixed sign and define h by

(2.1)
$$h(x) = \frac{f(x+1) - f(x)}{1 + f(x+1)f(x)}.$$

Then

(2.2)
$$\sum_{k=1}^{n} \tan^{-1}h(k) = \tan^{-1}f(n+1) - \tan^{-1}f(1).$$

In particular, if f has a limit at ∞ (including the possibility of $f(\infty) = \infty$), then

(2.3)
$$\sum_{k=1}^{\infty} tan^{-1}h(k) = tan^{-1}f(\infty) - tan^{-1}f(1).$$

PROOF. Since

$$\tan^{-1}h(k) = \tan^{-1}f(k+1) - \tan^{-1}f(k)$$

(2.2) follows by telescoping.

Note. The hypothesis on the sign of f is included in order to avoid the case xy > 1 in (1.4). In general, (2.2) has to be replaced by

(2.4)
$$\sum_{k=1}^{n} \tan^{-1} h(k) = \tan^{-1} f(n) - \tan^{-1} f(1) + \pi \sum_{k=1}^{n} \operatorname{sign} f(k),$$

where the sum is taken over all k between 1 and n for which f(k)f(k+1) < -1. Thus (2.2) is always correct up to an integral multiple of π . The restrictions on the parameters in the examples described below have the intent of keeping f(k), $k \in \mathbb{N}$ of fixed sign.

EXAMPLE 2.1. Let f(x) = ax + b, where a, b are such that $f(x) \ge 0$ for $x \ge 1$. Then

(2.5)
$$h(x) = \frac{a}{a^2x^2 + a(a+2b)x + (1+ab+b^2)},$$

and (2.3) yields

(2.6)
$$\sum_{k=1}^{\infty} \tan^{-1} \frac{a}{a^2 k^2 + a(a+2b)k + (1+ab+b^2)} = \frac{\pi}{2} - \tan^{-1}(a+b).$$

The special case a = 1, b = 0 gives f(x) = x and $h(x) = 1/(x^2 + x + 1)$, resulting in the sum

(2.7)
$$\sum_{k=1}^{\infty} \tan^{-1} \frac{1}{k^2 + k + 1} = \frac{\pi}{4}.$$

For a = 2, b = 0, we get f(x) = 2x and $h(x) = 2/(2x+1)^2$, so that

(2.8)
$$\sum_{k=0}^{\infty} \tan^{-1} \frac{2}{(2k+1)^2} = \frac{\pi}{2}.$$

Differentiating (2.6) with respect to a yields

(2.9)
$$\sum_{k=1}^{\infty} \frac{p_{a,b}(k)}{q_{a,b}(k)} = \frac{1}{1+(a+b)^2},$$

where

$$p_{a,b}(k) = a^2k^2 + a^2k - (1+b^2)$$

and

$$\begin{split} q_{a,b}(k) &= a^4k^4 + 2a^3(a+2b)k^3 + a^2(2+a^2+6ab+6b^2)k^2 + \\ &\quad 2a(a+2b)(1+ab+b^2)k + (1+b^2)(1+a^2+2ab+b^2). \end{split}$$

The particular cases a = 1, b = 0 and a = 1/2, b = 1/3 give

$$\sum_{k=1}^{\infty} \frac{k^2 + k - 1}{k^4 + 2k^3 + 3k^2 + 2k + 2} = \frac{1}{2}$$

and

$$\sum_{k=1}^{\infty} \frac{9k^2 + 9k - 40}{81k^4 + 378k^3 + 1269k^2 + 1932k + 2440} = \frac{1}{61},$$

respectively.

EXAMPLE 2.2. This example considers the quadratic function $f(x) = ax^2 + bx + c$ under the assumption that f(k), $k \in \mathbb{N}$ has fixed sign. This happens when $b^2 - 4ac \leq 0$. Define

$$a_{0} := 1 + ac + bc + c^{2},$$

$$a_{1} := ab + b^{2} + 2ac + 2bc,$$

$$a_{2} := a^{2} + 3ab + b^{2} + 2ac,$$

$$a_{3} := 2a(a + b),$$

$$a_{4} := a^{2}.$$

Then,

(2.10)
$$h(x) = \frac{2ax + a + b}{a_4x^4 + a_3x^3 + a_2x^2 + a_1x + a_0}$$

and thus,

$$\sum_{k=1}^{\infty} \tan^{-1} \frac{2ak+a+b}{a_4k^4+a_3k^3+a_2k^2+a_1k+a_0} = \frac{\pi}{2} - \tan^{-1}(a+b+c).$$

The special cases b = -a, c = a/2 and b = -a, c = 0 yield

$$\sum_{k=1}^{\infty} \tan^{-1} \frac{8ak}{4a^2k^4 + (a^2 + 4)} = \frac{\pi}{2} - \tan^{-1} \frac{a}{2}$$

and

(2.11)
$$\sum_{k=1}^{\infty} \tan^{-1} \frac{2ak}{a^2k^4 - a^2k^2 + 1} = \frac{\pi}{2},$$

respectively. Note that the last sum is independent of a.

Additional examples can be given by telescoping twice (or even more). For example, if f and h be related by

(2.12)
$$h(x) = \frac{f(x+1) - f(x-1)}{1 + f(x+1)f(x-1)},$$

then

$$\sum_{k=1}^{n} \tan^{-1} h(k) = \tan^{-1} f(n+1) - \tan^{-1} f(1) + \tan^{-1} f(n) - \tan^{-1} f(0).$$

In particular,

(2.13)
$$\sum_{k=1}^{\infty} \tan^{-1}h(k) = 2\tan^{-1}f(\infty) - \tan^{-1}f(1) - \tan^{-1}f(0).$$

Indeed, the relation (2.12) shows that

$$\tan^{-1}h(k) = \tan^{-1}f(k+1) - \tan^{-1}f(k-1),$$

 \mathbf{SO}

$$\sum_{k=1}^{n} \tan^{-1} h(k) =$$

SUMS OF ARCTANGENTS AND SOME FORMULAS OF RAMANUJAN

$$= \sum_{k=1}^{n} \left[\tan^{-1} f(k+1) - \tan^{-1} f(k-1) \right]$$

=
$$\sum_{k=1}^{n} \left[\tan^{-1} f(k+1) - \tan^{-1} f(k) \right] + \sum_{k=1}^{n} \left[\tan^{-1} f(k) - \tan^{-1} f(k-1) \right]$$

=
$$\tan^{-1} f(n+1) - \tan^{-1} f(1) + \tan^{-1} f(n) - \tan^{-1} f(0).$$

EXAMPLE 2.3. The evaluation

(2.14)
$$\sum_{k=1}^{\infty} \tan^{-1} \frac{2}{k^2} = \frac{3\pi}{4}$$

corresponds to f(k) = k so that $h(k) = 2/k^2$. This is the problem proposed by Anglesio [1].

EXAMPLE 2.4. Take $f(k) = -2/k^2$ so that $h(k) = 8k/(k^4 - 2k^2 + 5)$. It follows that

$$\sum_{k=1}^{\infty} \tan^{-1} \frac{8k}{k^4 - 2k^2 + 5} = \pi - \tan^{-1} \frac{1}{2}.$$

This sum is part b) of the problem proposed in [1].

EXAMPLE 2.5. Take $f(k) = -a/(k^2+1)$. Then $h(k) = 4ak/(k^4+a^2+4)$, so that (2.15) $\sum_{k=1}^{\infty} \tan^{-1} \frac{4ak}{k^4+a^2+4} = \tan^{-1} \frac{a}{2} + \tan^{-1} a.$

The case a = 1 yields

(2.16)
$$\sum_{k=1}^{\infty} \tan^{-1} \frac{4k}{k^4 + 5} = \frac{\pi}{4} + \tan^{-1} \frac{1}{2}.$$

Differentiating (2.15) with respect to *a* gives

$$\sum_{k=1}^{\infty} \frac{4k(k^4 + 4 - a^2)}{k^8 + 2(a^2 + 4)k^4 + 16a^2k^2 + (a^4 + 8a^2 + 16)} = \frac{3(a^2 + 2)}{(a^2 + 1)(a^2 + 4)}.$$

The special case a = 0 yields

(2.17)
$$\sum_{k=1}^{\infty} \frac{k}{k^4 + 4} = \frac{3}{8}.$$

An interesting problem is to find a closed form for f given the function h in (2.1) or (2.12). Unfortunately this is not possible in general. Moreover, these equations might have more than one solution: both f(x) = 2x + 1 and f(x) = -x/(x+1) yield $h(x) = -1/2x^2$ in (2.1). The method of undetermined coefficients can sometimes be used to find the function f. For instance, in Example 2.3 we need to solve the functional equation

(2.18)
$$2\left[1+f(x-1)f(x+1)\right] = x^2\left[f(x+1)-f(x-1)\right].$$

A polynomial solution of (2.18) must have degree at most 2 and trying $f(x) = ax^2 + bx + c$ yields the solution f(x) = x.

3. The method of zeros

A different technique for the evaluation of arctangent sums is based on the factorization of the product

(3.1)
$$p_n := \prod_{k=1}^n (a_k + ib_k)$$

with $a_k, b_k \in \mathbb{R}$. The argument of p_n is given by

$$\operatorname{Arg}(p_n) = \sum_{k=1}^n \tan^{-1} \frac{b_k}{a_k}.$$

EXAMPLE 3.1. Let

(3.2)
$$p_n(z) = \prod_{k=1}^n (z - z_k)$$

be a polynomial with real coefficients. Then

(3.3)
$$\operatorname{Arg}(p_n(z)) = \sum_{k=1}^n \tan^{-1} \frac{x - x_k}{y - y_k}.$$

The special case $p_n(z) = z^n - 1$ has roots at $z_k = \cos(2\pi k/n) + i\sin(2\pi k/n)$, so we obtain

(3.4)
$$\operatorname{Arg}(z^{n}-1) = \sum_{k=1}^{n} \tan^{-1} \frac{x - \cos(2\pi k/n)}{y - \sin(2\pi k/n)}$$

up to an integral multiple of π .

EXAMPLE 3.2. The classical factorization

(3.5)
$$\sin \pi z = \pi z \prod_{k=1}^{\infty} \left(1 - \frac{z^2}{k^2} \right)$$

yields the evaluation

(3.6)
$$\sum_{k=1}^{\infty} \tan^{-1} \frac{2xy}{k^2 - x^2 + y^2} = \tan^{-1} \frac{y}{x} - \tan^{-1} \frac{\tanh \pi y}{\tan \pi x}.$$

In particular, x = y yields

(3.7)
$$\sum_{k=1}^{\infty} \tan^{-1} \frac{2x^2}{k^2} = \frac{\pi}{4} - \tan^{-1} \frac{\tanh \pi x}{\tan \pi x},$$

 $x = y = 1/\sqrt{2}$ gives

(3.8)
$$\sum_{k=1}^{\infty} \tan^{-1} \frac{1}{k^2} = \frac{\pi}{4} - \tan^{-1} \frac{\tanh(\pi/\sqrt{2})}{\tan(\pi/\sqrt{2})}$$

(which corresponds to (1.3)), and x = y = 1/2 yields

(3.9)
$$\sum_{k=1}^{\infty} \tan^{-1} \frac{1}{2k^2} = \frac{\pi}{4}.$$

Differentiating (3.7) gives

(3.10)
$$\sum_{k=1}^{\infty} \frac{k^2}{k^4 + 4x^4} = \frac{\pi}{4x} \frac{\sin 2\pi x - \sinh 2\pi x}{\cos 2\pi x - \cosh 2\pi x}$$

In particular, x = 1 yields

(3.11)
$$\sum_{k=1}^{\infty} \frac{k^2}{k^4 + 4} = \frac{\pi}{4} \coth \pi.$$

The identity (3.10) is comparable to Ramanujan's evaluation

(3.12)
$$\sum_{k=1}^{\infty} \frac{k^2}{k^4 + x^2 k^2 + x^4} = \frac{\pi}{2x\sqrt{3}} \frac{\sinh \pi x\sqrt{3} - \sqrt{3}\sin \pi x}{\cosh \pi x\sqrt{3} - \cos \pi x}$$

discussed in [3], Entry 4 of Chapter 14.

Glasser and Klamkin [10] present other examples of this technique.

4. A functional equation

The table of sums and integrals [11] contains a small number of examples of finite sums that involve trigonometric functions of multiple angles. In Section 1.36 we find

(4.1)
$$\sum_{k=1}^{n} 2^{2k} \sin^4 \frac{x}{2^k} = 2^{2n} \sin^2 \frac{x}{2^n} - \sin^2 x,$$

and

(4.2)
$$\sum_{k=1}^{n} \frac{1}{2^{2k}} \sec^2 \frac{x}{2^k} = \csc^2 x - \frac{1}{2^{2n}} \csc^2 \frac{x}{2^n},$$

and Section 1.37 consists entirely of the two sums

(4.3)
$$\sum_{k=0}^{n} \frac{1}{2^k} \tan \frac{x}{2^k} = \frac{1}{2^n} \cot \frac{x}{2^n} - 2 \cot 2x$$

and

(4.4)
$$\sum_{k=0}^{n} \frac{1}{2^{2k}} \tan^2 \frac{x}{2^k} = \frac{2^{2n+2}-1}{3 \cdot 2^{2n-1}} + 4 \cot^2 2x - \frac{1}{2^{2n}} \cot^2 \frac{x}{2^n}.$$

In this section we present a systematic procedure to analyze these sums.

Theorem 4.1. Let

(4.5)
$$F(x) = \sum_{k=1}^{\infty} f(x,k) \quad and \quad G(x) = \sum_{k=1}^{\infty} (-1)^k f(x,k).$$

Suppose $f(x, 2k) = \nu f(\lambda(x), k)$ for some $\nu \in \mathbb{R}$ and a function $\lambda : \mathbb{R} \to \mathbb{R}$. Then

(4.6)
$$F(x) = (2\nu)^n F(\lambda^{[n]}(x)) - \sum_{j=0}^{n-1} (2\nu)^j G(\lambda^{[j]}(x)),$$

where $\lambda^{[n]}$ denotes the composition of λ with itself n times.

PROOF. Observe that

$$F(x) + G(x) = 2\sum_{k=1}^{\infty} f(x, 2k) = 2\nu \sum_{k=1}^{\infty} f(\lambda(x), k) = 2\nu F(\lambda(x)).$$

Repeat this argument to obtain the result.

EXAMPLE 4.1. Let
$$f(x,k) = 1/(x^2 + k^2)$$
, so that $\nu = 1/4$ and $\lambda(x) = x/2$. Since

$$F(x) = \sum_{k=1}^{\infty} \frac{1}{x^2 + k^2} = \frac{\pi x \coth \pi x - 1}{2x^2}$$

and

$$G(x) = \sum_{k=1}^{\infty} \frac{(-1)^k}{x^2 + k^2} = \frac{\pi x \operatorname{csch} \pi x - 1}{2x^2},$$

(4.6) yields, upon letting $n \to \infty$,

(4.7)
$$\sum_{j=0}^{\infty} \frac{x}{\sinh 2^{-j}x} - 2^j = 1 - \frac{x}{\tanh x}.$$

Now replace x by $\ln t$, differentiate with respect to t, and set t = e to produce

(4.8)
$$\sum_{j=0}^{\infty} \frac{2^j - \coth 2^{-j}}{2^j \sinh 2^{-j}} = \frac{1+4e^2 - e^4}{1-2e^2 + e^4}.$$

If we go back to (4.7), replace x by $\ln t$, differentiate with respect to t, set t = ae, differentiate with respect to a, and set a = e, we get

(4.9)
$$\sum_{j=0}^{\infty} \frac{2-2^{2j}+\operatorname{csch}^2 2^{-j}-\operatorname{sech}^2 2^{-j}}{2^{2j}\operatorname{sinh} 2^{1-j}} = \frac{e^{12}-17e^8-17e^4+1}{e^{12}-3e^8+3e^4-1}.$$

COROLLARY 4.1. Let

(4.10)
$$F(x) = \sum_{k=1}^{\infty} f\left(\frac{x}{k}\right) \quad and \quad G(x) = \sum_{k=1}^{\infty} (-1)^k f\left(\frac{x}{k}\right).$$

Then, for any $n \in \mathbb{N}$,

(4.11)
$$F(x) = 2^{-n}F(2^nx) + \sum_{k=1}^n 2^{-k}G(2^kx).$$

In particular, if F is bounded, then

(4.12)
$$F(x) = \sum_{k=1}^{\infty} 2^{-k} G(2^k x)$$

PROOF. The function f(x/k) satisfies the conditions of Theorem 4.1 with $\nu = 1$ and $\lambda(x) = x/2$. Thus

$$F(x) = 2^{n} F(x/2^{n}) - \sum_{j=1}^{n-1} 2^{j} G(x/2^{j}).$$

Now replace x by $x/2^n$ to obtain (4.11). Finally, let $n \to \infty$ to obtain (4.12).

The key to the proof of Theorem 4.1 is the identity $F(x) + G(x) = 2\nu F(\lambda(x))$. We next present an extension of this result.

THEOREM 4.2. Let F, G be functions that satisfy

(4.13)
$$F(x) = r_1 F(m_1 x) + r_2 G(m_2 x)$$

for parameters r_1, r_2, m_1, m_2 . Then

(4.14)
$$r_2 \sum_{k=1}^n r_1^{k-1} G(m_1^{k-1} m_2 x) = F(x) - r_1^n F(m_1^n x).$$

PROOF. Replace x by $m_1 x$ in (4.13) to produce

$$F(m_1x) = r_1F(m_1^2x) + r_2G(m_2m_1x),$$

which, when combined with (4.13), gives

$$F(x) = r_1^2 F(m_1^2 x) + r_1 r_2 G(m_1 m_2 x) + r_2 G(m_2 x)$$

Formula (4.14) follows by induction.

We now present two examples that illustrate Theorem 4.2. These sums appear as entries in Ramanujan's Notebooks.

EXAMPLE 4.2. The identity

(4.15)
$$\cot x = \frac{1}{2}\cot\frac{x}{2} - \frac{1}{2}\tan\frac{x}{2}$$

shows that $F(x) = \cot x$, $G(x) = \tan x$ satisfy (4.13) with $r_1 = 1/2$, $r_2 = -1/2$, and $m_1 = m_2 = 1/2$. We conclude that

(4.16)
$$\sum_{k=1}^{n} 2^{-k} \tan \frac{x}{2^{k}} = \frac{1}{2^{n}} \cot \frac{x}{2^{n}} - \cot x.$$

This is (4.3). It also appears as Entry 24, page 364, of Ramanujan's Third Notebook as described in Berndt [4, page 396]. Similarly, the identity

(4.17)
$$\sin^2(2x) = 4\sin^2 x - 4\sin^4 x$$

yields (4.1). The reader is invited to produce proofs of (4.2) and (4.4) in the style presented here.

21

EXAMPLE 4.3. The identity

$$(4.18) \qquad \qquad \cot x = \cot \frac{x}{2} - \csc x$$

satisfies (4.13) with $F(x) = \cot x$, $G(x) = \csc x$ and parameters $r_1 = 1$, $r_2 = -1$, $m_1 = 1/2$, $m_2 = 1$. We obtain

(4.19)
$$\sum_{k=1}^{n} \csc \frac{x}{2^{k-1}} = \cot \frac{x}{2^n} - \cot x.$$

This appears in the proof of Entry 27 of Ramanujan's Third Notebook in Berndt [4, page 398].

EXAMPLE 4.4. The application of Theorem 4.1 or Corollary 4.1 requires an analytic expression for F and G. One source of such expressions is Jolley [12]. Indeed, entries 578 and 579 are

(4.20)
$$\sum_{k=1}^{\infty} \tan^{-1} \frac{2x^2}{k^2} = \frac{\pi}{4} - \tan^{-1} \frac{\tanh \pi x}{\tan \pi x}$$

and

(4.21)
$$\sum_{k=1}^{\infty} (-1)^{k-1} \tan^{-1} \frac{2x^2}{k^2} = -\frac{\pi}{4} + \tan^{-1} \frac{\sinh \pi x}{\sin \pi x}.$$

These results also appear in [5, page 314]. Applying one step of Proposition 4.1 we conclude that

(4.22)
$$2\tan^{-1}\frac{\tanh x}{\tan x} = \tan^{-1}\frac{\tanh 2x}{\tan 2x} + \tan^{-1}\frac{\sinh 2x}{\sin 2x}.$$

We also obtain

(4.23)
$$\sum_{k=1}^{n} 2^{-k} \tan^{-1} \frac{\sinh 2^k x}{\sin 2^k x} = \tan^{-1} \frac{\tanh x}{\tan x} - 2^{-n} \tan^{-1} \frac{\tanh 2^n x}{\tan 2^n x},$$

and by the boundedness of $\tan^{-1}x$ conclude that

(4.24)
$$\sum_{k=1}^{\infty} 2^{-k} \tan^{-1} \frac{\sinh 2^k x}{\sin 2^k x} = \tan^{-1} \frac{\tanh x}{\tan x}$$

Differentiating (4.23) gives

$$2\sum_{k=1}^{n} \frac{\cos 2^{k}x \sinh 2^{k}x - \cosh 2^{k}x \sin 2^{k}x}{\cos 2^{k+1}x - \cosh 2^{k+1}x}$$
$$= -\frac{\sin 2x - \sinh 2x}{\cos 2x - \cosh 2x} + \frac{\sin 2^{n+1}x - \sinh 2^{n+1}x}{\cos 2^{n+1}x - \cosh 2^{n+1}x}.$$

Letting $n \to \infty$ and using the identity

(4.25)
$$\cos 2^{k+1}x - \cosh 2^{k+1}x = -2\left(\sin^2 2^k x + \sinh^2 2^k x\right)$$

yields

$$\sum_{k=1}^{\infty} \frac{\cosh 2^k x \sin 2^k x - \sinh 2^k x \cos 2^k x}{\sin^2 2^k x + \sinh^2 2^k x} = \frac{\operatorname{sech}^2 x \tan x - \tanh x \operatorname{sec}^2 x}{\tan^2 x + \tanh^2 x} + \operatorname{sign} x.$$

For example, $x = \pi$ gives

(4.26)
$$\sum_{k=1}^{\infty} \operatorname{csch} 2^k \pi = \operatorname{coth} \pi - 1.$$

5. A dynamical system

In this section we describe a dynamical system involving arctangent sums. Define

$$x_n = \tan \sum_{k=1}^n \tan^{-1}k$$
 and $y_n = \tan \sum_{k=1}^n \tan^{-1}\frac{1}{k}$.

Then $x_1 = y_1 = 1$ and

$$x_n = \frac{x_{n-1} + n}{1 - nx_{n-1}}$$
 and $y_n = \frac{ny_{n-1} + 1}{n - y_{n-1}}$

PROPOSITION 5.1. Let $n \in \mathbb{N}$. Then

(5.1)
$$x_n = \begin{cases} -y_n & \text{if } n \text{ is even} \\ 1/y_n & \text{if } n \text{ is odd} \end{cases}$$

that is

(5.2)
$$\tan \sum_{k=1}^{n} \tan^{-1} k = -\tan \sum_{k=1}^{n} \tan^{-1} \frac{1}{k}$$

if n is even and

(5.3)
$$\tan \sum_{k=1}^{n} \tan^{-1}k = \cot g \sum_{k=1}^{n} \tan^{-1}\frac{1}{k}$$

if n is odd.

PROOF. The recurrence formulas for x_n and y_n can be used to prove the result directly. A pure trigonometric proof is presented next. If n is even then

$$\tan \sum_{k=1}^{2m} \tan^{-1}k + \tan \sum_{k=1}^{2m} \tan^{-1}\frac{1}{k} = \tan \sum_{k=1}^{2m} \tan^{-1}k + \tan \sum_{k=1}^{2m} \left(\frac{\pi}{2} - \tan^{-1}k\right)$$
$$= \tan \sum_{k=1}^{2m} \tan^{-1}k + \tan \left(\frac{\pi}{2m} - \sum_{k=1}^{2m} \tan^{-1}k\right)$$
$$= 0.$$

A similar argument holds for n odd.

This dynamical system suggests many interesting questions. We conclude by proposing one of them: Observe that $x_3 = 0$. Does this ever happen again?

23

References

- J. ANGLESIO, Elementary problem 10292, Amer. Math. Monthly 100, (1993), 291. Solution by several authors, Amer. Math. Monthly, 103, (1995), 270-272.
- [2] B. C. BERNDT, Ramanujan's Notebooks, Part I. Springer-Verlag, New York, 1985.
- [3] B. C. BERNDT, Ramanujan's Notebooks, Part II. Springer-Verlag, New York, 1989.
- [4] B. C. BERNDT, Ramanujan's Notebooks, Part IV. Springer-Verlag, New York, 1994.
- [5] T. J. BROMWICH, An introduction to the theory of infinite series, 1926.
- [6] R. J. CHAPMAN, Elementary problem 3375. Amer. Math. Monthly 97, (1990), 239-240.
- [7] G. CHRYSTAL, Algebra, Part II, 2nd. ed., A. and C. Black, London, 1922, pp. 357.
- [8] D. DARLING, Telescoping series of arctangents. Amer. Math. Monthly 103, (1996), 270-272.
- [9] J. W. L. GLAISHER, A theorem in trigonometry, Quart. J. Math. 15, (1878), 151-157.
- [10] M. L. GLASSER, M. S. KLAMKIN, On some inverse tangent summations. Fibonacci Quarterly, 14, (1976), 385-388.
- [11] I. S. GRADSHTEYN, I. M. RYZHIK, Table of Integrals, Series and Products. Sixth Edition, ed. Alan Jeffrey, assoc. ed. D. Zwillinger. Academic Press, 2000.
- [12] L. B. W. JOLLEY, Summation of series, 1961
- [13] S. L. LONEY, *Plane Trigonometry*, Part II, Cambridge University Press, Cambridge, 1893, pp. 206.
- [14] A. MILLER, H. M. SRIVASTAVA, On Glaisher's infinite sums involving the inverse tangent function. Fibonacci Quart., (1992), 290-294.
- [15] A. SARKAR, The sum of arctangents of reciprocal squares. Amer. Math. Monthly, 98, (1990), 652-653.
- [16] N. SCHAUMBERGER, An old arctangent series reappears. The College Math. J. Problem 399. 21, (1990), 253-254.

Received 16 12 2004, revised 07 09 2005

Department of Mathematics,

TULANE UNIVERSITY,

NEW ORLEANS, LA 70118,

USA

E-mail address: vhm@math.tulane.edu