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PROBABILITY LAWS RELATED TO THE JACOBI THETA AND
RIEMANN ZETA FUNCTIONS, AND BROWNIAN EXCURSIONS

PHILIPPE BIANE, JIM PITMAN, AND MARC YOR

Abstract. This paper reviews known results which connect Riemann’s in-
tegral representations of his zeta function, involving Jacobi’s theta function
and its derivatives, to some particular probability laws governing sums of in-
dependent exponential variables. These laws are related to one-dimensional
Brownian motion and to higher dimensional Bessel processes. We present
some characterizations of these probability laws, and some approximations of
Riemann’s zeta function which are related to these laws.
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1. Introduction

In his fundamental paper [81], Riemann showed that the Riemann zeta function,
initially defined by the series

ζ(s) :=
∞∑
n=1

n−s (<s > 1)(1.1)

admits a meromorphic continuation to the entire complex plane, with only a simple
pole at 1, and that the function

ξ(s) := 1
2s(s− 1)π−s/2Γ(1

2s)ζ(s) (<s > 1)(1.2)

is the restriction to (<s > 1) of a unique entire analytic function ξ, which satisfies
the functional equation

ξ(s) = ξ(1− s)(1.3)

for all complex s. These basic properties of ζ and ξ follow from a representation
of 2ξ as the Mellin transform of a function involving derivatives of Jacobi’s theta
function. This function turns out to be the density of a probability distribution on
the real line, which has deep and intriguing connections with the theory of Brownian
motion.

This distribution first appears in the probabilistic literature in the 1950’s in the
work of Feller [31], Gnedenko [33], and Tákacs [90], who derived it as the asymptotic
distribution as n → ∞ of the range of a simple one-dimensional random walk
conditioned to return to its origin after 2n steps, and found formula (1.5) below
for s = 1, 2, · · · . Combined with the approximation of random walks by Brownian
motion, justified by Donsker’s theorem [11], [26], [80], the random walk asymptotics
imply that if

Y :=

√
2
π

(
max

0≤u≤1
bu − min

0≤u≤1
bu

)
(1.4)

where (bu, 0 ≤ u ≤ 1) is the standard Brownian bridge derived by conditioning a
one-dimensional Brownian motion (Bu, 0 ≤ u ≤ 1) on B0 = B1 = 0, then

E(Y s) = 2ξ(s) (s ∈ C)(1.5)

where E is the expectation operator. Many other constructions of random variables
with the same distribution as Y have since been discovered, involving functionals
of the path of a Brownian motion or Brownian bridge in Rd for d = 1, 2, 3 or 4.

Our main purpose in this paper is to review this circle of ideas, with emphasis on
the probabilistic interpretations such as (1.4)-(1.5) of various functions which play
an important role in analytic number theory. For the most part this is a survey
of known results, but the result of Section 5 may be new. As general background
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references we mention [40], [66], [83], [91] for analytic number theory related to the
Riemann zeta function, and [11], [26], [80] for probability and stochastic processes.

Section 2 reviews the classical analysis underlying (1.5) and offers different ana-
lytic characterizations of the probability distribution of Y . We also point out how
Li’s criterion [59] for the Riemann Hypothesis can be expressed in terms of the
sequence of cumulants of log(1/Y ). Section 3 presents various formulae related to
the distributions of the random variables Sh and Ch defined by

Sh :=
2
π2

∞∑
n=1

Γh,n
n2

and Ch :=
2
π2

∞∑
n=1

Γh,n
(n− 1

2 )2
,(1.6)

for independent random variables Γh,n with the gamma(h) density

P (Γh,n ∈ dx)/dx = Γ(h)−1xh−1e−x (h > 0, x > 0).(1.7)

We use the notation S for sinh, C for cosh, as a mnemonic for the Laplace transforms

E
[
e−λSh

]
=

( √
2λ

sinh
√

2λ

)h
and E[e−λCh ] =

(
1

cosh
√

2λ

)h
.(1.8)

We were motivated to study the laws of Sh and Ch both by the connection between
these laws and the classical functions of analytic number theory and by the repeated
appearances of these laws in the study of Brownian motion, which we recall in
Section 4. To illustrate, the law of Y featured in (1.4) and (1.5) is characterized by
the equality in distribution

Y
d=
(π

2
S2

) 1
2
.(1.9)

As we discuss in Section 4, Brownian paths possess a number of distributional sym-
metries, which explain some of the remarkable coincidences in distribution implied
by the repeated appearances of the laws of Sh and Ch for various h. See also [75]
for further study of these laws. Section 5 shows how one of the probabilistic results
of Section 3 leads us to an approximation of the zeta function, valid in the entire
complex plane, which is similar to an approximation obtained by Sondow [88]. We
conclude in Section 6 with some consideration of the Hurwitz zeta function and
Dirichlet L-functions, and some references to other work relating the Riemann zeta
function to probability theory.

2. Probabilistic interpretations of some

classical analytic formulae

2.1. Some classical analysis. Let us start with Jacobi’s theta function identity

1√
πt

∞∑
n=−∞

e−(n+x)2/t =
∞∑

n=−∞
cos(2nπx) e−n

2π2t (x ∈ R, t > 0)(2.1)

which is a well known instance of the Poisson summation formula [6]. This identity
equates two different expressions for pt/2(0, x), where pt(0, x) is the fundamental
solution of the heat equation on a circle identified with [0, 1], with initial condition
δ0, the delta function at zero. In probabilistic terms, pt(0, x) is the probability
density at x ∈ [0, 1] of the position of a Brownian motion on the circle started at
0 at time 0 and run for time t. The left hand expression is obtained by wrapping
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the Gaussian solution on the line, while the right hand expression is obtained by
Fourier analysis. In particular, (2.1) for x = 0 can be written

√
t θ(t) = θ(t−1) (t > 0)(2.2)

where θ is the Jacobi theta function

θ(t) :=
∞∑

n=−∞
exp(−n2πt) (t > 0).(2.3)

For the function ξ defined by (1.2), Riemann obtained the integral representation

4ξ(s)
s(s− 1)

=
∫ ∞

0

t
s
2−1(θ(t) − 1)dt (<s > 1)(2.4)

by switching the order of summation and integration and using

Γ(s) =
∫ ∞

0

xs−1e−x dx (<s > 0).(2.5)

He then deduced his functional equation ξ(s) = ξ(1 − s) from (2.4) and Jacobi’s
functional equation (2.2). Following the notation of Edwards [28, §10.3], let

G(y) := θ(y2) =
∞∑

n=−∞
exp(−πn2y2),(2.6)

so Jacobi’s functional equation (2.2) acquires the simpler form

yG(y) = G(y−1) (y > 0).(2.7)

The function

H(y) :=
d

dy

[
y2 d

dy
G(y)

]
= 2yG′(y) + y2G′′(y),(2.8)

that is

H(y) = 4y2
∞∑
n=1

(2π2n4y2 − 3πn2)e−πn
2y2
,(2.9)

satisfies the same functional equation as G:

yH(y) = H(y−1) (y > 0).(2.10)

As indicated by Riemann, this allows (2.4) to be transformed by integration by
parts for <s > 1 to yield

2ξ(s) =
∫ ∞

0

ys−1H(y)dy.(2.11)

It follows immediately by analytic continuation that (2.11) serves to define an
entire function ξ(s) which satisfies Riemann’s functional equation ξ(s) = ξ(1 − s)
for all complex s. Conversely, the functional equation (2.10) for H is recovered
from Riemann’s functional equation for ξ by uniqueness of Mellin transforms. The
representation of ξ as a Mellin transform was used by Hardy to prove that an
infinity of zeros of ζ lie on the critical line (<s = 1

2 ). It is also essential in the work
of Pólya [78] and Newman [62], [63] on the Riemann hypothesis.
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2.2. Probabilistic interpretation of 2ξ(s). As observed by Chung [18] and New-
man [62], H(y) > 0 for all y > 0 (obviously for y ≥ 1, hence too for y < 1 by (2.10)).
By (1.2), (1.3) and ζ(s) ∼ (s− 1)−1 as s→ 1,

2ξ(0) = 2ξ(1) = 1,

so formula (2.11) for s = 0 and s = 1 implies∫ ∞
0

y−1H(y)dy =
∫ ∞

0

H(y)dy = 1.

That is to say, the function y−1H(y) is the density function of a probability distri-
bution on (0,∞) with mean 1. Note that the functional equation (2.10) for H can
be expressed as follows in terms of a random variable Y with this distribution: for
every non-negative measurable function g

E[g(1/Y )] = E[Y g(Y )].(2.12)

The distribution of 1/Y is therefore identical to the size-biased distribution derived
from Y . See Smith-Diaconis [87] for further interpretations of this relation. The
next proposition, which follows from the preceding discussion and formulae tabu-
lated in Section 3, gathers different characterizations of a random variable Y with
this density. Here Y is assumed to be defined on some probability space (Ω,F , P ),
with expectation operator E.

Proposition 2.1 ([18], [81]). For a non-negative random variable Y , each of the
following conditions, (i)-(iv), is equivalent to Y having density y−1H(y) for y > 0:
(i)

E(Y s) = 2ξ(s) (s ∈ C);(2.13)

(ii) for y > 0

P (Y ≤ y) = G(y) + yG′(y) = −y−2G′(y−1),(2.14)

that is

P (Y ≤ y) =
∞∑

n=−∞
(1− 2πn2y2)e−πn

2y2
= 4πy−3

∞∑
n=1

n2e−πn
2/y2

;(2.15)

(iii) with S2 defined by (1.6)

Y
d=
√

π
2S2;(2.16)

(iv) for λ > 0

E
[
e−λY

2
]

=

( √
πλ

sinh
√
πλ

)2

.(2.17)

As discussed further in Sections 1 and 4.1, the first probabilistic interpretations
of Y defined by (2.14) were in terms of the asymptotic behaviour of random walks.
Rényi and Szekeres [79] encountered the distribution of

√
π/2Y as the limit dis-

tribution of Hn/
√

4n as n → ∞, where Hn is the maximum height above the
root of a random tree with uniform distribution on the set of nn−1 rooted trees
labeled by a set of n elements. They noted the equivalence of (2.15) with (2.13)
for s > 1. By the previous discussion, this equivalence and the extension of (2.13)
to all s ∈ C should be attributed to Riemann [81]. Aldous [1] explained why the
asymptotic distribution of Hn/

√
4n is identical to the distribution of the maximum
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of a standard Brownian excursion, as defined below (4.10). This distribution had
been previously identified by Chung [18] using (2.15) and (2.17). See (3.4) below
regarding (2.16). The connection between results for Brownian excursions and the
functional equation for Riemann’s ξ function was made in Biane-Yor [10].

2.3. Li’s criterion for the Riemann Hypothesis. Li [59] showed that the Rie-
mann hypothesis

ξ(ρ) = 0 ⇒ <ρ = 1
2(2.18)

is equivalent to the sequence of inequalities

λn > 0 for n = 1, 2, . . .(2.19)

where

λn :=
1

(n− 1)!
dn

dsn
(
sn−1 log ξ(s)

)∣∣
s=1

=
∑
ρ

[
1−

(
1− 1

ρ

)n]
.(2.20)

Here
∑
ρ is the limit as T → ∞ of a sum over the zeros ρ of ξ with |ρ| ≤ T , with

repetition of zeros by multiplicity, and the second equality in (2.20) follows from
the classical formula [22]

2ξ(s) =
∏
ρ

(
1− s

ρ

)
where the product is over all zeros ρ of ξ with ρ and 1−ρ paired together. Bombieri
and Lagarias [13] remarked that Li’s criterion (2.19) is closely connected to A. Weil’s
explicit formulae.

By an elementary binomial expansion

λn = n

n−1∑
i=0

(
n− 1
i

)
kn−i

(n− i)!(2.21)

where

kn :=
dn

dsn
(log ξ(s))|s=1 .(2.22)

We observe that kn is the nth cumulant of the random variable L := log(1/Y )
for Y satisfying the conditions of Proposition 2.1. This follows from the classical
definition of cumulants [35], using the consequence of E(Y 1−s) = ξ(1 − s) = ξ(s)
and (2.22) that

logE[e(s−1)L] = logE[Y 1−s] = log[2ξ(s)] =
∞∑
n=1

kn
(s− 1)n

n!
.(2.23)

The cumulants kn are related to the moments

µn := E(Ln) =
∫ ∞

0

(− log y)ny−1H(y)dy

by the general relation

µn =
n−1∑
i=0

(
n− 1
i

)
µikn−i.(2.24)

We note that k1 and k2 are positive, because

k1 = µ1 = −E[log(Y )] > − log(E[Y ]) = 0
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by Jensen’s inequality, and k2 = µ2 − µ2
1 is the variance of L. Hence λ1 and λ2 are

positive by (2.21). As indicated in [13, p. 286], the λn can be explicitly expressed
in terms of ζ(j) for j = 2, 3, . . . and the Stieltjes constants defined by the Laurent
expansion of ζ(1 + s). Approximate values of the first few λn and kn are shown
in the following table, which was computed using Mathematica for power series
manipulation and numerical evaluation of the Stieltjes constants and ζ(j). The
values of λn agree with those obtained independently by L. Pharamond, a student
of J. Oesterlé, using Maple instead of Mathematica.

n λn kn
1 0.0230957 0.0230957
2 0.0923457 0.0461543
3 0.207639 −0.000222316
4 0.36879 −0.0000441763
5 0.575543 0.0000171622
6 0.827566 0.0000337724

We learned from J. Oesterlé (private communication) that λn ≥ 0 if every zero
ρ of ξ with |=ρ| <

√
n has <ρ = 1

2 . This is known to be true [94] for n ≤
2.975 . . .× 1017. See also Odlyzko [65] for a recent review of ongoing computations
of zeros of ξ.

3. Two infinitely divisible families

This section presents an array of results regarding the probability laws on (0,∞)
of the random variables Sh and Ch defined by (1.6), with special emphasis on results
for h = 1 and h = 2, which are summarized by Table 1. Each column of the table
presents features of the law of one of the four sums Σ = S1, S2, C1 or C2. Those
in the S2 column can be read from Proposition 2.1 and (2.12), while the formulae
in other columns provide analogous results for S1, C1 and C2 instead of S2. While
the Mellin transforms of S1, S2 and C2 all involve the entire function ξ associated
with the Riemann zeta function, the Mellin transform of C1 involves instead the
Dirichlet L-function associated with the quadratic character modulo 4, that is the
entire function defined by

Lχ4(s) :=
∞∑
n=1

(−1)n−1

(2n− 1)s
(<s > 0).(3.1)

We now discuss the entries of Table 1 row by row.

3.1. Series representations and Laplace transforms. The first row represents
each Σ in terms of independent random variables εn and ε̂n, n = 1, 2, . . . with the
gamma(1) or standard exponential distribution P (εn ≥ x) = e−x, x ≥ 0. So in (1.6)
we have taken Γ1,n = εn and Γ2,n = εn + ε̂n.

Recall that the distribution of the gamma(h) variables Γh,n is characterized by
the Laplace transform

E[exp(−λΓh,n)] = (1 + λ)−h.(3.2)

As pointed out in [19], [97], Euler’s formulae

sinh z = z
∞∏
n=1

(
1 +

z2

n2π2

)
and cosh z =

∞∏
n=1

(
1 +

z2

(n− 1
2 )2π2

)
(3.3)
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Table 1

Σ S1 :=
2

π2

∞∑
n=1

εn
n2

S2 :=
2

π2

∞∑
n=1

εn + ε̂n
n2

E[e−λΣ]

√
2λ

sinh
√

2λ

( √
2λ

sinh
√

2λ

)2

Lévy density ρS1(x) =
1

x

∞∑
n=1

e−π
2n2x/2 ρS2(x) = 2ρS1(x)

f(x) :=
d

dx
P (Σ ≤ x)

d

dx

∞∑
n=−∞

(−1)ne−n
2π2x/2 d

dx

∞∑
n=−∞

(1− n2π2x)e−n
2π2x/2

reciprocal relations fS1(x) =

(
2

πx3

)1/2

fC2

(
4

π2x

)
fS2(x) =

(
2

πx

)5/2

fS2

(
4

π2x

)

E

[
g

(
4

π2Σ

)] √
π

2
E
[
(C2)−1/2g(C2)

] √
π

2
E
[
(S2)1/2g(S2)

]

E[Σs]

(
21−2s − 1

1− 2s

)(
2

π

)s
2ξ(2s)

(
2

π

)s
2ξ(2s)

E[Σn]
n!

(2n)!
(23n − 2n+1)(−1)n+1B2n

n!

(2n)!
(2n− 1)23n(−1)n+1B2n

yield the expressions (1.8) for the Laplace transforms of Sh and Ch, as displayed in
the second row of Table 1 for h = 1 and 2. For instance, for Sh := 2

π2

∑∞
n=1

Γh,n
n2

we can compute for <λ > 0

E
[
e−λSh

]
= E

[ ∞∏
n=1

exp
(
−2λΓh,n

n2π2

)]
=
∞∏
n=1

(
1 +

2λ
n2π2

)−h
=

( √
2λ

sinh
√

2λ

)h
.

(3.4)

3.2. Lévy densities. A probability distribution F on the line is called infinitely
divisible if for each n there exist independent random variables Tn,1, . . . , Tn,n with
the same distribution such that

∑n
i=1 Tn,i has distribution F . According to the

Lévy-Khintchine representation, a distribution F concentrated on [0,∞) is infinitely
divisible if and only if its Laplace transform ϕ(λ) :=

∫∞
0 e−λtF (dt) admits the
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Table 1 continued

C1 :=
2

π2

∞∑
n=1

εn

(n− 1
2
)2

C2 :=
2

π2

∞∑
n=1

εn + ε̂n

(n− 1
2
)2

1

cosh
√

2λ

(
1

cosh
√

2λ

)2

ρC1(x) =
1

x

∞∑
n=1

e−π
2(n−1/2)2x/2 ρC2(x) = 2ρC1(x)

π

∞∑
n=0

(−1)n(n+ 1
2
)e−(n+ 1

2 )2π2x/2 1

2

∞∑
n=−∞

(
(n+ 1

2
)2π2x− 1

)
e−(n+ 1

2 )2π2x/2

fC1(x) =

(
2

πx

)3/2

fC1

(
4

π2x

)
fC2(x) =

2

π

(
2

πx

)3/2

fS1

(
4

π2x

)

√
2

π
E
[
(C1)−1/2g(C1)

] (
2

π

)3/2

E
[
(S1)−1/2g(S1)

]

Γ(s+ 1)2s+1

(
2

π

)2s+1

Lχ4(2s+ 1)
(22(s+1) − 1)

s+ 1

(
2

π

)s+1

ξ(2(s+ 1))

n!

(2n)!
2n(−1)nE2n

(22n+2 − 1)23n+1 n!

(n+ 1)(2n)!
(−1)nB2n+2

representation

ϕ(λ) = exp
(
−cλ−

∫ ∞
0

(1− e−λx)ν(dx)
)

(λ ≥ 0)(3.5)

for some c ≥ 0 and some positive measure ν on (0,∞), called the Lévy measure of
F , with c and ν uniquely determined by F . This representation has a well known
interpretation in terms of Poisson processes [82, I.28].

If ν(dx) = ρ(x)dx, then ρ(x) is called the Lévy density of F . It is elementary
that for Γh with gamma(h) distribution and a > 0 the distribution of Γh/a is
infinitely divisible with Lévy density hx−1e−ax. It follows easily that for an > 0
with

∑
n an < ∞ and independent gamma(h) variables Γh,n the distribution of∑

n Γh,n/an is infinitely divisible with Lévy density hx−1
∑

n e
−anx. Thus for each

h > 0 the laws of Sh and Ch are infinitely divisible, with the Lévy densities indicated
in Table 1 for h = 1 and h = 2.
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We note that Riemann’s formula (2.4) for s = 2p can be interpreted as an
expression for the pth moment of the Lévy density of S1: for <p > 1

2∫ ∞
0

tpρS1(t)dt =
(

2
π

)p 1
2

∫ ∞
0

yp−1(θ(y)− 1)dy =
2p

π2p
Γ(p)ζ(2p).(3.6)

3.3. Probability densities and reciprocal relations. By application of the
negative binomial expansion

1
(1− x)h

=
1

Γ(h)

∞∑
n=0

Γ(n+ h)
Γ(n+ 1)

xn (h > 0, |x| < 1)(3.7)

there is the expansion(
t

sinh t

)h
=

2hthe−th

(1− e−2t)h
=

2hth

Γ(h)

∞∑
n=0

Γ(n+ h)
Γ(n+ 1)

e−(2n+h)t(3.8)

which corrects two typographical errors in [10, (3.v)], and(
1

cosh t

)h
=

2he−th

(1 + e−2t)h
=

2h

Γ(h)

∞∑
n=0

(−1)n
Γ(n+ h)
Γ(n+ 1)

e−(2n+h)t.(3.9)

The Laplace transform of Ch displayed in (1.8) can be inverted by applying the
expansion (3.9) and inverting term by term using Lévy’s formula [56]∫ ∞

0

a√
2πt3

e−a
2/(2t)e−λtdt = e−a

√
2λ.(3.10)

Thus there is the following expression for the density fCh(t) := P (Ch ∈ dt)/dt: for
arbitrary real h > 0:

fCh(t) =
2h

Γ(h)

∞∑
n=0

(−1)n
Γ(n+ h)
Γ(n+ 1)

(2n+ h)√
2πt3

exp
(
− (2n+ h)2

2t

)
.(3.11)

A more complicated formula for fSh(t) was obtained from (3.8) by the same method
in [10, (3.x)]. The formulae for the densities of Sh and Ch displayed in Row 4 of
Table 1 for h = 1 and h = 2 can be obtained using the reciprocal relations of Row 5.
The self-reciprocal relation involving S2 is a variant of (2.12), while that involving
C1, which was observed by Ciesielski-Taylor [20], is an instance of the more general
reciprocal relation recalled as (6.3) in Section 6.1. Lastly, the reciprocal relation
involving the densities fS1 and fC2 amounts to the identity

P (S1 ≤ x) =
∞∑

n=−∞
(−1)ne−n

2π2x/2 =

√
2
πx

∞∑
n=−∞

e−2(n+
1
2 )2/x(3.12)

where the second equality is read from (2.1) with x = 1/2 and t replaced by x/2.
Row 6 of Table 1 displays various formulae for E

[
g
(

4
π2Σ

)]
. These formulae,

valid for an arbitrary non-negative Borel function g, are integrated forms of the
reciprocal relations, similar to (2.12).
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3.4. Moments and Mellin transforms. It is easily shown that the distributions
of Sh and Ch have moments of all orders (see e.g. Lemma 5.2). The formulae for
the Mellin transforms E(Σs) can all be obtained by term-by-term integration of
the densities for suitable s, followed by analytic continuation. Another approach
to these formulae is indicated later in Section 5.2.

According to the self-reciprocal relation for C1, for all s ∈ C

E
[(

π
2C1

)s] = E
[(

π
2C1

)− 1
2−s
]
.(3.13)

Using the formula for E((C1)s) in terms of Lχ4 defined by (3.1), given in Table 1,
we see that if we define

Λχ4(t) := E
[(

π
2 C1

) t−1
2
]

= Γ
(
t+ 1

2

)(
4
π

) t+1
2

Lχ4(t),(3.14)

then (3.13) amounts to the functional equation

Λχ4(t) = Λχ4(1− t) (t ∈ C).(3.15)

This is an instance of the general functional equation for a Dirichlet L-function,
which is recalled as (6.4) in Section 6.

The formulae for positive integer moments E(Σn), given in the last row of the
table, are particularizations of the preceding row, using the classical evaluation of
ζ(2n) in terms of the Bernoulli numbers B2n. The result for C1 involves the Euler
numbers E2n, defined by the expansion

1
cosh(z)

=
2

ez + e−z
=
∞∑
n=0

E2n
z2n

(2n)!
.(3.16)

3.5. A multiplicative relation. Table 1 reveals the following remarkably simple
relation:

E(Ss1) =
(

21−2s − 1
1− 2s

)
E(Ss2)(3.17)

where the first factor on the right side is evaluated by continuity for s = 1/2. By
elementary integration, this factor can be interpreted as follows:(

21−2s − 1
1− 2s

)
= E(W−2s)(3.18)

for a random variable W with uniform distribution on [1, 2]. Thus (3.17) amounts
to the following identity in distribution:

S1
d= W−2S2(3.19)

where W is assumed independent of S2. An equivalent of (3.19) was interpreted in
terms of Brownian motion in [72, (4)].

Note that (3.19) could be rewritten as S1
d= W−2(S1 + Ŝ1) for S1, Ŝ1 and W

independent random variables, with Ŝ1 having the same distribution as S1, and
W uniform on [1, 2]. By consideration of positive integer moments, this property
uniquely characterizes the distribution of S1 among all distributions with mean 1/3
and finite moments of all orders.
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3.6. Characterizations of the distributions of S2 and C2. As just indicated,
the identity (3.19) allows a simple probabilistic characterization of the distribution
of S1. The following proposition offers similar characterizations of the distributions
of S2 and C2.

Proposition 3.1. Let X be a non-negative random variable, and let X∗ denote a
random variable such that

P (X∗ ∈ dx) = xP (X ∈ dx)/E(X).

(i) X is distributed as S2 if and only if E(X) = 2/3 and

X∗
d= X +HX∗(3.20)

where X,H and X∗ are independent, with

P (H ∈ dh) = (h−1/2 − 1)dh (0 < h < 1).

(ii) X is distributed as C2 if and only if E(X) = 2 and

X∗
d= X + U2X̂(3.21)

where X, U and X̂ are independent, with X̂ distributed as X and U uniform on
[0, 1].

For the proof of this proposition, note that (3.20) (or (3.21)) implies that the
Laplace transform of X satisfies an integro-differential equation whose only solution
is given by the appropriate function. The “only if” part of (i) appears in [103, p.
26]. Details of the remaining parts are provided in [75].

The distribution of X∗, known as the size-biased or length-biased distribution
of X , has a natural interpretation in renewal theory [95]. As shown in [95], the
Lévy-Khintchine formula implies that the equation X∗

d= X + Y is satisfied by
independent non-negative random variables X and Y if and only if the law of X is
infinitely divisible.

4. Brownian interpretations

It is a remarkable fact that the four distributions considered in Section 3 appear
in many different problems concerning Brownian motion and related stochastic
processes. These appearances are partially explained by the relation of these distri-
butions to Jacobi’s theta function, which provides a solution to the heat equation
[6], [29], and is therefore related to Brownian motion [52, §5.4]. We start by intro-
ducing some basic notation for Brownian motion and Bessel processes, then present
the main results in the form of another table.

4.1. Introduction and notation. Let β := (βt, t ≥ 0) be a standard one-dimen-
sional Brownian motion, that is a stochastic process with continuous sample paths
and independent increments such that β0 = 0, and for all s, t > 0 the random
variable βs+t − βs has a Gaussian distribution with mean E(βs+t − βs) = 0 and
mean square E[(βs+t − βs)2] = t, meaning that for all real x

P (βs+t − βs ≤ x) =
1√
2πt

∫ x

−∞
e−y

2/(2t) dy.

Among continuous time stochastic processes, such as semimartingales, processes
with independent increments, and Markov processes, Brownian motion is the para-
digm of a stochastic process with continuous paths. In particular, among processes
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with stationary independent increments, the Brownian motions (σBt + µt, t ≥ 0)
for σ > 0, µ ∈ R are the only ones with almost surely continuous paths [82, I.28.12].
Brownian motion arises naturally as the limit in distribution as n→∞ of a rescaled
random walk process (Wn, n = 0, 1, . . . ) where Wn = X1 + · · ·+Xn for independent
random variables Xi with some common distribution with mean E(Xi) = 0 and
variance E(X2

i ) = 1. To be more precise, let the value of Wr be extended to all real
r ≥ 0 by linear interpolation between integers. With this definition of (Wr , r ≥ 0)
as a random continuous function, it is known that no matter what the distribution
of the Xi with mean 0 and variance 1, as n→∞(

Wnt√
n
, t ≥ 0

)
d→ (βt, t ≥ 0)(4.1)

in the sense of weak convergence of probability distributions on the path space
C[0,∞). In particular, convergence of finite dimensional distributions in (4.1) fol-
lows easily from the central limit theorem, which is the statement of convergence
of one dimensional distributions in (4.1); that is for each fixed t > 0

Wnt√
n

d→ βt(4.2)

where d→ denotes weak convergence of probability distributions on the line. Recall
that, for random variables Vn, n = 1, 2, . . . and V such that V has a continuous
distribution function x 7→ P (V ≤ x), Vn

d→ V means P (Vn ≤ x) → P (V ≤ x) for
all real x. See [12], [80] for background.

Let (bt, 0 ≤ t ≤ 1) be a standard Brownian bridge, that is the centered Gaussian
process with the conditional distribution of (βt, 0 ≤ t ≤ 1) given β1 = 0. Some well
known alternative descriptions of the distribution of b are [80, Ch. III, Ex (3.10)]

(bt, 0 ≤ t ≤ 1) d= (βt − tβ1, 0 ≤ t ≤ 1) d= ((1− t)βt/(1−t), 0 ≤ t ≤ 1)(4.3)

where d= denotes equality of distributions on the path space C[0, 1], and the right-
most process is defined to be 0 for t = 1. According to a fundamental result in the
theory of non-parametric statistics [25], [85], the Brownian bridge arises in another
way from the asymptotic behaviour of the empirical distribution

Fn(x) :=
1
n

n∑
k=1

1(Xk ≤ x)

where the Xk are now supposed independent with common distribution P (Xi ≤ x)
= F (x) for an arbitrary continuous distribution function F . As shown by Kol-
mogorov [53], the distribution of supx |Fn(x) − F (x)| is the same no matter what
the choice of F , and for all real y

lim
n→∞

P (
√
n sup

x
|Fn(x) − F (x)| ≤ y) =

∞∑
n=−∞

(−1)ne−2n2y2
.(4.4)

For F the uniform distribution on [0, 1], so F (t) = t for 0 ≤ t ≤ 1, it is known that

(
√
n(Fn(t)− t), 0 ≤ t ≤ 1) d→ (bt, 0 ≤ t ≤ 1).(4.5)

As a well known consequence of (4.5), Kolmogorov’s limiting distribution in (4.4)
is identical to the distribution of max0≤t≤1 |bt|. On the other hand, as observed by
Watson [97], Kolmogorov’s limit distribution function in (4.4) is identical to that of
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π
2

√
S1. Thus we find the first appearance of the law of S1 as the law of a functional

of Brownian bridge.
To put this in terms of random walks, if (Wn) is a simple random walk, meaning

P (Xi = +1) = P (Xi = −1) = 1/2, then(
W2nt√

2n
, 0 ≤ t ≤ 1

∣∣∣∣W2n = 0
)

d→ (bt, 0 ≤ t ≤ 1)(4.6)

where on the left side the random walk is conditioned to return to zero at time 2n,
and on the right side the Brownian motion is conditioned to return to zero at time
1. Thus (

1√
2n

max
0≤k≤2n

|Wk|
∣∣∣∣W2n = 0

)
d→ max

0≤t≤1
|bt| d=

π

2

√
S1(4.7)

where the equality in distribution summarizes the conclusion of the previous para-
graph. In the same vein, Gnedenko [33] derived another asymptotic distribution
from random walks, which can be interpreted in terms of Brownian bridge as

(
1√
2n

[
max

0≤k≤2n
Wk − min

0≤k≤2n
Wk

]∣∣∣∣W2n = 0
)

d→ max
0≤t≤1

bt − min
0≤t≤1

bt
d=
π

2

√
S2.

(4.8)

The equalities in distribution in both (4.7) and (4.8) can be deduced from the
formula

P

(
min

0≤u≤1
bu ≥ −a, max

0≤u≤1
bu ≤ b

)
=

∞∑
k=−∞

e−2k2(a+b)2
−

∞∑
k=−∞

e−2[b+k(a+b)]2

(4.9)

of Smirnov [86] and Doob [25]. Kennedy [45] found that these distributions appear
again if the random walk is conditioned instead on the event (R = 2n) or (R > 2n),
where

R := inf{n ≥ 1 : Wn = 0}
is the time of the first return to zero by the random walk. Thus(

1√
2n

max
0≤k≤2n

|Wk|
∣∣∣∣R = 2n

)
d→ max

0≤t≤1
et

d=
π

2

√
S2(4.10)

where (et, 0 ≤ t ≤ 1) denotes a standard Brownian excursion, that is the pro-
cess with continuous sample paths defined following [27], [42], [45] by the limit in
distribution on C[0, 1](

|W2nt|√
2n

, 0 ≤ t ≤ 1
∣∣∣∣R = 2n

)
d→ (et, 0 ≤ t ≤ 1).(4.11)

A satisfying explanation of the identity in distribution between the limit variables
featured in (4.8) and (4.10) is provided by the following identity of distributions on
C[0, 1] due to Vervaat [96]:

(eu, 0 ≤ u ≤ 1) d= (bρ+u(mod1) − bρ, 0 ≤ u ≤ 1)(4.12)

where ρ is the almost surely unique time that the Brownian bridge b attains its
minimum value. As shown by Tákacs [90] and Smith-Diaconis [87], either of the
approximations (4.8) or (4.10) can be used to establish the differentiated form
(2.14) of Jacobi’s functional equation (2.7) by a discrete approximation argument
involving quantities of probabilistic interest. See also Pólya [77] for a closely related
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proof of Jacobi’s functional equation based on the local normal approximation to
the binomial distribution.

In the same vein as (4.8) and (4.10) there is the result of [27], [45] that(
1√
2n

max
0≤k≤2n

|Wk|
∣∣∣∣R > 2n

)
d→ max

0≤t≤1
mt

d= π
√
S1(4.13)

where (mt, 0 ≤ t ≤ 1) denotes a standard Brownian meander, defined by the limit
in distribution on C[0, 1](

|W2nt|√
2n

, 0 ≤ t ≤ 1
∣∣∣∣R > 2n

)
d→ (mt, 0 ≤ t ≤ 1).(4.14)

The surprising consequence of (4.7) and (4.13), that max0≤t≤1mt
d= 2 max0≤t≤1 |bt|,

was explained in [10] by a transformation of bridge b into a process distributed like
the meander m. For a review of various transformations relating Brownian bridge,
excursion and the meander see [8].

4.2. Bessel processes. The work of Williams [98], [99], [100] shows how the study
of excursions of one-dimensional Brownian motion leads inevitably to descriptions
of these excursions involving higher dimensional Bessel processes. For d = 1, 2, . . .
let Rd := (Rd,t, t ≥ 0) be the d-dimensional Bessel process BES(d), that is the non-
negative process defined by the radial part of a d-dimensional Brownian motion:

R2
d,t :=

d∑
i=1

B2
i,t

where (Bi,t, t ≥ 0) for i = 1, 2, . . . is a sequence of independent one-dimensional
Brownian motions. Note that each of the processes X = B and X = Rd for any
d ≥ 1 has the Brownian scaling property:

(Xu, u ≥ 0) d= (
√
cXu/c, u ≥ 0)(4.15)

for every c > 0, where d= denotes equality in distribution of processes. For a
process X = (Xt, t ≥ 0) let X and X denote the past maximum and past minimum
processes derived from X , that is

Xt := sup
0≤s≤t

Xs; Xt := inf
0≤s≤t

Xs.

Note that if X has the Brownian scaling property (4.15), then so too do X,X, and
X −X . For a suitable process X , let

(Lxt (X), t ≥ 0, x ∈ R)

be the process of local times of X defined by the occupation density formula∫ t

0

f(Xs)ds =
∫ ∞
−∞

f(x)Lxt (X)dx(4.16)

for all non-negative Borel functions f , and almost sure joint continuity in t and x.
See [80, Ch. VI] for background and proof of the existence of such a local time
process for X = B and X = Rd for any d ≥ 1.

Let rd := (rd,u, 0 ≤ u ≤ 1) denote the d-dimensional Bessel bridge defined by
conditioning Rd,u, 0 ≤ u ≤ 1 on Rd,1 = 0. Put another way, r2

d is the sum of squares
of d independent copies of the standard Brownian bridge.
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Table 2

0)

√
2λ

sinh
√

2λ

( √
2λ

sinh
√

2λ

)2
1

cosh
√

2λ

(
1

cosh
√

2λ

)2

1) S1 :=
2

π2

∞∑
n=1

εn

n2
S2 :=

2

π2

∞∑
n=1

εn + ε̂n

n2
C1 :=

2

π2

∞∑
n=1

εn

(n− 1
2

)2
C2 :=

2

π2

∞∑
n=1

εn + ε̂n

(n− 1
2

)2

2)

∫ 1

0
r2
2,udu

∫ 1

0
r2
4,udu

∫ 1

0
R2

2,udu

∫ 1

0
R2

4,udu

3) T1(R3) T1(R3) + T1(R̂3) T1(R1) 4T1(B − B)

4)
(
R3,1

)−2 (
R1,1

)−2
4
(
B1 − B1

)−2

5) ( 2
π
r1,1)2 ( 2

π
r3,1)2

6) ( 1
π
m1)2

7)

(
1

π

∫ 1

0

du

mu

)2 (
1

π

∫ 1

0

du

r3,u

)2 (
1

2

∫ 1

0

du

R2,u

)−2 (
1

2

∫ 1

0

du

R3,u

)−2

8)
τ1

4(R1,τ1 )2

τ1

(Bτ1 −Bτ1 )2

4

τ2
1

∫ τ1

0
B2
t dt

4.3. A table of identities in distribution. We now discuss the meaning of
Table 2, which presents a number of known identities in distribution. The results
are collected from the work of numerous authors, including Gikhman [32], Kiefer
[49], Chung [18], and Biane-Yor [10]. See also [71], [74], [101]. In the following
sections we review briefly the main arguments underlying the results presented in
the table.

Each column of the table displays a list of random variables with the distribu-
tion determined by the Laplace transform in Row 0. Each variable in the second
column is distributed as the sum of two independent copies of any variable in the
first column, and each variable in the fourth column is distributed as the sum of
two independent copies of any variable in the third column. The table is organized
by rows of variables which are analogous in some informal sense. The next few
paragraphs introduce row by row the notation used in the table, with pointers to
explanations and attributions in following subsections. Blank entries in the table
mean we do not know any construction of a variable with the appropriate distribu-
tion which respects the informal sense of analogy within rows, with the following
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exceptions. Entries for Rows 4 and 6 of the S2 column could be filled as in Row 3
as the sums of two independent copies of variables in the S1 column of the same
row, but this would add nothing to the content of the table. The list of variables
involved is by no means exhaustive: for instance, according to (4.8) the variable
(4/π2)(b1 − b1)2 could be added to the second column. Many more constructions
are possible involving Brownian bridge and excursion, some of which we mention
in following sections. It is a consequence of its construction that each column of
the table exhibits a family of random variables with the same distribution. There-
fore it is a natural problem, coming from the philosophy of “bijective proofs” in
enumerative combinatorics (see e.g. Stanley [89]), to try giving a direct argument
for each distributional identity, not using the explicit computation of the distribu-
tion. Many such arguments can be given, relying on distributional symmetries of
Brownian paths or some deeper results such as the Ray-Knight theorems. However,
some identities remain for which we do not have any such argument at hand. As
explained in Section 4.6, some of these identities are equivalent to the functional
equation for the Jacobi theta (or the Riemann zeta) function.

Row 0. Here are displayed the Laplace transforms in λ of the four distributions
under consideration.

Row 1. Here we recall from Section 3.1 the constructions of variables S1, S2, C1 and
C2 with these Laplace transforms, from independent standard exponential variables
εn and ε̂n, n = 1, 2, . . . .

Row 2. Section 4.4 explains why the distributions of the random variables
∫ 1

0 r
2
d,udu

and
∫ 1

0 R
2
d,udu for d = 2 and d = 4 are as indicated in this row.

Row 3. Most of the results of this row are discussed in Section 4.5. Here

Ta(X) := inf{t : Xt = a}

is the hitting time of a by the process X , and R̂d is an independent copy of the
Bessel process Rd. Note that R1 := |B| is just Brownian motion with reflection at 0,
and T1(B−B) is the first time that the range of the Brownian B up to time t is an
interval of length 1. The result that 4T1(B−B) has Laplace transform 1/ cosh2

√
2λ

is due to Imhof [38]. See also Vallois [92], [93], Pitman [67] and Pitman-Yor [72]
for various refinements of this formula.

Rows 4 and 5. These rows, which involve the distribution of the maximum of various
processes over [0, 1], are discussed in Section 4.6.

Row 6. Here m1 is the maximum of the standard Brownian meander (mu, 0 ≤ u ≤
1). This entry is read from (4.13).

Row 7. The first two entries are obtained from their relation to the first two entries
in Row 5, that is the equalities in distribution∫ 1

0

du

mu

d= 2r1,1 and
∫ 1

0

du

r3,u

d= 2r3,1.

These identities follow from descriptions of the local time processes (Lx1(rd), x ≥ 0)
for d = 1 and d = 3, which involve m for d = 1 and r3 for d = 3, as presented
in Biane-Yor [10, Th. 5.3]. See also [68, Cor. 16] for another derivation of these
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results. The last two entries may be obtained through their relation to the last two
entries of Row 2. More generally, there is the identity

1
2

∫ 1

0

ds

Rd,s

d=
(∫ 1

0

R2
2d−2,s ds

)−1/2

(d > 1)

which can be found in Biane-Yor [10] and Revuz-Yor [80, Ch. XI, Corollary 1.12
and p. 448].

Row 8. Here τ1 := inf{t : L0
t (B) = 1} where R1 = |B| and (Lxt (B), t ≥ 0, x ∈ R)

is the local time process of B defined by (4.16). The distribution of τ1/R
2

1,τ1 was
identified with that of 4T1(R3) by Knight [52], while the distribution of τ1/(Bτ1 −
Bτ1)2 was identified with that of T1(R3) + T1(R̂3) by Pitman-Yor [72]. The result
in the third column can be read from Hu-Shi-Yor [37, p. 188].

4.4. Squared Bessel processes (Row 2). For d = 1, 2, . . . the squared Bessel
process R2

d is by definition the sum of d independent copies of R2
1 = B2, the square

of a one-dimensional Brownian motion B, and a similar remark applies to the
squared Bessel bridge r2

d. Following Lévy [57], [58], let us expand the Brownian
motion (Bt, 0 ≤ t ≤ 1) or the Brownian bridge (bt, 0 ≤ t ≤ 1) in a Fourier series.
For example, the standard Brownian bridge b can be represented as

bu =
∞∑
n=1

√
2
π

Zn
n

sin(πnu) (0 ≤ u ≤ 1)

where the Zn for n = 1, 2, . . . are independent standard normal random variables,
so E(Zn) = 0 and E(Z2

n) = 1 for all n. Parseval’s theorem then gives∫ 1

0

b2udu =
∞∑
n=0

Z2
n

π2n2

so the random variable
∫ 1

0
b2udu appears as a quadratic form in the normal variables

Zn. It is elementary and well known that Z2
n
d= 2γ1/2 for γ1/2 with gamma(1

2 )
distribution as in (1.7) and (3.2) for h = 1

2 . Thus

E[exp(−λZ2
n)] = (1 + 2λ)−1/2

and

E

[
exp

(
−λ
∫ 1

0

b2udu

)]
=
∞∏
n=1

(
1 +

2λ
π2n2

)−1/2

=

( √
2λ

sinh
√

2λ

)1/2

by another application of Euler’s formula (3.3). Taking two and four independent
copies respectively gives the first two entries of Row 2. The other entries of this
row are obtained by similar considerations for unconditioned Bessel processes.

Watson [97] found that∫ 1

0

(
bt −

∫ 1

0

budu

)2

dt
d= 1

4S1.(4.17)

Shi-Yor [84] give a proof of (4.17) with the help of a space-time transformation of
the Brownian bridge. See also [102, pp. 18-19], [103, pp. 126-127] and papers cited
there for more general results in this vein. In particular, we mention a variant of
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(4.17) for B instead of b, which can be obtained as a consequence of a stochastic
Fubini theorem [102, pp. 21-22]:∫ 1

0

(
Bt −

∫ 1

0

Budu

)2

dt
d=
∫ 1

0

b2udu
d= S1/2.(4.18)

As remarked by Watson [97], it is a very surprising consequence of (4.17) and (4.7)
that ∫ 1

0

(
bt −

∫ 1

0

budu

)2

dt
d= π−2 max

0≤t≤1
b2t .(4.19)

As pointed out by Chung [18], the identities in distribution (4.8) and (4.10), where
S2 is the sum of two independent copies of S1, imply that the distribution of

( max
0≤t≤1

bt − min
0≤t≤1

bt)2

is that of the sum of two independent copies of max0≤t≤1 b
2
t . In a similar vein, the

first column of Table 2 shows that the distribution of
4
π2

max
0≤t≤1

b2t

is that of the sum of two independent copies of
∫ 1

0 b
2
tdt

d= S1/2. There is still
no explanation of these coincidences in terms of any kind of transformation or
decomposition of Brownian paths, or any combinatorial argument involving lattice
paths, though such methods have proved effective in explaining and generalizing
numerous other coincidences involving the distributions of Sh and Ch for various
h > 0. Vervaat’s explanation (4.12) of the identity in law between the range of the
bridge and the maximum of the excursion provides one example of this. Similarly,
(4.12) and (4.17) imply that∫ 1

0

(
et −

∫ 1

0

eudu

)2

dt
d= 1

4S1.(4.20)

4.5. First passage times (Row 3). It is known [20], [39], [46] that by solving an
appropriate Sturm-Liouville equation, for λ > 0

E[e−λT1(Rd)] =
(
√

2λ)ν

2νΓ(ν + 1)Iν(
√

2λ)
=
∞∏
n=1

(
1 +

2λ
j2
ν,n

)−1

where ν := (d − 2)/2 with Iν the usual modified Bessel function, related to Jν by
(ix)ν/Iν(ix) = xν/Jν(x), and jν,1 < jν,2 < · · · is the increasing sequence of positive
zeros of Jν . That is to say,

T1(Rd)
d=
∞∑
n=1

2εn
j2
ν,n

(4.21)

where the εn are independent standard exponential variables. See also Kent [47],
[48], and literature cited there, for more about this spectral decomposition of T1(X),
which can be formulated for a much more general one-dimensional diffusion X
instead of X = Rd. The results of Row 3, that

T1(R1) d= C1 and T1(R3) d= S1,(4.22)

are the particular cases d = 1 and d = 3 of (4.21), corresponding to ν = ±1/2, when
Iν and Jν can be expressed in terms of hyperbolic and trigonometric functions. In
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particular, j−1/2,n = (n − 1
2 )π and j1/2,n = nπ are the nth positive zeros of the

cosine and sine functions respectively. Comparison of Rows 2 and 3 reveals the
identities

T1(R1) d=
∫ 1

0

R2
2,udu and T1(R3) d=

∫ 1

0

r2
2,udu.

As pointed out by Williams [98], [99], [100], these remarkable coincidences in dis-
tribution are the simplest case g(u) = 1 of the identities in law∫ T1(R1)

0

g(1−R1,t)dt
d=
∫ 1

0

R2
2,ug(u)du(4.23)

and ∫ T1(R3)

0

g(R3,t)dt
d=
∫ 1

0

r2
2,ug(u)du(4.24)

where the two Laplace transforms involved are again determined by the solutions
of a Sturm-Liouville equation [69], [80, Ch. XI]. Let Lxt (Rd), t ≥ 0, x ∈ R and
Lxt (rd), 0 ≤ t ≤ 1, x ∈ R be the local time processes of Rd and rd defined by the
occupation density formula (4.16) with B replaced by Rd or rd. Granted existence
of local time processes for Rd and rd, the identities (4.23) and (4.24) are expressions
of the Ray-Knight theorems [80, Ch. XI, §2] that

(L1−u
T1(R1)(R1), 0 ≤ u ≤ 1) d= (R2

2,u, 0 ≤ u ≤ 1)(4.25)

and

(LuT1(R3)(R3), 0 ≤ u ≤ 1) d= (r2
2,u, 0 ≤ u ≤ 1).(4.26)

The next section gives an interpretation of the variable T1(R3) +T1(R̂3) appearing
in column 2 in terms of Brownian excursions.

4.6. Maxima and the agreement formula (Rows 4 and 5). The entries in
Row 4 are equivalent to corresponding entries in Row 3 by application to X = Rd
and X = B −B of the elementary identity

(X1)−2 d= T1(X)(4.27)

which is valid for any process X with continuous paths which satisfies the Brownian
scaling identity (4.15), because

P ((X1)−2 > t) = P (X1 < t−
1
2 ) = P (Xt < 1) = P (T1(X) > t).

The first entry of Row 5, with r1,1 := max0≤u≤1 |bu|, is read from (4.7). The
second entry of Row 5, involving the maximum r3,1 of a three-dimensional Bessel
bridge (r3,u, 0 ≤ u ≤ 1), is read from the work of Gikhman [32] and Kiefer [49],
who found a formula for P (rd,1 ≤ x) for arbitrary d = 1, 2, . . . . See also [74]. This
result involving r3,1 may be regarded as a consequence of the previous identification
(4.10) of the law of e1, the maximum of a standard Brownian excursion, and the
identity in law e1

d= r3,1 implied by the remarkable result of Lévy-Williams [58],
[98], that

(et, 0 ≤ t ≤ 1) d= (r3,t, 0 ≤ t ≤ 1).(4.28)
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Another consequence of the scaling properties of Bessel processes is provided by
the following absolute continuity relation between the law of (rd,1)−2 and the law
of

Σ2,d := T1(Rd) + T1(R̂d)

for general d > 0. This result, obtained in [9], [10], [70], [71], we call the agreement
formula: for every non-negative Borel function g

E
[
g((rd,1)−2

)
] = cdE

[
Σν2,d g(Σ2,d)

]
(4.29)

where cd := 2(d−2)/2Γ(d/2). In [71] the agreement formula was presented as the
specialization to Bessel processes of a general result for one-dimensional diffusions.
As explained in [10], [71], [101], the agreement formula follows from the fact that a
certain σ-finite measure on the space of continuous non-negative paths with finite
lifetimes can be explicitly disintegrated in two different ways, according to the
lifetime, or according to the value of the maximum.

Note from (4.21) that Σ2,3
d= S2 and Σ2,1

d= C2. For d = 3 formula (4.29) gives
for all non-negative Borel functions g

E [g(r3,1)] =
√

2
πE
[√

S2 g(1/
√
S2)
]
.(4.30)

In view of (4.30), the symmetry property (2.12) of the common distribution of Y
and

√
π
2S2, which expresses the functional equations for ξ and θ, can be recast as

the following identity of Chung [18], which appears in the second column of Table 2:(
2
π r3,1

)2 d= S2.(4.31)

As another application of (4.29), we note that for d = 1 this formula shows that
the reciprocal relation between the laws of S1 and C2 discussed in Section 3 is
equivalent to the equality in distribution of (4.7), that is(

2
π r1,1

)2 d= S1.(4.32)

We do not know of any path transformation leading to a non-computational proof
of (4.31) or (4.32).

4.7. Further entries. The distributions of T1(Rd) and T1(Rd) + T1(R̂d) for d =
1, 3 shared by the columns of Table 2also arise naturally from a number of other
constructions involving Brownian motion and Bessel processes. Alili [3] found the
remarkable result that

µ2

π2

[(∫ 1

0

coth(µr3,u)du
)2

− 1

]
d= S2 for all µ 6= 0.(4.33)

As a check, the almost sure limit of the left side of (4.33) as µ → 0 is the variable
π−2(

∫ 1

0
r−1
3,udu)2 in the second column of Row 7. As shown by Alili-Donati-Yor [4],

consideration of (4.33) as µ→∞ shows that

4
π2

∫ ∞
0

dt

exp(R3,t)− 1
d= S1.(4.34)

According to the identity of Ciesielski-Taylor [20]∫ ∞
0

1(Rd+2,t ≤ 1)dt d= T1(Rd)(4.35)
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which for d = 1 and d = 3 provides further entries for the table via (4.22). See
also [24], [51], [67], [73], [102, pp. 97-98, Ch. 7], [103, pp. 132-133] for still more
functionals of Brownian motion whose Laplace transforms can be expressed in terms
of hyperbolic functions.

5. Renormalization of the series

∑
n−s

5.1. Statement of the result. The expansion of S1 as an infinite series (1.6)
suggests that we use partial sums in order to approximate its Mellin transform. As
we shall see, this yields an interesting approximation of the Riemann zeta function.
Consider again the relationship (1.2) between ζ and ξ, which allows the definition
of ζ(s) for s 6= 1 despite the lack of convergence of (1.1) for <s ≤ 1. There are
a number of known ways to remedy this lack of convergence, some of which are
discussed in Section 5.3. One possibility is to look for an array of coefficients
(an,N , 1 ≤ n ≤ N) such that the functions

κN (s) :=
N∑
n=1

an,N
ns

(5.1)

converge as N →∞, for all values of s. For fixed N there are N degrees of freedom
in the choice of the coefficients, so we can enforce the conditions κN (s) = ζ(s) at
N choices of s, and it is natural to choose the points 0, where ζ(0) = − 1

2 , and
−2,−4,−6, . . . ,−2(N − 1) where ζ vanishes. It is easily checked that this makes

an,N =
(−N)(1−N)(2 −N) . . . (n− 1−N)

(N + 1)(N + 2) . . . (N + n)
= (−1)n

(
2N
N−n

)(
2N
N

) .(5.2)

Note that for each fixed n

an,N → (−1)n as N →∞(5.3)

and recall that

(21−s − 1)ζ(s) =
∞∑
n=1

(−1)n

ns
(<s > 1)(5.4)

extends to an entire function of s.

Theorem 5.1. For εi, 1 ≤ i ≤ N independent standard exponential variables, and
<s > −2N

E

( N∑
n=1

εn
n2

) s
2

 = −sΓ( s2 )
N∑
n=1

an,N
ns

(5.5)

where the an,N are defined by (5.2), and
N∑
n=1

an,N
ns
→ (21−s − 1)ζ(s) as N →∞(5.6)

uniformly on every compact subset of C.

The proof of Theorem 5.1 is given in the next section. As an immediate conse-
quence of Theorem 5.1, we deduce the formula in Table 1 for E(Ss1), first found by
another method in [74, (86)].
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5.2. On sums of independent exponential random variables. Let (εn;n ≥ 1)
be a sequence of independent identically distributed random variables, with the
standard exponential distribution P (εn ≥ x) = e−x, x ≥ 0. Let (an;n ≥ 1)
be a sequence of positive real numbers, such that

∑∞
n=1 an < ∞; then the series

X =
∑∞
n=1 anεn converges almost surely, and in every Lp space, for 1 ≤ p <∞.

Lemma 5.2. Let X =
∑∞

n=1 anεn as above, and let XN =
∑N

n=1 anεn be the
partial sums; then for every real x one has E[Xx] < ∞, and E[Xx

N ] < ∞ for
x > −N . Furthermore one has

E[Xs
N ]→ E[Xs] as N →∞

uniformly with respect to s on each compact subset of C.

Proof. We have already seen that E[Xx] <∞ if x ≥ 0. Let us prove that E[Xx
N ] <

∞ for 0 > x > −N . Let bN = min(an;n ≤ N); then XN ≥ bNYN = bN
∑N
n=1 εn.

But YN has a gamma distribution, with density 1
Γ(N) t

N−1e−t at t > 0, so that
E[Y xN ] < ∞ for 0 > x > −N and thus E[Xx

N ] < ∞. The assertion for X follows
from X ≥ XN . It remains to check the uniform convergence. If <s ∈ [−A,+A],
then

|Xs
N −Xs| =

∣∣∣∣∣
∫ X

XN

sys−1dy

∣∣∣∣∣
≤ |s| (X −XN )(X−A−1

N ∨XA−1),

and the required uniform convergence as N → ∞ is now evident by application of
the Cauchy-Schwarz inequality.

We now compute the Mellin transform of the distribution of
∑N

n=1 anεn, assum-
ing that the an are all distinct and strictly positive.

Lemma 5.3. With the above notations, and Πn,N :=
∏
j 6=n,1≤j≤N

(
1− aj

an

)
, for

<s > −N

E

[(
N∑
n=1

anεn

)s ]
= Γ(s+ 1)

N∑
n=1

asn
Πn,N

(5.7)

where the right side of (5.7) is defined by continuity for s = −1,−2, . . . ,−N + 1.

Proof. The partial fraction expansion of the Laplace transform

E

[
exp

(
−λ

N∑
n=1

anεn

) ]
=

N∏
n=1

1
(1 + λan)

=
N∑
n=1

1
Πn,N

1
(1 + λan)

(5.8)

implies that for every non-negative measurable function g such that E[g(anε1)] is
finite for every n

E

[
g

(
N∑
n=1

anεn

) ]
=

N∑
n=1

1
Πn,N

E[g(anε1)].(5.9)

For g(x) = xs this gives (5.7), first for real s > −1, then also for <s > −N since the
previous lemma shows that the left side is analytic in this domain, and the right
side is evidently meromorphic in this domain.
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Note the implication of the above argument that the sum on the right side of
(5.7) must vanish at s = −1,−2, . . . ,−N + 1.

Proof of Theorem 5.1. Apply Lemma 5.3 with an = n−2 to obtain (5.5) with an,N
defined by

−2an,N =
1

Πn,N
=

∏
j 6=n(j2)∏

j 6=n(j2 − n2)
(5.10)

where both products are over j with 1 ≤ j ≤ N and j 6= n. The product in the
numerator is (N !/n)2, while writing j2 − n2 = (j − n)(j + n) allows the product
in the denominator to be simplified to (−1)n−1(N + n)!(N − n)!/(2n2). Thus the
expression for an,N can be simplified to (5.2). The convergence (5.6) at each fixed
s with <s > 1 follows immediately from (5.3) and (5.4) by dominated convergence.
Uniform convergence on compact subsets of C then follows by Lemma 5.2 and
analytic continuation.

Approximation of the Dirichlet Lχ4 function. As a variation of the previous argu-
ment, Lemma 5.3 applied to an = (n− 1

2 )−2 yields the formula

E

( N∑
n=1

εn

(n− 1
2 )2

) s
2

 = Γ(1 + s
2 )

2s+2

π
αNL

(N)
χ4

(s+ 1)(5.11)

where

L(N)
χ4

(s) :=
N∑
n=1

bn,N
(−1)n−1

(2n− 1)s
with bn,N :=

(
2N−1
N−n

)(
2N−1
N

) → 1 as N →∞(5.12)

for each fixed n, and

αN :=
π
∏N
j=1(2j − 1)2

4NN !(N − 1)!
→ 1 as N →∞

by Stirling’s formula. A reprise of the previous argument gives

L(N)
χ4

(s)→ Lχ4(s) as N →∞(5.13)

uniformly on every compact of C, where Lχ4(s) is defined by analytic continuation
of (3.1) to all s ∈ C. This argument also yields the formula in Table 1 for E((C1)s)
in terms of Lχ4 . To parallel the discussion above (5.2), we note that

L(N)
χ4

(1− 2k) = 0 for k = 1, 2, . . .N − 1.(5.14)

It is also possible to use formulae (1.5) and (1.9) to provide another approximation
of ζ, but we leave this computation to the interested reader.

5.3. Comparison with other summation methods. Perhaps the simplest way
to renormalize the series (1.1) is given by the classical formula

ζ(s) = lim
N→∞

(
N∑
n=1

n−s − N1−s − 1
1− s

)
− 1

1− s (<s > 0).(5.15)

Related methods are provided by the approximate functional equation and by the
Riemann-Siegel formula, which are powerful tools in deriving results on the be-
haviour of the zeta function in the critical strip (0 ≤ <s ≤ 1). See e.g. Edwards
[28, Ch. 7] for a detailed discussion.
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It is also known [36], [55] that the series
∑∞

1 (−1)n/ns is Abel summable for all
values of s ∈ C, meaning that as z → 1 in the unit disk,

∞∑
1

(−z)n

ns
→ (21−s − 1)ζ(s).

The Lerch zeta function

Φ(x, a, s) =
∞∑
n=0

e2iπnx

(n+ a)s
(x ∈ R, 0 < a ≤ 1, <s > 1)

is known to have analytic continuation to s ∈ C, with a pole at s = 1 for a = 1,
x ∈ Z. This allows us to sketch another proof of Theorem 5.1. The formula

κN(s) = 22N

(
2N
N

)−1 ∫ 1

0

(sin(πx))2NΦ(x, 1, s) dx

is easily checked using (5.1)-(5.2) for <s > 1, and extended by analytic continuation
to all values of s ∈ C. Convergence of κN (s) towards (21−s − 1)ζ(s) then follows
from continuity properties of the Lerch zeta function in the variable x and the fact
that 22N

(
2N
N

)−1
(sin(πx))2N dx→ δ1/2 weakly as N →∞.

Finally, we note that J. Sondow [88] has shown that Euler’s summation method
yields the following series, uniformly convergent on every compact subset of C:

(1− 21−s)ζ(s) =
∞∑
j=0

1−
(
j
1

)
2−s + . . .+ (−1)j

(
j
j

)
(j + 1)−s

2j+1
.(5.16)

Furthermore the sum of the first N terms of this series gives the exact values of ζ
at 0,−1,−2, . . . ,−N + 1, so we can rewrite the partial sum in (5.16) as

ρN (s) =
N∑
1

cn,N
ns

where the cn,N are completely determined by ρN (−j) = ζ(−j) for j = 0, 1, . . . ,
N − 1. Compare with the discussion between (5.1) and (5.2) to see the close
parallel between (5.6) and (5.16).

6. Final remarks

6.1. Hurwitz’s zeta function and Dirichlet’s L-functions. Row 3 of Table 2
involves hitting times of Bessel processes of dimension 1 and 3, started from 0. If
the Bessel process does not start from zero, we still have an interesting formula for
the Mellin transform of the hitting time, expressed now in terms of the Hurwitz
zeta function. Specifically, one has

E[e−λT
a
1 (R3)] =

sinh(a
√

2λ)
a sinh(

√
2λ)

; E[e−λT
a
1 (R1)] =

cosh(a
√

2λ)
cosh(

√
2λ)

(6.1)

where T a1 denotes the hitting time of 1, starting from a ∈]0, 1[, of the corresponding
Bessel process. Expanding the denominator we get

sinh(a
√

2λ)
a sinh(

√
2λ)

=
1
a

∞∑
n=0

e−(2n+1−a)
√

2λ − e−(2n+1+a)
√

2λ.
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Inverting the Laplace transform yields the density of the distribution of T a1 (R3)

1
a
√

2πt3

∞∑
n=0

(2n+ 1− a)e−(2n+1−a)2/(2t) − (2n+ 1 + a)e−(2n+1+a)2/(2t).

Taking the Mellin transform we get

E[(T a1 (R3))s/2] =
Γ( s−1

2 )
a2s/2

[
ζ

(
s,

1− a
2

)
− ζ

(
s,

1 + a

2

)]
(<s > 1)

where ζ(s, x) =
∑∞
n=0(n+x)−s is the Hurwitz zeta function. This identity extends

by analytic continuation to all s ∈ C. A similar expression exists for T a1 (R1).
One can use the product expansion for sinh in order to give an approximation of

ζ(s, u)− ζ(s, 1−u);u ∈]0, 1[. For it is easy to see that
∏N
n=1

(
1 + 2a2λ

n2

) (
1 + 2λ

n2

)−1

is the Laplace transform of a probability distribution on [0,∞[, and that this prob-
ability distribution converges towards that of T a1 (R3) in such a way that there is a
result similar to Theorem 5.1.

The Hurwitz zeta function can be used to construct Dirichlet L-functions by lin-
ear combinations. However, direct probabilistic interpretations of general Dirichlet
L-functions, in the spirit of what we did in Section 4, do not seem to exist. More
precisely, let χ be a primitive character modulo N , and let

θχ(t) =
+∞∑

n=−∞
nεχ(n)e−πn

2t(6.2)

where ε = 0 or 1 according to whether χ is even or odd, so χ(−1) = (−1)ε. These
functions satisfy the functional equation

θχ(t) =
(−i)ετ(χ)
N1+εtε+1/2

θχ̄

(
1
N2t

)
(6.3)

where τ(χ) is a Gauss sum. Taking a Mellin transform, this yields the analytic
continuation and functional equation for the associated Dirichlet L-function

Lχ(s) :=
∞∑
n=1

χ(n)
ns

,

namely

Λ(s, χ) = (−i)ετ(χ)N−sΛ(1− s, χ̄)(6.4)

where

Λ(s, χ) = π
−(s+ε)

2 Γ
(
s+ ε

2

)
Lχ(s).

See [21] or [15, §1.1] for the classical derivations of these results. For general real
χ, there does not seem to be any simple probabilistic interpretation of θχ(t). In
particular, this function is not necessarily positive for all t > 0. This can be seen
as follows. We choose an odd character χ (the case of even characters is similar),
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and compute the Laplace transform of θχ using (6.2) and (6.3):∫ ∞
0

e−λtθχ(t) dt =
+∞∑

n=−∞

∫ ∞
0

nχ(n)
N3/2t3/2

e−λte−πn
2/(N2t) dt

=
1√
N

∞∑
n=1

χ(n)e−
2n
N

√
πλ.

Using the periodicity of χ, this equals∑N−1
n=1 χ(n)e−

2n
N

√
πλ

√
N (1 − e−2

√
πλ)

=
∑(N−1)/2
n=1 χ(n) sinh(N−2n

N

√
πλ)√

N sinh(
√
πλ)

.(6.5)

For small values of N , and χ a real odd character modulo N , one can see by
inspection that this indeed is the Laplace transform of a positive function; hence
by uniqueness of the Laplace transform, θχ(t) > 0 for t > 0. However, Pólya
[76] exhibited an infinite number of primes p such that for the quadratic character
modulo p the polynomial Qp(x) :=

∑p−1
n=1 x

nχ(n) takes negative values somewhere
on [0, 1]. In particular, for p = 43 we find Q43(3/4) ≈ −0.0075. For such quadratic
Dirichlet characters, the Laplace transform above also takes negative values, which
implies that θχ does not stay positive on ]0,∞[. We note that if θχ > 0 on ]0,∞[,
then obviously its Mellin transform has no zero on the real line, and hence the
corresponding L-function has no Siegel zeros.

6.2. Other probabilistic aspects of Riemann’s zeta function. It is outside
the scope of this paper, and beyond the competence of its authors, to discuss at
length the theory of the Riemann zeta function. But we mention in this final section
some other works relating the zeta function to probability theory.

The work of Pólya has played a significant role in the proof of the Lee-Yang
theorem in statistical mechanics: see the discussion in [78, pp. 424-426]. Other
connections between Riemann zeta function and statistical mechanics appear in
Bost and Connes [14] and in Knauf [50].

The Euler product for the Riemann zeta function is interpreted probabilistically
in Golomb [34] and Nanopoulos [61] via the independence of various prime factors
when choosing a positive integer according to the distribution with probability at
n equal to ζ(s)−1n−s for some s > 1. See also Chung [17, p. 247] and [87].

It is an old idea of Denjoy [23] that the partial sums of the Möbius function should
behave like a random walk (the law of iterated logarithm would imply Riemann
hypothesis). See also Elliott [30].

There are fascinating connections between the distribution of spacings between
zeros of the Riemann zeta function (and other L-functions) and the distribution of
spacings between eigenvalues of random matrices. See for instance Odlyzko [64],
Katz and Sarnak [43], [44], Berry and Keating [7], Michel [60].

A new connection between generalizations of Riemann’s ξ function and infinitely
divisible laws on the line has recently been made by Lagarias and Rains [54]. Finally,
we mention some other recent papers which give probabilistic interpretations of
some particular values of the Riemann zeta function: Alexander, Baclawski and
Rota [2], Asmussen, Glynn and Pitman [5], Joshi and Chakraborty [41], Chang and
Peres [16].
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[76] G. Pólya, Verschiedene Bemerkungen zur Zahlentheorie, Jahber. Deutsch. Math. Vereinigung
(1919), 31–40; Reprinted in Collected Papers, Vol III, MIT Press, Cambridge, Mass. 1984,
pp. 76-85. MR 85m:01108a

[77] , Elementarer Beweis einer Thetaformel, Sitz. Berich. Akad. Wissen. Phys.-math. Kl.
(1927), 158–161; Reprinted in Collected Papers, Vol I, MIT Press, Cambridge, Mass. 1974,
pp. 303-306. MR 58:21341

[78] , Collected papers. Vol. II: Location of zeros (R. P. Boas, ed.), Mathematicians of Our
Time, vol. 8, The MIT Press, Cambridge, Mass.-London, 1974. MR 58:21342
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