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LECTURES ON THE THEORY OF ENTIRE FUNCTIONS

S.A.Buterin, G. Freiling and V.A.Yurko

The main purpose of these lecture notes is to give a concise introduction to the theory
of entire functions that covers in particular those topics that are used frequently in our own
field of research - in particular in spectral theory. We assume that the reader knows the
basic facts on functions of one complex variable as they can be found, for example, in the
textbooks [1]–[3]. For additional results on entire functions and also on meromorphic func-
tions we refer the reader to [4]-[10].

1. Entire functions

A function f(z) of a complex variable z is called an entire function if it is analytic in
the whole complex plane. An entire function f(z) can be represented by its power series

f(z) =
∞∑

n=0

anz
n, (1.1)

with infinite radius of convergence. By virtue of the Cauchy-Hadamard formula [1], [2],

lim
n→∞

n
√
|an| = 0. (1.2)

Clearly, each polynomial is an entire function. In this case only a finite number of the
coefficients an in (1.1) differs from zero. If an entire function f(z) is not a polynomial, i.e.
if in (1.1) infinitely many coefficients an differ from zero, then it is called transcendental. In
other words, an entire function is transcendental if and only if ∞ is an essential singularity.
For example, the functions

ez =
∞∑

n=0

zn

n!
, sin z =

∞∑
n=0

(−1)nz2n+1

(2n+ 1)!
, cos z =

∞∑
n=0

(−1)nz2n

(2n)!
,

cos
√
z =

∞∑
n=0

(−1)nzn

(2n)!
,

sin
√
z√

z
=

∞∑
n=0

(−1)nzn

(2n+ 1)!
,

are entire transcendental ones.
Thus, entire functions form a simplest class of analytic functions that includes all poly-

nomials. While a polynomial has a finite number of zeros, a transcendental entire function
may have both finite and infinite number of zeros, and even no zero at all. Moreover, ac-
cording to the Picard theorem [2], for each transcendental entire function f(z) the function
f(z)− A has infinitely many zeros for all A ∈ C with at most one exceptional value. For
example, for ez this exceptional value is A = 0 and for sin z there is no such value. It is
known that a polynomial can be expanded into a finite product of linear factors. One of the
important questions of the theory of entire functions is the expansion of a transcendental
entire function possessing infinitely many zeros into an infinite product.

The polynomials can be classified by their growth, which has only power range. According
to the fundamental theorem of algebra, the power n of any polynomial is firmly connected
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with the number of its zeros m, namely n = m. The connection between the growth
and the distribution of zeros of entire functions is the main question of the theory of entire
functions. The general rule states that the ”more zeros” a nonzero entire function has, the
bigger its global growth is. The fundamental characteristic of the global growth of an entire
function f(z) is the maximum of the modulus:

Mf (r) = max
|z|=r

|f(z)|.

It follows from the maximum modulus principle for analytic functions that Mf (r) increases
monotonically. Clearly, for a polynomial of degree N one has

Mf (r) = O(rN), r →∞, (1.3)

where O is the Landau symbol. However, the next theorem shows that the power function
is not applicable for the estimation of growth of transcendental entire functions.

Theorem 1.1. For each transcendental entire function the following relation holds

lim
r→∞

lnMf (r)

ln r
= ∞ (1.4)

Proof. Suppose that

lim
r→∞

lnMf (r)

ln r
= α <∞,

Then for each α′ > α, there exists a sequence {rm} , which tends to infinity, and

lnMf (rm) < α′ ln rm

for all m. Hence, by virtue of the Cauchy inequality, we have

|an| ≤
Mf (rm)

rn
m

< rα′−n
m . (1.5)

Since rm →∞, it follows from (1.5) that an = 0 for n > α′. Thus, f(z) is a polynomial
of degree at most [α]. �

Corollary 1.1. If (1.3) is valid for an entire function f(z), then f(z) is a polynomial
of degree not greater than N.

In particular, from this we derive the well-known Liouville theorem.

Theorem 1.2 (Liouville). If the entire function f(z) is bounded (i.e. Mf (r) = O(1),
r →∞), then f(z) ≡ const.

Another important question of the theory of entire functions is devoted to the connection
between the growth of an entire function f(x) in different directions and its global growth
characterized by Mf (r). Unlike polynomials, which increase equally in all directions, tran-
scendental entire functions may grow differently in different directions and in some direc-
tions they may even decrease. For example, for each ε > 0 the function ez increases in
{z : arg z ∈ [−π/2+ε, π/2−ε]} and decreases in {z : arg z ∈ (−π,−π/2−ε]∪ [π/2+ε, π]}.
The general rule says that if an entire function has ”small global growth”, then it cannot
decrease in rather different directions and must increase in a sufficiently large part of C.
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2. The order and the type of an entire function

2.1. The order of an entire function. An entire function f(z) is of finite order, if
there exists µ > 0 such that for sufficiently large r (r > R),

Mf (r) < exp(rµ). (2.1)

The greatest lower bound of those µ, for which (2.1) holds, is called the order of the entire
function f(z), and is denoted by ρ, i.e. ρ = inf µ ≥ 0. If (2.1) is not fulfilled for any finite
µ, we shall say that f(z) has infinite order (ρ = ∞).

Theorem 2.1. The order of an entire function is calculated by the formula

ρ = lim
r→∞

ln lnMf (r)

ln r
. (2.2)

Proof. By definition of the order ρ, for each ε > 0 the inequality

Mf (r) < exp(rρ+ε) (2.3)

holds for r > R(ε). Moreover, there exist rn →∞ such that

Mf (rn) > exp(rρ−ε
n ). (2.4)

It follows from (2.3) and (2.4) that

ln lnMf (r)

ln r
< ρ+ ε, r > R(ε), ρ− ε <

ln lnMf (rn)

ln rn

.

Hence we arrive at (2.2). �

Formula (2.2) can be used for the definition of the order of an entire function f(z).

Remark 2.1. It follows from (2.3) and (2.4) that

|f(z)| < exp(|z|ρ+ε), |z| > R0(ε), |f(zn)| > exp(|zn|ρ−ε), (2.5)

where zn →∞ ({zn} depends on f and ε), and ε > 0 is arbitrary.

Example 2.1. Let f(z) = ez. Clearly, |ez| ≤ e|z|. Moreover, for z = r we have the
equality. Hence, Mf (r) = er. Using (2.2) we get ρ = 1. Analogously one can check that
the function f(z) = exp(zm) has the order ρ = m.

Example 2.2. Let f(z) = eez
. Then Mf (r) = eer

, and consequently, this entire
function is of infinite order: ρ = ∞.

2.2. The type of an entire function. Let the entire function f(z) have the order ρ
(0 < ρ <∞). We shall say that f(z) is of finite type (with respect to the order ρ) if there
exists a > 0 such that

Mf (r) < exp(arρ), r > R. (2.6)

The greatest lower bound of those values of a, for which (2.6) is fulfilled, is called the type
of the entire function f(z), and is denoted by σ. If (2.6) is not fulfilled for any finite a,
we shall say that f(z) is of infinite type with respect to the order ρ and write σ = ∞.
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Theorem 2.2. The type of an entire function f(z) of order ρ is calculated by the
formula

σ = lim
r→∞

lnMf (r)

rρ
. (2.7)

Proof. We have

Mf (r) < exp((σ + ε)rρ), r > R(ε), Mf (rn) > exp((σ − ε)rρ
n), rn ↑ ∞. (2.8)

From (2.8) we derive (2.7). �

Formula (2.7) can be used for the definition of the type of an entire function f(z).

Remark 2.2. From the inequalities (2.8) for σ <∞, it follows that

|f(z)| < exp((σ + ε)|z|ρ), |z| > R(ε), |f(zn)| > exp((σ − ε)|zn|ρ), (2.9)

where {zn} is a sequence which depends on f and ε > 0.

Example 2.3. Let

f(z) = sin z =
eiz − e−iz

2i
.

Obviously, | sin z| ≤ 1
2
(e|z| + e|z|) = e|z|. For z = −ir, r > 0 we have

| sin(−ir)| = 1

2
(er − e−r) >

1

2
er > e(1−ε)r, r > rε.

Hence, for the function sin z, one gets ρ = 1 and σ = 1.

We shall say that the entire function f(z) of order ρ (0 < ρ < ∞) is of minimal,
normal or maximal type, if σ = 0, 0 < σ <∞ or σ = ∞, respectively.

2.3. Determination of the order and the type from the coefficients of the
power series expansion. The order and the type of an entire function can be determined
from the coefficients of the series (1.1). More presicely, the following theorem is valid.

Theorem 2.3 (Lindelöf, Pringsheim). The order ρ of the entire function f(z) of
the form (1.1) is determined by the formula

ρ = lim
n→∞

n lnn

ln
∣∣∣ 1

an

∣∣∣ . (2.10)

If the entire function f(z) has the order ρ (0 < ρ < ∞), then its type σ is determined
by the formula

(σeρ)1/ρ = lim
n→∞

n1/ρ n
√
|an|. (2.11)

The proof is based on the following two lemmas.

Lemma 2.1. If Mf (r) < exp(βrα), r > R, then |an| <
(eαβ
n

)n/α

, n > N.

Proof. By virtue of the Cauchy inequality we have

|an| ≤
Mf (r)

rn
< exp(βrα − n ln r) =: gn(r), r > R. (2.12)
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The function gn(r) has a minimum for rn =
(
n/(βα)

)1/α

. Substituting r = rn into the

estimate (2.12) we arrive at the assertion of the lemma. �

Lemma 2.2. If |an| <
(eαβ
n

)n/α

, n > N, then for each ε > 0 there exists Rε such

that Mf (r) < exp((β + ε)rα), r > Rε.

Proof. Without loss of generality we assume that an = 0 for n ≤ N. Hence

Mf (r) ≤
∞∑

n=N+1

(eαβrα

n

)n/α

. (2.13)

Put mn := [n/α]. Since one can also assume that eβrα ≥ 1 and N ≥ α, we have

(eβrα)n/α ≤ (eβrα)mn+1,
(α
n

)n/α

≤
( 1

mn

)mn

.

Substituting this into (2.13) we get

Mf (r) ≤ eβrα

∞∑
n=N+1

(eβrα

mn

)mn

.

Obviously, we have mn+[α]+1 ≥ mn + 1 and hence we arrive at

Mf (r) ≤ ([α] + 1)eβrα

∞∑
n=1

(eβrα

n

)n

. (2.14)

According to the Stirling formula n! ∼ (n/e)n
√

2πn we have( e
n

)n

≤ Cε

n!

(β + ε/2

β

)n

.

Substituting this into (2.14) we obtain

Mf (r) ≤ Cε([α] + 1)eβrα

∞∑
n=0

((β + ε/2)rα)n

n!

= Cε([α] + 1)eβrα exp((β + ε/2)rα) < exp((β + ε)rα), r > Rε.

�

Proof of Theorem 2.3. (i) According to the definition of the order and Lemma 2.1 we get

|an| <
(e(ρ+ ε)

n

)n/(ρ+ε)

, n > Nε, whence we get

ln
1

|an|
>

n

ρ+ ε
(lnn− ln e(ρ+ ε)) =

n lnn

ρ+ ε
(1 + o(1)), n→∞.

By virtue of the arbitrariness of ε > 0 we arrive at

A := lim
n→∞

n lnn

ln
∣∣∣ 1

an

∣∣∣ ≤ ρ
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On the other hand, according to Lemma 2.2 for each ε > 0 there exists an increasing

sequence of natural numbers {nk}∞k=1 such that
(e(ρ− ε)

nk

)nk/(ρ−ε)

≤ |ank
| (otherwise the

order would be less than ρ). This, in turn, gives

ln
1

|ank
|
≤ nk

ρ− ε
(lnnk − ln e(ρ− ε)) =

nk lnnk

ρ− ε
(1 + o(1)), k →∞.

Hence A ≥ ρ and formula (2.10) is proved. Formula (2.11) can be proved analogously. �

Remark 2.3. From the proof of Theorem 2.3 it follows that formula (2.10) can be
used for functions of infinite order ρ = ∞ and formula (2.11) can be used for functions of
maximal type σ = ∞ (if 0 < ρ <∞).

Remark 2.4. The limits in (2.10) and (2.11) will not change, if the coefficients an

are replaced by (n+ 1)an. Hence, after differentiating, the order and the type of an entire
function do not change.

Using Theorem 2.3 one can easily construct entire functions of arbitrary order and type.
Let us give several examples.

Example 2.4. Consider the function

f(z) =
∞∑

n=1

anz
n, an =

(C
n

)n/α

, C − const,

where 0 < α <∞. By (2.10) we calculate

ρ = lim
n→∞

lnn

ln
1

n
√
|an|

= α.

Thus, the function f(z) is entire of order ρ = α.

Example 2.5. Consider the function

f(z) =
∞∑

n=1

anz
n, an =

(eαβ
n

)n/α

,

where 0 < α < ∞, 0 < β < ∞. According to the previous example we have ρ = α. By
(2.11) we calculate

(σeρ)1/ρ = lim
n→∞

n1/α n
√
|an| = (βeρ)1/ρ.

Thus, the function f(z) is entire of order ρ = α and of type σ = β.

Example 2.6. Let

f(z) =
∞∑

n=0

anz
n, |an| =

1

nn/αn
, αn > 0.

Then

lim
n→∞

lnn

ln
1

n
√
|an|

= lim
n→∞

αn.
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Thus, if α := lim
n→∞

αn <∞, then the function f(z) is entire of order ρ = α. In particular,

for α = 0 (e.g., αn = 1/n) we get an entire function of zero-order. If α = ∞ and
αn = o(lnn) (e.g., αn = lnδ n, δ ∈ (0, 1)), then according to (1.2) the function f(z) is
entire of infinite order.

Example 2.7. The function f(z) =
∞∑

n=1

anz
n, an =

( lnn

n

)n/ρ

is entire of order ρ

and maximal type.

Example 2.8. The function f(z) =
∞∑

n=2

anz
n, an =

( 1

n lnn

)n/ρ

is entire of order ρ

and minimal type.

Example 2.9. The function f(z) =
sin
√
z√

z
=

∞∑
n=0

(−1)n zn

(2n+ 1)!
is entire of order

ρ = 1/2 and type σ = 1.

3. Zeros of an entire function

3.1. Entire functions with a finite number of zeros. An entire function f(z) 6≡ 0
can either have no zeros or a finite number of zeros or a countable set of zeros. The function

f(z) = eg(z), (3.1)

where g(z) is an entire function, is entire and has no zeros. Conversely, if the entire
function f(z) has no zeros, then the function F (z) := ln f(z) (where we take one of the

regular branches of the logarithm) is entire, and F ′(z) = f ′(z)
f(z)

. Hence, f(z) has the form

(3.1), where g(z) = F (z) is an entire function.
If the entire function f(z) has a finite number of zeros z1, z2, . . . , zn (counting multi-

plicity), then the function Φ(z) = f(z)
ϕ(z)

, where ϕ(z) =
∏n

k=1 (z − zk), has no zeros, and

consequently, it can be represented in the form (3.1). Hence

f(z) = eg(z)

n∏
k=1

(z − zk). (3.2)

Thus, entire functions of the form (3.2) (and only they) have a finite number of zeros.
Formula (3.2) can be generalized to the case when an entire function has an infinite

number of zeros. This was made by Weierstrass and Hadamard. In this case the finite
product is replaced by an infinite one, in which it is necessary in general to add certain
multipliers in order to make the infinite product convergent. For convenience to the reader
in the next section we provide some auxiliary information on infinite products.

3.2. Infinite products. The numeric infinite product
∏∞

n=1 gn is called convergent,

if for a certain N there exists lim
k→∞

∏k
n=N gn 6= 0,∞. For a convergent infinite product we

have

lim
n→∞

gn =

lim
n→∞

n∏
k=N

gk

lim
n→∞

n−1∏
k=N

gk

= 1.
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Therefore, sometimes it is convenient to write the common factor in the form gn = 1 + vn.
The following proposition establishes a connection between infinite products and series.

Proposition 3.1. The infinite product
∏∞

n=1 gn converges if and only if the series∑∞
n=N ln gn converges for certain N.

Proof. If the series is convergent, then we have

exp
( ∞∑

n=N

ln gn

)
=

∞∏
n=N

gn (3.3)

and hence the infinite product is convergent too. Conversely, we have

ln
k∏

n=N

gn =
k∑

n=N

ln gn + 2πµki, µk ∈ Z.

Thus, if the product is convergent, then ln gn → 0 and µk stabilizes to a certain µ ∈ Z.
Consequently, the series is convergent too. �

The infinite product
∏∞

n=1 gn is called absolutely convergent, if for a certain N the series∑∞
n=N | ln gn| converges. According to (3.3) in an absolutely convergent infinite product one

can arbitrarily change the order of factors both without loss of the convergence and without
change of the value of the product.

Proposition 3.2. The infinite product
∏∞

n=1(1 + vn) is absolutely convergent if and
only if the series

∑∞
n=1 |vn| converges.

Proof. Let |vn| ≤ 1/2. Since

ln(1 + vn) = vn

∞∑
j=0

(−1)j vj
n

j + 1
,

we have the following two-way estimate:

1

2
|vn| = |vn|

(
1− 1

22
− 1

23
− . . .

)
≤ | ln(1 + vn)| ≤ |vn|

(
1 +

1

22
+

1

23
+ . . .

)
=

3

2
|vn|,

which proves this proposition. �

Let the functions gn(z), n ∈ N, be defined on a set S. The functional infinite product∏∞
n=1 gn(z) is called uniformly convergent on S, if for a certain N the sequence

∏k
n=N gn(z)

converges uniformly as k →∞ to some function hN(z), defined on S. Obviously, in this
case hN(z) 6= 0 for all z ∈ S.

According to the Weierstrass theorem on the limit of a uniformly convergent sequence of
analytic functions (see, e.g., [2]), we get that if the functions gn(z) are analytic in a domain
D and the infinite product

∏∞
n=1 gn(z) is uniformly convergent on D, then this product

is an analytic function on D.

Proposition 3.3. If for certain N the series
∑∞

n=N ln gn(z) is uniformly convergent
on S, then so is also the infinite product

∏∞
n=1 gn(z).

Proof. We can choose N so that the function

hN(z) := exp
( ∞∑

n=N

ln gn(z)
)
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is bounded on S. Further, we have the estimate

∣∣∣hN(z)−
k∏

n=N

gn(z)
∣∣∣ =

∣∣∣ exp
( ∞∑

n=N

ln gn(z)
)
− exp

( k∑
n=N

ln gn(z)
)∣∣∣

= |hN(z)|
∣∣∣1− exp

(
−

∞∑
n=k+1

ln gn(z)
)∣∣∣ ≤ C

∣∣∣ ∞∑
n=k+1

ln gn(z)
∣∣∣,

which proves the proposition. �

3.3. Expansion of an entire function into an infinite product. Let the entire
function f(z) have infinitely many zeros. Since in each circle |z| < R, f(z) has only a
finite number of zeros, we can enumerate them (counting multiplicity) as follows

0, 0, . . . , 0︸ ︷︷ ︸
m

, z1, z2, . . . , zn, . . . 0 < |zn| ≤ |zn+1|, lim
n→∞

|zn| = ∞, (3.4)

where z = 0 is a zero of multiplicity m (if f(0) 6= 0, we put m = 0). We agree below
that the sequence of zeros of an entire function is always enumerated in this way. In this
case it is called the ordered sequence of zeros. The following theorem allows one to construct
entire functions with arbitrary a priori given zeros.

Theorem 3.1 (Weierstrass). For each sequence (3.4) of complex numbers, there exists
an entire function f(z) such that its zeros coincide with this sequence.

Proof. Consider the infinite product

zm

∞∏
n=1

(
1− z

zn

)
exp(Pn(z)), where Pn(z) =

n∑
j=1

zj

jzj
n

=
z

zn

+ · · ·+ zn

nzn
n

.

It is sufficient to show that it converges uniformly in each circle DR := {|z| < R} to a
function ϕ(z), which satisfies the conditions of Theorem 3.1. According to Proposition 3.3
one should check if for certain N the series

∞∑
n=N

(
ln

(
1− z

zn

)
+ Pn(z)

)
(3.5)

is uniformly convergent in DR. Fix R and let N = N(R) be such that

|zn| ≥ 2R for n ≥ N.

Then for z ∈ DR we have
∣∣∣ z
zn

∣∣∣ < 1

2
, n ≥ N. Hence, ln

(
1 − z

zn

)
can be expanded into

the power series

ln
(
1− z

zn

)
= −

∞∑
j=1

zj

jzj
n

,

and we obtain the estimate∣∣∣ ln
(
1− z

zn

)
+ Pn(z)

∣∣∣ =
∣∣∣ ∞∑

j=n+1

zj

jzj
n

∣∣∣ < ∞∑
j=n+1

1

2j
=

1

2n
, z ∈ DR,
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which implies the uniform convergence of the series (3.5) in the circle DR. Thus, the function

ϕ(z) = zm

∞∏
n=1

(
1− z

zn

)
exp

( z

zn

+ . . .+
zn

nzn
n

)
satisfies the conditions of the theorem. Theorem 3.1 is proved. �

Corollary 3.1. For each sequence (3.4) and for each entire function g(z), the function

f(z) = eg(z)zm

∞∏
n=1

(
1− z

zn

)
exp

( z

zn

+ . . .+
zn

nzn
n

)
(3.6)

is entire, and its zeros coincide with the sequence (3.4).

The inverse assertion is also valid:

Theorem 3.2. Let f(z) be an entire function with zeros (3.4). Then f(z) has the
form (3.6), where g(z) is an entire function.

Proof. According to the proof of Theorem 3.1 the zeros of the entire function ϕ(z)

coincide with the zeros of f(z). Then f(z)
ϕ(z)

is an entire function without zeros. Consequently,
f(z)
ϕ(z)

= eg(z), where g(z) is an entire function, and we arrive at (3.6). �

3.4. Jensen’s formula. The simplest characteristic of zeros of an entire function f(z)
is the counting function n(r), which is equal to the number of zeros of f(z) in the circle
|z| < r (each zero is counted with its multiplicity). In order to estimate lnMf (r) from
below using n(r), we need Jensen’s formula.

Theorem 3.3. Let the function f(z) be analytic in the circle |z| < R, f(0) 6= 0
and let {zn} be the ordered sequence of zeros of f(z). Then for 0 < r < R the following
formula holds

1

2π

∫ 2π

0

ln |f(reiϕ)| dϕ = ln |f(0)|+
∑
|zn|<r

ln
r

|zn|
; (3.7)

equality (3.7) is called Jensen’s formula.

Proof. Let r 6= |zn| for all n. Consider the function

F (z) = f(z)
∏
|zn|<r

r2 − zz̄n

r(z − zn)
.

The function F (z) (more precisely: its continuous continuation) has no zeros in the circle
|z| ≤ r, hence the function ln F (z) is analytic in this circle, and, consequently, the function
ln |F (z)| = Re lnF (z) is harmonic. Using the mean-value formula for harmonic functions
we get

1

2π

∫ 2π

0

ln |F (reiϕ)| dϕ = ln |F (0)|. (3.8)

Obviously,

ln |F (0)| = ln |f(0)|+
∑
|zn|<r

ln
r

|zn|
.
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For z = reiϕ we calculate ∣∣∣ r2 − reiϕz̄n

r(reiϕ − zn)

∣∣∣ =
∣∣∣ r − eiϕz̄n

r − e−iϕzn

∣∣∣ = 1,

Thus, in (3.8) we can replace |F (reiϕ)| by |f(reiϕ)| and we arrive at (3.7). It remains to
notice that the functions on both sides in (3.7) are continuous functions of r for 0 < r < R,
since the function under integration has only a finite number of integrable singularities.
Therefore, Jensen’s formula is valid also for r = |zn| for all n, i.e. it holds for 0 < r < R.
Theorem 3.3 is proved. �

One can rewrite (3.7) also in another form. For this purpose we calculate the integral

J =

∫ r

0

n(t)

t
dt.

Since n(r) = 0 for r ≤ |z1|, this integral exists, and we obtain

J =

n(r)−1∑
k=1

∫ |zk+1|

|zk|

n(t)

t
dt+

∫ r

|zn(r)|

n(t)

t
dt =

n(r)−1∑
k=1

∫ |zk+1|

|zk|

k

t
dt+

∫ r

|zn(r)|

n(r)

t
dt.

Consequently,

J =

n(r)−1∑
k=1

ln
( |zk+1|
|zk|

)k

+ ln
( r

|zn(r)|

)n(r)

= ln
|z2| · |z3|2 . . . |zn(r)|n(r)−1 · rn(r)

|z1| · |z2|2 . . . |zn(r)−1|n(r)−1 · |zn(r)|n(r)
=

∑
|zn|≤r

ln
r

|zn|
.

Therefore, Jensen’s formula can be rewritten as

1

2π

∫ 2π

0

ln |f(reiϕ)|dϕ = ln |f(0)|+
∫ r

0

n(t)

t
dt. (3.9)

It follows from (3.9) that ∫ r

0

n(t)

t
dt ≤ lnMf (r)− ln |f(0)|,

hence ∫ r

0

n(t)

t
dt ≤ ln

Mf (r)

|f(0)|
. (3.10)

Inequality (3.10) connects the number of zeros of f(z) in the circle |z| < r with Mf (r),
i.e. with the maximum of the modulus of f. We call (3.10) Jensen’s inequality.

3.5. The convergence exponent. Consider the sequence of complex numbers

a1, a2, . . . , an, . . . , 0 < |an| ≤ |an+1|, lim |an| = ∞. (3.11)

If the series
∞∑

n=1

1

|an|λ
(3.12)
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converges for a certain λ > 0, we shall say that the sequence (3.11) has a finite convergence
exponent. The greatest lower bound of those λ, for which (3.12) converges, is called the
convergence exponent of the sequence (3.11) and is denoted by τ : τ = inf λ. If (3.12) does
not converges for any λ > 0, we put τ = ∞.

Theorem 3.4. The convergence exponent τ of the sequence (3.11) is calculated by the
formula

τ = lim
n→∞

lnn

ln |an|
.

Proof. 1) Let α := lim
n→∞

lnn

ln |an|
6= ∞. Then

lnn

ln |an|
< α+ ε, n > N(ε). Consequently,

1

|an|λ
<

( 1

n

) λ
α+ε

, n > N(ε).

Therefore, the series (3.12) converges for λ > α+ ε. By virtue of the arbitrariness of ε > 0,
the series converges for any λ > α, hence, τ ≤ α.

2) Suppose now that τ is finite. Then the series
∞∑

n=1

1

|an|τ+ε
converges for any ε > 0.

Since
lim

n→∞

n

|an|τ+ε
= 0,

we have for sufficiently large n :
lnn

ln |an|
≤ τ + ε, For n → ∞ this yields α ≤ τ + ε.

Since ε > 0 is arbitrary, we get α ≤ τ. Comparing this inequality with the inequality
α ≥ τ (see above), we conclude that τ = α. Thus we have proved that τ and α are finite
simultaneously. Hence, they are infinite simultaneously too. Theorem 3.4 is proved. �

Example 3.1. The sequence {en} has the convergence exponent τ = 0, since

lim
n→∞

lnn

ln |an|
= lim

n→∞

lnn

n
= 0.

Example 3.2. The sequence {n1/β}, β > 0 has the convergence exponent τ = β.

Example 3.3. The sequence {lnn} has the convergence exponent τ = ∞.

3.6. The connection between the growth of an entire function and its zeros.
It turns out that there is a close relation between the growth rate of the zeros of an entire
function f and the growth of its maximum modulus Mf (r).

Let us estimate the left-hand side of (3.10) from below. Let θ ∈ (0, 1). Then we have∫ r

0

n(t)

t
dt ≥

∫ r

θr

n(t)

t
dt ≥ n(θr)

∫ r

θr

dt

t
= n(θr) ln

1

θ
.

Hence, by virtue of (3.10),

n(θr) ≤ 1

ln
1

θ

ln
Mf (r)

|f(0)|
. (3.13)
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Let f(z) be an entire function of the finite order ρ. Then lnMf (r) < rρ+ε for r >
R0(ε). It follows from (3.13) that

n(θr)

rρ+ε
<

1

ln
1

θ

− ln |f(0)|

rρ+ε ln
1

θ

, r > R0(ε).

Therefore,

lim
r→∞

n(θr)

rρ+ε
≤ 1

ln
1

θ

.

Replacing θr in the preceding inequality by r we obtain

lim
r→∞

n(r)

rρ+ε
≤ 1

θρ+ε ln
1

θ

,

where θ is an arbitrary number from (0, 1). Take θ = exp(− 1
ρ+ε

); for this θ the right-hand
side of the inequality attains its minimum. Hence,

lim
r→∞

n(r)

rρ+ε
≤ e(ρ+ ε). (3.14)

Further, let f(z) be an entire function of order ρ (0 < ρ < ∞) and of finite type σ.
Then lnMf (r) < (σ + ε)rρ for r > R1(ε). It follows from (3.13) that

n(θr)

rρ
<

(σ + ε)

ln
1

θ

− ln |f(0)|

rρ ln
1

θ

, r > R1(ε),

and consequently,

lim
r→∞

n(θr)

rρ
≤ (σ + ε)

ln
1

θ

.

Replacing again θr by r, we calculate

lim
r→∞

n(r)

rρ
≤ σ + ε

θρ ln
1

θ

.

Taking here θ = e−1/ρ and using the arbitrariness of ε > 0, we obtain finally

lim
r→∞

n(r)

rρ
≤ σeρ. (3.15)

Let f(z) have an infinite set of zeros. Since n(|zn| + 1) ≥ n, in (3.14) and (3.15) we
can replace n(r) with n, and r with |zn|. Thus, the following theorem has been proved:

Theorem 3.5. Let f(z) be an entire function of a finite order ρ, and let {zn} be the
ordered sequence of its zeros. Then we have:

lim
n→∞

n

|zn|ρ+ε
≤ e(ρ+ ε), ε > 0. (3.16)
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If in addition 0 < ρ <∞ and if f(z) is of finite type σ, then

lim
n→∞

n

|zn|ρ
≤ σeρ. (3.17)

Using Theorem 3.5 we can prove the following assertion, which is due to Hadamard.

Theorem 3.6. Let f(z) be the entire function of a finite order ρ. Then the convergence
exponent τ of the sequence of its zeros is finite, and τ ≤ ρ.

Proof. It follows from (3.16) that

or
1

|zn|λ
<

(e(ρ+ 2ε)

n

) λ
ρ+ε
, n > N1(ε).

Hence, the series
∞∑

n=1

1

|zn|λ
converges for λ > ρ+ε. This yields the assertion of Theorem 3.6.

�

In particular, from Theorems 3.5, 3.6 we derive the following uniqueness theorems.

Theorem 3.7. Let the order of the entire function f(z) be not greater than ρ. If
f(zn) = 0, n ≥ 1, and the convergence exponent of the sequence {zn} is greater than ρ,
then f(z) ≡ 0.

Theorem 3.8. Suppose that the type of the entire function f(z), with respect to the

order ρ, is not greater than σ. If f(zn) = 0, n ≥ 1, and lim
n→∞

n

|zn|ρ
> σeρ, then

f(z) ≡ 0.

3.7. Hadamard’s factorization theorem and Borel’s theorem. First we prove
two auxiliary assertions.

Lemma 3.1. Let a sequence {zn} of nonzero numbers be given. If there is integer p,
such that

∞∑
n=1

1

|zn|p+1
<∞, (3.18)

then the function

f(z) =
∞∏

n=1

(
1− z

zn

)
exp(pn(z)), pn(z) :=

p∑
j=1

zj

jzj
n

=
z

zn

+ · · ·+ zp

pzp
n

(3.19)

(if p = 0 we put pn(z) ≡ 0), is entire, and its zeros (counting multiplicities) coincide with
the sequence {zn}.

Proof. The proof is similar to that of Theorem 3.1. Fix arbitrary R > 0. It is sufficient
to check if for certain N the series

∞∑
n=N

(
ln

(
1− z

zn

)
+ pn(z)

)
(3.20)

is uniformly convergent in DR = {z : |z| < R}. Choose N = N(R) such that

|zn| ≥ 2R for n ≥ N.
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Then
∣∣∣ z
zn

∣∣∣ < 1

2
for n ≥ N, z ∈ DR. Hence, we get the estimate

∣∣∣ ln
(
1− z

zn

)
+ pn(z)

∣∣∣ =
∣∣∣ ∞∑

j=p+1

zj

jzj
n

∣∣∣ ≤ |z|p+1

|zn|p+1

∞∑
j=0

|z|j

|zn|j
<

Rp+1

|zn|p+1

∞∑
j=0

1

2j
=

2Rp+1

|zn|p+1
,

which implies the uniform convergence of the series (3.20) in the circle DR.

Lemma 3.2. Let the function f(z) =
∞∑

n=0

anz
n be analytic in the circle |z| < R, and

Re f(z) ≤ α for |z| < R. Then

|an| ≤
2(α− Ref(0))

Rn
, n ≥ 1. (3.21)

Proof. Let

Φ(z) = α− f(z) = α−
∞∑

n=0

anz
n =:

∞∑
n=0

bnz
n, |z| < R.

Thus, Re Φ(z) ≥ 0 for |z| < R and |bn| = |an| for n ≥ 1. For r ∈ (0, R) we have

1

2πi

∫
|z|=r

Φ(z)

zn+1
dz =

{
bn, n ≥ 0,

0, n < 0.
(3.22)

On the other hand we have

1

2πi

∫
|z|=r

Φ(z)

zn+1
dz =

1

2πrn

∫ 2π

0

Φ(z)e−inϕ dϕ, z = reiϕ.

Combining this with (3.22) we get

bnr
n =

1

2π

∫ 2π

0

Φ(z)e−inϕ dϕ, 0 =
1

2π

∫ 2π

0

Φ(z)e−inϕ dϕ, n ≥ 1.

Summing up these two equalities term by term, we get

bn =
1

πrn

∫ 2π

0

Re Φ(z)e−inϕ dϕ, n ≥ 1,

and hence, according to the mean-value theorem,

|an| = |bn| ≤
1

πrn

∫ 2π

0

Re Φ(z) dϕ =
2Re Φ(0)

rn
=

2(α− Ref(0))

rn
, n ≥ 1.

Taking the limit as r → R we get (3.21). Lemma 3.2 is proved. �

Theorem 3.9 (Hadamard’s factorization theorem). Let f(z) be an entire func-
tion of a finite order ρ < ∞; let z1, z2, . . . (zk 6= 0) be the ordered sequence of its zeros,
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and let z = 0 be a zero of f(z) of multiplicity m ≥ 0. Let p ≥ 0 be the smallest integer
such that

∞∑
k=1

1

|zk|p+1
<∞. (3.23)

Then

f(z) = zmeg(z)

∞∏
k=1

(
1− z

zk

)
exp(pk(z)), pk(z) =

p∑
j=1

zj

jzk
j
, (3.24)

where g(z) is a polynomial of degree n ≤ ρ.

Proof. By Theorem 3.6, the sequence {zk} has a finite convergence exponent τ ≤ ρ.
Therefore, there exists the smallest integer p ≥ 0 such that (3.23) is fulfilled. Clearly,
p ≤ τ ≤ p+ 1. According to Lemma 3.1, the entire function

F (z) = zm

∞∏
k=1

(
1− z

zk

)
exp(pk(z)) (3.25)

has the same zeros as f(z). Consequently, ϕ(z) = f(z)/F (z) is an entire function without
zeros. Hence, ϕ(z) = eg(z), where g(z) is an entire function. This yields f(z) = eg(z)F (z),
i.e. (3.24) is valid. It remains to show that g(z) is a polynomial of degree n ≤ ρ.

For an arbitrary R we rewrite f(z) as follows

f(z) = zm

N∏
k=1

(
1− z

zk

)
·ΨN(z), ΨN(z) = exp

(
g(z) +

N∑
k=1

pk(z)
) ∞∏
k=N+1

(
1− z

zk

)
exp(pk(z)),

where N = N(R) is such that |zk| ≤ R for k ≤ N and |zk| > R for k > N. Then for
R ≥ 1/2 one has

Mf (2R) = max
|z|=2R

|f(z)| ≥ (2R)m

N∏
k=1

(2R

R
− 1

)
· max
|z|=2R

|ΨN(z)| ≥ max
|z|=2R

|ΨN(z)|.

Since ΨN(z) is an entire function, we infer from the maximum modulus principle that

|ΨN(z)| < Mf (2R), |z| < 2R. (3.26)

In the circle |z| < R the function ΨN(z) can be represented in the form ΨN(z) = egN (z),

where gN(z) = g(z) +
N∑

k=1

pk(z) +
∞∑

k=N+1

(
ln

(
1 − z

zk

)
+ pk(z)

)
. The function gN(z) is

analytic in the circle |z| < R. Consider the Taylor coefficients Cn =
g

(n)
N (0)

n!
of gN(z). We

have

Cn =
g(n)(0)

n!
−

∞∑
k=N+1

1

nzn
k

, n > p, (3.27)

since pk(z) is a polynomial of degree p. It follows from (3.26) that Re gN(z) < lnMf (2R)
for |z| < R. By virtue of Lemma 3.2 this yields

|Cn| ≤ 2
lnMf (2R)− ReC0

Rn
, n ≥ 1.
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Since ρ ≥ τ ≥ p, in view of (3.27) we have∣∣∣g(n)(0)

n!

∣∣∣ < 2
lnMf (2R)− ReC0

Rn
+

∞∑
k=N+1

1

n|zk|n
, n > ρ, (3.28)

where the series converges, because n > τ. Hence, lim
R→∞

∞∑
k=N(R)+1

1

|zk|n
= 0 for n > ρ.

Since lnMf (2R) < (2R)ρ+ε for sufficiently large R, one has

lim
R→∞

lnMf (2R)− Re g(0)

Rn
= 0, n > ρ.

Taking the limit in (3.28) as R → ∞, we obtain g(n)(0) = 0 for n > ρ. Thus, g(z) is a
polynomial of degree n ≤ ρ, and the theorem is proved. �

A function F (z) of the form (3.25) is called a canonical product, and the number p is
called the genus of this canonical product.

Theorem 3.10 (Borel). Let the entire function f(z) have the form (3.24), where the
sequence {zk} has the convergence exponent τ, p is the smallest integer satisfying (3.23),
and g(z) is a polynomial of degree n. Then f(z) has finite order ρ, and

ρ = max{τ, n}.

Moreover, if τ < n or if the series
∞∑

k=1

1

|zk|τ
converges, then f(z) is of finite type.

Proof. First we estimate the modulus of each term of the canonical product. Consider
the function

ϕ(u) = (1− u) exp
(
u+

u2

2
+ . . .+

up

p

)
.

For |u| ≤ 1/2 we have

|ϕ(u)| =
∣∣∣ exp

(
ln(1− u) + u+

u2

2
+ . . .+

up

p

)∣∣∣
=

∣∣∣ exp
(
−

∞∑
k=p+1

uk

k

)∣∣∣ ≤ exp(2|u|p+1) ≤ exp(2|u|λ),

where λ ≤ p+ 1. For |u| > 1/2 we calculate

|ϕ(u)| < (1 + |u|) exp(|u|+ |u|2 + . . .+ |u|p)

= exp
(

ln(1 + |u|) + |u|p
(
1 +

1

|u|
+ . . .+

1

|u|p−1

))
≤ exp(C|u|p) ≤ exp(C2λ|u|λ),

where λ ≥ p. Therefore, for each u we have

|ϕ(u)| ≤ exp(C|u|λ), p ≤ λ ≤ p+ 1. (3.29)
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Choose λ such that the series
∞∑

k=1

1

|zk|λ
converges. If the series

∞∑
k=1

1

|zk|τ
converges, then

p < τ ≤ p+1, and we put λ = τ ; if this series does not converge, then p ≤ τ < p+1, and
we can take λ = τ + ε, where 0 < ε ≤ p+ 1− τ. Taking u = z/zk in (3.29) we obtain∣∣∣(1− z

zk

)
exp(pk(z))

∣∣∣ ≤ exp
(
C
|z|λ

|zk|λ
)
.

We note that if g(z) = B0 + . . .+Bnz
n, then for each ε > 0,

|zmeg(z)| < exp((|Bn|+ ε)|z|n) for |z| > R0(ε).

Consequently,

|f(z)| < exp
(
(|Bn|+ ε)|z|n + C

∞∑
k=1

1

|zk|λ
|z|λ

)
, |z| > R0(ε). (3.30)

It follows from (3.30) that f(z) has finite order ρ, and ρ ≤ max{n, λ}. Since λ = τ or
λ = τ + ε, we obtain, by virtue of the arbitrariness of ε > 0, that ρ ≤ max{n, τ}. On the
other hand, by Theorem 3.6 τ ≤ ρ and by Theorem 3.9 n ≤ ρ. Hence,

ρ = max{n, τ}.

Furthermore, if n > τ, then ρ = n. Take τ < λ < n, and according to (3.30) we get
for sufficiently large |z| that |f(z)| < exp(C1|z|n). From this we derive that the type of the

function f(z) is finite. If n ≤ τ, and the series
∞∑

k=1

1

|zk|τ
converges, one can put λ = τ

in (3.30). Then |f(z)| < exp(C2|z|τ ), i.e. the type of f(z) is finite again. �

Corollary 3.2. Let f(z) be an entire function of finite order ρ and let τ be the
convergence exponent of its zeros. If ρ is not integer, then ρ = τ.

Corollary 3.3. Each entire function f(z) of order ρ ∈ [0, 1) can be represented in the
form

f(z) = Czm

∞∏
k=1

(
1− z

zk

)
(for a polynomial there is a finite number of factors), where C is constant.

Example 3.4. Let us expand the function sin z into an infinite product. The zeros of
this function are 0, ±kπ, k ∈ N, moreover ρ = 1, τ = 1, n ≤ 1. Since(

1− z

kπ

)
exp

( z

kπ

)(
1 +

z

kπ

)
exp

(
− z

kπ

)
=

(
1− z2

k2π2

)
,

we have

sin z = zeaz+b

∞∏
k=1

(
1− z2

k2π2

)
.

Since lim
z→0

sin z

z
= 1, we calculate eb = 1. Since sin(−z) = − sin z, we get eaz = e−az, i.e.

a = 0. Consequently,

sin z = z

∞∏
k=1

(
1− z2

k2π2

)
. (3.31)
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Analogously, one can calculate

cos z =
∞∏

k=1

(
1− z2

(k − 1/2)2π2

)
.

4. A-points of an entire function

A point z such that f(z) = A is called A-point of f.

Theorem 4.1. Let f(z) be an entire function of order ρ (0 < ρ < ∞). If ρ is
not integer, then the sequence of A-points has the convergence exponent τA = ρ. If ρ is
integer, then the sequence of A-points has the convergence exponent τA = ρ for all A with
the exception of at most one value of A.

Proof. The function ϕ(z) = f(z) − A has the order ρ. If ρ is not an integer, then
by Corollary 3.2, τA = ρ, and the first assertion of the theorem is proved. Let now ρ be
an integer, and suppose that τA < ρ and τB < ρ for some complex numbers A and B
(B 6= A). Then

f(z)− A = eP (z)ϕ(z), f(z)−B = eQ(z)ψ(z),

where P (z) and Q(z) are polynomials of degree ρ, and ϕ(z) and ψ(z) are entire func-
tions of order less than ρ. Then

A−B = eQ(z)ψ(z)− eP (z)ϕ(z). (4.1)

Differentiating (4.1), we get

0 = eQ(z)[Q′(z)ψ(z) + ψ′(z)]− eP (z)[P ′(z)ϕ(z) + ϕ′(z)]. (4.2)

The functions in the square brackets are not identically zero. Indeed, suppose, for example,
that Q′(z)ψ(z)+ψ′(z) ≡ 0. Then ψ(z) = exp(−Q(z)+C), which contradicts the fact that
the order of ψ(z) is less than ρ.

It follows from (4.2) that

eQ(z)−P (z)(Q′(z)ψ(z) + ψ′(z)) = P ′(z)ϕ(z) + ϕ′(z). (4.3)

Let P (z) = a0z
ρ + . . .+ aρ , Q(z) = b0z

ρ + . . .+ bρ. If a0 6= b0 , then the left-hand side in
(4.3) is an entire function of order ρ, and the right-hand side is an entire function of order
less than ρ, which is impossible. Hence, a0 = b0. It follows from (4.1) that

(A−B)e−a0zρ

= eQ1(z)ψ(z)− eP1(z)ϕ(z),

where Q1(z) and P1(z) are polynomials of degree less than ρ. Therefore, the left-hand
side in this equality is an entire function of order ρ, and the right-hand side is an entire
function of order less than ρ. This contradiction means that for different A and B the
relations τA < ρ and τB < ρ cannot be fulfilled simultaneously. �

A is called a Borel exceptional value if τA 6= ρ. Theorem 4.1 says that an entire function
has at most one Borel exceptional value A ∈ C, and this can happen only if its order is an
integer.

Example 4.1. Let f(z) = ez2
sin z. The function f(z) is entire of order ρ = 2. The

exeptional value here is A = 0, for which τ0 = 1.
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5. Phragmen-Lindelöf ’s theorem

The function Mf (r) does not contain enough information for the full characterization
of the behavior of f(z) at infinity. Consider, for example, the function f(z) = ez. For
z = reiϕ one has |ez| = eRe z = er cos ϕ , Mf (r) = er. For ϕ ∈ (−π/2 + ε, π/2− ε) , ε > 0,
we have |ez| > er sin ε, i.e. |f(z)| → ∞ for z → ∞. For ϕ ∈ (π/2 + ε, 3π/2 − ε) , ε > 0,
we get |ez| < e−r sin ε, i.e. |f(z)| → 0 for z →∞.

The following theorem gives us the important information on behavior of an entire func-
tion inside a sector if its behavior on the boundaries of this sector is known.

Theorem 5.1 (Pragmen-Lindelöf). Let f(z) be an entire function of a finite order
not greater than than ρ, and α < 1/ρ. Let B be a sector of angle πα in the (z)-plane.
If |f(z)| ≤ C on the boundaries of B, then |f(z)| ≤ C inside B as well with the same
constant C.

Proof. Without loss of generality one can take B = {z : | arg z| < πα/2}. Let β and
γ be such that

ρ < β < γ < 1/α. (5.1)

Let us consider the function F (z) := f(z) exp(−εzγ), where ε > 0, and as an analytic
branch of the function zγ we choose its principal value. Let z = reiϕ ∈ B, i.e. |ϕ| ≤ πα/2.
By virtue of (5.1), γ|ϕ| ≤ γπα/2 < π/2, and consequently, cos γϕ ≥ a > 0. Then

| exp(−εzγ)| = exp(−ε(cos γϕ)rγ) ≤ exp(−εarγ), |ϕ| ≤ πα/2.

Since f(z) is an entire function of order not greater than ρ, we have for sufficiently large
r : |f(reiϕ)| < exp(rβ). This yields

|F (reiϕ)| < exp(rβ − aεrγ) ≤ C, r > R0(ε), |ϕ| ≤ πα/2. (5.2)

Consider the compact set Sε = {z = reiϕ : |ϕ| ≤ πα/2, r ≤ R0(ε)}. Then we have
|F (z)| ≤ C on ∂Sε. According to the maximum modulus principle for analytic functions,
|F (z)| ≤ C is valid for all z ∈ Sε. Together with (5.2) this yields |F (z)| ≤ C, |ϕ| ≤ πα/2
or |f(z)| ≤ C exp(−εarγ), |ϕ| ≤ πα/2. By virtue of the arbitrariness of ε > 0, we obtain
|f(z)| ≤ C, z ∈ B, and Theorem 5.1 is proved. �

Corollary 5.1. If the entire function f(z) of order ρ < 1/2 is bounded on a certain
ray arg z = ϕ0, then f(z) ≡ const.

This assertion is not valid for entire functions of order ρ ≥ 1/2. For example, the function

f(z) =
sin
√
z√

z
has the order ρ = 1/2 and is bounded for z > 0.

We mention that in the literature there exist further more general Phragmen-Lindelöf-
type results for functions being analytic on simply connected regions G – we omit details.

6. Entire functions of exponential type

6.1. The Borel transform. An entire function is called an entire function of
exponential type if its order is ρ < 1 or ρ = 1 with a finite type σ (i.e. the growth
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of the function is not greater than of the first order and normal type). Such functions are
called also entire function of finite degree, and the value

κ = lim
r→∞

lnMf (r)

r

is called the degree of the entire function f(z). According to (2.7), the degree of an entire
function equals its type with respect to the order ρ = 1. If ρ < 1, then κ = 0, and if
ρ > 1, then κ = ∞. For an entire function of exponential type in the power series (1.1) it
is convenient to use the designation bn = n!an, i.e. formula (1.1) takes the form

f(z) =
∞∑

n=0

bn
n!
zn. (6.1)

For ρ = 1, formula (2.11) yields

κe = lim
n→∞

n
n

√
|bn|
n!
.

Since n! ∼
√

2πn(n/e)n, we get

κ = lim
n→∞

n
√
|bn|. (6.2)

Denote

γ(t) =
∞∑

n=0

bn
tn+1

. (6.3)

By virtue of (6.2), the series (6.3) converges for |t| > κ, and on the circle |t| = κ the
function γ(t) has at least one singular point. The function γ(t) is called the Borel transform
of f(z).

We note that if f(z) = Af1(z) + Bf2(z), then γ(t) = Aγ1(t) + Bγ2(t), where γ1(t)
and γ2(t) are Borel transforms for the entire functions of exponential type f1(z) and f2(z)
respectively.

Example 6.1. If f(z) = Aeaz, then γ(t) =
A

t− a
.

Example 6.2. If

f(z) = sin z =
1

2i

(
eiz − e−iz

)
, then γ(t) =

1

2i

1

t− i
− 1

2i

1

t+ i
=

1

t2 + 1
.

Example 6.3. If

f(z) = cos z =
1

2

(
eiz + e−iz

)
, then γ(t) =

1

2

( 1

t− i
+

1

t+ i

)
=

t

t2 + 1
.

Example 6.4. If f(z) = 1 + ez, then γ(t) =
1

t
+

1

t− 1
.

There are connections between the growth of |f(z)| along the rays arg z = ϕ and the
convex hull of the set of singularities of γ(t).

6.2. Convex sets. The supporting function. A subset D of the complex plane is
called convex, if for any z, z̃ ∈ D we have αz + (1− α)z̃ ∈ D for all α ∈ [0, 1].
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Let D be a closed convex set, and let ωϕ denote the ray arg z = ϕ. Let z = x+iy ∈ D.
The orthogonal projection of the point z to the ray ωϕ is the point x cosϕ + y sinϕ =
Re(ze−iϕ). The function

K(ϕ) = max
z∈D

Re(ze−iϕ), 0 ≤ ϕ ≤ 2π,

is called the supporting function of the convex set D. Clearly, for each point z ∈ D :
x cosϕ + y sinϕ ≤ K(ϕ), and for at least one point z ∈ D we have the equality here.
Hence, for any ϕ the set D lies on one side of the line x cosϕ + y sinϕ = K(ϕ), and D
has at least one common point with this line. This line is called a supporting line.

Example 6.5. Let D = {z : |z| ≤ σ}. Then K(ϕ) ≡ σ.

Example 6.6. If D = [−iσ, iσ] is a segment of the imaginary axis, then K(ϕ) =
σ| sinϕ|.

Example 6.7. Let D = {z : |Re z| ≤ σ, |Im z| ≤ σ}. Then K(ϕ) = σ
√

2 cos(π/4−|ϕ|),
|ϕ| ≤ π/4. By symmetry of D, the function K(ϕ) is periodic with the period π/2 (see
fig.).

�
���

���
���

��
A
A
A
A
A
AA

ϕ

0
σ−σ

iσ

−iσ

(D)

Theorem 6.1. 1) The supporting function K(ϕ) of a bounded closed convex set D is
continuous.

2) Let K1(ϕ) and K2(ϕ) be the supporting functions of D1 and D2 respectively. If
K1(ϕ) = K2(ϕ) for all ϕ, then D1 = D2.

Proof. 1) Take ϕ1 and ϕ2. Let z1 ∈ D be such that

K(ϕ1) = max
z∈D

Re(ze−iϕ1) = Re (z1e
−iϕ1).

Then
K(ϕ1)−K(ϕ2) = Re(z1e

−iϕ1)−max
z∈D

Re(ze−iϕ2)

≤ Re(z1e
−iϕ1)− Re(z1e

−iϕ2) = Re(z1(e
−iϕ1 − e−iϕ2)) ≤ |z1||e−iϕ1 − e−iϕ2|.

Denote B = max
z∈D

|z| , then K(ϕ1) − K(ϕ2) ≤ B|e−iϕ1 − e−iϕ2|. Analogously we obtain

K(ϕ2)−K(ϕ1) ≤ B|e−iϕ2 − e−iϕ1|, and consequently,

|K(ϕ1)−K(ϕ2)| ≤ B|e−iϕ1 − e−iϕ2 |.

Thus, |K(ϕ1)−K(ϕ2)| < ε, if |ϕ1−ϕ2| < δ = δ(ε), and we have proved that the supporting
function K(ϕ) is continuous.
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2) Suppose that D1 6= D2. Let for definiteness there exists a point z0 ∈ D2 such that
z0 /∈ D1. Let z1 ∈ D1 be such that

min
z∈D1

|z0 − z| = |z0 − z1|.

Assume that the segment z1z0 is inclined to the real axis with an angle ϕ0. It is easy to
check that K1(ϕ0) 6= K2(ϕ0), and we arrive at the second assertion of the theorem. �

6.3. The integral representation for an entire function of exponential type.
Let M be a bounded subset of the complex plane. The intersection D of all closed convex
sets, which contain M, is called the convex hull of the set M. The set D is the smallest
closed convex set that contains M.

Let f(z) be an entire function of exponential type and let γ(t) be its Borel transform.
The convex hull D̄ of the set of the singularities of the function γ(t) is called the conjugate
diagram of the function f(z). As was mentioned above, if f(z) is of degree κ, then γ(t)
is analytic for |t| > κ, and on the circle |t| = κ the function γ(t) has at least one singular
point. Hence, the conjugate diagram D̄ of f(z) lies in the circle |z| ≤ κ and has at least
one common point with its boundary |t| = κ.

Let D̄ be the conjugate diagram of f(z), and K(ϕ) be the supporting function of the
set D̄. Obviously,
1) max

0≤ϕ≤2π
K(ϕ) = κ, and if z0 = κeiϕ0 ∈ D̄, then max

0≤ϕ≤2π
K(ϕ) = K(ϕ0).

2) K(ϕ) ≥ −κ.
Example 6.8. For the function f(z) = Aeaz the Borel transform has the form

γ(t) =
A

t− a
, and consequently, D̄ = {t : t = a} contains only the point t = a.

Example 6.9. For the function f(z) = sin z one has γ(t) =
1

t2 + 1
, and D̄ = [−i, i]

is a segment of the imaginary axis.

Example 6.10. Let f(z) = cosh z + sin z. Then γ(t) =
t

t2 − 1
+

1

t2 + 1
, hence D̄ is

the square with vertexes in the points: 1,−1, i,−i.
The following theorem gives an integral representation for entire functions of exponential

type.

Theorem 6.2. Let f(z) be an entire function of exponential type, let γ(t) be the
Borel transform for f(z), and let D̄ be the conjugate diagram of f(z). Then

f(z) =
1

2πi

∫
C

γ(t)ezt dt, (6.4)

where C is a simply closed contour such that D̄ ⊂ int C.

Proof. We have

J :=
1

2πi

∫
C

γ(t)ezt dt =
1

2πi

∫
|t|=R

γ(t)ezt dt, R > κ.

For |t| = R, the Laurent series (6.3) converges uniformly, and consequently,

J =
∞∑

n=0

bn
1

2πi

∫
|t|=R

ezt

tn+1
dt =

∞∑
k=0

bn
n!
zn = f(z).
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Theorem 6.2 is proved. �

Corollary 6.1. Let K(ϕ) be the supporting function of the conjugate diagram D̄ for
the function f(z). Then for each ε > 0,

|f(reiϕ)| < A(ε)e(K(−ϕ)+ε)r, (6.5)

where A(ε) does not depend on r and ϕ.

Proof. Let D̄ε = {z : |z−t| ≤ ε, t ∈ D̄} be the ε - extension of D̄. Then the function
K(ϕ) + ε is the supporting function of the set D̄ε. Consider the contour Cε := ∂D̄ε with
counterclockwise circuit. According to Theorem 6.2,

f(z) =
1

2πi

∫
Cε

γ(t)ezt dt,

and consequently,

|f(reiϕ)| ≤ l

2π
max
t∈Cε

|γ(t)| exp
(
rmax

t∈Cε

Re(teiϕ)
)
,

where l is the length of Cε. Since max
t∈Cε

Re(teiϕ) = K(−ϕ) + ε, we get (6.5). �

6.4. The indicator function. Polya’s theorem. For an entire function f(z) of
exponential type we introduce the following characteristic:

h(ϕ) = lim
r→∞

ln |f(reiϕ)|
r

, 0 ≤ ϕ ≤ 2π.

The function h(ϕ) is called the indicator function or the indicator of f(z). The indicator
describes the growth of the function along a ray arg z = ϕ.

Example 6.11. Let f(z) = e(a−ib)z. Then f(reiϕ) = exp((a cosϕ + b sinϕ)r), and
consequently, the indicator has the form h(ϕ) = a cosϕ+ b sinϕ. Such an indicator is called
trigonometric.

Theorem 6.3. Let f(z) be an entire function of exponential type with the indicator
h(ϕ), and let γ(t) be the Borel transform of f(z). In the half-plane

Re(teiϕ0) > h(ϕ0) (6.6)

the function γ(t) is analytic, and

γ(t) =

∫ ∞ exp(iϕ0)

0

f(z)e−zt dz (6.7)

(the integration in (6.7) is performed along the ray arg z = ϕ0).

Proof. Consider the half-plane

Re(teiϕ0) > h(ϕ0) + δ, δ > 0. (6.8)

Along the ray arg z = ϕ0 we have the estimate |f(z)| < A(ε)e(h(ϕ0)+ε)r, ε > 0, and
consequently,

|f(z)e−zt| < A(ε) exp((h(ϕ0) + ε)r − rRe(teiϕ0)).
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Therefore, if t belongs to the half-plane (6.8), then |f(z)e−zt| < A(ε) exp(−(δ − ε)r). For
0 < ε < δ we obtain that the integral∫ ∞ exp(iϕ0)

0

f(z)e−zt dt (6.9)

converges in the half-plane (6.8) absolutely and uniformly. Hence, the integral (6.9) repre-
sents an analytic function in the half-plane (6.8). Since δ > 0 is arbitrary, this integral
represents an analytic function in the half-plane (6.6). It remains to show that the integral
(6.9) is equal to γ(t).

For a fixed ε > 0 we choose R0(ε) > 0 such that

|f(z)| < B(ε)e(κ+ε)|z|, |z| > R0(ε), (6.10)

where κ is the degree of f(z). Let R > R0(ε), and let t lie in the half-plane

Re(teiϕ0) > κ+ ε+ h, h > 0. (6.11)

We have ∫ ∞ exp(iϕ0)

0

f(z)e−zt dz = AR +BR,

where

AR =

∫ R exp(iϕ0)

0

f(z)e−zt dz, BR =

∫ ∞ exp(iϕ0)

R exp(iϕ0)

f(z)e−zt dz.

By virtue of (6.10), (6.11), we get

|BR| < B(ε)

∫ ∞

R

e−hr dr → 0 for R→∞.

On the segment [0, Reiϕ0 ], the series (6.1) converges uniformly. Then

AR =
∞∑

n=0

bn
n!

∫ R exp(iϕ0)

0

zne−zt dz.

Since ∫ ∞ exp(iϕ0)

0

zne−zt dz =
n!

tn+1
,

in the half-plane (6.11) we have

|γ(t)− AR| =
∣∣∣ ∞∑

n=0

bn
n!

∫ ∞ exp(iϕ0)

R exp(iϕ0)

zne−zt dz
∣∣∣ ≤ ∞∑

n=0

|bn|
(κ+ ε)n+1

(κ+ ε)n+1

n!

∫ ∞

R

rne−(κ+ε+h)r dr.

Thus, it is sufficient to show that

an,R :=
(κ+ ε)n+1

n!

∫ ∞

R

rne−(κ+ε+h)r dr → 0, R→∞,

uniformly in n. It is easy to calculate:∫ ∞

R

rne−(κ+ε+h)r dr = e−(κ+ε+h)R n!

(κ+ ε+ h)n+1

n∑
j=0

((κ+ ε+ h)R)j

j!
.
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Hence,

an,R = e−(κ+ε+h)R
( κ+ ε

κ+ ε+ h

)n+1
n∑

j=0

((κ+ ε+ h)R)j

j!
< e−hR → 0, R→∞.

Thus, (6.7) is valid in the half-plane (6.11). Since the integral (6.9) represents an ana-
lytic function in the larger half-plane (6.6), formula (6.7) holds also in the half-plane (6.6).
Theorem 6.3 is proved. �

Corollary 6.2. The following relation holds

K(−ϕ) ≤ h(ϕ). (6.12)

Proof. Indeed, the function γ(t) is analytic outside D̄, and consequently, γ(t) is
analytic in the half-plane Re(teiϕ0) > K(−ϕ0). The boundary of this half-plane is the
supporting line for D̄, which is orthogonal to the ray arg t = −ϕ0. The function γ(t) has
singularities on the supporting line. On the other hand, the function γ(t) is analytic in the
half-plane (6.6). Hence, K(−ϕ0) ≤ h(ϕ0), and Corollary 6.2 is proved. �

Theorem 6.4 (Polya). Let f(z) be the entire function of exponential type with the
indicator h(ϕ), let D̄ be its conjugate diagram and let K(ϕ) be the supporting function
of D̄. Then

h(ϕ) = K(−ϕ). (6.13)

Proof. It follows from (6.5) that h(ϕ) ≤ K(−ϕ). Along with (6.12) this yields (6.13).
�

The following theorem follows from the properties of supporting function K(ϕ).

Theorem 6.5. The indicator function h(ϕ) is continuous, 2π -periodic, and

max
0≤ϕ≤2π

h(ϕ) = κ.

Moreover, h(ϕ) ≥ −κ.
According to Polya’s theorem and Theorem 6.1 the indicator h(ϕ) is the supporting

function for the set D := {z : z ∈ D̄}, where D̄ is the conjugate diagram of the corre-
sponding entire function f(z). Indeed,

h(ϕ) = K(−ϕ) = max
z∈D̄

Re(zeiϕ) = max
z∈D

Re(z̄eiϕ) = max
z∈D

Re(ze−iϕ).

This set D is called the indicator diagram of the function f(z). The shape of the indicator
diagram indicates the growth of the entire function in different directions.

Example 6.12. For the function f(z) = sin z we have: ρ = 1, σ = 1 , D̄ = [−i, i] is
a segment of the imaginary axis, K(ϕ) = | sinϕ| , h(ϕ) = | sinϕ|.

Remark 6.1. Sometimes it is convenient to define the indicator function in another
way:

h(ϕ) = lim
r→∞

ln |f(reiϕ)|
rρ

.

For more details about properties of indicator functions see [4].
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6.5. The indicator function of the derivative. Let f(z) be an entire function of
exponential type, and let D be the indicator diagram for f(z).

Theorem 6.6. Suppose that one of the following conditions is fulfilled:
(i) the origin is an interior point of D, i.e. 0 ∈ intD;
(ii) the origin does not belong to D;
(iii) the origin is an interior point of a segment that is a part of the boundary of D.

Then the indicator of the derivative f ′(z) is equal to the indicator of f(z).

Proof. Obviously, D can be replaced with D̄. Let γ(t) and γ1(t) are the Borel
transforms of f and f ′, respectively. Since

γ(t) =
∞∑

n=0

bn
tn+1

, γ1(t) =
∞∑

n=0

bn+1

tn+1
,

we have
γ1(t) = tγ(t)− f(0). (6.14)

It follows from (6.14) that the functions γ1(t) and γ(t) have the same singularities except
maybe the origin t = 0. Under the hypothesis of the theorem, we get that the conjugate
diagram of f ′(z) coincides with the conjugate diagram of f(z). Therefore, the supporting
function of f ′(z) is equal to the supporting function of f(z), and by Theorem 6.4, the
indicator of f ′(z) is equal to the indicator of f(z). �

Remark 6.2. If the origin is a “corner” of D, then the indicators of f(z) and f ′(z)
may happen to be different. For example, let f(z) = 1 + ez. Then f ′(z) = ez,

γ(t) =
1

t
+

1

t− 1
, γ1(t) =

1

t− 1
.

Both the indicator and conjugate diagrams of f(z) coincide with the segment [0, 1], while
for f ′(z) they are the point 1.

Theorem 6.7. Let γm(t) be the Borel transform for f (m)(z), m ≥ 0. Then

γm(t) = tmγ(t)− tm−1f(0)− tm−2f ′(0)− . . .− f (m−1)(0). (6.15)

Indeed, using (6.14), one can easily derive (6.15) by induction. �

6.6. Introduction to the operational calculus. In the sequel, f(z) =: γ(t) means
that γ(t) is the Borel transform of f(z). We consider the linear differential equation with
constant coefficients

a0y
(n)(x) + a1y

(n−1)(x) + . . .+ any(x) = ϕ(x) (6.16)

under the initial conditions

y(0) = b0, y
′(0) = b1, . . . , y

(n−1)(0) = bn−1. (6.17)

Let ϕ(z) be an entire function of exponential type, and ϕ(z) =: γ∗(t). We shall seek a
solution y(x) of (6.16), (6.17) in the class of entire functions of exponential type. Put
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y(z) =: γ(t). By Theorem 6.7 we have y(m)(z) =: γm(t) = tmγ(t) − tm−1b0 − . . . − bm−1.
Taking in (6.16) the Borel transforms, one gets

a0(t
nγ(t)−tn−1b0−. . .−bn−1)+a1(t

n−1γ(t)−tn−2b1−. . .−bn−2)+. . .+anγ(t) = γ∗(t). (6.18)

Consequently,

γ(t) =
γ∗(t) + Pn−1(t)

P (t)
, P (t) := a0t

n + . . .+ an, (6.19)

where Pn−1(t) is a known polynomial of degree ≤ n− 1. It follows from (6.19) that γ(t)

is analytic at infinity and γ(∞) = 0. Hence, γ(t) =
∞∑

k=0

ck
tk+1

. Consequently, the function

y(x) =
∞∑

k=0

ck
k!
xk is the solution of the Cauchy problem (6.16), (6.17).

The described method of solving the Cauchy problem for differential equations is the
central point of the operational calculus. This method allows one to reduce the solution of
a differential equation to the solution of an algebraic (so-called operational) equation (6.18).
One can find y(x) from γ(t) also by the formula

y(x) =
1

2πi

∫
C

γ(t)ext dt

with the help of the residue calculus.

Example 6.12. Consider the Cauchy problem:

y′′(x)− 2y′(x) + y(x) = 0, y(0) = 0, y′(0) = 1.

We get y(x) =: γ(t), y′(x) =: tγ(t), y′′(x) =: t2γ(t)− 1, and the operational equation has
the form t2γ(t)− 1− 2tγ(t) + γ(t) = 0. This yields

γ(t) =
1

(t− 1)2
, y(x) =

1

2πi

∫
C

ext

(t− 1)2
dt = xex.

Example 6.13. Let us find the solution of the following problem:

y′′ + y′ + y = cos x, y(0) = 0, y′(0) = 1.

We get y =: γ(t), y′ =: tγ(t), y′′(x) =: t2γ(t) − 1, cosx =: t/(t2 + 1). The operational

equation has the form t2γ(t) − 1 + tγ(t) + γ(t) = t/(t2 + 1). This yields γ(t) =
1

t2 + 1
,

y(x) = sin x.

7. Estimates of the modulus of an entire function from below

Estimates of the modulus of an entire function from below play an important role in the
theory of entire functions and its applications, for example, in the spectral theory.

First we consider entire functions of order 0 ≤ ρ < 1/2. According to Corollary 3.3,
such functions can be represented (up to a multiplicative constant) in the canonical form:

f(z) = zm

∞∏
k=1

(
1− z

zk

)
, (7.1)



29

where the numbers zk 6= 0 are zeros of f(z). Then

min
|z|=r

|f(z)| ≥ rm

∞∏
k=1

(
1− r

|zk|

)
= ϕ(r), (7.2)

where

ϕ(z) = zm

∞∏
k=1

(
1− z

|zk|

)
. (7.3)

We note that the entire function ϕ(z) has the same order ρ < 1/2, as f(z), since the
zeros of these functions have the same convergence exponent τ. By virtue of Corollary 5.1,
the function ϕ(z) is not bounded on the half-line z > 0. Therefore, there exists a sequence
rn → ∞ such that |ϕ(rn)| → ∞. Consequently, min|z|=rn |f(z)| tends to infinity as n →
∞. Thus, we have proved the following assertion.

Theorem 7.1. For each entire function f(z) of order 0 ≤ ρ < 1/2, there exists a
sequence of circles |z| = rn, rn →∞ , such that min

|z|=rn

|f(z)| → ∞ as n→∞.

This assertion is not valid for entire functions of order ρ ≥ 1/2. For example, the entire
function f(z) = cos

√
z has the order ρ = 1/2, and it is bounded for z > 0.

Theorem 7.2. Let f(z) be an entire function of order 0 < ρ < 1/2. Then for each
ε > 0, there exists a sequence rn →∞, for which

min
|z|=rn

|f(z)| > exp(rρ−ε
n ).

Proof. Consider the function F (z) = ϕ(z) exp(−σ(−z)ρ−ε), ε > 0, 0 < σ < 1, where
ϕ(z) is defined by (7.3). The function F (z) is analytic in the whole complex plane without
the half-line z ≥ 0. We choose (−z)ρ−ε such that (−z)ρ−ε is real for z < 0. Since
Mϕ(r) = ϕ(−r), there exists a sequence rn →∞ such that ϕ(−rn) > exp(rρ−ε

n ). Then

F (−rn) > exp(rρ−ε
n − σrρ−ε

n ) = exp((1− σ)rρ−ε
n ). (7.4)

Let us show that |F (z)| is not bounded on the half-line z > 0. Indeed, suppose on the
contrary, that |F (z)| < C for z > 0. Using similar arguments as in the proof of the
Phragmen-Lindelöf theorem, one can prove (using ρ < 1/2) that |F (z)| < C for all z.
But this contradicts to (7.4). Thus, there exists a sequence rn →∞ such that |F (rn)| > 1.
Then

|ϕ(rn)| > | exp(σ(−rn)ρ−ε)| = exp(σrρ−ε
n cos π(ρ− ε)),

and consequently, |ϕ(rn)| > exp(rρ−2ε
n ), for sufficiently large n. �

We now consider the function sin z which is an entire function of exponential type with
the indicator h(ϕ) = | sinϕ|.

Theorem 7.3. 1) For all z = reiϕ one has | sin z| ≤ exp(|Im z|) = exp(h(ϕ)r);
2) Denote Gε = {z : |z − kπ| ≥ ε, k = 0,±1,±2, . . .}. Then for z ∈ Gε,

| sin z| ≥ A(ε) exp(h(ϕ)r), A(ε) > 0.
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Proof. 1) Since sin z = (eiz − e−iz)(2i)−1, we get

| sin z| ≤ eIm z + e−Im z

2
≤ exp(|Im z|) = exp(h(ϕ)r).

2) Since the function | sin z| is even and π -periodic, it is sufficient to consider z ∈ Π∪Πε,
where

Π =
{
z : −π

2
≤ Re z ≤ π

2
, Im z > 1

}
, Πε =

{
z : −π

2
≤ Re z ≤ π

2
, 0 ≤ Im z ≤ 1, |z| ≥ ε

}
.

Put F (z) := | sin z| exp(−Im z). If z ∈ Π, we get

F (z) =
|e2iz − 1|

2
≥ 1− e−2Im z

2
>

1− e−2

2
.

Further, for z ∈ Πε we have F (z) ≥ min
ξ∈Πε

F (ξ) > 0. Thus, taking

A(ε) = min
{1− e−2

2
, min

ξ∈Πε

F (ξ)
}

we arrive at the second assertion of the theorem. �

The next assertion we provide without proof (see [5] for details).

Theorem 7.4. Let f(z) =
∞∏

n=1

(
1− z2

z2
n

)
, zn > 0, lim

n→∞
n/zn = σ <∞. Then f(z) is

an entire function of exponential type with the indicator h(ϕ) = πσ| sinϕ|. Moreover, there
exist rn →∞ such that

|f(rne
iϕ)| > exp((h(ϕ)− ε)rn), k > n0(ε), ε > 0.

8. Meromorphic functions

A function f(z) is called meromorphic, if it is analytic in the whole complex plane
with exception of its poles. For example, if f1(z) 6≡ 0 and f2(z) are entire, then f(z) =
f2(z)/f1(z) is a meromorphic function. In particular, each rational fraction is a meromorphic
function. If a meromorphic function has a countable infinite set of poles {zk}k≥1, then
lim
k→∞

|zk| = ∞, and we can enumerate them as follows: |zk| ≤ |zk+1| (each pole is counted

according to its multiplicity).
We mention that each meromorphic function f(z) has the form f2(z)/f1(z), where

f1(z) and f2(z) are entire functions. Indeed, by Theorem 3.1, one can construct an entire
function f1(z) such that its zeros coincide with {zk}. Then the function f2(z) = f(z)f1(z)
is entire and f(z) = f2(z)/f1(z).

We note that one can also define the order, type, etc. of a meromorphic function and
extend most of the results presented in this note to the meromorphic case – for details we
refer the reader to the textbook [9].
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The gamma-function. Consider the function

Γ(z) = e−Cz 1

z
∞∏

k=1

(
1 +

z

k

)
e−z/k

, (8.1)

where

C = lim
n→∞

( n∑
k=1

1

k
− lnn

)
= 0, 5772...

is the Euler constant. The function Γ(z) is called the gamma-function. Clearly, Γ(z) is a
meromorphic function with simple poles in the points z = −k (k = 0, 1, 2, . . .). The function
Γ(z) has no zeros. We provide some properties of the gamma-function.

Let us show that Γ satisfies the functional equation

Γ(z + 1) = zΓ(z), Γ(1) = 1. (8.2)

For this purpose we consider the functions

fn(z) = e−Cz 1

z
n∏

k=1

(
1 +

z

k

)
e−z/k

=

n! exp
{
− Cz +

n∑
k=1

z

k

}
z(z + 1) · · · (z + n)

. (8.3)

Clearly, lim
n→∞

fn(z) = Γ(z). We calculate

zfn(z)

fn(z + 1)
= (z + n+ 1) exp

(
C −

n∑
k=1

1

k

)
=
z + n+ 1

n
exp

(
C −

( n∑
k=1

1

k
− lnn

))
.

For n→∞ we obtain
zΓ(z)

Γ(z + 1)
= 1,

i.e. Γ(z + 1) = zΓ(z). It follows from (8.3) for z = 1 that

fn(1) =
1

n+ 1
exp

(
− C +

n∑
k=1

1

k

)
=

n

n+ 1
exp

(
− C +

( n∑
k=1

1

k
− lnn

))
,

and consequently, Γ(1) = lim
n→∞

fn(1) = 1.

Using (8.3) we get

Γ(z) = lim
n→∞

n!nz exp
(
− Cz +

( n∑
k=1

1

k
− lnn

)
z
)

z(z + 1) . . . (z + n)
,

hence,

Γ(z) = lim
n→∞

n!nz

z(z + 1) . . . (z + n)
. (8.4)
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Formula (8.4) is called the Gauss-Euler formula for the gamma-function.
Let us show that

Γ(z)Γ(1− z) =
π

sin πz
. (8.5)

Indeed,
1

Γ(z)Γ(−z)
= −z2

∞∏
k=1

(
1− z2

k2

)
. (8.6)

Since

z
∞∏

k=1

(
1− z2

k2

)
=

1

π

(
πz

∞∏
k=1

(
1− z2π2

π2k2

))
=

1

π
sin πz

(see formula (3.31)) and since −zΓ(−z) = Γ(1− z), from (8.6) we derive (8.5).

Let us show that for Γ(z) the following integral representation is valid

Γ(z) =

∫ ∞

0

tz−1e−t dt, Re z > 0, (8.7)

where tz−1 = exp((z−1) ln t). Indeed, |tz−1e−t| = e−ttx−1, z = x+iy. Hence, the integral in
(8.7) converges absolutely for each z in the half-plane Re z > 0. The integral

∫∞
0
tz−1e−t dt

converges uniformly on each bounded closed subset of this half-plane. Since the function
tz−1e−t is entire with respect to z for each t > 0, the function

∫∞
0
e−ttz−1 dt is analytic

for Re z > 0.

We note that
(
1 − t

n

)n

→ e−t for n → ∞ uniformly on each finite segment, and

0 <
(
1− t

n

)n

< e−t for 0 < t < n. Therefore,

lim
n→∞

∫ n

0

(
1− t

n

)n

tz−1 dt =

∫ ∞

0

tz−1e−t dt for Re z > 0.

On the other hand, since

Jn =

∫ n

0

(
1− t

n

)n

tz−1 dt = nz

∫ 1

0

τn(1− τ)z−1 dτ,

integration by parts yields

Jn =
n!nz

z(z + 1) · · · (z + n− 1)

∫ 1

0

τ z+n−1dτ =
n!nz

z(z + 1) · · · (z + n)
.

For n→∞, by virtue of (8.4), we arrive at (8.7).
For the gamma-function the following Stirling formula holds:

Γ(z) ∼
√

2πz−1/2ez ln z−z, for z →∞, | arg z| < π − δ, δ > 0. (8.8)

(see, for example, [6]). In particular, for z = n+ 1 we obtain from (8.8):

Γ(n+ 1) = n! ∼
√

2π(n+ 1)n+ 1
2 e−n−1.

Since

(n+ 1)n+ 1
2 = nn+ 1

2

(
1 +

1

n

)n(
1 +

1

n

) 1
2 ∼ enn+ 1

2 ,
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we get the following asymptotical formula for n! :

n! ∼
√

2πn
(n
e

)n

, n→∞.

Let us show that 1
Γ(z)

is an entire function of order ρ = 1 and infinite type. Indeed,

1

Γ(z)
= zeCz

∞∏
k=1

(
1 +

z

k

)
e−z/k.

By virtue of Lemma 3.1 and Theorem 3.10, 1
Γ(z)

is an entire function, and its order is ρ = 1,

since the convergence exponent of the sequence of its zeros is τ = 1, and g(z) = Cz is a
polynomial of the first degree. The function 1

Γ(z)
is of maximal type (σ = ∞), i.e. there

do not exist constants A > 0 and B > 0 such that for all z,∣∣∣ 1

Γ(z)

∣∣∣ < AeB|z|. (8.9)

Indeed, by virtue of (8.8), 1
Γ(x)

∼
√

2πx−
1
2 ex ln x−x, x > 0, x → ∞, which shows that (8.9)

cannot be fulfilled for all z.
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