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1. Introdu
tionIn [3℄, Bump and Ng made the remarkable dis
overy that the zeroes ofthe Mellin transform of Hermite fun
tions of even level lie on the 
riti
alline Re(s) = 1=2. Hermite fun
tions are eigenfun
tions of the HamiltonianH = x2 � 14�2 d2dx2 of the quantum me
hani
al harmoni
 os
illator. H maybe given a group theoreti
al interpretation via the Weil representation of^SL2(R), the two fold metaple
ti
 
over of SL2(R), as follows: Let SO2 �SL2 be the subgroup of transformations preserving the form x2 + y2. The
over splits over SO2 and thus we may 
onsider the Weil representationrestri
ted to SO2. By di�erentiation at identity it 
an be shown (Bump,Choi, Kurlberg and Vaaler [2℄) that H(f) = �ff is equivalent to f lying ina one dimensional SO2-invariant subspa
e of L2(R).1



2 Di�erential operators does not make sense p-adi
ally, but the Weil repre-sentation exists for all Qp . We may thus de�ne the p-adi
 Hermite fun
tionsas the set of fun
tions lying in one dimensional SO2-invariant subspa
es.(We need to be 
areful in how to de�ne SO2 over Qp sin
e the stabilizer ofthe quadrati
 form x2+ y2 is not 
ompa
t for all p, see the text for details.)We may relate this to the study of 
lassi
al zeta fun
tions as follows: LetA;A� denote the adeles respe
tively ideles over Q , and let � be an idele 
lass
hara
ter (assumed to be even for simpli
ity of notation.) Let f : A� ! Cbe de�ned as the produ
tf(x) = f1(x1)�Yp fp(xp);where f1(x1) = e��x21 and fp is the 
hara
teristi
 fun
tion on the p-adi
integers at the unrami�ed pla
es. For the rami�ed pla
es we take fp to bethe 
hara
teristi
 fun
tion of the lo
al 
ondu
tor of �. As in Tate [6℄ wehave�(s; �; f) = ZA� f(x)�(x)jxjsd�x = L(s; �)�(s=2)��s=2
(s; �) = �(s; �);where L(s; �) is a Diri
hlet L-series, 
(s; �) is a produ
t of lo
al rami�edfa
tors, and �(s; �) is the \
ompleted" L-fun
tion that satis�es a fun
tionalequation. (In 
lassi
al language the integral representation amounts to ex-pressing �(s; �) as the Mellin transform of a theta fun
tion.)Now, at all the unrami�ed pla
es v, the fv's are examples of Hermitefun
tions. It is thus natural to ask what happens when we repla
e a �nite



3number of fa
tors fv by arbitrary Hermite fun
tions. Sin
e we are modifyingthe Euler produ
t at a �nite number of pla
es, the question 
an be settledby lo
al 
al
ulations. Bump 
onje
tured that the \new" lo
al fa
tors,
�(s; �v; fv) = ZQ�v jxjs�v(x)fv(x) d�xshould satisfy a lo
al Riemann hypothesis, i.e. that their zeroes lie on the
riti
al line Re(s) = 1=2. The 
ase Qv = R is of 
ourse Bump and Ng'sdis
overy, a proof for Qv = Qp , p = 3(4), and � = 1 is due to Bump andHo�stein (unpublished.) For more details on this 
onje
ture, along with ageneralization to the n-dimensional harmoni
 os
illator, see Bump, Choi,Kurlberg and Vaaler [2℄.In this paper we prove the 
onje
ture for lo
al �elds of odd residue 
har-a
teristi
 and we also show why it does not hold for F = C . (Theorems 4and 5.) 2. PreliminariesLet F be a nonar
himedean lo
al �eld of odd 
hara
teristi
. O = OF willdenote the ring of integers in F , P = (�) will be the unique maximal idealin O, and �nally q = jO=P j. We will use Weil's \module normalization" ofthe absolute value, i.e., j�j = 1=q.Let  be an additive 
hara
ter on F with 
ondu
tor Pn. Let � be aunitary multipli
ative 
hara
ter on F� su
h that �(�) = 1 (see lemma 2.)



4We let the level of � be the smallest integer m su
h that �j1+Pm = 1. If�jO� = 1, then we say the level of � is zero.It will be 
onvenient to normalize the additive and multipli
ative Haarmeasures on F and F� so that the Fourier transform with respe
t to  isself dual, and ��(O�) = 1. Sin
e the Fourier transforms maps1Pn ! �(Pn)1O ! �(Pn)�(O)1Pnwe have �(O) = qn=2. With d�x = C dxjxj we see that 1 = RO� d�x impliesC = q1�n=2q � 1 ;sin
e RO� d�x = C RO� dxjxj = C�(O�) = C�(O) q�1q :S(F ) will be the S
hwartz spa
e of F , i.e., the spa
e of 
ompa
tly sup-ported lo
ally 
onstant 
omplex valued fun
tions on F . For any fun
tionor 
hara
ter � on F , let �a(x) = �(ax), and let the \dilation operator"Ta : S(F )! S(F ) be de�ned by Ta(�) = �a: If X is a union of 
osets of Pk,then S(X;Pk) will be the spa
e of fun
tions supported on X and 
onstanton 
osets of Pk.2.1. The lo
al Tate integrals. The zeta fun
tions that we are interestedin are:De�nition 1. Let �(s; �; f) = ZF� jxjs�(x)f(x)d�x:



5Remark: Sometimes we will write �(s; f) for �(s; 1; f).For the reader's 
onvenien
e we re
all Tate's lo
al fun
tional equation(see Tate [6℄ for details).Theorem 1. Let f 2 S(F ), and let  , � be 
hara
ters on F , F� respe
-tively. Then there exists a meromorphi
 fun
tion 
(s), depending only on  and �, su
h that �(s; �; f) = 
(s)�(1� s; ��1; f̂);f̂ being the  -Fourier transform of f .Remark: An easy 
al
ulation with f = 11+Pn shows that 
(s) is a fun
tionof exponential type (and hen
e nowhere vanishing) when � 6= 1.The following lemmas show that the real parts of the zeroes of �(s; �; f) areun
hanged when f is repla
ed by fa, or when � is twisted by an unrami�ed
hara
ter. (Thus we may make the assumption that �(�) = 1 without lossof generality.)Lemma 1. �(s; �; fa) = �(a�1)jaj�s�(s; �; f):Proof: Change of variables. �Lemma 2. The real parts of the zeroes of �(s; �; f) depend only on �jO�.Proof: �(s; �; f) = ZF� f(x)�(x)jxjsd�x



6 =Xk q�ks ZO� f(�kx)�(�kx)d�x =Xk (q�s�(�))k ZO� f(�kx)�(x)d�x:Sin
e j�(�)j = 1, we are done. �2.2. The Weil representation. In this se
tion we develop properties ofthe Weil representation that we will need. For notational 
onvenien
e wemake the followingDe�nition 2. Letsa = 2664a 00 a�13775 ; ut = 26641 t0 13775 ; w = 2664 0 1�1 03775 :Remark: These elements generate SL2(F ).Let ~G be the two fold metaple
ti
 
over of G = SL2(F ), de�ned byKubota's 
o
y
le � : G � G ! f�1g. � is given in terms of the Hilbertsymbol by �(g1; g2) = � X(g1)X(g1g2) ; X(g2)X(g1g2)� ;where X0BB�2664a b
 d37751CCA = 
 if 
 6= 0, d otherwise. Finally, let s : G! ~G be thestandard se
tion su
h that s(g1)s(g2) = �(g1; g2)s(g1g2):De�nition 3. Let 
(t) = jtj1=2 limn!1 RP�n  (tx2)dx:Theorem 2. (Weil [8℄) There exists a representation! : ~G! GL�S(F )�;



7de�ned by �!�s(ut)�f�(x) =  (tx2)f(x);!�s(w)�f = 
(1)f̂ ;and !�s(sa)�f = jaj1=2 
(1)
(a)fa:Remarks: The representation is also known as the os
illator, or metaple
-ti
 representation. Using the Stone-von Neumann theorem one 
an de�ne! in a more natural way, for instan
e see 
hapter 4 in Bump [1℄. Note thatthe usual L2(F ) inner produ
t is ~G-invariant when restri
ted to S(F ).Let SO2(F ) 
orrespond to the quadrati
 form x2+ y2. We are interestedin ! restri
ted to the unique maximal 
ompa
t subgroup of SO2(F ).De�nition 4. Let H = SL2(O) \ SO2(F );Remark: If i 62 F (where i2 = �1), then SO2(F ) is 
ontained in themaximal 
ompa
t subgroup SL2(O) � SL2(F ). However, if i 2 F , then weneed to interse
t with SL2(O) in order for nontrivial H-eigenfun
tions toexist. We will 
all (rightfully so) the �rst 
ase anisotropi
, and the se
ond\split".The restri
tion of ! to H is a true representation (the 
over splits overSL2(O) when the residue 
hara
teristi
 is odd, see Kubota [5℄), and is givenby:



8 (!(2664a �bb a 3775)f)(x)(1) = �(a; b)jbj�1=2
(b)�1 ZF  (1b (ax2 + ay2 � 2xy))f(y) dy;where �(a; b) = �1 if we are in the anisotropi
 
ase, ordP(b) is odd, anda � �1 mod P. Otherwise �(a; b) = 1.Sin
e H is a 
ompa
t abelian group, we know thatS(F ) = M�2Ĥ V�;where Ĥ is the unitary dual of H, andV� = ff 2 S(F ) j !(h)f = �(h)f 8h 2 Hg:Lemma 3. All V�'s are invariant under 
omplex 
onjugation.Proof: Re
alling that 2664a �bb a 3775�1 = 2664 a b�b a3775 and 
(�b) = 
(b)�1 =
(b), we see that !(h) = !(h�1): (We de�ne !(h) by !(h)f = !(h)f .)Hen
e !(h)f = !(h)f = !(h�1)f = �(h�1)f = �(h)f: �Corollary 1. There exists a C -basis of real eigenfun
tions for S(F ).Proof: By lemma 3 we know that both the real and the imaginary partof any eigenfun
tion f is in the same eigenspa
e as f . �



92.3. The Kloosterman de
omposition. In what follows, f will alwaysdenote an H-eigenfun
tion, i.e., !(h)f = �(h)f for some 
hara
ter � 2 Ĥ.We �rst note that any su
h f will be similar to its Fourier transform sin
ew 2 H. We will let � be su
h that(2) �f(x) = f̂(x) = ZF  (2xy)f(y)dy:The following will show that it is enough to study the a
tion of H on the�nite dimensional subspa
es S(O;Pn) for n � 0.First note that Ta intertwines the ! and ! a2 -a
tions of H on S(F ).Moreover, �(s; �; fa) = 0 , �(s; �; f) = 0, so by repla
ing f by f��k for klarge enough, we 
an assume that the 
ondu
tor of  is Pn for n � 0, andthat the support of f is 
ontained in O. Re
alling that supp(f) � O impliesthat f̂ is 
onstant on 
osets of Pn, we see that f 2 S(O;Pn) sin
e f̂ = �f .It is easily 
he
ked that S(O;Pn) is SL2(O)-invariant, and hen
e H-invariant. Moreover, S(O;Pn) breaks up into an H-dire
t sum that will en-able us to indu
t on n. The splitting identi�es S(O;Pn�2) with S(P;Pn�1) �S(O;Pn) via the intertwining mapT��1 : �! ��2 ; S(O;Pn�2)�! �! ; S(O;Pn)�:This motivates the following:De�nition 5. An H-eigenfun
tion f is 
alled a lift if f 2 L = S(P;Pn�1).If f 2 L? � S(O;Pn), it is said to be primitive.



10 3. The range of f ! �(s; v; f)In this se
tion we show that the map f ! �(s; �; f) has at most one-dimensional range when restri
ted to S(O;Pn) \ V�.3.1. The anisotropi
 
ase.Lemma 4. !jH is multipli
ity free when H is anisotropi
.Proof: Apply Howe duality to the redu
tive dual pair U(1)� U(1). �Remark: Howe duality is a theorem for any redu
tive dual pair if theresidue 
hara
teristi
 is odd, see Waldspurger [7℄.3.2. The \split" 
ase. If i 2 F , then !jH has multipli
ities; but on theother hand we 
an 
onjugate H into into a diagonal \torus". This providesenough information about eigenfun
tions to prove that the range is at mostone-dimensional.Let M = 26641=2 ii=2 13775 2 SL2(O). Then M�1HM = H 0, where
H 0 = f2664u 00 u�13775 j u 2 O�g:(M 
an be thought of as a \Cayley transform".) Moreover, the identity!(M�1hM) Æ !(M�1) = !(M�1) Æ !(h)
an be interpreted as meaning that(h!M�1hM;!(M�1)) : (H;S(O;Pn))! (H 0; S(O;Pn))



11is an intertwining operator. (Note that S(O;Pn) is SL2(O)-invariant!)In order to translate the above de
omposition ba
k to the H-model, wewrite M = 26641 �i0 1 37752664 0 1�1 0377526641 i=20 1 37752664�i=2 00 �2=i3775 :Thus, if f = !(M)g, then(3) f(x) =  �i(x2)ZO  (2xy) i=2(y2)g�i=2(y)dy:The following lemma makes it easy to understand !jH0 :Lemma 5. S(O;Pn) �= (n�1Mk=0 S(�kO�;Pn))� S(Pn;Pn)as H 0-modules. Moreover, ea
h summand is isomorphi
 to the regular rep-resentation of O�=1 +Pn�k. (Abusing notation, we let 1 +P0 = O�.)Proof: Clear sin
e(4) !(sa)g = jaj1=2 
(1)
(a)ga: �Corollary 2. If g is an H 0-eigenfun
tion, then so is g � 1O� and g � 1P.Corollary 3. We 
an identify H 0 with O�, and if Pn is the 
ondu
tor of , then ! fa
tors as H ! H=(1+Pn)! GL�S(O;Pn)�: In parti
ular, any
hara
ter of H 0 asso
iated with lifts must be trivial on 1 +Pn�2.



12 For notational 
onvenien
e we de�ne a \zeta operator" Z� by(Z�(f))(s) = �(s; �; f):Lemma 6. If f = !(M)g is primitive, 0 < m < n, and supp(g) � P, thenZ�(f) = 0.Proof: Lemma 23 in the appendix. �Lemma 7. If f 2 V� \ L?, 0 < m < n, and the level of � is smaller thann, then Z�(f) = 0.Proof: Lemma 24 in the appendix. �3.3. Con
lusion. Putting the previous results together we have:Theorem 3. The range of Z� restri
ted to V� \ S(O;Pn) is at most one-dimensional.Proof: The anisotropi
 
ase follows immediately from lemma 4. In the\split" 
ase we argue as follows: If m � n, it is easy to see that �(s; �; f)is 
onstant; assume that m < n. Write f as f = flift + fprim, where ea
hterm belongs to L;L? respe
tively. If the level of � is smaller than n, thenZ�(fprim) = 0 by lemma 7. We 
an thus indu
t on n; the only thing to
he
k is the 
ase when the level of � is n. In this 
ase we must have flift = 0(
orollary 3), and we 
an assume that g 
orresponding to f via equation 3is supported on O� by 
orollary 2 and lemma 23. Now, the H 0-a
tion on



13S(O�;Pn) is just the regular representation (lemma 5), hen
e ea
h 
hara
tero

urs with multipli
ity one, so done. �Lemma 8. There exists C -basis for V�\S(O;Pn), 
onsisting of real-valuedfun
tions, su
h that at most one basis element has nonzero image under Z� .Proof: Use theorem 3 together with 
orollary 1. �4. Properties of primitivesRemark: The 
ase when � is trivial has a di�erent 
avor from the non-trivial 
ase; in the former the zeta fun
tion will be a rational fun
tion ofq�s, whereas in the latter it will be a polynomial.4.1. The 
ase � = 1.Lemma 9. If f is primitive, then �(s; f) satis�es the LRH.Proof: See lemma 21 in the appendix.4.2. The 
ase � 6= 1. It is easy to see that m � n (m being the level of �)implies that the zeta fun
tion is 
onstant, so we will make the assumptionthat m < n.Lemma 10. If f 2 L?, then all the zeroes of �(s; �; f) lie on a verti
al line.Proof: By lemma 22 in the appendix we know that �(s; �; f) is of the formA+Bq�(n�m)s for some 
onstants A;B. �Remark: In view of lemma 22 it is worth mentioning that jA=Bj is known,so it possible to prove lemma 10 by a dire
t 
al
ulation as an alternative.



14Lemma 11. If f 2 L?, then �(s; �; f) satis�es LRH.Proof: By lemma 8 we 
an assume that f � f , hen
e�(1� s; �; f) = �(1� s; �; f) � �(1� s; �; f):By the fun
tional equation we have�(s; v; f) = 
(s)�(1� s; ��1; f̂) = �
(s)�(1 � s; �; f) � �
(s)�(1 � s; �; f):Sin
e 
(s) is nowhere vanishing, we are done by lemma 10. �4.3. Con
lusion.Theorem 4. The lo
al Riemann hypothesis is true for nonar
himedean lo
al�elds of odd residue 
hara
teristi
.Proof: Write f = flift + fprim. If flift is nonzero, then the level of � issmaller than n, hen
e Z�(f) = Z�(flift) by lemma 7, so done by indu
tion.If f is a primitive, then we are done by lemma 11. �5. The 
omplex 
aseLet  (z) = e2�iRe(z) be an additive 
hara
ter on C . As in se
tion 3.2 wewill 
onjugate H into a diagonal \torus" H 0, where the !-a
tion is easier tounderstand. We will show that the LRH does not hold over C by provingthat the dimension of the range of Z1jV1 is more than one-dimensional.(Linear 
ombinations of two independent fun
tions 
an be made to havezeroes anywhere.)



15De�nition 6. Let Se(R) = fh 2 S(R) j h(x) = h(�x)g;i.e., the spa
e of even S
hwartz fun
tions.De�nition 7. With q(z; w) a quadrati
 form, letkq(r;R) = Z 2�0 Z 2�0  �q(re2�i�; Re2�i�)�d�d�:Furthermore, let Kq : S(R+)! S(R+) be de�ned by(5) �Kq(h)�(r) = Z 10 kq(r;R)Rh(R) dR:De�nition 8. Let �ZR(h)�(s) = R10 xs�1h(x)dx, i.e., the real Mellin trans-form of h.Lemma 12.fg j f = !(M)g 2 V1 g = fg j g(z) = h(jzj); where h 2 Se(R) g:Proof: Use equation 4 and the fa
t that 
 is 
onstant on C � . �Lemma 13. Z1(V1) = ZR�Kq(Se(R))�;where q(z; w) = �iz2 + 2zw + i=2w2.Proof: Let f = !(M)g, g(z) = p2h(j2zj), and h 2 Se(R). We have�(s; f) = ZC f(z)jzjsd�z = Z 10 � Z 2�0 f(re2�i�)d� �rs dr:



16The last fa
tor in the Bruhat de
omposition of M a
ts by sending g !ji=2j1=2gi=2, hen
ef(z) = ZC  �q(z; w)�h(jwj)dw = Z 10 Z 2�0  �q(z;Re2�i�)�d�h(R)RdR:Hen
e it is enough to show thatZ 2�0 Z 10 Z 2�0  �q(re2�i�; Re2�i�)�d�h(R)R dRd�= Z 10 Z 2�0 Z 2�0  �q(re2�i�; Re2�i�)�d� d� h(R)RdR;but h is of rapid de
ay, so 
hanging order of integration is justi�ed. �Corollary 4. The dimensions of the range of Z1 and the range of Kq arethe same.Proof: The real Mellin transform restri
ted to Se(R) is invertible.Lemma 14. Let q(z; w) = az2 + bzw+ 
w2. Then Kq has one-dimensionalrange only if b = 0.We 
an assume that a = 
 = 1 sin
e a diagonal 
hange of variables doesnot 
hange the dimension of the range. (We might perturb b, but we willnot 
hange whether b = 0 or not.)It is an easy 
onsequen
e of the Riesz representation theorem that an in-tegral operator of the form (5) has one-dimensional range only if kq(r;R) =kq;1(r)kq;2(R). (We need to be a little bit 
areful sin
e kq(r;R)R is un-bounded; 
onsider trun
ations h! R t0 kq(r;R)Rh(R) dR to get the produ
t



17representation for r 2 [0; t℄. Then let t ! 1, and note that the produ
trepresentation on any interval is unique if it exists. Also, Se(R) is L1-densein C([0; t℄) 8t, so we do not have to worry about the \
atness" of h at zero.)Anyhow, by lemma 15 we know that kq is not a produ
t. �Lemma 15. Let q(z; w) = az2 + bzw + 
w2, with a; b; 
 6= 0. Then kq(r;R)
an not be written as a produ
t of two fun
tions.Proof: Again we may assume that a = 
 = 1. If kq(r;R) = k1(r)k2(R),then we must have0 = kq(r;R)kq(0; 0) � kq(0; R)kq(r; 0)= (2�)2 Z 2�0 Z 2�0 eir2 
os(2�)+iR2 
os(2�)�eijbjrR 
os(�+�+arg(b)) � 1�d�d�:(6)
However, when r;R are both small, the �rst fa
tor is very 
lose to 1, andthe se
ond fa
tor has negative real part if b 6= 0, integrating it we see that(6) has negative real part for small r;R. (The argument 
an be made formalby 
onsidering Taylor expansions of ex; 
os(x), and sin(x).) �Putting it all together we have:Theorem 5. If �; � are trivial, then the LRH does not hold for F = C .6. AppendixHere we show that primitives satisfy the lo
al Riemann hypothesis. Wewill assume that 0 < m < n, m being the level of �, and that �(�) = 1. (Seelemma 2.)



186.1. Gauss sums.De�nition 9. Let G( ; �) = ZO� �(x) (x)d�xbe the integral form of a Gauss sum.Lemma 16. G( u; �) = �(u�1)G( ; �) for u 2 O�.Proof: Change of variables. �Lemma 17. Let Pk be the 
ondu
tor of an additive 
hara
ter �. Let m > 0be the level of �, where � is a 
hara
ter on O�. Then jG(�; �)j = q1�k=2q�1 ifk = m, and zero otherwise.Proof: If k > m,ZO� �(x)�(x)d�x = Xa2O�=(1+Pm) �(a)Za(1+Pm) �(x)d�x = 0sin
e Ra+Pk �(x)dx = 0, and d�x = Cdx on O�. The 
ase k < m is handledsimilarly. If m = k, thenjG(�; �)j2 = ZO� ZO� �(xy�1)�(x� y)d�xd�y= ZO� ZO� �(t)�(y(t� 1))d�yd�t= C ZO� �(t)ZO �t�1(y)dy d�t� C ZO� ZP �(t)�(y(t� 1))dy d�t:



19Now, in the �rst integral, only t 2 1+Pk 
ontributes and hen
e its absolutevalue equals C��(1 +Pk)�(O) = q1�n=2q � 1 1(q � 1)qk�1 qn=2:The se
ond integral 
an be rewritten asZP �(�y)ZO� v(t)�y(t)d�t dy;and the inner integral vanishes by the �rst part of the lemma. Taking squareroots we get jG(�; �)j = q1�k=2q � 1 : �Lemma 18. If a 2 O� and 0 < k < n, then Ra+Pk  (x2)dx = 0:Proof: Za+Pk  (x2)dx = Xai2(a+Pk)=Pn�1 Zai+Pn�1  (x2):ButZai+Pn�1  (x2) =  (a2i )ZPn�1  (2aix+ x2) =  (a2i )ZPn�1  (2aix) = 0;sin
e  2ai has 
ondu
tor Pn, and x 2 Pn�1 ) x2 2 Pn as n � 2. �Remark: This lemma does not hold for the even residue 
hara
teristi

ase.



206.2. Properties of primitives. Remarks: The lemmas of this se
tionholds for both the \split" and the anisotropi
 
ase. It should also be notedthat the 
ru
ial property of the primitives is that they are determined bytheir values on O� (see next lemma).Lemma 19. If f is primitive and y 2 P , then�f(y) = ZO�  (2xy)f(x)dx:Proof: First we note thatf 2 L? , Za+Pn�1 f(x)dx = 0 8a 2 P:Now,ZO  (2xy)f(x)dx = ZO� f(x) (2xy)dx + Xa2P=Pn�1 Za+Pn�1  (2xy)f(x)dx:Sin
e  2y is 
onstant on 
osets of P n�1, we 
an use f 2 L? to 
on
lude thatall but the �rst terms in the sum vanish. �Corollary 5. �f(0) = RO� f(x)dx for primitive f .Lemma 20. If f is primitive, then�(s; f) = Cf(0)(�� qn=2�1�(n�1)s + C�1 q�ns1� q�s ):Proof:�(s; f) = ZO f(x)jxjsd�x = n�1Xk=0 q�ks ZP k�P k�1 f(x)d�x+ f(0)ZPn jxjsd�x:



21Sin
e f 2 L?, all terms ex
ept k = 0; n� 1 and the last one vanishes. The�rst term is equal to C�f(0). The se
ond term equals �Cf(0)qn=2�1�(n�1)s;sin
e �(P n) = q�n=2 andZPn�1�Pn f(x)d�x = Cqn�1 ZPn�1�Pn f(x)dx= Cqn�1(ZPn�1 �ZPn) = 0� Cqn�1 ZPn f(x)dx = �f(0)Cqn�1�(P n):Finally, the third term equals f(0) RPn jxjsd�x = f(0) q�ns1�q�s : �Lemma 21. If f is primitive, then �(s; f) satis�es LRH.Proof: Put x = q�s and y = q1=2x. Sin
e C = q1�n=2q�1 , we see that �(s; f)vanishes only if f(0) = 0 or1 = j�j = jC�1 q�ns1� q�s � qn=2�1�(n�1)sj= j(q � 1)qn=2�1q�ns � qn=2�1�(n�1)s(1� q�s)1� q�s j= jqn=2xn � qn=2�1xn � (xn�1qn=2�1 � xnqn=2�1)1� x j= jqn=2xn � xn�1qn=2�11� x j = jyn�1(y � q�1=2)1� yq�1=2 j:Now, both y ! y�q�1=21�yq�1=2 and y ! yn�1 preserve the interior, boundary andexterior of the unit dis
, and so does their produ
t. Therefore jyj = 1, whi
himplies that Re(s) = 1=2. �Lemma 22. Let f be primitive, and let n > m > 0 be the level of �. Then�(s; �; f) = ZO� f(x)�(x)d�x+ ZO� f(x)�(x�1)d�xG( 2�n�m ; �)�C q�(n�m)s:



22 Proof:�(s; �; f) = ZO� �(x)f(x)d�x+Xk>0 q�ks ZO� f(�kx)�(x)d�x:Sin
e f is 
onstant on P n and � 6= 1, we see that the terms for whi
h k � nvanish. Furthermore,�ZO� f(�kx)�(x)d�x = ZO� ZO� �(x) (2�kxy)f(y)dy d�x= ZO� G( 2�ky; �)f(y)dy = ZO� �(y�1)G( 2�k ; �)f(y)dy:Lemma 17 gives that the only non-vanishing term is when n� k = m, i.e.,k = n�m. Thus�(s; �; f) = ZO� �(x)f(x)d�x + q�(n�m)s� ZO� �(y�1)f(y)G( 2�n�m ; �)dy= ZO� f(x)�(x)d�x+ ZO� f(x)�(x�1)d�xG( 2�n�m ; �)�C q�(n�m)s: �Corollary 6. If f is primitive, � 6= 1, andZO� f(x)�(x)d�x = ZO� f(x)�(x�1)d�x = 0;then Z�(f) = 0.6.3. Properties of primitives, \split" 
ase.Lemma 23. Let f = !(M)g be primitive. If g is supported on P and0 < m < n, then Z�(f) = 0.



23Proof: f(x) =  i=2(x2)ZP  (2xy) �i(y2)g�i=2(y)dyand thereforeZO� f(x)�(x)d�x = ZO� ZP  i=2(x2) (2xy) �i(y2)g�i=2(y)�(x)dy dx:Now,ZO� �(x) i=2(x2) (2xy)dx = ZO� �(x) i=2�(x+ 2y=i)2 � (2y=i)2�dx;andZO� �(x) i=2�(x+ 2y=i)2�dx = Xa2O�=(1+Pn�1) �(a)Za+2y=i+Pn�1  i=2(x2)dx:But Ra+2y=i+Pn�1  i=2(x2)dx = 0 by lemma 18 (2y=i 2 P ). The same holdsfor �, so we are done by 
orollary 6. �Lemma 24. If f 2 V� \ L?, 0 < m < n, and the level of � is smaller thann, then Z�(f) = 0.Proof: By lemma 23 and 
orollary 2 we 
an assume that supp(g) � O�.As in the previous lemma, it is enough to show that RO� f(x)�(x)d�x = 0.We have g�i=2(x) = 
(x)�(x) by equation 3. Now, 
(a2b) = 
(b) and hen
e
 is 
onstant of 
osets of squares, i.e., it is 
onstant on (1+P )-
osets. Thusg�i=2 will be 
onstant on 
osets of 1 + P n�1. Hen
ef(x) =  i=2(x2)ZO�  (2xy) �i(y2)g�i=2(y)dy



24=  i=2(x2) �i�� (ix)2� Xa2O�=1+Pn�1 g�i=2(a)Za+Pn�1  �i((y + ix)2)dy:By lemma 18, we see that the only non-vanishing integrals 
ome from a 2(�ix+ P )=(1 + P n�1), and will be of the formZb�ix+Pn�1  �i((y + ix)2)dy = Zb+Pn�1  �i(z2)dz;where b 2 P=P n�1, the point being that those terms do not depend on x.Thus f will be a linear 
ombination of terms of the form i=2(x2)g�i=2(b� ix) �i(x2);where b 2 P=P n�1. Therefore it is enough to show thatZO�  ((i=2 � i)x2)g�i=2(b� ix)�(x)d�x = 0 8 b 2 P=P n�1:Again, we break up the integral into 
osets of 1+P n�1, sin
e g�i=2(b�ix)�(x)is 
onstant on 1+P n�1-
osets. We 
an now apply lemma 18 sin
e i=2� i =�i=2 2 O�. Referen
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