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Abstract  
 

Based on the Hilbert resp. Riesz transform operators we provide an alternative Schrödinger 

operator *P  with related appropriate domain given by    
 

 112/1

*)( HHHPD . 

 
The corresponding physical states of quantum mechanics are correspondently described by 
vectors of the Hilbert space   
 



  oHHH 02/1
. 

 
The related location-momentum commutator vanishes for all quantum states  

0H . The 

complementary closed space  

oH  can be interpreted as vacuum quantum state space.   As 

a consequence the Fourier wave concept keeps valid for quantum states 
0H , while  it is 

replaced by the Calderón (admissible) wavelet concept for the vacuum energy space  

1H  

governed by  the wavelet admissibility  ( 2/1H compatible) condition 

 

 



d

)(ˆ 2  . 

 

The alternative framework is valid for all energy-momentum related differential equations (in 
its weak corresponding variational representation forms), i.e. all 4 Nature “forces” can be 
modelled in the same Hilbert space framework with underlying identical space-time 

continuum and space-time dimension  41 mn . With respect to the quantum states 
0H

we recall the conjecture “that distortion-free families of progressive, spherical wave of higher 
levels only exist if and only if the Huygens’ principle is valid and that families of spherical, 
progressive families only can exist for space-time dimensions 21 mn  and 

41 mn ” ([CoR], VI, §10) . At the same time the Riesz operators are rotation invariant 

([StE], appendix). 
 
As the Hilbert resp. Riesz operators are skew-symmetric the corresponding alternative 
Lorentz-invariant Schrödinger (Klein-Gordon) equation corresponds to the weak 
representation the wave equation, newly with respect to the inner product of  the  2/1H  

Hilbert space. For space dimension 1m  the newly proposed Schödinger operator is 

equal to the Calderón operator  
 

DH :  
 

whereby H denotes the Hilbert transform operator and dxdiD /:   ([MeY], 7.1). 

 
Our proposed concept replaces a dynamical matter-fields (laws of interaction) world (Yang-
Mills field) with a truly continuum world with its own laws, being compatible also with the 
Einstein field equations. This means, that “the obscure problem of laws of interaction 
between matter and field does no longer arise. This conception of the world can hardly be 
described as dynamical any more, since the fields neither generated by nor acting upon an 
agent spate from the field, but following its own laws is in a quiet continuous flow. It is of the 
essence of the continuum “. The proposed new framework enables “universal field laws of 
atomic nuclei and electrons spreading out continuously and being subject to fine fluent 
changes, where e.g. the mass of an electron derives completely from the accompanying 
electromagnetic field. Even the atomic nuclei and the electrons are not ultimate 
unchangeable elements that are pushed back and forth by natural forces acting upon them, 
but they are themselves spread out continuously and are subject to fine fluent changes”.  In 
other words, “all physical phenomena can be reduced to a simple universal field law (in the 
form of the Hamiltonian principle)”, ([WeH1] p. 171, appendix). 
 

 
 



In quantum theory the Schrödinger momentum operator P is defined by 
 

 :
1

: P
i

P


. 

 

The corresponding commutator property 
 

  IdxPPxPx :,  
 

leads to the Heisenberg uncertainty inequality, being valid in the corresponding Hilbert space 

framework 2L . We propose the following alternative momentum operator in an extended 

quantum state Hilbert state framework 
2/1H  building on some (rotation) properties of the 

Hilbert transformation operator H (resp. on the corresponding properties of the Riesz 

operators for space dimensions m>1) and the related Symm`s log kernel operator A (see 
appendix): 
 

      HHPH
i

P :
1

:*


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Let  uHuH :  denote the Hilbert transform of 

Hu . It holds 

 
Lemma: The alternative Schrödinger quantized momentum operator fulfills the commutator 
properties 
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Proof: From 
 

  )()()()(, * xuHxxHxuxuPx H
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it follows 
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Applying the commutator property of the Hilbert transform for functions/distributions with 
vanishing constant Fourier term then leads to 
 

  2/12/1

* ),(),,(   uuuuPx H
. 

 

The second property related to the orthogonality between a  2L function and its 

corresponding Hilbert transform then proves the proposition above. 
 
 
 
 
 
 
 
 
 
 
 



Note 1 ([MeY], 7.1): For space dimension 1m  the newly proposed Schödinger operator is 

equal to the Calderón operator  
 

DH :    with   dxdiD /:   

 
and H denotes the Hilbert transform operator. In [EsG], (3.17), (3.35), its corresponding 
generalization, the Caldeón-Zygmund integrodifferential operator, for space dimensions 

1m   is provided in the form 
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with ([EsG] (3.15’)) 
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whereby kR  denotes the Riesz operators  
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Let B denote the operator of pointwise multiplication by a function )(xb , then Calderón 

showed that the commutator  ,B   is bounded on )(2 RL if and only if the function )(xb  is 

Lipschitz. This characterization opened the way to the study of the operators on Hardy 
spaces. 
 
 
Note 2: The  2/1H  Hilbert space is proposed to model quantum states. For 0t we 

introduce an additional inner product resp. norm by 
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Now the factor have exponential decay 
tie


 instead of a polynomial decay in case of 

i . 

Putting   :: t  it holds that for any bounded  
0Hx  (appendix) 
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For 
 

  0000 HH    

with 

  1
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one therefore gets 
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Note 3: The one-dimension Dirac “function”   is not an element of the Hilbert space 

2/1H  , but 
  2/1H . 

 
 
 
Note 4: For the harmonic quantum oscillator model the saw-tooth function 
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plays a key role ([BrK1]). Its related Hilbert transform is given by 
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fulfilling the wavelet condition  0)0(ˆ H . The Fourier series to its related Clausen integral is 

given by ([AbM] 27.8)  
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fulfilling the following identity 
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The relationship to the Riemann function is given by the following (Davenport-Chowla) 
identity 
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being the Liouville function, whereby )(n  denotes the total number of distinct prime factors 

of n . A corresponding function, which does not satisfy a Lipschitz condition, is given by 

([ChK]) 
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with its formal derivative 
 

)(~4:
)2sin(

4)( x
n

nx
x 




      ,   ,.....5,3,1n    . 

 
 
 

12/1

2/10

1
:)(












x

x

x

x
x



Note 5: This note puts the notes above into relationship to the Planck black body radiation 
law. The latter one is basically about an appropriate energy density model in the 

electromagnetic field in the range of frequencies   to  d  in the form ([FeR] 10-4) 
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The common denominator to the notes above is the Hilbert transform of the saw-tooth 
function 
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and the (exponential degree) norm estimate (note 3) 
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[FeR] 10-4: The Planck black body radiation law is derived from the partition function for any 
system of interacting oscillators. Such a system is equivalent to a set of independent 

oscillators of frequencies n .  However, the value of the free energy  F  for independent 

systems is the sum of the values of F  for each of the separate systems. This gives the free 
energy of a linear system in the form 
 







1

))
2

sinh(2log(
n

n

kT
kTF

  

 
It is split into the two infinite sums 
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whereby the last term is the ground state energy of the system. As nn    this infinite series 

is diverge. The first term (while the second term is completely ignored) is used to derive the 
free energy of the electromagnetic field per unit volume of the blackbody radiation, i.e. 
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The internal energy U  is the partial derivative of F with respect to   which becomes 

(putting  Kc:  ) 
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The zero-point energy (which is anyway a divergent infinite series) is completely left out of 
this model. 
 
Note 6: The alternative momentum operator enables a mathematical model, where “the 
obscure problem of laws of interaction between matter and field does not arise. This 
conception of the world can hardly be described as dynamical any more, since the fields 
neither generated by nor acting upon an agent spate from the field, but following its own laws 
is in a quiet continuous flow. It is of the essence of the continuum”. The text in italic is quoted 
from ([WeH1], p 170 ff).  



Note 7: For 1m  the Hilbert transform is replaced by the Riesz transforms (([StE]). We 

especially note the “rotation invariance” property of the Riesz transform. “It can be shown by 
the means of the wave equation of light (which can be immediately extended to n dimension) 
that only the space of an odd number of dimensions is the extinction of a candle followed by 
complete darkness about the candle (within a radius that increases as rapidly as light 
travels). This, at least, shows up an important inner difference regarding the propagation of 
effects between even and odd number of dimensions. Those particularly simple and 
harmonious laws which Maxwell had developed for the electromagnetic field in empty space 
are invariant with respect to an arbitrary change of the standard unit length at every point, 
provided the world is four-dimension. This principle of “gauge invariance” holds for no other 
number of dimensions”. The text in italic is quoted from ([WeH1], p. 136 ff). In [WeH2] a 
theory is provided, which links organically the electric field with the mass field. In this theory 
the simple and harmonic laws, which can be derived from the Maxwell electric field 
equations, can only be derived in a four-dimensional world. From Einstein (foundation of 
relativity theory) we quote: “the Maxwell equations determine the electromagnetic field based 
on known distribution of charges and currents. The laws, by which those charges and 
currents behave, are unknown.” 
 
 
Note 8: In the context of the note above we recall from [CoR], VI, §10, the conjecture “that 
distortion-free families of progressive, spherical wave of higher levels only exist if and only if 
the Huygens’ principle is valid and that families of spherical, progressive families only can 
exist for space-time dimensions n=2 and n=4”. 
 
 
Note 9: ([ScE] p. 157):  
“Atoms or quanta – the counter-spell of old standing, to escape the intricacy of the continuum  
 

Our helplessness vis-à-vis the continuum, reflected a late arrival, it stood godmother to the 
birth of science – an evil godmother, if you please, like the thirteenth fairy in the tale of the 
Sleeping Beauty. Her evil spell had for a long time been stemmed by the genial invention of 
atomism. This explains why atomism has proved so successful and durable and 
indispensable. It was not happy guess by thinkers who “really did not know anything about it” 
– it was the powerful counter-spell which naturally cannot be dispensed with as long as the 
difficulty it is to exorcise survives. By this I will not say that atomism will ever go by the board. 
Its valuable findings – especially the statistical theory of heat – certainly never will. Nobody 
can tell the future. Atomism finds itself facing a serious crisis. Atoms – our modern atoms, 
the ultimate particles – must no longer be regarded as identifiable individuals. This is a 
stronger deviation from the original idea of an atom than anybody had ever contemplated. 
We must be prepared for anything.” 
 
The closed space 

02/10 HHH  

   can be interpreted as wave package space. It is proposed 

as an alternative wave package model for the Pauli-Weißkopf multi particle theory 
overcoming the challenge of negative energy values of the Klein-Gordon Equation (KGE).  
 
The proposed alternative framework overcomes challenges like “for only a sufficiently high 
number of quanta ….” or vice versa challenges like “for small number of quanta, where the 
term “particle” gets useless”, building on a distributional wave(let) “function” in the form 
 

 



1

  daa nn
 . 

 

The sub-(Hilbert) space 
2/10  HH  “supports” a discrete spectrum while its orthogonal 

complementary space “supports” the corresponding continuous (ground state energy) 
spectrum. 



The conservation laws for energy and momentum are also valid for quantum theory. Taking 
Planck’s formula 
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in the single particle theory as a baseline, then the Lorentz-invariant KGE  
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is derived from the Schrödinger equation by the canonical energy and momentum operators 
mapping into quantum world by 
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with its related (average) energy equation 
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The energy term 2E allows negative energy values 
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of the (plane) wave solution 
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which conflicts to the current definition of the ground state energy. This creates a physical 
interpretation problem for those values. Pauli-Weißkopf overcame this issue by developing 
the multi particle theory. 
 
An operator in a Hilbert scale framework is only completely defined in combination with the 
definition of its corresponding domain. In quantum mechanics the domain for the location 

operatorQ is 
02)( HLQD  , i.e. the corresponding domains for the Schrödinger resp. the 

Laplace operator are given by 
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The weak representations of the location and the momentum operators are defined by 
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Applying the alternative Schrödinger operator definition above in combination with a less 
regular domain (i.e. interpreting those operators as Pseudo Differential Operators) leads to  
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The Hilbert and the Riesz transforms are skew-symmetric. Therefore, putting as alternative 
covariant derivatives  
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in combination with a reduced domains 
2/1H  leads to 
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The corresponding weak variational equation is given by   
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Now the modified “Laplace” operator (as there is a different domain defined) respectively its 
related (Dirichlet integral) inner product with respect to the restricted to the subset 

12/11 HHH   anticipates also the ground state matter/energy value 2m of the classical 

energy formula above. In other words, both summands 22 mp 
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(extended) Laplace operator with domain 
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Putting  :   gives for the “energy equation” 
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Note 10: The closed (wave package) space 
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   also provides an alternative 

framework to model superconductivity, super-fluids and condensates ([AnJ]). Its related 

12/11 HHH    wavelet package (momentum) space is also proposed in [BrK] to enable a 

finite energy balance inequality for the 3D non-linear, non-stationary Navier-Stokes 
Equations (NSE). From a mathematical point of view the central change is about 
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with the wavelet admissibility ( 2/1H compatible) condition 
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In [BrK] a global unique weak  2/1H solution of the generalized 3D Navier-Stokes initial value 
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is provided, whereby the global boundedness of the energy inequality for the space 
dimension 3 is a consequence of the crucial Sobolevskii estimate (see also Note 4 above) of 
the non-linear NSE term ([SoP]) 
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It enables the a priori estimate 
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In other words, the standard 3D non-stationary, non-linear NSE is not well posed, which is 
the negative answer to the corresponding Millennium problem. 
 

The 0H based 3D NSE model provides only potential flows to model appropriate boundary 

layer circulation. The lift of an airfoil in inviscid flow requires circulation in the flow around the 
airfoil, but a single potential function that is continuous throughout the domain around the 
airfoil cannot represent a flow with non-zero circulation.  
 
 

Note 11 (Hardy spaces 
pH ): From [StE1] IV 6.3, we note that a periodic function on R  in 

the form 






 xieuxu 

)(    with    




1
u

 

is an element of the function space of bounded mean oscillation, i.e. )(RBMOu .  

Suppose 

)(RBMOev xi 







 ,  0v  

 then                              

)(RBMOeu xi 







   , 

 vu   . 

The Hardy spaces 
pH  are equivalent to pL  for 1p  .  

For 1p  we note  BMOH 1 , which can be seen as proper substitution of 
1L  and 

L ([AbM] 

4.7). Our concept above is about the alternative duality  

  11 HH  and 


  2/12/1 HH  of Hilbert 

spaces, embedded in a Hilbert scale framework instead of Banach spaces, only.   

The Hilbert transform operator is skew symmetric in the space )2,0(#

2 L .  

The Hilbert transform also defines a bijective mapping from the Hölder space .kC  onto itself 

([MuN]). The proof is essentially building on the Plemelj formulae. In [NiJ] for the Poisson 

equation, plate equation and the two-dimensional Stokes equations the regularity of the 

solution in dependence of a reduced regularity of the right hand sides based on standard 

estimates of the Newtonian potential are given.  

Hölder (Banach) spaces equipped with the appropriate norm are usually applied to analyze 

especially non-linear PDE problems. Then the Banach Fixed Point theorem is applied to 

prove unique (fixed point) solutions [Ni1]. 

Note 12: A Galerkin analysis for Schrödinger equation by wavelets is provided in [DaD]. 
 

 
 

 
 
 
 



Appendix 
 
 
Some key properties of the Hilbert transform  
 

      

 

are given in 
 
 
Lemma:          i)        The constant Fourier term vanishes, i.e.  
 

ii)                    

 
iii)

         
For odd functions it hold

     
 

 
iv)         If   then  and

  
 are orthogonal, i.e.  

 

                              

 

v)              ,
 

 ,
 

, 
 
  

 

vi)                   
 

vii)          If   is an orthogonal system, so it is for the system  ,          

              i.e.         
                                     
 

viii)                     , i.e. if  ,   then . 

 
 
Proof:    
 

       ii)      Consider the Hilbert transform of   

 .   

 

          The insertion of a new variable 
 
yields 

 

    

 
 

iv)                       whereby  is even .   

 

The convolution operator 
 

 

 

has the following Fourier coefficients 
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The eigenfunctions of the harmonic quantum oscillator 
 
 
 
The nth Hermite polynomial is given by ([SzG]) 
 






 dteitzzH tn
n

n

2

)(
2

)(


 . 

 

Hermite polynomials have only real zeros all of which are simple. The weighted Hermite 
polynomials  
 


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   with  22

)1(:)( x

n

n
xn

n e
dx

d
exH   ,  1)(0 xH ,  xxH )(1

 

 

form a set of orthonormal functions. The relation to the Gauss function is given by 
 

)2()( 0

4/1 xxf   . 

It holds  

2Ln   , 
2LH n   , 0),( nn H  

and 
 

    )()(::2 xHspanxspanHL nn    . 
 

 
All zeros of the Mellin transforms of the weighted Hermite polynomials lie on the critical line 
[BuD]. The proof is based on the recursion formula of the Hermite polynomials in 
combination with an argument from Polya ([PoG]). 
 

The Hermite polynomials )(xHn
 fulfill the recursion formula 

 

)2()1(2)()1()2(2)2( 221 xHnxbnxxHxH nnnnn     . 
 

Using the abbreviation    
                                             

!

)!1(2
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n
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)!2(
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
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this gives the recursion formula 
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The corresponding recursion formula for the Hilbert transformed Hermite polynomials are 
given by 
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The eigenvalue problem for compact symmetric operators 
 

 
In the following H denotes an (infinite dimensional) real Hilbert space with scalar product 

 .,.  and the norm ... . We will consider mappings HHK : . Unless otherwise noticed the 

standard assumptions on K are: 
 

i)  K is symmetric, i.e. for all Hyx , it holds    KyxKyx ,, 

 ii)  K is compact, i.e. for any (infinite) sequence  
nx  bounded in H contains a 

subsequence  
nx   

such that  
nKx   

is convergent, 

iii)  K is injective, i.e. 0Kx  implies 0x  . 

 
 
A first consequence is 
 
Lemma: K is bounded, i.e. 

x

Kx
K

x 0

sup:



   . 

 
Lemma: Let K be bounded, and fulfill condition i) from above, but not necessarily the two 

other condition ii) and iii). Then K  equals 

 
 

x

Kxx
KN

x

,
sup)(

0


   . 

 

Theorem: There exists a countable sequence  
ii  ,

 
of eigenelements and eigenvalues 

iiiK    with the properties 

 
i)  the eigenelements are pair-wise orthogonal, i.e.

  
 

kiki ,,  

 ii)  the eigenvalues tend to zero, i.e. 
i

i



lim

 iii)  the generalized Fourier sums 
 

                              xxS i

n

i

in 



1

,:     with n for all Hx  

 
iv)  the Parseval equation 
 

 



i

ixx
22

,  

holds for all Hx . 

 
 

 
 
 
 
 
 
 
 
 
 



Hilbert scales 
 

Let H be a (infinite dimensional) Hilbert space with scalar product  .,. , the norm ...  and 

A be a linear operator with the properties 
 

i)  A is self-adjoint, positive definite 

ii)  
1A is compact. 

 

 Without loss of generality, possible by multiplying A with a constant, we may assume 
 

  xAxx ,

       

for all )(ADx  
 

The operator 1 AK has the properties of the previous section. Any eigen-element of K is 
also an eigen-element of A to the eigenvalues being the inverse of the first. Now by 

replacing 1 ii  we have from the previous section 

 
i) there is a countable sequence  

ii  ,  with 

 

iiiA    
 ,

   
 

kiki ,,   and  
i

i



lim

 

 

ii) any Hx is represented by  

 

(*)      
i

i

ixx 





1

,   and     



1

22
, ixx  . 

 

Lemma:  Let )(ADx , then  

 

(**)   
i

i

ii xAx 





1

,   ,     



1

222
,

i

ii xAx  ,

 

    i
i

ii yxAyAx  ,,,
1

2





. 

 

Because of (*) there is a one-to-one mapping I of H to the space Ĥ of infinite sequences of 
real numbers 
 

 ,...),(ˆˆ:ˆ
21 xxxxH   

defined by 
 

Ixx ˆ    with    
ii xx ,  .    

If we equip Ĥ with the norm  
 

 



1

22
,ˆ

ixx   

then I is an isometry.  
 
By looking at (**) it is reasonable to introduce for non-negative the weighted inner products 

 

     



i

iiii

i

ii yxyxyx 

  ,,ˆ,ˆ  

and the norms 
 

xxx ˆ,ˆˆ
2
  



 

Let Ĥ denote the set of all sequences with finite  norm. then Ĥ is a Hilbert space. 

The proof is the same as the standard one for the space 
2l . 

 

Similarly one can define the spaces
H : they consist of those elements Hx such that 

HIx ˆ  with scalar product  

 

     



i

iiii

i

ii yxyxyx 
  ,,,

 

and norm   

 
xxx ,

2
 . 

 
Because of the Parseval identity we have especially 
 

   yxyx ,,
0
  

and because of (**) it holds 
 

 0
2

2
, AxAxx   ,

 
)(2 ADH  . 

 
The set  0H  is called a Hilbert scale. The condition 0  is in our context necessary 

for the following reasons: 
 
Since the eigen-values

i tend to infinity we would have for 0 : 0lim i
. Then there exist 

sequences ,...),(ˆ
21 xxx  with 

 


2

2
x̂  , 

2

0
x̂  . 

 

Because of Bessel’s inequality there exists no Hx   with xIx ˆ . This difficulty could be 

overcome by duality arguments which we omit here. 
 
 
There are certain relations between the spaces 0H  

for different indices: 

 
Lemma: Let   . Then 


xx   

and the embedding 
 HH  is compact. 

 
 
 
Lemma: Let   . Then 








xxx   for 

Hx  

with  









  

and  








 . 

 
 
 
 
 
 



Lemma: Let   . To any 
Hx  and 0t  there is a )(xyy t according to 

 

i) 





xtyx    

ii) 


xyx   ,
  

xy 
 

iii) 





xty )( 

  
.
 

 
 
 
 
Corollary: Let   . To any 

Hx  and 0t  there is a )(xyy t according to 

 

i) 





xtyx      for     

ii) 





xty )(         for      . 

 
 
 
Remark: Our construction of the Hilbert scale is based on the operator A with the two 

properties i) and ii). The domain )(AD of A equipped with the norm  
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


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222
,

i

ii xAx 
 

 
turned out to be the space

2H which is densely and compactly embedded in 
0HH  . It can 

be shown that on the contrary to any such pair of Hilbert spaces there is an operator A with 
the properties i) and ii) such that 
 

                       2)( HAD 

 
0)( HAR   and  Axx 

2
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Extensions and generalizations 
 
 

[NiJ2]: For 0t we introduce an additional inner product resp. norm by 
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Now the factor have exponential decay 
tie


 instead of a polynomial decay in case of 

i .  

 
Obviously we have 
 


 xtcx

t
),(

)(
  for 

Hx  

 
with ),( tc  depending only from  and 0t . Thus the normt )(  is weaker than any

norm . On the other hand any negative norm, i.e. 


x  with 0 , is bounded by the  

norm0  and the newly introduced normt )( . As it holds for any 0,, t  and 1  the 

inequality 
 

)(2 1    

 te  
 
one gets 
 
Lemma: Let 0 be fixed. The norm  of any 

0Hx  is bounded by 

 
2

)(

/2

0

22

t

t xexx 





 

with 0 being arbitrary. 

 
Remark: This inequality is in a certain sense the counterpart of the logarithmic convexity of 
the norm , which can be reformulated in the form ( 0,  , 1 ) 
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applying Young’s inequality to 
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The counterpart of the fourth lemma above is 
 

Lemma: Let 0, t be fixed. To any 
0Hx  there is a )(xyy t according to 

 

i) xyx    

ii) xy 1

1
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iii) xeyx t

t

/

)(


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In this paper we are especially concerned with the  2/1H  Hilbert space, as the proposed 

alternative framework to model quantum states. With respect to the above lemma this means 
that for any bounded  

0Hx  it holds with   :: t  
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For 
 

  0000 HH    

with 

  1
00   ,   :

2

2/1
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one therefore gets 
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Eigenfunctions and eigendifferentials 

 

Let H be a (infinite dimensional) Hilbert space with inner product  .,. , the norm ...  and A

be a linear self-adjoint, positive definite operator, but we omit the additional assumption, that 
1A compact. Then the operator 1 AK  does not fulfill the properties leading to a discrete 

spectrum.  

We define a set of projections operators onto closed subspaces of H in the following way: 

),( HHLR   

 





 dE ,*)(:

0

    
,
     ,0  , 

i.e.                                                      ddE ,*)(  . 

The spectrum CA )(  of the operator A is the support of the spectral measure dE . 

The set E  fulfills the following properties: 

i) E  is a projection operator for all R  

ii) for    it follows 
 EE   i.e. 

 EEEEE   

iii) 0lim 





E  and IdE 




lim  

iv) 





EE 




lim  . 

Proposition: Let E  be a set of projection operators with the properties i)-iv) having the 

compact support  ba, . Let    Rbaf ,:  be a continuous function. Then there exists exactly 

one Hermitian operator HHA f :  with 
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 ),()(),( xxEdfxxA f   . 

Symbolically one writes     
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Using the abbreviation 
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, 

 ),(:)(, yxEdd yx    
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The function
  

2
:)( xE   

is called the spectral function of A  for the vector x . It has the properties of a distribution 

function. It holds the following eigenpair relations 

iiiA          A     
2

  
,
 )(),(     . 

The   
are not elements of the Hilbert space. The so-called eigen-differentials, which play a 

key role in quantum mechanics, are built as superposition of such eigen-functions.  

Let I be the interval covering the continuous spectrum of A . We note the following 
representations: 
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Example: The location operator 
xQ

 
and the momentum operator 

xP  both have only a 

continuous spectrum. For positive energies 0  the Schrödinger equation 

)()( xxH     

delivers no element of the Hilbert space H , but linear, bounded functional with an underlying 

domain HM  which is dense in H . Only if one builds wave packages out of )(x it results 

into elements of H . The practical way to find eigen-differentials is looking for solutions of a 
distribution equation. 

 

 

 

 

 

 

 

 

 



Rotation-invariance property of the Riesz operators 
 

 

For this section we refer to [StE] III, 1.2, IV 4.7, 4.8: 

For the Riesz operators           

                                      








 dyyu
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yx
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nn
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let                         

))(),...((:)(: 1 xmxmxmm n  

denote the vector of the corresponding Mikhlin multipliers. Then for 

)(nSOik    

it holds 

))(())(( xmxm      ,    

 i.e.  

   )())(( xmxm kjkj   

whereby 
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Current Standard MEP vs. proposed Non-Standard MEP 

 
Comparison table 

 
 

 
Standard Model of Elementary 

Particles (SMEP) 
 

Grand Unified Theory (GUT) 
 

Proposed mathematical model 

Physical model 
interpretation 

all “forces”, which interact between 
different particles, are due to the 

interaction of related different 
quantum “types”, resp. fields; 

 
Standard Model of Elementary 

Particles  
by the Yang-Mills field 

)2()3()1()2()3( xUSUxUxSUSU  , 

no single force only “at” big bang and 
generation of 4 forces during inflation 
phase; 4 pseudo forces, only, which 

are measurable actions as a 
consequence of vacuum state energy 
as defined per considered variational 

PDE or PDO 

Mathematical framework 

additive Gauge fields concept per 
“force type” in combination with 

variational principles 

)1(UG   : group of rotations in the 

plane 

)2(SUG  : the unit of quaternions, 

Grassman-valued fermion field 

single vacuum energy concept for all 
“pseudo-force” types in combination 

with variational principles per 
considered PDE/PDO 

Hankel & Hilbert 
transforms 

n/a 
IdHH  22


 

HH ,
 self-adjoint, 2L isometric 

Wave and wave package 
concept 

“Dirac” function; 
its regularity depending from space 

dimension 

distributional Hilbert space element of 

2/1H ,  

the Hilbert space regularity is 
independent from the space 

dimension and better than “Dirac 
function” regularity for any space 

dimension 

quantum state framework 0,2/01   NHHH  0,2/102/1   NHHH  

0H  polynomial system 
Hermite polynomials 

n  whereby 

1 is the Gaussian function 

Hilbert transformed Hermite 

polynomials H

n : 

0),( H

nn  , 0)0(ˆ H

n , i.e. the 

commutator   0, Px for any 

convolution (singular integral) Pseudo-
Differential Operator 



  002/1 HHH  n/a 

orthogonal projection operator 

02/10 : HHP 
 

2/12/10 ),(),(   vuvuP 0Hv  

whereby for 
2/1 Hu  

02/1 ),(),( vuvu 
 2/1 Hv ; 

note: the least action principle is 
equivalent to operator norm 

minimization problem 

Hamiltonian operator(s) 

sum of Hamiltonian operators per 
considered gauge field 

combinations 

EinsteinHiggsMillsYangDirac HHHHH  
 

single Hamiltonian operator per 
considered variational PDE/PDO  



Harmonic oscillator, 
Hamiltonian operator 

2

2

2

x
dx

d
H 


 

creation & annihilation 
operators with different 

domains 

H  Hilbert transform 
operator 

01: HHx
dx

d
A 


, 

01

*
: HHx

dx

d
A 


 

0),( vuA


, 
0

*
),( vAu



 
0Hv  


H self adjoint, eigenvalues real, 


 AA

*  

11*
*



AAAAH  

2/12/1: 


 HHx
dx

d
a

, 

2/12/1

*
: 


 HHx

dx

d
a

 

2/1),( 


vua , 
2/1

*
),( 


vau

 
2/1 Hv  

*
,

aa are self adjoint, because of 

    002/1 ),(),(),( vuHvuAvu 


 

      2/100 ),(),(),( 
 vuvAuvHu  

dependency of space 
dimension 

 
yes no 

space-time dimensions 
 

10N  
4-dimensional scalar field 

41 mn  

Poincare “conjecture” n/a applicable 

Huygens’ principle; 
spherical waves for 

temporal lines of space-
time dimension 

n/a 
the Cauchy & radiation problem for the 

wave equation 

particles vs. photons ratio 10106   particles 
0H  , photons 

02/1 HH  
 

Planck’s action quantum 

 
smallest action quantum, which can 
be measured in the test space 

0H  

 

smallest action quantum, which can be 
measured in the test space 

0H  

“time” 

eigen-time of a photon is zero, i.e. a 
photon dies not realize that times 
goes by; how a photon can act? 

 
de Broglie time: 

 
E

h
t   

 
R. Penrose, The Emperor’s New Mind: 

“the time of our perception does not 
“really” flow in quite the linear forward-
moving way that we perceive it to do. 

The temporal ordering that we 
“appear” to perceive is, …, something 
that we impose upon our perceptions 

in order to make sense of them in 
relation to the uniform forward time-
progression of an external physical 

reality” 
 

 
Schrödinger momentum 

operator 


i

iP


:  

22

2

1

2
: 










imm
H

  

0)( HPD  :  “eigen-functions” are 

plane-waves ikxexf )(  which are 

not defined in 
0H , i.e. 

0H  

2/1

* )(  HPD :  eigenfunctions are 

plane-waves ikxexf )(  which are 

defined in 
0H , i.e. 

0H  

 
Harmonic quantum 

oscillator (generation & 
annihilation operators) 

)
2

1
(

2

1

2

1

2

22
2

 aaqm
m

p
Hosc  

 

)
2

1
(

2

1
 aaHosc 

 

0),( oscH   
0H  

  nn EnE ),
2

1
(: 

 

)(
2

_

2*

_
aacH 



 

 
 2/1

_
),( H

  
0H  

“empty” vacuum 

“a closed vacuum space cannot be 
diluted” 

(causing inflation/mass generation 
challenges in the early state of the 

universe) 

no particles in a vacuum, “just” 

 02/1 HH photons/waves 

Heisenberg uncertainty 
principle 

per affected gauge 
field/Hamiltonian operator 

valid in 
2/1H  

not valid in 
0H  



Schrödinger equation 

classical mechanics relationship: 
continuity equation, Fourier waves 

 0

*

0

*2

0
),(),(

2
 gradgrad

imt




   

 
classical mechanics relationship 

continuity equation, Calderón wavelets 

 2/1

*

2/1

*2

2/1
),(),(

2






 gradgrad

imt

  

  0),(),(
2

0

*

0

*2

2/1








imt

 , 
0H  

 

Generation of mass of 
sub-atomic particles and 

its mass value 

 
energy breaking, phase transition; 
Lagrange (Klein-Gordon) density 

and potential of the Higgs field  , 
which is a kind of ether existing 

throughout the universe 
 

)())((   VDDLHiggs




 

22 )(:)(   V , 

 

D  covariant derivative 

 

phase transition between 
2/10  HH

and the closed sub-space 
02/1 HH 
 

Casimir, Lamb effect verification in test space 
0H  verification in test space 

0H  

Elementary particles and 
the options 

 

0: HH   

or 


  002/1: HHHH  

Einstein-Podolsky-Rosen 
paradoxon 

0HH  ,  

0H  

gauge/Higgs/(hypothetical) graviton 
bosons with only symmetric 
Schrödinger wave function 

solutions 

0HH  ,  

0H  

“matter” particles fermions with only 
anti-symmetric Schrödinger wave 

function solutions 

00 H    

with         1
00    

one therefore gets 
1

000
   

 

 

2/1 HH  

 
 

“wavelet” function/field space 

 

0H  

 
fermions (sub-) space =  (matter) test 
space 





  002/100 HHH    

with 
  1

00   ,  


  :
2/1

0
 

one therefore gets 










1

212

2/1
i

ixe i


 

Single and double layer 
potential 

Lebesgue integrals, 
 

mass density  

ds

d
s


  )(

 

and existing normal derivative with 
corresponding (mathematically 

required) regularity assumptions  

dn

dU  

 
Stieltjes integrals, 

 
Plemelj’s concepts of an mass 
element  

sd  

and related “current of a force” on the 
boundary through the boundary 
element ds  








0

)( ds
dn

dU
U

s

 

Quantum theory of 
radiation, 

intensity = surface force 
density 

 
 ensityint

 densityforcesurface __  
 densityenergy _

Pascal
cm

Ncm

cm

N


32

 

regularity requirement/assumptions 
of an existing normal derivative with 

exterior/interior domain w/o 
physical meaning  

very poor regularity assumptions in the 
form 

 







0

d
 

to ensure continuous single layer 
potential;  

concept of an apparent size of the 
element ds as “seen” from the interior 

point p and double layer potential 



 

Maxwell-Lorentz 
equations, (retarded) 

potentials and 
corresponding field 

equations 

 
Lorentz gauge 

 AA  

c





  

because of the assumption 

curlAH  , 0)( 
c

A
Ecurl

  

and therefore 


c

A
E

  

Vector field A is not completely 
determined by the magnetic field H  

 

Vector field A is completely 
determined by the magnetic field H ; 

no differentiability assumption 
required; no calibration required due to 
this purely mathematical assumptions 
(w/o physical meaning; same situation 

as for the “differential manifolds” 
assumptions for the Einstein field 

equations) 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 



Statistical Thermodynamics, 
E. Schrödinger’s view [ScE] 

 
 
There is, essentially, only one problem in statistical thermodynamics: the distribution of a 

given amount of energy E  over N  identical systems. Or perhaps better: to determine the 

distribution of an assembly of N  identical systems over the possible states in which this 

assembly can find itself, given that the energy of the assembly is a constant E . The idea is 
that there is weak interaction between them, so weak that the energy of interaction can be 
disregarded, that one can speak of the “private” energy of every one of them and that the 

sum of their “private” energies has to equal E .  …. 
 
 “To determine the distribution” .. mean in principle to make oneself familiar with any possible 
distribution-of-the-energy (or state-of-the-assembly) …. is (always the same) the 
mathematical problem; we shall (soon) present its general solution, from which in the case of 
every particular kind of system enery particular classification that may be desirable can be 
found as a special case: 
 
But there are two different attitudes as regards the physical application of the mathematical 
result. …  
 

The older and more naïve application is to N  actually exsiting physical systems in actual 

physical interaction with each other, e.g. gas molecules or electrons or Planck oscillators or 

degrees of freedom (“ether oscillators”) of a “hohlraum”. The N  of them together represent 

the actual physical system under consideration. This original point of view is associated with 
the names of Maxwell, Boltzmann and others. 
 
But it suffices only dealing with a very restricted class of physical systems – virtually only with 
gases. It is not applicable to a system which does not consist of a great number of identical 
constituents with “private” energies. … 
 
Hence a second point of view …  has been developed. It has a particular beauty of its own, is 
applicable quite generally to every physical system, and has some advantages to be 

mentioned forthwith. Here the N  identical systems are mental copies of the one system 

under consideration – of the one macroscopic device that is actually erected on our 
laboratory table. Now what on earth could it mean, physically, to distribute a given amount of 

energy E  over these N  mental copies? The idea is, in my view, that you can, of course, 

imagine that you really had N  copies of your system, that they really were in “weak 

interaction” with each other, but isolated from the rest of the world. Fixing your attention on 

one of them, you find it in a peculiar kind of “heat-bath” which consists of the 1N  others. 

 
Now you have, on the one hand, the experience that in thermodynamical equilibrium the 
behavior of a physical which you place in a heat-bath is always the same whatever be the 
nature of the heat-bath that keeps it at constant temperature, provided, of course, that the 
bath is chemically neutral towards your system, i.e. that there is nothing else but heat 
exchange between them. On the other hand, the statistical calculations do not refer to the 
mechanism of interaction: they only assume that it is “purely mechanical”, that it does not 
affect the nature of the single systems (e.g. that it never blows them to pieces), but merely 
transfers energy from one to the other. 
 

These considerations suggest that we may regard the behavior of any one of those N  

systems as describing the one actually existing system when placed in a heat-bath of given 

temperature. Moreover, since N  systems are alikely and number similar conditions, we can 

then obviously, from their simultaneous statistics, judge of the probability of finding our 



system, when placed in a heat-bath of given temperature, in one or other of its private states. 
Hence all questions concerning the system in a heat-bath can be answered. … 
 
The advantage consists not only in the general applicability, but also in the following two 
points: 
 

i) N  can be made arbitrarily large. In fact, in case of doubt, we always mean 

Nlim   (… Stirling’s formula for !N  ) 

 
ii) No question about the individuality of the members of the assembly can ever arise 

– as it does, according to the “new statistics”, with particles. Our systems are 
macroscopic systems, which we could, in principle, furnish with labels. Thus two 
states of the assembly differing by system No. 6 and system No. 13 having 
exchanged their roles are, of course, to be counted as different states, while the 
same may not be true when two similar atoms within system No. 6 have 
exchanged their roles; … 

 
Remark: The approach in [BrK5] with the proposed quantum state Hilbert space given by 
 





  002/100 HHHxxx    
 

fulfills the same “advantages” points i), ii) above, while the (compactly embedded, (!) ) 
subspace 

2/10  HH ”covers” the statistically relevant (measurable) macroscopic world 

and its related orthogonal space 

0H ”covers” the “particle-interaction-world. The “heat-bath-

room” of given temperature is in line with the corresponding domain of the alternatively 

proposed Schrödinger operator, given by 

1H of the corresponding energy space 
 

 112/1
)(

1 HHHH
c

. 

 

 
The second section of [ScE] is concerned with the method of the most probable distribution, 
allowing infinite numbers of identical systems over their energy levels. We briefly sketch the 
central mathematical idea of chapter II: 
 

for an assembly of N  identical systems the nature of any of them is described by its possible 

state by enumerating them with labels ,..,...3,2,1 l  In a quantum-mechanical system those 

states are to be described by the eigenvalues of a complete set of commuting variables. The 

eigenvalues of the energy in these states are called ,...,...,, 21 l  so that ll  1 . In a 

“classical system” the schema can also be applied, when the states will have to be described 

as cells in phase-space ),( kk qp  of equal volume – whether infinitesimal in all directions or not 

– at any rate such that the energy does not vary appreciable within the cell. The considered 
model parameters are  

State No.  ,......3,2,1 l  

Energy   ,...,..., 21 l  

Occupation No.  ,...,..., 21 l  

 

The number of single states belonging to this class is 
 

,...!!...!

!

21 l

N
P


  . 

 

The set of numbers must comply with the conditions 

 

 sN     ,    slE  . 



 “In this form the result is wholly unsurveyable. … For N  large, but finite, the assumption is 

only approximately true. Indeed, in the application to the Boltzmann case, the distributions 
with occupation numbers deviating from the “maximum set” must not be entirely disregarded. 
They give information on the thermodynamic fluctuations of the Boltzmann system, when 

kept at constant energy E , i.e. in perfect heat isolation. … 
 
Now the fluctuations of a system in a heat bath at constant temperature are much more 
easily obtained directly from the Gibbs point of view.” 
We choose the logarithm of  
 

,...!!...!

!

21 l

N
P


  

 

as the function whose maximum we are determine, taking care of the accessory conditions in 

the usual way by Lagrange multipliers,   and  , seeking the unconditional maximum of 
 

 
l l

lllP log  

leading to 





l

leN
    ,    




l

l
leE

 . 

Calling NEU /:  the average share of energy of one system, the whole result is given by 
 

)log(














l

l

l

l

l

l

l

e
e

e

N

E
U









  

whereby    

)log(













ll

l

l
l

l

l

e
N

e

e 








 

 

indicates the distribution of the N  systems over their energy levels. 

 
 
Chapter IV provides three examples, which are 
 

i) Free mass-point (ideal monatomic gas) 
 

       tconsTkLVkLZk tanlog
2

3
loglog      for L  atoms 

       kLT
T

TU
2

32 



    ,   

V

kL
Tp   

 
 

ii) Planck oscillator 
 

       2log)
2

log(sinh()log(log )2/1( k
x

kekZk lh     ,  

        with   :)/()(:  hkThx  

12 )/( 


kTe
U



  

 
 

iii) Fermi oscillator 
 

       )1log(log / kTekZk   

       
1)/( 


kTe

U



. 



We also briefly sketch the corresponding mathematical approach for the n-particle problem 
([ScE] chapter VII): 
 

The sum-over-state of the considered n-particle problem is given by 
 

 
s

ss

n

n
eZ

  

where ,...2,1, sns denote the numbers of particles on level ,...2,1, ss , kT/1:  and the 

levels l is given by 

 ssj n  . 

 

For the Bose-Einstein gas and Fermi-Dirac gas the values admitted for every sn are 
 

i) ,....4,3,2,1,0sn      Bose-Einstein gas 

 

ii) 1,0sn   Fermi-Dirac gas 

 
 
Putting 

sezs


  

thus 

.......321

321
s

s

n

s

nn

n

n
zzzzZ    

 
This results into 

 
i) 


s

szZ 1)1(      Bose-Einstein gas 

 
ii)  

s

szZ )1(  Fermi-Dirac gas 

 
which is combined into the following formula 

 


s

szZ 1)1(   . 

In case the condition 
 

 snn  

 
is imposed, this formula is not yet the final result. For a glance at the original form 
 

.......321

321
s

s

n

s

nn

n

n
zzzzZ    

indicates that one have to select from  
 

.......321

321
s

s

n

s

nn

n

n
zzzzZ    

 

only the terms homogeneous of order n  in all the sz . That is most conveniently done by the 

method of the residue integral.  
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The corresponding analysis leads to 
 

i) 1)1
1

(  seN



 

ii) 
s

senfnZ )1log(log)(logloglog
   

iii) 1)1
1

(
log1 



 se

Z
n

s

s




  . 

 

 

The related thermodynamic parameters are given by 
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At the end this leads to a “thermodynamic potential” in the form 
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Quotes from 
 

Philosophy of Mathematics and Natural Science 
 

 
Hermann Weyl 

 
 
 

[WeH1] p. 171:  
 
With Newton, gravitation still appears as an instantaneous action into distance. When only 

nearby action is considered admissible, ether theories of gravitation arise, which at first 

however are still under the pressure of the purely mechanical interpretation of nature. Of 

course Newton too was aware of the difficulty, but declined to “frame hypotheses” about the 

cause of gravitation (apparently he thought of a non-material transmission by virtue of a 

“spiritual substance” or of the all-penetrating space filled with the omnipresence of God.) The 

difficulty was overcome by physical means after Faraday had developed the idea of a field 

for the electric phenomena. Maxwell found that the field propagates from the centers of 

excitation not instantaneously but with the velocity of light. Nearby action laws, in the form of 

differential equations, connect the physical quantities characteristic of matter and field, 

namely charge and current densities and electrical and magnetic field strengths. The force, 

which with Newton is not an activity determined by and emanating from a single body  k  but 

a bond between two bodies  k  and  k   which join hands across an abyss, is a split up into an 

activity of k  (excitation of the filed determined by k alone) and suffering of   k  (temporal 

change of its momentum caused by that field). Between them the expanse of the field is 

spread out according to laws of its own of the utmost simplicity and harmony. The field 

transmits momentum as well as energy from one body to another; a radiating body not only 

loses energy, but as it radiates light in one direction it recoils in the opposite direction. In the 

field we therefore have spatially localized energy and momentum. The scalar densities and 

the components of the vectorial current densities of energy and momentum can be computed 

by means of simple laws from the two field strengths. The ponderomotoric effect of bodies 

upon one another is due to an exchange of field energy and momentum against kinetic 

energy and momentum of matter and vice versa; the increase or decrease in time of total 

energy or total momentum of any part V  of the field is compensated by the current of energy 

or momentum going through the surface of  V . If we determine the center of energy of a 

portion of space containing both matter and radiation, in the same way as we determine the 

center of gravity (mass center) of a “ponderable” body, it turns out that the total 

momentum I


contained in this portion has the same direction as the velocity  v


 of the center 

of energy. If we set  vmI


 the proportionality factor m may well again be called the inert 

mass. It is connected with the energy E by the universal relation 2/ cEm  , where c  is the 

velocity of light. A portion of a field such as the radiation in empty space enclosed by 

massless shell (Hohlraumstrahlung) possesses inert mass like an ordinary body. Thus the 

strength with which a body, in the face of diverting forces, persists on its natural course as 

prescribed by the field of inertia depends on the energy compressed in the body. The mass 

of the electron certainly derives in part from accompanying electromagnetic field. Or even 

completely? Since all physically important properties of an elementary material particle, as 

we have seen, belong to the surrounding field rather than the substantial nucleus at the field 

center, the question becomes inevitable whether the existence of such a nucleus is not a 

presumption that may be completely dispensed with. 



This question is answered in the affirmative by the field theory of matter. According to the 

latter a material particle such as an electron is merely a small domain of electrical field within 

which the field strength assumes enormously high values, indicating that comparatively huge 

field energy is concentrated in a very small space. Such an energy knot, which by no means 

is clearly delineated against the remaining field, propagates through empty space like a 

water wave across the surface of a lake; there is no such thing as one and the same 

substance of which the electron consists at all times. Just as the velocity of a water wave is 

not a substantial but a phase velocity, so that the velocity with which an electron moves is 

only the velocity of an ideal “center of energy,” constructed out of the field distribution. 

According to this view, there exists but one kind of natural law, namely, field laws of the 

same transparent nature as Maxwell had established for the electromagnetic field. The 

obscure problem of laws of interaction between matter and field does not arise. This 

conception of the world can hardly be described as dynamical any more, since the fields 

neither generated by nor acting upon an agent spate from the field, but following its own laws 

is in a quiet continuous flow. It is of the essence of the continuum. Even the atomic nuclei 

and the electrons are not ultimate unchangeable elements that are pushed back and forth by 

natural forces acting upon them, but they are themselves spread out continuously and are 

subject to fine fluent changes.  … 

Beside the electromagnetic field we have the metric or gravitation field. The task of merging 

both into one unit arises.  

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Auszüge aus 

 
Was ist Materie? 

 

 
Hermann Weyl, [WeH] 

 
 

Seite 28: Aufgrund der angegebenen Tatsachen kommt man notgedrungen zu der 
Auffassung, daß die Definition „Kraft = Ableitung des Impulses“ das Wesen der Kraft nicht 
richtig wiedergibt. Der wirkliche Sachverhalt ist vielmehr umgekehrt: Die Kraft ist der 
Ausdruck für eine selbständige, die Körper zufolge ihren inneren Natur und ihrer 
gegenseitigen Lage und Bewegungsbeziehung verknüpfende Potenz, welche die zeitliche 
Änderung des Impulses verursacht 
 
Seite 31: Die Definition des Feldes mit Hilfe seiner ponderomotorischen Wirkung auf einen 
Probekörper ist nur ein Provisorium. Durch hereinbringen des geladenen Probekörpers stört 
man immer in etwas das Feld, das es eigentlich zu beobachten galt; befindet es sich im 
Felde, so gehört er so gut wie die übrigen Konduktoren mit zu den das Feld erzeugenden 
Ladungen. Das wahre Naturgesetz, das an die Stelle von „Kraft = Probekörperladung * 
Feldstärke“ tritt, wird also anzugeben haben, was für Kräfte das von irgendwie verteilten 
Ladungen erregte elektrische Feld auf diese Ladungen selber ausübt. 
 
Seite 35: Wenn so alle physikalisch wesentlichen Eigenschaften des Elektrons an dem 
umgebenden Felde und nicht an dem im Feldzentrum steckenden substantiellen Kerne 
hängen, so muß man sich doch fragen, ob denn überhaupt die Annahme eines derartigen 
Kernes nötig ist oder ob wir ihn nicht ganz entbehren können. Die letzte Frage beantwortet 
die Feldtheorie der Materie mit Ja; ein Materieteilchen wie das Elektron ist für sie lediglich 
ein kleines Gebiet des elektrischen Feldes, in welchem die Feldstärke enorm hohe Werte 
annimmt und wo demnach auf kleinstem Raum eine gewaltige Feldenergie konzentriert ist. 
Ein solcher Energieknoten, der gegen das übrige Feld keineswegs scharf abgegrenzt ist _ 
der geometrische Begriff des Elektronenradius verliert also seinen präzisen Sinn – pflanzt 
sich durch den leeren Raum nicht anders fort, wie eine Wasserwelle über die Seefläche 
fortschreitet; es gibt da nicht ein und dieselbe Substanz, aus der das Elektron zu allen Seiten 
besteht. Wie die Geschwindigkeit einer Wasserwelle nicht substanzielle, sondern 
Phasengeschwindigkeit ist, so handelt es sich bei der Geschwindigkeit, mit der sich das 
Elektron bewegt, auch nur um die Geschwindigkeit eines ideellen, aus dem Feldverlauf 
konstruierten „Energiemittelpunktes“. Läßt sich diese Auffassung durchführen, durch welche 
der die Physik seit FARADAY und MAXWELL beherrschende Dualismus vom Materie und 
Feld zugunsten des Feldes überwunden wird, so ergäbe sich ein außerordentlich 
einheitliches Weltbild. Statt der drei Arten von Gesetzen, nach denen das Feld 1. durch die 
Materie erregt, emittiert wird, 2. sich ausbreitet und 3. auf die Materie wirkt, behalten wir nur 
die Feldgesetze 2 übrig vom Typus der Maxwellschen Gleichungen, deren Struktur uns völlig 
durchsichtig ist, während die Gesetze 1 und 3, in deren Dunkel die Physik auch heute noch 
kaum eingedrungen ist, überflüssig werden. Insbesondere die Gültigkeit der mechanischen 
Gleichungen gewährleisten durch den aus den Feldgesetzen folgenden differentiellen 
Energie-Impulssatz, dessen Energiekomponente für das Maxwellsche Feld in Formel (15) 
angegeben wurde. Man kann dieses Weltbild kaum mehr als ein dynamisches mehr 
bezeichnen, weil hier das Feld weder von einem dem Felde gegenüberstehenden 
materiellen Agens erzeugt wird noch auf ein solches wirkt, sondern lediglich, seiner 
Eigengesetzlichkeit folgend, in einem still kontinuierlichem Fließen begriffen ist. Es ruht ganz 
und gar im Kontinuum, auch die Atomkerne und Elektronen sind keine letzten 
unveränderlichen, von den angreifenden Naturkräften hin und her geschobenen Elemente, 
sondern selber stetig ausgebreitet und feinen fließenden Veränderungen unterworfen. 
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