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Chapter 1

Introduction

The hydrogen atom has a long history as a testing ground for new physical
ideas. It is one of the most simple bound states one could imagine, consisting
of a single electron and a much heavier proton and thus it is very easy to
treat theoretically and to measure very subtle effects experimentally. Balmer
(1885) first discovered the spectral lines of hydrogen due to transitions of the
electron from higher excited states to the first excited state above the ground
state. Balmer found that the wavelengths corresponding to the spectral lines,
the so called Balmer series, follow the law

1

λn
∝ 1

22
− 1

n2
, n ∈ N. (1.1)

Already in 1888, Rydberg presented an empirical formula,

1

λfi
= Ryd

(
1

n2
i

− 1

n2
f

)
, nf , ni ∈ N, nf > ni, (1.2)

which describes the wavelengths of transitions between two different states of
excitation in terms of two integer numbers. Later these were identified with
the principal quantum number of the hydrogen atom, of course. The Rydberg
constant Ryd introduced in eq. (1.2) amounts to ≈ 1.1 · 107 m−1, which
corresponds to an energy of approximately 13.6 eV. The series of spectral
lines originating from transitions to the ground state were found by Lyman
(1906) in the ultra violet and more spectral series of hydrogen have been
discovered in later years at lower energies.

The first theoretical model that explained the hydrogen spectrum was
developed by Bohr (1913) in a series of papers. In this model, the electron
orbits the proton on classical trajectories, like a planet orbits the sun, but
the angular momentum of the electron is set to be quantized, L = n ∈ N.
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8 CHAPTER 1. INTRODUCTION

This in turn leads to discrete energy levels,

En = −Ryd

n2
, Ryd =

mα2

2
, (1.3)

where m is the reduced mass of the electron in the hydrogen atom and α the
fine-structure constant, introduced by Sommerfeld in 1916. The Rydberg
constant follows here as a prediction of the theory. The transitions between
the different Bohr levels lead to the emission of photons with wavelengths
given by the Rydberg formula (1.2).

Already Michelson (1892) found that the spectral lines were actually mul-
tiplets of lines very close together. At first this could be explained in the more
refined Bohr-Sommerfeld model (Sommerfeld, 1916) but it was only with the
upcoming of the new quantum mechanics that a satisfying answer could be
found.

In 1925 Heisenberg introduced a new perspective on the microscopic pro-
cesses of atoms, which he called matrix mechanics. It was elaborated rigor-
ously by Born and Jordan (1925) and Born, Heisenberg and Jordan (1926)
and is nowadays known as the operator formalism. Using this new formal-
ism Pauli (1926) was able to derive the Bohr energy levels (1.3). Very soon
afterwards, Schrödinger (1926) introduced the wave function and with it
the equation named after him. From this equation he was able to derive
the energy levels (1.3) but with the wave function he also found the spatial
distribution for the probability to find the electron in the hydrogen atom.
Again soon afterwards Dirac (1928a,b) developed a quantum theory which
incorporated special relativity at its basis. The equation named after him
naturally includes the spin of the electron and reduces to the Schrödinger
equation in the non-relativistic limit. The Dirac equation can also be solved
for the hydrogen atom (Gordon, 1928) and features the line splittings found
by Michelson (1892), which are due to the electron spin (spin-orbit coupling)
and relativistic corrections.

In 1947 Lamb and Retherford found yet another very small splitting be-
tween spectral lines which could not be explained by Dirac’s theory. This
additional shift, called Lamb shift, originates from quantum effects of the
electromagnetic field. Its theoretical description makes it necessary to quan-
tize the electromagnetic field. The effort to extend the quantum mechanics
of point particles, interacting via a classical electromagnetic field, to a full
quantum field theory had already started much earlier in the late 1920s and
involved contributions by many physicists. It is a theory of quantized fermion
and photon fields and was called quantum electrodynamics (QED). For two
decades, however, serious divergences which occurred in the calculation of
observable quantities made it unclear how to make use of this theory. The
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experiment of Lamb and Retherford (1947) constituted an important guide
for the theoretical development in this point, because soon Bethe (1947)
found a way of how to extract useful information out of QED despite di-
vergent expressions. Subsequently the theory was elaborated mainly in sev-
eral series of papers by Tomonaga (1946), Koba et al. (1947a,b), Kanesawa
and Tomonaga (1948a,b), Tomonaga and Oppenheimer (1948) and indepen-
dently by Schwinger (1948a,b, 1949a,b) but also independently by Feynman
(1948c,a,b, 1949b,a, 1950) and also by Dyson (1949a,b). Salpeter and Bethe
(1951) then elaborated a field theoretic framework for the treatment of rel-
ativistic bound states in which dynamics is governed by the Bethe-Salpeter
equation. The theoretical predictions derived from QED are able to repro-
duce experimental results to an accuracy never seen before.

This is, however, not the end of the story. Feynman (1948c) proposed
a new way to view quantum mechanics, which he called the spacetime-
approach, and is nowadays known as the path integral formalism. This
formalism is equivalent to Heisenberg’s matrix mechanics and Schrödinger
theory and is especially useful in the field theoretic context of QED. Solv-
ing the path integral of the hydrogen atom, however, turns out to be very
complicated and involves much more elaborate calculations than in previous
approaches. It took a long time until this problem was finally solved by Duru
and Kleinert (1979).

Meanwhile progress was made using the methods of group theory to un-
derstand the symmetries governing the dynamics of the hydrogen atom. Al-
ready the derivation of the energy levels by Pauli (1926) relied on its SO(4)
symmetry. It was shown by Kleinert (1968a,b) that all properties of the
hydrogen atom that were known from Schrödinger theory could be formu-
lated in terms of group operations of its symmetry group SO(4,2), which is
therefore called the dynamic group of the hydrogen atom.

to be mentioned: effective field theory

This script gives an overview over the fundamental, theoretical methods
in the treatment of the hydrogen atom since the upcoming of the ”new”
quantum mechanics in 1925. At the current moment it comprises the non-
relativistic treatment via the formalisms of Heisenberg, Schrödinger and
Feynman, including group theoretic methods, and relativistic treatments us-
ing the Dirac equation both for the electron and for the two-particle system of
electron and proton. Also the lowest order of radiative corrections (O(mα5))
is reviewed in the context of QED.

The only experimental input that enters into the calculations are the
fine-structure constant α and the masses of electron me and proton mp from
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which the total mass M = me + mp and the reduced mass m = memp/M
are calculated. The values of these quantities are taken from Nakamura and
Particle Data Group (2010),

α = 7.2973525698(24) · 10−3

me = 0.510998928(11) MeV

mp = 938.272046(21) MeV

M = 938.783045 MeV

m = 0.510720781 MeV. (1.4)

It is also a common way to represent the value of the fine-structure constant
as α−1 = 137.035999074(44). The theoretical energy levels which are cal-
culated will be compared to the experimentally measured values which are
taken from NIST and can also be found in Kramida (2010). Table 1.1 dis-
plays the experimental results for the ground state 1s up to the 4f state as
well as the relative deviation of the energy levels from Bohr and Schrödinger
theory and from Dirac theory. One can see that even without radiative cor-
rections from full QED, the theoretical models reproduce the experimental
values very accurately.

To be included in the future:

1. effective field theory
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Table 1.1: Experimental values of the hydrogen energy levels as given in
(Kramida, 2010) and the relative deviation of the theoretical energy lev-
els from the non-relativistic theories of Bohr, Heisenberg and Schrödinger
(O(α2)), from the relativistic Dirac theory, expanded up to order α4, and
from the QED calculations up to order α5.

State Experiment (eV) Dev. O(α2) Dev. O(α4) Dev. O(α5)

1S1/2 0
2P1/2 10.1988055286 9 · 10−6 3 · 10−6 3 · 10−8

2S1/2 10.1988099034600 9 · 10−6 3 · 10−6 3 · 10−8

2P3/2 10.1988508929 1 · 10−5 3 · 10−6 3 · 10−8

3P1/2 12.087492922 1 · 10−5 3 · 10−6 3 · 10−8

3S1/2 12.087494224 1 · 10−5 3 · 10−6 3 · 10−8

3D3/2 12.087506341 1 · 10−5 3 · 10−6 3 · 10−8

3P3/2 12.087506364 1 · 10−5 3 · 10−6 3 · 10−8

3D5/2 12.087510821 1 · 10−5 3 · 10−6 3 · 10−8

4P1/2 12.74853166921 1 · 10−5 3 · 10−6 3 · 10−8

4S1/2 12.74853221952 1 · 10−5 3 · 10−6 3 · 10−8

4D3/2 12.7485373313 1 · 10−5 3 · 10−6 3 · 10−8

4P3/2 12.74853733962 1 · 10−5 3 · 10−6 3 · 10−8

4D5/2 12.74853922041 1 · 10−5 3 · 10−6 3 · 10−8

4F5/2 12.748539221 1 · 10−5 3 · 10−6 3 · 10−8

4F7/2 12.7485401632 1 · 10−5 3 · 10−6 3 · 10−8

Continuum 13.598433770784 1 · 10−5 2 · 10−6 3 · 10−8



Chapter 2

Heisenberg’s matrix mechanics

Given the problems that the ”old quantum mechanics” of the models of Bohr
(1913), Sommerfeld (1916) had and the fact that these models were based on
quantities which are in principle unobservable, such as position and orbital
period of the electrons in an atom, Heisenberg invented a novel way to think
about the microcosmos. Only observable entities enter his approach, which
is somewhat similar to classical physics concerning its overall structure but
completely different in character.

The seminal ideas of Heisenberg (1925) were elaborated further mathe-
matically by Born and Jordan (1925), Born et al. (1926) to become the ”new
quantum mechanics”, called matrix mechanics. Since there are many books
on basic quantum mechanics, their formalism is presented here only briefly
in a modern notation.

2.1 Matrix mechanics

Let H be a Hilbert space and H∗ its dual and |ψ〉 and 〈χ| their respective
elements (i.e. vectors and covectors). We denote the scalar product on H
as 〈χ|ψ〉. The state of a quantum mechanical system is represented by a
vector in H. Given the components ψn = 〈n|ψ〉 with respect to a basis |n〉
the components of 〈ψ| are given by ψ∗n = 〈ψ|n〉. From this we deduce the
relation 〈χ|ψ〉† = 〈ψ|χ〉. Observables are given by operators Â acting on the
vectors |ψ〉, which represent quantum mechanical systems. Every possible
outcome of a measurement of the quantity Â corresponds to an eigenvalue a
in its spectrum,

Â|ψ〉 = a|ψ〉. (2.1)

12



2.1. MATRIX MECHANICS 13

The expectation value of an operator is denoted by

〈Â〉 =
〈ψ|Â|ψ〉
〈ψ|ψ〉

. (2.2)

One of the ”axioms” of matrix mechanics is that the vectors |ψ〉 are constant
in time, while the evolution of operators Â is generated by the Hamiltonian
operator Ĥ,

˙̂
A = ∂tÂ+

1

i
[Â, Ĥ], (2.3)

where dÂ/dt =
˙̂
A. This equation is called the Heisenberg equation. The

Hamiltonian operator Ĥ (from now on simply Hamiltonian) is easily ob-
tained from the classical Hamiltonian function H by substituting dynamical
variables with operators. For example the Hamiltonian for a single parti-
cle of charge q in an external 4-vector potential (Φ, ~A) is obtained from the
classical Hamiltonian function as

H =
(~p− q ~A(t, ~x))2

2m
+ qΦ(t, ~x) → Ĥ =

(~̂p− q ~A(t, ~̂x))2

2m
+ qΦ(t, ~̂x). (2.4)

However, since operators do not commute in general, this correspondence
principle does not determine the Hamiltonian uniquely. This is to be ex-
pected since one can only derive classical mechanics from the more funda-
mental quantum mechanics and not the other way around.

From the Heisenberg equation (2.3) it follows that an operator which does
not explicitly depend on time represents a conserved quantity, if and only if it
commutes with the Hamiltonian. For the momentum and position operators,
correspondingly, we have

˙̂
~p =

1

i
[~̂p, Ĥ],

˙̂
~x =

1

i
[~̂x, Ĥ]. (2.5)

The second ”axiom” is given by the commutation relations of the position
operators x̂j and momentum operators p̂j,

[x̂j, x̂k] = 0, [p̂j, p̂k] = 0, [x̂j, p̂k] = δjk. (2.6)

One might now wonder why this formalism is called matrix mechanics and
also why we even introduced the Hilbert space H and its elements |ψ〉 if
dynamics are given by the operators, anyway. First, if we chose a basis |n〉
every operator Â is equivalent to a matrix with components amn = 〈m|Â|n〉.
In the early papers on quantum mechanics such as the ones referred to in this
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work, a basis that diagonalizes the Hamiltonian Ĥ is always chosen implicitly
so that all operators are indeed given by matrices in the energy eigenbasis.
The second point needs a little more explanation. One can write down a
formal solution to eq. (2.3) for operators that do not explicitly depend on
time, ∂tÂ = 0. If we define the unitary time-evolution operator Û as

Û(tN , t0) = T̂ exp

−i tN∫
t0

dt Ĥ(t)

 = lim
N→∞

T̂

N−1∏
n=0

(
1− i∆tĤ(tn)

)
, (2.7)

where tn+1 = ∆t + tn, ∆t = (tN − t0)/N . The action of the time-ordering
operator T̂ is such that all expressions on its right get ordered with later
times to the left, i.e.

Û(tN , t0) =
(

1− i∆tĤ(tN−1)
)
. . .
(

1− i∆tĤ(t1)
)(

1− i∆tĤ(t0)
)
. (2.8)

Obviously Û has the properties

Û(ti, tf ) = Û †(tf , ti), Û(tf , ti) = Û(tf , t0)Û(t0, ti),

dÛ(tf , ti)

dtf
= −iĤ(tf )Û(tf , ti),

dÛ(tf , ti)

dti
= +iÛ(tf , ti)Ĥ(ti). (2.9)

The solution to eq. (2.3) then reads

Â(t) = Û †(t, t0)Â(t0)Û(t, t0). (2.10)

In this expression lies the answer to why we introduced the Hilbert space H.
Outcomes of measurements a(t) are given by expectation values

a(t) = 〈Â(t)〉 = 〈ψ|Â(t)|ψ〉, |ψ〉 ≡ |ψ(t0)〉. (2.11)

Since the prescription (2.10) basically shifts time-evolution to the operator
Û we do not change the predicted outcome of measurements by attaching Û
to the vectors |ψ〉,

a(t) = 〈ψ(t)|Â|ψ(t)〉, |ψ(t)〉 = Û(t, t0)|(t0)〉, Â ≡ Â(t0). (2.12)

In going from eq. (2.11) to eq. (2.12) we did not change the formalism, but
only the picture of the quantum dynamics. The prescription corresponding
to eq. (2.11), where operators evolve and states are constant is called the
Heisenberg picture, whereas the prescription corresponding to eq. (2.12),
where operators are constant and states evolve, is called the Schrödinger
picture. In the Heisenberg picture dynamics are completely given by the
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operators, thus it is justified to call it matrix mechanics. One should note
that in the Schrödinger picture, eq. (2.12) implies the equation of motion

i
d|ψ(t)〉
dt

= i∂t|ψ(t)〉 = Ĥ|ψ(t)〉, (2.13)

which is the time-dependent Schrödinger equation (see chapter 3) for the
abstract vector |ψ(t)〉.

Before we proceed to the actual derivation of the hydrogenic energy levels,
let us write down some important relations. Concerning the commutators of
the position and momentum operators one can show by induction that

[p̂j, (x̂
k)n] = −in(x̂j)n−1δ(k)

(j) ⇒ [~̂p, f(~̂x)] = −i~∇x̂f(~̂x),

[x̂j, (p̂k)
n] = +in(p̂k)

n−1δ(j)
(k) ⇒ [~̂x, f(~̂p)] = +i~∇~̂pf(~̂x). (2.14)

A very important quantity is given by the angular momentum operator,

~̂L = ~̂x× ~̂p, (2.15)

which satisfies the commutation relations

[x̂j, L̂k] = iεjklx̂l, [p̂j, L̂k] = iεjklp̂l,

[L̂j, L̂k] = iεjklL̂l, [f(r̂), L̂k] = 0. (2.16)

The properties of eigenstates of the angular momentum operator are needed
for the derivation of the energy levels. Therefore an individual section is
devoted to them.

2.2 Angular momentum eigenstates

Let us consider the commutation relations among the components of the
angular momentum operator,

[L̂i, L̂j] = iεijkL̂k. (2.17)

This commutator defines the Lie algebra of SU(2) and SO(3). The square of
the total angular momentum operator commutes with all three of its com-
ponents,

~̂L 2 = (L̂1)2 + (L̂2)2 + (L̂3)2, [~̂L 2, L̂i] = 0. (2.18)
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Let us define states of the form |m〉 that diagonalize L̂3,

L̂3|m〉 = m|m〉. (2.19)

Since L̂3 and ~̂L 2 commute, this bases diagonalizes ~̂L 2 as well. From eqs.
(2.17) and (2.18) one can see that the raising and lowering operators,

L̂± = L̂1 ± iL̂2, (2.20)

satisfy the commutation relations

[L̂+, L̂−] = 2L̂3, [~̂L 2, L̂±] = 0, [L̂3, L̂±] = ±L̂±. (2.21)

From these relations it follows that

L̂3(L̂±)n|m〉 = (m± n)(L̂±)n|m〉 ⇒ (L̂±)|m〉 ∝ |m± n〉. (2.22)

Thus the operators L̂± indeed raise and lower the quantum numbers of an-
gular momentum eigenstates. Let us now consider finite dimensional repre-
sentations of the Lie group underlying the Lie algebra (2.17). Thus we label
every state by an additional quantum number l, which limits the values that
m is allowed to take. Let us now write

L̂±|l,m〉 = c±l,m|l,m± 1〉, c±l,m ∈ C, (2.23)

where for a finite-dimensional representation, we have c+
l,l = c−l,−l = 0. Since

L̂± changes the quantum number m only by one, l and m have to be half
integers,

|m| ≤ l, 2|m|, 2l ∈ N. (2.24)

In order to determine the c±l,m, we consider the square of the total angular
momentum operator. It may be written in terms of the raising and lowering
operators as

~̂L 2 = L̂−L̂+ + L̂3 + (L̂3)2 = L̂+L̂− − L̂3 + (L̂3)2. (2.25)

Since ~̂L 2 commutes with L̂± its eigenvalues are independent of m,

〈l,m|~̂L 2|l,m〉 = 〈l,±l|~̂L 2|l,±l〉 = l(l + 1). (2.26)

We can further use the fact that (L̂±)† = L̂∓,

|c±l,m|
2 = |L̂±|l,m〉|2 = 〈l,m|L̂∓L̂±|l,m〉
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= 〈l,m|(~̂L 2 ∓ L̂3 − (L̂3)2)|l,m〉 = l(l + 1)−m(m± 1). (2.27)

Since we are free to chose the phase, we set all c±l,m to be real,

c+
l,m = cl,m =

√
(l −m)(l +m+ 1), c−l,m = cl,m−1. (2.28)

Thus every state |l,m〉may be represented as L̂± acting l−m times on |l,±l〉,

|l,m〉 =

√
(l ±m)!

(2l)!(l ∓m)!
(L̂∓)l∓m|l,±l〉. (2.29)

2.3 Derivation of the hydrogen energy levels

Let us now consider the Hamiltonian Ĥtot of the proton and electron in the
hydrogen atom,

Ĥtot =
~̂p 2
p

2mp

+
~̂p 2
e

2me

− α

|~̂xp − ~̂xe|
, (2.30)

where the position and momentum operators of the proton commute with
those of the electron. Analogous to classical mechanics we introduce center-
of-mass (CM) and relative coordinates and momenta,

~̂r = ~̂xp − ~̂xe, ~̂R = (mp~̂xp +me~̂xe)/M,

~̂p = (me~̂pp −mp~̂pe)/M ~̂P = ~̂pp + ~̂pe, (2.31)

where M = mp + me. The total Hamiltonian (2.30) then separates into a
CM and relative part,

Ĥtot =
~̂P 2

2M
+ Ĥ, Ĥ =

~̂p 2

2m
− α

r̂
. (2.32)

In the following we will only concentrate on the relative part Ĥ. The equa-
tions of motion for this system read, analogous to classical mechanics,

˙̂
~p = −~∇x̂Ĥ = −α~̂x

r̂3
,

˙̂
~x = ~∇p̂Ĥ =

~̂p

m
. (2.33)

Using these results, we can directly show that the angular momentum oper-

ator ~̂L represents a conserved quantity,

d~̂L

dt
=

1

i
[~̂L, Ĥ] = ~̂x× 1

i
[~̂p, Ĥ] +

1

i
[~̂x, Ĥ]× ~̂p = 0. (2.34)
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From this it also follows that,

[~̂x, ~̂L2] = i(~̂L× ~̂x− ~̂x× ~̂L), [~̂p, ~̂L2] = i(~̂L× ~̂p− ~̂p× ~̂L), [~̂p 2, L̂k] = 0.
(2.35)

Further we define an operator that represents the Laplace-Runge-Lenz (LRL)
vector,

~̂U =
[~̂p, ~̂L2]

2imα
+
~̂x

r̂
=
~̂L× ~̂p− ~̂p× ~̂L

2mα
+
~̂x

r̂

=
~̂L× ~̂p
mα

− i~̂p

mα
+
~̂x

r̂
= − ~̂p×

~̂L

mα
+

i~̂p

mα
+
~̂x

r̂
, (2.36)

where the different representations will become useful in different situations.
As in classical mechanics, this operator also represents a conserved quantity,

d~̂U

dt
=

1

i
[ ~̂U, Ĥ] = − [[~̂p, Ĥ], ~̂L2]

2mα
+

1

i

[
~̂x

r̂
, Ĥ

]

=
~̂x× ~̂L− ~̂L× ~̂x

2mr̂3
+

{
1r̂2 − ~̂x⊗ ~̂x

r̂3
,
~̂p

2im

}
= 0. (2.37)

The LRL operator ~̂U serves to find the energy eigenvalues of the system. For
this purpose, using Ryd = mα2/2 again, we calculate its square,

~̂U2 =

(
~̂L× ~̂p
mα

− i~̂p

mα
+
~̂x

r̂

)(
− ~̂p×

~̂L

mα
+

i~̂p

mα
+
~̂x

r̂

)

= 1 +
Ĥ

Ryd
(1 + ~̂L2). (2.38)

Further we calculate the commutator of its components with themselves and
with those of the angular momentum operator,

[Û i, Û j] = − Ĥ

Ryd
iεijkL̂k, [Û i, L̂j] = iεijkÛk. (2.39)

Analogous to section 2.2 we define raising and lowering operators for the
LRL operator,

Û± = Û1 ± iÛ2. (2.40)
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They satisfy the commutation relations

[Û+, Û−] = −2ĤL̂3

Ryd
, [Û3, Û±] = ∓ĤL̂

±

Ryd
,

[Û±, L̂∓] = ±2Û3, [Û±, L̂3] = ∓Û±,

[Û±, ~̂L2] = ±2(Û3L̂± − Û±(L̂3 ± 1)), [Û3, ~̂L2] = L̂−Û+ − Û−L̂+. (2.41)

The square of the LRL operator may thus be written alternatively as

~̂U2 = Û+Û− +
ĤL̂3

Ryd
+ (Û3)2 = Û−Û+ − ĤL̂3

Ryd
+ (Û3)2. (2.42)

Let us now investigate the action of Û3 and Û± on a state |E, l,m〉, which is
an eigenstate of the Hamiltonian Ĥ with eigenvalue E,

Ĥ|E, l,m〉 = E|E, l,m〉, (2.43)

and angular momentum and magnetic quantum numbers l and m according
to section 2.2. From the commutators of Û3 and Û± with L̂3 we can see that
the first leaves m invariant while the second raises/lowers m by one,

〈E ′, l′,m′|Û3|E, l,m〉 ∝ δE′,Eδm′,m,

〈E ′, l′,m′|Û±|E, l,m〉 ∝ δE′,Eδm′,m±1, (2.44)

where the energy-δ is a result of [Ĥ, Û i] = 0. But the components of the LRL
operator can also change the angular momentum l of a state as can be seen
from the third line of eq. (2.41). From these commutators we can deduce
the relations

〈E, l′,m+ 1|Û+|E, l,m〉 = − 2cl,m
L − 2(m+ 1)

〈E, l′,m+ 1|Û3|E, l,m+ 1〉,

〈E, l′,m|Û−|E, l,m+ 1〉 =
2cl,m
L+ 2m

〈E, l′,m|Û3|E, l,m〉,

〈E, l′,m|Û3|E, l,m〉 =
cl,m
L
〈E, l′,m|Û−|E, l,m+ 1〉

− cl′,m
L
〈E, l′,m+ 1|Û+|E, l,m〉, (2.45)

where we have defined L = l′(l′+ 1)− l(l+ 1). Using (Û+)† = Û−, we obtain
from eqs. (2.45) the two relations

〈E, l′,m|Û3|E, l,m〉 =
cl′,m
cl,m

L+ 2m

L+ 2(m+ 1)
〈E, l′,m+ 1|Û3|E, l,m+ 1〉
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=
cl,m
cl′,m

L − 2m

L − 2(m+ 1)
〈E, l′,m+ 1|Û3|E, l,m+ 1〉.

(2.46)

The consistency of the two lines in eq. (2.46) allows only three values of l′,

L = 0 ⇔ l′ = l, L = 1± (2l + 1) ⇔ l′ = l ± 1. (2.47)

Let us consider the case l′ = l. Eq. (2.46) then yields

〈E, l, 0|Û3|E, l, 0〉 = 〈E, l, l|Û3|E, l, l〉 = 0, (2.48)

but also

〈E, l,m|Û3|E, l,m〉
m

=
〈E, l,m′|Û3|E, l,m′〉

m′
, (2.49)

for arbitrary m,m′ 6= 0. Setting m′ = l, however, shows that the matrix
elements of Û3 with l′ = l all vanish and so do the matrix elements of Û±

according to eqs. (2.45). Thus we obtain

Û3|E, l,m〉 = Cl+1,l

√
(l + 1)2 −m2 |E, l + 1,m〉

+ Cl,l−1

√
l2 −m2 |E, l − 1,m〉

Û±|E, l,m〉 = ∓Cl+1,l

√
(l ±m+ 1)(l ±m+ 2) |E, l + 1,m± 1〉

± Cl,l−1

√
(l ∓m)(l ∓m− 1) |E, l − 1,m± 1〉, (2.50)

where Cl+1,l is symmetric in its two indices due to the hermiticity of Û3 and
does not depend on m. Writing E = −Ryd E we may conclude from these
relations that

2mE = 〈E, l,m|[Û+, Û−]|E, l,m〉 = 2m(C2
l,l−1(2l − 1)− C2

l+1,l(2l + 3)),

(2.51)

which for general m implies

Cl,l−1 =

√
E + (2l + 3)C2

l+1,l

2l − 1
. (2.52)

Let us define a quantum number n ∈ N that labels energy eigenvalues, E →
En, Cl,l−1 → Cn

l,l−1 such that n determines the maximum angular momentum
compatible with the energy En via l < n. Inserting Cn

n,n−1 = 0 into relation
(2.52) then yields,

Cn
l,l−1 =

√
En

n2 − l2
(2l + 1)(2l − 1)

. (2.53)
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Table 2.1: Experimental values of the hydrogen energy levels as given in
Kramida (2010) are compared with the non-relativistic energy levels ∆En
in eq. (2.56). The relative deviation from the experimental values is of the
order 10−5.

State Exp. levels (eV) ∆En (eV) Deviation

1S1/2 0 0
2P1/2 10.1988055286 10.1987150105746 9 · 10−6

2S1/2 10.1988099034600 9 · 10−6

2P1/2 10.1988508929 1 · 10−5

3P1/2 12.087492922 12.0873659384587 1 · 10−5

3S1/2 12.087494224 1 · 10−5

3D1/2 12.087506341 1 · 10−5

3P1/2 12.087506364 1 · 10−5

3D1/2 12.087510821 1 · 10−5

4P1/2 12.74853166921 12.7483937632182 1 · 10−5

4S1/2 12.74853221952 1 · 10−5

4D1/2 12.7485373313 1 · 10−5

4P1/2 12.74853733962 1 · 10−5

4D1/2 12.74853922041 1 · 10−5

4F1/2 12.748539221 1 · 10−5

4F1/2 12.7485401632 1 · 10−5

Continuum 13.598433770784 13.5982866807661 1 · 10−5

We can now determine the energy eigenvalues En from the expectation value

of ~̂U2 for states |En, l,m〉 = |n, l,m〉,

〈n, l,m| ~̂U2|n, l,m〉 = 1− En(1 + l(l + 1))

= (Cn
l+1,l)

2(l +m+ 1)(2l + 3)

+ (Cn
l,l−1)2(l −m)(2l − 1) +mEn. (2.54)

Inserting eq. (2.52) yields the energy levels

En =
1

n2
, En = −Ryd

n2
, (2.55)

which are identical to the ones derived by Bohr (1913). Electronic transitions
to the hydrogen ground state then liberate the energy

∆En = Ryd

(
1− 1

n2

)
, (2.56)

which are compared the experimental values in table 2.1.



Chapter 3

The Schrödinger equation

Soon after Heisenberg’s new formulation of quantum mechanics Schrödinger
(1926) found another approach to the field. Even though the two formalisms
looked completely different at first sight and seemed to have a different phi-
losophy at their base, it turns out they are completely equivalent to each
other. With the Schrödinger equation one has a partial differential equation
at hand which determines (up to normalization) a function ψ, the wave func-
tion, which is defined on spacetime and the absolute square of which gives the
probability density to find the particle (electron) at the given event. In this
chapter we introduce Schrödinger’s formalism and use it to find the solution
for the hydrogen atom.

3.1 Schrödinger’s formalism and its relation

to matrix mechanics

Schrödinger (1926) started out from the Hamilton-Jacobi equation for a time-
independent Hamiltonian

H
(
~x, ~∇S0

)
= E, S0(~x; ~x0) =

~x∫
~x0

d~x ~p, (3.1)

where S0 is the reduced action. Schrödinger’s ansatz was now to introduce
a function ψ via

S0(~x) = lnψ(~x), (3.2)

where the reduced action S0 is viewed as a function of the end point. For a
Hamiltonian of the form

H(~x, ~p) =
~p 2

2m
+ V (~x), (3.3)

22
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eq. (3.1) implies

(~∇ψ(~x))2

2m
+ (V (~x)− E)ψ2(~x) = 0. (3.4)

This is however not the equation Schrödinger was looking for but the (double)
Hamiltonian density of a variational problem with action J ,

J =
1

2

∫
V

d3xψ(~x)

(
− ∆

2m
+ V (~x)− E

)
ψ(~x). (3.5)

Variation with respect to ψ then gives the famous (stationary) Schrödinger
equation, (

− ∆

2m
+ V (~x)− E

)
ψ(~x) = 0, (3.6)

provided that the surface integral∫
∂V

d2x δψ ~nV ~∇ψ, (3.7)

which results from a partial integration, vanishes. These are the historical
arguments by which Schrödinger ”derived” the equation (3.6) named after
him. It is not manifest that the formalisms of Heisenberg (see chapter 2) and
Schrödinger are indeed equivalent. Heisenberg’s formalism is concerned with
the evolution of operators, such as the position and momentum operators ~̂x
and ~̂p that act on vectors |ψ〉 living in a Hilbert space H. The Schrödinger
formalism, on the other hand, deals with a wave function ψ, where positions
are given by vectors ~x in configuration space and momenta have been replaced
by derivatives. Nowadays one would rather express Schrödinger’s formalism
in a different way that makes the connection to the Heisenberg formalism
obvious.

Let us consider matrix mechanics in the Schrödinger picture as given
in eq. (2.12). We now choose a continuous basis |~x〉 that diagonalizes the

position operators ~̂x,

~̂x|~x〉 = ~x|~x〉, 1 =

∫
d3x |~x〉〈~x|, 〈~y|~x〉 = δ3(~x− ~y), (3.8)

i.e. we can define a function ψ(t, ~x) as

ψ(t, ~x) = 〈~x|ψ(t)〉. (3.9)
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Thus the function ψ is defined on the configuration space and |ψ(t, ~x)|2 gives
the probability density to find the particle at time t at position ~x. The
expectation value of an operator Â reads

〈Â(t)〉 =

∫
d3x 〈~x|Â|~x〉|ψ(t, ~x)|2, (3.10)

as given in the position eigenbasis |~x〉. Acting with a vector |~x〉 on eqs.
(2.14) gives us the matrix elements of the momentum operator in the position
eigenbasis,

[~̂p, f(~̂x)]|~x〉 = |~x〉(−i~∇)f(~x) ⇒ 〈~y|~̂p|~x〉 = δ3(~x− ~y)(−i~∇). (3.11)

Let us now act with 〈~x| on eq. (2.13),

i∂tψ(t, ~x) =

∫
d3y 〈~x|Ĥ(t, ~̂x, ~̂p)|~y〉ψ(t, ~y)

= H(t, ~x,−i~∇)ψ(t, ~x), (3.12)

where H(t, ~x,−i~∇) in the second line means the classical Hamilton function

with momenta ~p replaced by −i~∇. This equation is known as the time-
dependent Schrödinger equation1. The Hamiltonian corresponding to the
example (2.4) reads in this formalism

H(t, ~x,−i~∇) = −(~∇− iq ~A(t, ~x))2

2m
+ qΦ(t, ~x). (3.13)

Of course, all ambiguities of the Heisenberg formalism concerning the transi-
tion from classical mechanics to the quantum mechanical analogue (and not
the other way around) remain.

Thus the Schrödinger formalism is simply concerned with the evolution of
the components ψ(t, ~x) of the Hilbert space-vector |ψ(t)〉 with respect to the
position eigenbasis |~x〉 in the Schrödinger picture of matrix mechanics. The
advantage of Schrödinger’s formalism is clearly its much more intuitive notion
of a function ψ defined on spacetime with its absolute square |ψ|2 representing
a probability density (if the term ”intuitive” applies to quantum mechanics at
all) as opposed to the abstract formalism of matrix mechanics. Also different
formalisms have different strengths and weaknesses so it is very useful to have
alternative formulations at hand to be able to switch to the one which is most

1Quite frankly, the i∂t in eq. (3.12) may be viewed as the matrix element of an
operator p̂t = −p̂t in a spacetime basis |t, ~x〉. The 4-momentum operator would then
read p̂µ = −i∂µ.
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efficient for a given problem. Especially in the case of the hydrogen atom
the stationary wave function ψ(~x) gives us valuable information about the
spatial probability distribution to find the electron. In the next section we
will therefore solve the Schrödinger equation for the hydrogen atom, which
yields the same Bohr energy levels as found in the previous chapter, but also
inspect the properties of the resulting wave function.

3.2 The hydrogen wave functions

In this section we derive the solution to the hydrogen atom using the non-
relativistic Schrödinger equation, i.e. we solve the equation(

− ∆p

2mp

− ∆e

2me

− α

|~xp − ~xe|
− i∂t

)
ψ(t, ~xp, ~xe) = 0, (3.14)

where ~xp and ~xe are the positions of proton and electron, respectively. Let
us introduce center-of-mass (CM) and relative coordinates,

~r = ~xp − ~xe, ~R = (mp~xp +me~xe)/M, M = mp +me. (3.15)

Making the separation ansatz ψ(t, ~xp, ~xe) = ψ(t, ~R)ψ(t, ~r), we obtain

ψ(t, ~r)

(
−∆R

2M
− i∂t

)
ψ(t, ~R) + ψ(t, ~R)

(
−∆r

2m
− α

r
− i∂t

)
ψ(t, ~r) = 0,

(3.16)

where m = mpme/M is the reduced mass as given in eq. (1.4). Obviously the
CM-Schrödinger equation is solved by the one-parameter family of solutions

ψK(t, ~R) = ei
~K ~R−i ~K2t/(2M). (3.17)

These wave functions satisfy the completeness relation∫
d3K

(2π)3
ψK(t, ~R1)ψ∗K(t, ~R2) = δ3(~R1 − ~R2). (3.18)

Since we consider a bound state, the solution of the remaining part of the
Schrödinger equation will have a discrete spectrum. Due to the spherical and
time translation symmetry of the problem we write

ψnlm(t, ~r) = e−iEnt
gnl(r)

r
Ylm(θ, ϕ), (3.19)
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where Ylm is a spherical harmonic (see appendix B). In order for the wave
function to be orthonormal, the wave function ψ and its radial part g have
to satisfy the conditions,∫

d3r ψ∗n′l′m′(t, ~r)ψnlm(t, ~r) = δnn′δll′δmm′ ,

∞∫
0

dr g∗nl(r)gn′l(r) = δnn′ . (3.20)

In spherical coordinates, the Schrödinger equation becomes(
− ∂2

r

2m
+
l(l + 1)

2mr2
− α

r
− En

)
gnl(r) = 0. (3.21)

Defining Cn =
√
−2mEn and x = 2Cnr we have(

∂2
x −

l(l + 1)

x2
+
mα

Cnx
− 1

4

)
gnl(r) = 0. (3.22)

From the asymptotic behavior in the limits x → 0 and x → ∞, we get the
form

gnl(r) = xl+1e−x/2unl(x). (3.23)

The equation for u then reads(
x∂2

x + (2l + 2− x)∂x +
mα

Cn
− l − 1

)
unl(x) = 0. (3.24)

Up to normalization u is given by the Kummer function,

unl(x) ∝M(l + 1−mα/Cn, 2l + 2, x). (3.25)

Since the bound-state wave function ought to be normalizable, the first ar-
gument of the Kummer function has to be a negative integer,

l + 1−mα/Cn = −nr, where nr ∈ N, say. (3.26)

Let n = nr + l + 1 ∈ N+ and Ryd = mα2/2, then

Cn =
mα

n
, En = −Ryd

n2
. (3.27)

These are the same energy levels found by Bohr (1913) and Pauli (1926)
and which are given in eq. (2.55). A comparison with the experimentally
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measured has been given in table 2.1. Now will proceed with our calculation
of the wave functions, however.

For negative integer values of its first argument one may express the
Kummer function in terms of the Laguerre polynomials,

M(−nr, 2l + 2, 2Cnr) =
Γ(nr + 1)Γ(2l + 2)

Γ(nr + 2l + 2)
L2l+1
nr (2Cnr). (3.28)

The radial bound state wave function then reads

gnl(r) = Anlxl+1e−x/2L2l+1
n−l−1(x). (3.29)

The normalization constant A may be calculated according to eq. (3.20),
using the generating function of the Laguerre polynomials (see appendix B),

1
!

=

∞∫
0

dr (gnl(r))
2 =
A2
nl

2Cn

∞∫
0

dx x2l+2e−x(L2l+1
n−l−1(x))2

=
A2
nl

2Cn

∞∫
0

dx x2l+2e−x
∂n−l−1
y ∂n−l−1

z

((n− l − 1)!)2

exp
[
− xy

1−y −
xz

1−z

]
(1− y)2l+2(1− z)2l+2

∣∣∣∣∣∣
y=z=0

=
A2
nl

2Cn

(2l + 2)!

((n− l − 1)!)2
∂n−l−1
y ∂n−l−1

z

1− y − z + yz

(1− yz)2l+3

∣∣∣∣
y=z=0

=
A2
nl

2Cn

(n+ l + 1)! + (n− l − 1)(n+ l)!

(n− l − 1)!

=
A2
nl

Cn

n(n+ l)!

(n− l − 1)!
. (3.30)

Thus we obtain the final result for the radial wave function,

gnl(r) =

√
Cn
n

(n− l − 1)!

(n+ l)!
(2Cnr)

l+1e−CnrL2l+1
n−l−1(2Cnr). (3.31)

The first few radial wave functions gnl that belong to the energy values in
table 2.1 are displayed in figure 3.2. They are labeled by their principle and
angular quantum numbers n and l, using the numerical value of n and the
scheme S, P, D, F, G, H, ... for l = 0, 1, 2, 3, 4, 5, ... The explicit expressions
of the first few radial wave functions read

g10(r) =
√
C1 x1e

−x1/2

g20(r) =

√
C2

2
x2e
−x2/2 (2− x2)
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Figure 3.1: Bound state radial Schrödinger wave functions gnl as given in eq.
(3.31) for n ≤ 4 and l ≤ 2. See text for the nomenclature of the different
states.

g21(r) =

√
C2

12
x2

2e
−x2/2

g30(r) =

√
C3

3
x3e
−x3/2

(
3− 3x3 +

x2
3

2

)
g31(r) =

√
C3

72
x2

3e
−x3/2 (4− x3)

g32(r) =

√
C3

360
x3

3e
−x3/2 (3.32)

3.2.1 Orthogonality of radial wave functions

Let us show explicitly that the orthonormality relation (3.20) holds, following
the approach of Dunkl (2003). Since gnl is already normalized, we only need
to show that the right hand side of eq. (3.20) vanishes for n 6= n′. Conse-
quently we will drop all irrelevant prefactors in the following calculation:

0
!

=

∞∫
0

dr gnl(r)gn′l(r)

∝
∞∫

0

dx1
x2l+2

1

(nn′)l+1
e−

x1
2 ( 1

n
+ 1
n′ )L2l+1

n−l−1

(x1

n

)
L2l+1
n′−l−1

(x1

n′

)
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∝
∞∫

0

dy y2l+2e−yL2l+1
n−l−1(ay)L2l+1

n′−l−1(by), (3.33)

where we have defined

y =
x1

2

(
1

n
+

1

n′

)
, a =

2n′

n+ n′
, b =

2n

n+ n′
. (3.34)

Writing further

N = n− l − 1, N ′ = n′ − l − 1, α = 2l + 1, (3.35)

we can combine eqs. (B.16) and (B.17) to obtain

LαN(ay) = Lα+1
N (ay)− Lα+1

N−1(ay)

=
N∑
k=0

Q(N,α, k, a)

(
a

1− a

)k
Lα+1
k (y) (k −N ′b),

Q(N,α, k, a) =
(1− a)N−1

N + α + 1

(
N + α + 1
N − k

)
. (3.36)

Inserting this into the last line of eq. (3.33) and using the standard orthog-
onality relation of the associated Laguerre polynomials (B.18) yields

∞∫
0

dy yα+1e−yLαN(ay)LαN ′(by)

=
N∑
k=0

N ′∑
p=0

Q(N,α, k, a)Q(N ′, α, p, b)

(
a

1− a

)k (
b

1− b

)p

· (k −N ′b)(p−Na)

∞∫
0

dy yα+1e−yLα+1
k (y)Lα+1

p (y)

∝ Σ(N,N ′, α, a, b), (3.37)

where we have defined Σ as the sum

Σ(N,N ′, α, a, b) =

min(N,N ′)∑
k=0

(k −N ′b)(k −Na)

(N − k)!(N ′ − k)!(k + α + 1)!

γk

k!
, (3.38)

thereby introducing the parameter

γ =
ab

(1− a)(1− b)
=

ab

ab− 1
= − 4nn′

(n− n′)2
. (3.39)



30 CHAPTER 3. THE SCHRÖDINGER EQUATION

Reformulating the numerator in terms of γ,

(k −N ′b)(k −Na) =
γ(N − k)(N ′ − k)− k(k + α + 1)

γ − 1
, (3.40)

we see that Σ vanishes,

Σ(N,N ′, α, a, b) ∝
min(N,N ′)−1∑

k=0

1

(N − k − 1)!(N ′ − k − 1)!(k + α + 1)!

γk+1

k!

−
min(N,N ′)∑

k=1

1

(N − k)!(N ′ − k)!(k + α)!

γk

(k − 1)!
,

= 0. (3.41)

Hence we have explicitly shown that the radial wave functions satisfy the
orthonormality relation (3.20).

3.2.2 Radial expectation values

Of great importance are the expectation values of powers of the radial coor-
dinate, 〈rs〉,

〈rs〉nl =

∫
d3x |ψnlm(~x)|2rs =

∞∫
0

dr (gnl(r))
2rs. (3.42)

From eq. (3.21) one can deduce the following relation between the expecta-
tion values of different powers,

(s+ 1)C2
n 〈rs〉nl − (2s+ 1)mα 〈rs−1〉nl + s

(
l(l + 1)− s2 − 1

4

)
〈rs−2〉nl = 0.

(3.43)

From 〈1〉 = 1, one can easily derive 〈r−1〉 as well as expectation values of
larger integer powers of r. Both 〈r−2〉 and 〈r−3〉 are also very important
expectation values. However, 〈r−2〉 has to be calculated explicitly,〈

1

r2

〉
nl

=

∞∫
0

dr
(gnl(r))

2

r2
= 2CnA2

nl

∞∫
0

dx x2le−x(L2l+1
n−l−1(x))2

=
2CnA2

nl(2l)!

((n− l − 1)!)2
∂n−l−1
y ∂n−l−1

z

1

1− y
1

1− z
1

(1− yz)2l+1

∣∣∣∣
y=z=0
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=
2CnA2

nl(2l)!

((n− l − 1)!)2

·
n−l−1∑
j=0

[(
n− l − 1

j

)]2
((n− l − 1− j)!)2 j! (2l + j)!

(2l)!

= 2CnA2
nl(2l)!

n−l−1∑
j=0

(
2l + j

2l

)
= 2CnA2

nl(2l)!

(
n+ l
2l + 1

)
=

C2
n

n(l + 1/2)
.

Thus we may present the most commonly required radial expectation values,

〈r2〉nl =
n2(5n2 − 3l(l + 1) + 1)

2m2α2
, 〈r〉nl =

3n2 − l(l + 1)

2mα
,

〈r−1〉nl =
mα

n2
, 〈r−2〉nl =

m2α2

n3(l + 1/2)
,

〈r−3〉nl =
m3α3

n3l(l + 1/2)(l + 1)
. (3.44)

3.3 Continuum wave functions

In section 3.2 we have derived bound state solutions to the quantum me-
chanical Coulomb problem, as it applies to the hydrogen atom. These states,
however, do not form a complete set since a free electron might as well be
influenced by the presence of the proton as it is the case in e.g. a scattering
scenario. Thus we also have to consider the continuum states, where the
energy E > 0 may take any positive real value. The bound states together
with the continuum states form a complete set,

∞∑
l=0

l∑
m=−l

 ∞∑
n=l+1

|nlm〉〈nlm|+
∞∫

0

dk |klm〉〈klm|

 = 1, (3.45)

where k =
√

2mE means the absolute value of the wave vector. Obviously
|nlm〉 and |klm〉 are closely related to each other since they are eigenstates
of the same Hamiltonian (3.14). Let us write the stationary continuum wave
functions as

χklm(~x) =
hkl(r)

r
Ylm(θ, ϕ). (3.46)
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Figure 3.2: Continuum radial Schrödinger wave functions hkl as given in
eq. (3.50) for angular momentum l = 0, 5 and energy E = 1 eV, 100 eV,
respectively.

In order to find the radial continuum wave functions hkl we simply have to
drop the constraint on eq. (3.25) that the wave function be normalizable
over an infinite volume,

hkl(r) ∝M(l + 1− iν, 2l + 2,−2ix), (3.47)

where ν = mα/k and x = kr, i.e. we make the replacement Cn → −ik,
En → −E as compared to the bound case. The normalization constant of
the continuum wave function is chosen such that the completeness relation
(3.45) is satisfied. We may rewrite eq. (3.45) in position space as

∞∑
l=0

l∑
m=−l

(
∞∑

n=l+1

ψnlm(~x2)ψ∗nlm(~x1)

+

∞∫
0

dk χklm(~x2)χ∗klm(~x1)

)
= δ3(~x2 − ~x1), (3.48)

which together with eq. (B.12) implies that for every l we have

∞∑
n=l+1

gnl(r2)g∗nl(r1) +

∞∫
0

dk hkl(r2)h∗kl(r1) = δ(r2 − r1). (3.49)

The normalization constant is most easily derived from the branch cut of
fixed-energy amplitude in the complex energy plane. The concept of the
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Figure 3.3: Continuum radial Schrödinger wave functions hkl as given in
eq. (3.50) for a repulsive Coulomb potential, i.e. negative ν, for angular
momentum l = 0, 5 and energy E = 1 eV, 100 eV, respectively.

fixed-energy amplitude is explained in chapter 5. Here we will only write
down the result which is also given in eq. (5.144),

hkl(r) =
|Γ(l + 1− iν)|√

2π Γ(2l + 2)
eπν/2+ikr(2kr)l+1M(l + 1− iν, 2l + 2,−2ikr)

=

√
2

π
Fl(−ν, kr), (3.50)

where Fl means the Coulomb wave function. Note that the wave functions
for a repulsive Coulomb potential, α → −α, may be readily obtained from
eq. (3.50) by replacing ν → −ν. Due to the lack of bound state solutions
in this case we may infer from eq. (3.49) the following completeness relation
for the Coulomb wave functions,

∞∫
0

dk Fl

(µ
k
, kr2

)
Fl

(µ
k
, kr1

)
=
π

2
δ(r2 − r1), µ ≥ 0. (3.51)

3.4 Parabolic coordinates

Apart from the previous treatment in section 3.2 it is also very instructive
to solve the relative-motion, stationary Schrödinger equation (3.16),(

− ∆

2m
− α

r
− E

)
ψ(~x) = 0, (3.52)
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in parabolic coordinates (X, Y, ϕ). They are related to the usual cartesian
coordinates (x1, x2, x3) via

x1 =
√
XY cosϕ, x2 =

√
XY sinϕ,

x3 =
X − Y

2
, |~x| = r =

X + Y

2
, (3.53)

while the inverse relations read

X = r + x3, Y = r − x3,

ϕ = arctan
x1

x2
, XY = (x1)2 + (x2)2. (3.54)

In these coordinate we have the metric g,

g = (dx1)2 + (dx2)2 + (dx3)2 =
r

2

(
dX2

X
+
dY 2

Y

)
+XY dϕ2, (3.55)

and its inverse g−1,

g−1 = ∂2
1 + ∂2

2 + ∂2
3 =

2

r

(
X∂2

X + Y ∂2
Y

)
+

1

XY
∂2
ϕ, (3.56)

respectively. The determinant of the metric then yields det g = r2/4. The
Schrödinger equation (3.52) may expressed in parabolic coordinates via

∆ =
1√
| det g|

~∇g−1
√
| det g|~∇ =

1√
| det g|

∂ig
ij
√
| det g|∂j

=
2

r
(∂XX∂X + ∂Y Y ∂Y ) +

1

XY
∂2
ϕ. (3.57)

Multiplying eq. (3.52) by −mr then yields(
∂XX∂X + ∂Y Y ∂Y +

1

4

(
1

X
+

1

Y

)
∂2
ϕ

+mα +
mE

2
(X + Y )

)
ψ(X, Y, ϕ) = 0. (3.58)

The fact that this equation separates in X and Y makes it apparent why
this coordinate system is so well suited for solving for the hydrogen wave
functions. Let us now make the definitions

C =
√
−2mE, ν =

mα

C
, x = CX, y = CY, (3.59)
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to rewrite eq. (3.58) as(
∂xx∂x −

x

4
+

1

4x
∂2
ϕ + ∂yy∂y −

y

4
+

1

4y
∂2
ϕ + ν

)
ψ(X, Y, ϕ) = 0. (3.60)

We now make the separation ansatz

ψ(X, Y, ϕ) ∝ eimϕgx(x)gy(y) (3.61)

to obtain

gy(y)

(
∂xx∂x −

x

4
− m2

4x

)
gx(x)

+ gx(x)

(
∂yy∂y −

y

4
− m2

4y

)
gy(y)︸ ︷︷ ︸

=Bgy(y)

+νgx(x)gy(y) = 0. (3.62)

Since the two terms on the left-hand side are independent of each other,
they must be constants times gxgy, adding up to −νgxgy. It is sufficient to
consider the equation satisfied by gx,(

∂xx∂x −
x

4
− m2

4x
+ ν +B

)
gx(x) = 0. (3.63)

From the analogue with eq. (3.22) for spherical coordinates we set

gx(x) = x|m|/2e−x/2Lx(x), (3.64)

which yields the analogue of eq. (3.24)(
x∂2

x + (|m|+ 1− x)∂x + ν +B − |m|+ 1

2

)
Lx(x) = 0. (3.65)

This equation is again solved by Kummer’s function,

Lx(x) ∝M((|m|+ 1)/2− ν −B, |m|+ 1, x). (3.66)

To obtain the corresponding expression for gy(y) from gx(x) we must replace
x → y and ν + B → −B in eqs. (3.64) and (3.66). Like in section 3.2 we
are interested in normalizable, bound state solutions. Therefore we require
that the first argument of the Kummer function must be a negative integer
so that gx and gy may be expressed in terms of Laguerre polynomials,

ν +B − |m|+ 1

2
= n1, −B − |m|+ 1

2
= n2, n1, n2 ∈ N. (3.67)
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This yields

ν = n1 + n2 + |m|+ 1 := n, (3.68)

where we have identified the principal quantum number n of the Bohr energy
levels. The resulting wave function ψ(X, Y, ϕ) is now characterized by the
quantum numbers n1, n2 and m,

ψn1,n2,m(X, Y, ϕ) = An1,n2,m
eimϕ√

2π
(C2

nXY )|m|/2 e−Cn(X+Y )/2

· L|m|n1
(CnX)L|m|n2

(CnY ), (3.69)

where Lαn are again the associated Laguerre polynomials. Let us now calcu-
late the normalization constant, using the measure dXdY dϕ (X + Y )/4, to
obtain

1
!

=

∞∫
0

dXdY
X + Y

4

2π∫
0

dϕ |ψn1,n2,m(X, Y, ϕ)|2

=
A2
n1,n2,m

4C3
n

∞∫
0

dxdy (x+ y)(xy)|m|e−(x+y)
(
L|m|n1

(x)L|m|n2
(y)
)2

=
A2
n1,n2,m

4C3
n

(
I |m|,1n1

I |m|,0n2
+ I |m|,1n2

I |m|,0n1

)
, (3.70)

where

Iα,βn =

∞∫
0

dx xα+βe−x (Lαn(x))2 . (3.71)

With analogous calculations as in eq. (3.30) we obtain

Iα,0n =
Γ(n+ 1 + α)

n!
, Iα,1n =

Γ(n+ 1 + α)

n!
(2n+ 1 + α). (3.72)

Inserting into eq. (3.70) yields

An1,n2,m =

√
2C3

n

n

n1!

(n1 + |m|)!
n2!

(n2 + |m|)!
. (3.73)



Chapter 4

The Dirac equation

In 1928 Dirac presented a relativistic treatment of the quantum theory of the
electron. It does not constitute a new formulation of quantum mechanics but
a relativistic generalization of the formalisms of Heisenberg and Schrödinger,
where the non-relativistic Hamiltonian in e.g. eqs. (2.4) and (3.13) is re-
placed with a corresponding relativistic version. The relativistic equation of
motion for the wave function, called Dirac equation, was very soon after its
discovery solved by Gordon (1928) for the case of the hydrogen atom.

The Dirac equation can be formulated in a Lorentz-invariant manner and
naturally includes the electron spin as a degree of freedom which was missing
in the previous non-relativistic approaches. Also the Dirac equation predicts
the existence of antiparticles which, according to Feynman and Stückelberg,
can be interpreted as particles of opposite quantum numbers which travel
backwards in time. The antiparticle of the electron, the positron, was dis-
covered in 1933 by Anderson.

4.1 Motivation and properties of the Dirac

equation

Let us start from a non-covariant classical Hamiltonian for a relativistic par-
ticle and its naive quantum mechanical counter part,

H =
√
~p 2 +m2 → Ĥ =

√
~̂p 2 +m2. (4.1)

Simply promoting the dynamical variables to operators obviously yields an
expression which we do not know how to deal with. Dirac’s idea, however,
proposed a Hamiltonian of the type

Ĥ = ~̂α~̂p+ β̂m, (4.2)

37
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where the operators ~̂α and β̂ are called Dirac matrices and are set to commute
with ~̂p and ~̂x. However, eqs. (4.1) and (4.2) can only be equivalent if

~̂α~̂p+ β̂m =

√
(~̂α~̂p+ β̂m)2 !

=

√
~̂p 2 +m2. (4.3)

This in turn implies for ~̂α and β̂

{α̂i, α̂j} = 2δij, {α̂i, β̂} = 0, β̂2 = 1. (4.4)

If given with respect to a basis, these operators become matrices ~α, β. From
the above relations we can easily show that all four matrices have only eigen-
values ±1 and that Tr β = Trαi = 0. Thus the Dirac matrices can only be of
even dimension and at least 4× 4, since we need four independent matrices.
Throughout this work we will chose the basis such that ~α and β are given in
the Dirac representation,

β =

(
1 0
0 −1

)
, ~α =

(
0 ~σ
~σ 0

)
, (4.5)

where the blocks in these expressions are 2 × 2-blocks and ~σ represents the
2× 2-Pauli-matrices,

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
, (4.6)

which satisfy the relations

{σi, σj} = 2δij, [σi, σj] = 2iεijkσk. (4.7)

In the following we will use a position eigenbasis so the Dirac equation for a
particle in an external 4-vector potential (Φ, ~A) reads,(

−i(∂t + iqΦ(x))− i~α(~∇− iq ~A(x)) + βm
)

Ψ(x) = 0, (4.8)

where x = (t, ~x). In this equation, the wave function has four components,
Ψ(x) = (Ψa)(x) = 〈a, x|ψ〉, a ∈ {1, 2, 3, 4}. Inspecting the properties of the
Dirac equation we find that Ψ is most conveniently written in the form

Ψ(x) =

(
ϕ(x)
χ(x)

)
, (4.9)

where the two-dimensional quantities ϕ and χ are Weyl spinors which trans-
form in the spinor and conjugate spinor representation of the Lorentz group,
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respectively. The quantity Ψ, which is called a Dirac spinor, thus transforms
in a mixed spinor and conjugate spinor representation.

Eq. (4.8) may be easily reformulated in a Lorentz-invariant manner by
defining the γ-matrices,

γ0 = β, ~γ = β~α =

(
0 ~σ
−~σ 0

)
, (4.10)

as well as the matrix γ5,

γ5 = iεµνρσγ
µγνγργσ = iγ0γ1γ2γ3 =

(
0 1

1 0

)
, (4.11)

and multiplying eq. (4.8) by γ0 from the left

(−iγµ(∂µ − iqAµ) +m) Ψ(x) = 0, (4.12)

where A0 = −Φ. From eqs. (4.4) we infer the anti-commutation relations,

{γµ, γν} = −2ηµν , {γµ, γ5} = 0. (4.13)

The matrices γµ transform as vectors under Lorentz transformations while
γ5 is a pseudo-scalar,

γµ → γ
′µ = Λµ

νγ
ν , γ5 → γ′5 = det Λ γ5. (4.14)

Further we define the operation of Dirac conjugation as

Ψ̄ = Ψ†γ0, γ̄µ = γ0γµ†γ0 = γµ, γ̄5 = γ0γ†5γ
0 = γ5, (4.15)

and introduce the Feynman slash notation, /A = γµAµ, so that eq. (4.12)
reads (

−i/∂ − q /A(x) +m
)

Ψ(x) = 0. (4.16)

Let Ψ(±) denote solutions to eq. (4.16) for particles with charge ±q. Using

ε~σε = ~σ∗, ε = iσ2 =

(
0 1
−1 0

)
, (4.17)

one finds that the two solutions are related to each other by the operation of
charge conjugation,

Ψ(−) = CΨ(+)∗, C = iγ2, (4.18)
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i.e. eq. (4.16) is invariant under the exchange

Ψ(+) ↔ Ψ(−), +q ↔ −q. (4.19)

Writing the Dirac equation in terms of the Weyl spinors ϕ and χ yields

(−i∂t + qΦ(x) +m)ϕ(x) = i~σ(~∇− iq ~A(x))χ(x),

(i∂t − qΦ(x) +m)χ(x) = −i~σ(~∇− iq ~A(x))ϕ(x). (4.20)

It is easy to see that for a time-independent 4-vector potential, we may write

Ψ(x) = e−iEt
(
ϕ(~x)
χ(~x)

)
, (4.21)

so that

(m− E + qΦ(~x))ϕ(~x) = i~σ(~∇− iq ~A(~x))χ(~x),

(m+ E − qΦ(~x))χ(~x) = −i~σ(~∇− iq ~A(~x))ϕ(~x). (4.22)

Charge conjugation is performed in eqs. (4.22) by the replacement

E → −E, q ↔ −q,
ϕ(~x)↔ εχ∗(~x), χ(~x)↔ −εϕ∗(~x). (4.23)

Hence we find that if Ψ(+) is a solution to the Dirac equation with positive
energy E then the charge-conjugated Dirac spinor Ψ(−) represents a solution
with negative energy −E. The negative energy solution corresponds to an
antiparticle (positron), i.e. a particle (electron) of opposite charge which
travels backwards in time.

We can see from eq. (4.22) that it is possible to express the spinor χ in
terms of ϕ. For a non-relativistic system we have W = E − m � m and
qΦ� m, so that eqs. (4.22) become

(qΦ(~x)−W )ϕ(~x) =
[~σ(~∇− iq ~A(~x))]2

2m
ϕ(~x),

χ(~x) =
−i~σ(~∇− iq ~A(~x))

2m
ϕ(~x). (4.24)

The dynamics are now completely determined by the Weyl spinor ϕ. The
equation of motion (4.24) for ϕ is called the Pauli equation, which was pro-
posed to explain the properties of an electron in an external magnetic field
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~B = ~∇ × ~A (Pauli, 1927). Using the properties of the Pauli-matrices (4.7)
we may reformulate eq. (4.24) as(

−(~∇− iq ~A(~x))2

2m
− gq~s ~B

2m
+ qΦ(~x)−W

)
ϕ(~x) = 0, (4.25)

where ~s = ~σ/2 is the spin operator and g = 2 the Landé g-factor. Obviously
the Pauli equation (4.25) reduces to the Schrödinger equation (3.13) if the
effect of spin is neglected.

4.2 The free Dirac equation

Before we proceed with the solution for the hydrogen atom we will briefly
consider the Dirac equation for a free particle. This will be of much use in
later chapters. The Dirac equation for a free particle reads

(−i/∂ +m)Ψ(x) = 0. (4.26)

Performing a Fourier transform yields

(/p+m)Ψ̃(p) = 0, (4.27)

where p = (p0, ~p). This equation has non-trivial solutions only if

p0 = ±E, E =
√
~p 2 +m2. (4.28)

Two eigenvectors of this matrix equation can be easily found for p = (m, 0),

u±(0) =
√

2m

(
ξ±
0

)
, ξ+ =

(
1
0

)
, ξ− =

(
0
1

)
. (4.29)

We can now obtain general expressions for us(~p) via a Lorentz transforma-
tion S(Λ). Regarding that the Dirac spinor Ψ transforms in a mixed spinor
representation under Lorentz transformations (see e.g. Srednicki, 2007), we
may perform an active boost on us with the matrix

S(Λ(~y)) = S(~y) = exp

[
−1

4
[~y~γ, γ0]

]
= 1 cosh

|~y|
2

+ ~n~α sinh
|~y|
2

=

√
E +m

2m

(
1

~p~σ
E+m

~p~σ
E+m

1

)
, (4.30)



42 CHAPTER 4. THE DIRAC EQUATION

where ~n = ~y/|~y|, ~p/m = ~n sinh |~y| and E/m = cosh |~y|. The transformation
yields

S(~y)(−mγ0 +m)S−1(~y)S(~y)us(0) = (/p+m)us(~p) = 0, (4.31)

where s = ± and

us(~p) =

( √
E +mξs
~σ~p√
E+m

ξs

)
. (4.32)

Solutions corresponding to negative energy states, p0 = −E, are obtained by
charge conjugation of us,

vs(~p) = Cu∗s(~p) = s

(
~σ~p√
E+m

ξ−s√
E +mξ−s

)
. (4.33)

The two Dirac spinors vs satisfy the equation

(−/p+m)vs(~p) = 0. (4.34)

Also the four Dirac spinors us and vs satisfy several important relations,

ūr(~p)us(~p) = 2mδr,s, u†r(~p)us(~p) = v†r(~p)vs(~p) = 2Eδr,s,

v̄r(~p)vs(~p) = −2mδr,s, ūr(~p)vs(~p) = 0,∑
s=±

us(~p)ūs(~p) = −/p+m,
∑
s=±

vs(~p)v̄s(~p) = −/p−m, (4.35)

as well as the following completeness relations,∑
s=±

(us(~p)ūs(~p)− vs(~p)v̄s(~p)) = 2m,∑
s=±

(
us(~p)u

†
s(~p) + vs(−~p)v†s(−~p)

)
= 2E. (4.36)

Let us define the time-independent wave functions

Ψ
(+)
s,~p (~x) = ei~p~xus(~p), Ψ

(−)
s,~p (~x) = e−i~p~xvs(~p), (4.37)

which are solutions to the time-independent, free Dirac equation,

(∓Eγ0 − i~γ ~∇+m)Ψ
(±)
s,~p (~x) = 0, (4.38)
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and satisfy the completeness relation∫
d̃p
∑
s=±

(
Ψ

(+)
s,~p (~x)Ψ

(+)†
s,~p (~x′) + Ψ

(−)
s,~p (~x)Ψ

(−)†
s,~p (~x′)

)
= δ3(~x− ~x′), (4.39)

where d̃p = d3p/((2π)32E). We may expand any function Ψ(t, ~x) in terms of

Ψ
(±)
s,~p ,

Ψ(t, ~x) =

∫
d̃p
∑
s=±

(
Ψ

(+)
s,~p (~x)A

(+)
s,~p (t) + Ψ

(−)
s,~p (~x)A

(−)
s,~p (t)

)
,

A
(±)
s,~p (t) =

∫
d3xΨ

(±)†
s,~p (~x)Ψ(t, ~x). (4.40)

4.3 The relativistic hydrogen wave functions

Now we consider the hydrogen atom in the context of relativistic quantum
theory using the Dirac equation. However, we postpone the rigorous treat-
ment of the relativistic Coulomb problem as a two-particle problem to chapter
8. Here, we consider the hydrogen atom as a single particle problem with
a particle of reduced mass m in an external Coulomb potential −α/r. The
Dirac equation for this problem reads

HΨ(x) = 0, H = −i/∂ +m− γ0α

r
. (4.41)

We make the ansatz

Ψ(x) = e−iEtΨ(~x), Ψ(~x) =

(
ϕ(~x)
χ(~x)

)
, (4.42)

and insert it into eq. (4.41) to obtain(
E +

α

r
−m

)
ϕ = −i~σ~∇χ,(

E +
α

r
+m

)
χ = −i~σ~∇ϕ. (4.43)

Let us consider the angular momentum operator ~J = ~L+ ~S, with the orbital
momentum operator ~L and the electron spin operator ~S,

~L = −i~x× ~∇, ~S =

(
~s 0
0 ~s

)
, ~s =

~σ

2
. (4.44)
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We find [
~J,H

]
=
[
~L,H

]
+
[
~S,H

]
= ~γ × ~∇− ~γ × ~∇ = 0. (4.45)

Thus there exists a basis which simultaneously diagonalizes the Hamiltonian
and the angular momentum operator. We can use this fact in the following
ansatz

ϕnk(~x) =
gnk(r)

r
Ωkm(θ, ϕ), χnk(~x) =

ifnk(r)

r
Ω−km(θ, ϕ). (4.46)

The Weyl spinor Ω is defined as

Ωkm =
l∑

ml=−l

∑
ms=±1/2

〈θ, ϕ|l,ml;
1

2
,ms〉〈l,ml;

1

2
,ms|j,m〉 (4.47)

=
1√

2k + 1

 √
k + 1

2
−m Yk,m−1/2(θ, ϕ)

− sgn k
√
k + 1

2
+m Yk,m+1/2(θ, ϕ)

 , (4.48)

where Ylm means the spherical harmonics. The quantum number k is defined
as

k = ∓
(
j +

1

2

)
=

{
−l − 1, j = l + 1/2
l, j = l − 1/2

, (4.49)

where j = l ± 1/2 is the total momentum quantum number. By means of
the identity

~σ~a ~σ~b = ~a~b+ i~σ~a×~b (4.50)

we may insert unity in the form 1 = (~σ~er)
2 into eqs. (4.43) to rewrite

~σ~∇ ~σ~er = ∂r +
2

r
− i~σ~er × ~∇ =

1

r
(∂rr +K) , (4.51)

where we have defined the operator

K = 1 + 2~s~L = 1 + ~J 2 − ~L2 − ~s 2. (4.52)

Eqs. (4.43) then read(
Enk +

α

r
−m

)
gnk Ωkm =

(
∂r +

K

r

)
fnk~σ~erΩ−km,(

Enk +
α

r
+m

)
fnk Ω−km = −

(
∂r +

K

r

)
gnk~σ~erΩkm. (4.53)

Note that Ω is an eigenstate of K,

KΩkm = −kΩkm. (4.54)
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Further we obtain with the properties of the spherical harmonics

~σ~erΩkm = Ω−km. (4.55)

Thus we may rewrite eqs. (4.53) as((
∂r −

k

r

)
f −

(
E +

α

r
−m

)
g

)
Ωkm = 0,((

∂r +
k

r

)
g +

(
E +

α

r
+m

)
f

)
Ω−km = 0, (4.56)

or equivalently

∂r

(
g
f

)
=

(
−k
r

−E − α
r
−m

E + α
r
−m k

r

)
︸ ︷︷ ︸

=:M

(
g
f

)
. (4.57)

Gordon (1928) has attacked this equation directly by a power series ansatz
of the form rρe−λr

∑
i air

i. The simplest way to solve eq. (4.57), however,
which also shows the analogy to the non-relativistic case of chapter 3, is to
bring it into a Schrödinger type form by performing another derivative,

∂2
r

(
g
f

)
=
[
M2 + ∂rM

]( g
f

)
(4.58)

=

[(
k2 − α2

r2
− 2Eα

r
+m2 − E2

)(
1 0
0 1

)
+

1

r2

(
k α
−α −k

)](
g
f

)
.

The second matrix in cornered parenthesis has the eigenvalues

λ± = ±γ, γ =
√
k2 − α2. (4.59)

Taking care of the fact that k can be both positive and negative, we diago-
nalize it by the transformation B′ = A−1BA, where

A =
1√

2k(k − γ)

(
α −(k − γ)

−(k − γ) α

)
,

A−1 =
k

γ

1√
2k(k − γ)

(
α k − γ

k − γ α

)
. (4.60)

With the definition (
g
f

)
= A

(
u+

u−

)
, (4.61)
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as well as
x = 2Cr, C =

√
m2 − E2, (4.62)

eq. (4.58) becomes

∂2
xu
± =

[
γ(γ ± 1)

x2
− Eα

C

1

x
+

1

4

]
u±. (4.63)

This reminds of the non-relativistic, radial Schrödinger equation (3.22). Cor-
respondingly, we make the ansatz(

u+

u−

)
= xγe−x/2

(
A+xL

+

A−L−
)

(4.64)

so we obtain from (4.63)

x∂2
xL
± + (2γ + 1± 1− x) ∂xL

± +

(
Eα

C
− γ︸ ︷︷ ︸

=:nr

−1

2
∓ 1

2

)
L± = 0. (4.65)

As in chapter 3, we are interested in bound state solutions, which have to be
normalizable and so we require

0 ≤ nr −
1

2
∓ 1

2
, nr ∈ N. (4.66)

Consequently, if nr = 0 the only solution for L+ in eq. (4.65) is the trivial
one, L+|nr=0 = 0.

The two solutions to eq. (4.65) may again be written in terms of the
Laguerre polynomials Lαn. From the normalization condition we obtain the
energy levels

C =
αm√

α2 + (nr + γ)2
, E =

m√
1 + α2

(nr+γ)2

. (4.67)

The expansion up to order α4 of this expression yields

Enk
m
≈ 1− α2

2n2
+

α4

2n3

(
3

4n
− 1

|k|

)
±O(α6), (4.68)

where we have reintroduced the principal quantum number n = nr + |k| by
comparison with the non-relativistic energy levels from chapters 2 and 3.
The energy difference between a state (nk) and the ground state is given by

∆Enk = Enk − E1,−1
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Table 4.1: Experimental values of the hydrogen energy levels as given in
Kramida (2010) are compared with the fourth order expansion in α of the
energy levels Enk as given in eq. (4.69). The relative deviation of the relativis-
tic Dirac theory from the experimental values is about three times smaller
than for the non-relativistic Schrödinger theory.

State Exp. levels (eV) ∆Enk (eV) Deviation

1S1/2 0 0
2P1/2 10.1988055286 10.1988394699345 3 · 10−6

2S1/2 10.1988099034600 3 · 10−6

2P3/2 10.1988508929 10.1988847278836 3 · 10−6

3P1/2 12.087492922 12.087526855611 3 · 10−6

3S1/2 12.087494224 3 · 10−6

3D3/2 12.087506341 12.0875402653737 3 · 10−6

3P3/2 12.087506364 3 · 10−6

3D5/2 12.087510821 12.0875447352946 3 · 10−6

4P1/2 12.74853166921 12.7485656019936 3 · 10−6

4S1/2 12.74853221952 3 · 10−6

4D3/2 12.7485373313 12.7485712592372 3 · 10−6

4P3/2 12.74853733962 3 · 10−6

4D5/2 12.74853922041 12.7485731449851 3 · 10−6

4F5/2 12.748539221 3 · 10−6

4F7/2 12.7485401632 12.748574087859 3 · 10−6

Continuum 13.598433770784 13.5984677125623 2 · 10−6

= Ryd

(
1− 1

n2
+ α2

(
1

4
+

3

4n4
− 1

|k|n3

))
±O(α6). (4.69)

The Dirac energy levels include the fine structure of the hydrogen atom,
which is given by the order α4 correction in eq. (4.68). The fine structure
includes a relativistic correction to the motion of the electron and a correction
due to the spin-orbit coupling. The deviation of the Dirac energy levels from
experiment is of the order 10−6 and improves the accuracy of the Schrödinger
energy levels (3.27) roughly by a factor of three (see table 4.1).

One should note that the definition of n in eq. (4.68) is indeed equal
to the non-relativistic one when k is negative so that |k| = l + 1. When k
is positive, however, we have k = l, so that nr has to be larger by one as
compared to eq. (3.26) to obtain the same n. Specifically, we require nr > 0
for k = l since the principal quantum should satisfy n > l. In brief we will
see that this condition is indeed always satisfied.
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To continue we write the solutions for u± in analogy to chapter 3 as,(
u+
nk

u−nk

)
= xγe−x/2

(
A+xL

2γ+1
n−|k|−1

A−L2γ−1
n−|k|

)
. (4.70)

However, since we have obtained this solution by differentiation of eq. (4.57)
it is too general. This reflects in the fact that we have two unknowns, A+

and A−. Note, that in the special case n = |k| the upper component in eq.
(4.70) vanishes, u+ = 0, so that A− remains as the only unknown variable.
In order to fix the ratio F = A−/A+ for n > |k| we plug our solution into
eq. (4.57),

∂x

(
u+

u−

)
=

1

2C
A−1M A

(
u+

u−

)
=

[
− γ

x

(
1 0
0 −1

)
+

1

2Cγ

(
Eα −(Ek + γm)

Ek − γm −Eα

)](
u+

u−

)
. (4.71)

Considerung the case n = |k| we have u+ = 0 so the upper component of eq.
(4.71) yields

Ek + γm = 0 for nr = 0. (4.72)

Hence we have found that nr = 0 enforces negative values of k and thus
n > l as we had argued above. For n > |k| we may derive the ratio F from
eq. (4.71). Since the individual orders in x have to cancel each other, we
consider only terms of the order xγ in the upper row of eq. (4.71),

(γ + 1)

(
nr + 2γ
nr − 1

)
= −γ

(
nr + 2γ
nr − 1

)
− Ek + γm

2Cγ
F
(
nr + 2γ − 1

nr

)
(4.73)

⇒ F = −Cnr(nr + 2γ)

Ek + γm
=
γm− kE

C

=
1

α

(
γ
√
α2 + (nr + γ)2 − k(nr + γ)

)
. (4.74)

Thus we know the relation between u+ and u− and see that u−/u+ is of the
order α if k > 0 and 1/α if k < 0. In the ladder case the factor 1/α is canceled
by a corresponding factor in A+. The constants A± may be determined from
the normalization condition,

1
!

=

∫
d3xΨ†nkmΨnkm =

∞∫
0

dr

(
g2
nk

∫
dΩ |Ωkm|2 + f 2

nk

∫
dΩ |Ω−km|2

)
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=

∞∫
0

dr
(
g2
nk + f 2

nk

)
=

∞∫
0

dr
(
u+
nk

2
+ u−nk

2 − 2
α

k
u+
nku
−
nk

)
. (4.75)

The individual terms are calculated by means of the generating function of
the Laguerre polynomials (see appendix B),

∞∫
0

dr u+
nk

2
=
A2

+

2C

∫
dx x2γ+2e−x(L2γ+1

nr−1(x))2

=
A2

+

2C

∫
dx x2γ+2e−x

·
∂nr−1
y ∂nr−1

z

((nr − 1)!)2

exp
[
− xy

1−y −
xz

1−z

]
(1− y)2γ+2(1− z)2γ+2

∣∣∣∣∣∣
y=z=0

=
A2

+

2C

Γ(2γ + 3)

((nr − 1)!)2
∂nr−1
y ∂nr−1

z

1− y − z + yz

(1− yz)2γ+3

∣∣∣∣
y=z=0

=
A2

+

2C

Γ(nr + 2γ + 2) + (nr − 1)Γ(nr + 2γ + 1)

(nr − 1)!

=
A2

+

C

(nr + γ)Γ(nr + 2γ + 1)

(nr − 1)!
, (4.76)

∞∫
0

dr u−nk
2

=
A2
−

C

(nr + γ)Γ(nr + 2γ)

nr!
, (4.77)

−2
α

k

∞∫
0

dr u+
nku
−
nk =

2α

k

A+A−
C

Γ(nr + 2γ + 1)

(nr − 1)!
. (4.78)

Using these results in eq. (4.75) implies for nr > 0

1
!

=
A2

+

C

(nr + γ)Γ(nr + 2γ + 1)

(nr − 1)!

(
1 +

F2

nr(nr + 2γ)
+ 2

α

k

F
nr + γ

)
, (4.79)

so that we finally obtain the normalization constants as

A+ =

√√√√ C

nr + γ

(nr − 1)!

Γ(nr + 2γ + 1)

1

2

((
Ek

γm

)2

+
Ek

γm

)

=

√√√√ C (nr − 1)!

Γ(nr + 2γ + 1)

nr + γ + γ
k

√
α2 + (nr + γ)2

2γ
2

k2 (α2 + (nr + γ)2)
,
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A− =

√√√√ C nr!

Γ(nr + 2γ)

nr + γ − γ
k

√
α2 + (nr + γ)2

2γ
2

k2 (α2 + (nr + γ)2)
. (4.80)

For n = |k| we simply set A+ = 0 while the expression for A− remains valid
with nr = 0.

4.3.1 A short summary

Let us briefly summarize the results in the previous section. The wave func-
tion reads

Ψnkm(r, θ, ϕ) =

(
gnk(r)
r

Ωkm(θ, ϕ)
ifnk(r)

r
Ω−km(θ, ϕ)

)
, (4.81)

where

Ωkm =
1√

2k + 1

 √
k + 1

2
−m Yk,m−1/2(θ, ϕ)

− sgn k
√
k + 1

2
+m Yk,m+1/2(θ, ϕ)

 (4.82)

and(
gnk(r)
fnk(r)

)
=

1√
2k(k − γ)

(
α −(k − γ)

−(k − γ) α

)(
u+
nk(r)
u−nk(r)

)
. (4.83)

For the functions u± we have obtained(
u+
nk(r)
u−nk(r)

)
= (2Cnkr)

γ e−Cnkr
(
A+,nk 2Cnkr L

2γ+1
nr−1(2Cnkr)

A−,nkL2γ−1
nr (2Cnkr)

)
, (4.84)

where,

A+,nk =

√√√√ Cnk (nr − 1)!

Γ(nr + 2γ + 1)

nr + γ + γ
k

√
α2 + (nr + γ)2

2γ
2

k2 (α2 + (nr + γ)2)
,

A−,nk =

√√√√ Cnk nr!

Γ(nr + 2γ)

nr + γ − γ
k

√
α2 + (nr + γ)2

2γ
2

k2 (α2 + (nr + γ)2)
. (4.85)

The constants Cnk, Enk and γ are given by

Enk =
m√

1 + α2

(nr+γ)2

, Cnk =
√
m2 − E2

nk, γ =
√
k2 − α2, (4.86)

where

nr = n− |k|, k = ∓
(
j +

1

2

)
=

{
−l − 1, j = l + 1/2
l, j = l − 1/2

. (4.87)
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4.4 Expansion of the wave functions

In chapter 6 we will calculate radiative corrections of the order α5 to the
Dirac energy levels (4.68). Thus we will have to take care to which order
in α each term contributes. For this purpose we expand the Dirac wave
functions (4.81) to the linear order in α,(

u+
nk(r)
u−nk(r)

)
=

√
Cn
n

(n− |k| − 1)!

(n+ |k|)!
(2Cnr)

|k| e−Cnr

·

(
2Cnr L

2|k|+1
n−|k|−1(2Cnr)

αn
2−k2

2n|k| L
2|k|−1
n−|k| (2Cnr)

)
+O(α2), k > 0,

(
u+
nk(r)
u−nk(r)

)
=

√
Cn
n

(n− |k|)!
(n+ |k| − 1)!

(2Cnr)
|k| e−Cnr

·

(
α

2|k|n 2Cnr L
2|k|+1
n−|k|−1(2Cnr)

L
2|k|−1
n−|k| (2Cnr)

)
+O(α2), k < 0, (4.88)

where now Cnk ≈ Cn = mα/n. Thus, to linear order in α, the radial wave
function reads(

gnk(r)
fnk(r)

)
=

(
Θ(k)u+

nk(r) + Θ(−k)u−nk(r)
Θ(k)[u−nk(r)− α

2|k|u
+
nk(r)] + Θ(−k)[u+

nk(r) + α
2|k|u

−
nk(r)]

)
+O(α2), (4.89)

where the upper line is completely of order 1, while the lower one is of order
α. Let us define the function gSnl as the non-relativistic radial Schrödinger
wave function as derived in chapter 3, i.e.

gSnl(r) =

√
Cn
n

(n− l − 1)!

(n+ l)!
(2Cnr)

l+1e−CnrL2l+1
n−l−1(2Cnr), (4.90)

where l ≥ 0 as usual. In this non-relativistic limit the large component gnl
of the Dirac spinor is given in terms of the Schrödinger wave function as

gnk(r) = Θ(k)gSn|k|(r) + Θ(−k)gSn,|k|−1(r) = gSnl(r). (4.91)

Up to higher orders in α this expression is exactly the same as eq. (3.31).
The small component, however, takes a different form depending on whether
k is positive or negative,

fnk(r) =
α

2|k|

[
Θ(k)

(
gSn,|k|−1(r)

√
1− k2

n2
− gSn|k|(r)

)
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+ Θ(−k)

(
gSn,|k|−1(r) + gSn|k|(r)

√
1− k2

n2

)]
,

=


α
2l

(
gSn,l−1(r)

√
1− l2

n2 − gSnl(r)
)
, k > 0

α
2(l+1)

(
gSnl(r) + gSn,l+1(r)

√
1− (l+1)2

n2

)
, k < 0

. (4.92)

4.5 Proton recoil and reduced mass

In section 4.3 we have silently assumed that a particle with the reduced mass
m of the electron in the hydrogen atom is subject to an external potential
−α/r. In chapters 2 and 3 we could perform the same coordinate transfor-
mation to relative and CM coordinates as in classical mechanics. Thus we
could separate the CM- from the relative motion-Hamiltonian. The situation
is not so simple, however, in the case of the Dirac equation, because already
in classical special relativity the notion of the CM coordinate requires the
specification of a certain coordinate system. In chapter 8 we rigorously solve
the Dirac equation for the two-particle system of electron and proton but in
this chapter we help ourselves in a much simpler way.

Consider the electron in the rest-system of the proton. We then obtain
the same solution to the Dirac equation as in section 4.3 but with m replaced
by me. The 4-momenta of electron and proton read, respectively,

p =

(
Ee
~p

)
, P =

(
mp

~o

)
, (4.93)

where the electron energy Ee is the one obtained in section 4.3,

Ee =
me

A
, A =

√
1 +

α2

(nr + γ)2
. (4.94)

The total energy of the system then reads

Etot =
√
−(p+ P )2 =

√
m2
p +m2

e + 2mpEe

= M

√
1− 2m

M
(1− A−1). (4.95)

Expanding Etot/M to second order in m/M and A to fourth order in α yields

Etot

M
≈ 1− m

M
(1− A−1)− m2

2M2
(1− A−1)2
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≈ 1− Ryd

M

(
1

n2
+ α2

(
1

|k|n3
− 3−m/M

4n4

))
. (4.96)

Hence we should modify eq. (4.69) to read

∆Enk = Ryd

(
1− 1

n2
+ α2

(
1 +m/M

4
+

3−m/M
4n4

− 1

|k|n3

))
. (4.97)

However, since α4m/M < α5 this correction is of no consequence for the order
α4 energy levels considered in this chapter. Higher order recoil corrections
are only important if even higher accuracy is envisaged than the order α5

radiative corrections calculated in chapter 6. Therefore the α4m/M will not
be considered in this work.



Chapter 5

Feynman’s path integral

In 1948 Feynman proposed a third formulation of quantum mechanics which
he called the ”spacetime approach” and which is very different at first glance
and yet equivalent to matrix mechanics and Schrödinger theory. The focus
of this formalism is neither on state vectors living in a Hilbert space nor
on wave functions but on a probability amplitude called propagator which
describes the transition of a system from one state into another. This tran-
sition amplitude is calculated by integrating over all possible intermediate
states. In the case of position states, i.e. the transition of a particle from one
location to another, the intermediate states constitute paths. Consequently
one integrates over all paths from the initial to the final position which is
way Feynman’s spacetime approach is nowadays known as ”path integral
formalism”.

Regarding the date of discovery of the formalism, this chapter is in the
right historical order, as the previous chapters. However, the solution to
the hydrogen atom in the path integral formalism was not found until 1979
by Duru and Kleinert. At first it was doubted that the method they used
was indeed valid until it was reviewed by Kleinert (1987) in a rigorous man-
ner. In this chapter we perform the calculation of Duru and Kleinert (1979),
which is already far more involved than the calculations in previous chap-
ters and which includes a change of variables that transforms the flat three-
dimensional position space into a four-dimensional space with curvature and
torsion and spinor-valued coordinates. A treatment of the subtle issues that
arise in this calculation is beyond the scope of this work and can be found
in Kleinert (2004).

Feynman used the path integral formalism in his original formulation of
quantum electrodynamics (QED) in the late 1940’s and it is also the way
quantum field theory is presented in chapter 6. Hence this formalism is
reviewed a bit more carefully than the other approaches presented so far.

54
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5.1 Non-relativistic path integrals

The central question in the path integral approach is: Given a system has
been measured in state |ψ(ti)〉 at time ti, what is the probability that it will
be measured in state |χ(tf )〉 at time tf? Let us illustrate this formalism for

the special case of a charged particle in an external 4-vector potential (Φ, ~A),
governed by the Hamiltonian

Ĥ =
(~̂p− q ~A(t, ~̂x))2

2m
+ qΦ(t, ~̂x). (5.1)

Let us recall the time-evolution operator as given in eq. (2.7),

Û(tN , t0) = T̂ exp

−i tN∫
t0

dt Ĥ(t)

 = lim
N→∞

T̂
N∏
n=1

(
1− iεĤ(tk)

)
, (5.2)

where tn+1 = ε+ tn, ε = (tN − t0)/N and T̂ is the time-ordering operator as
explained in chapter 2. We now want to investigate the amplitude

K(tf , χ; ti, ψ) = 〈χ(tf )|Û(tf , ti)|ψ(ti)〉

=

∫
d3xfd

3xi 〈χ(tf )|~xf〉〈~xf |Û(tf , ti)|~xi〉〈~xi|ψ(ti)〉

=

∫
d3xfd

3xi χ
†(tf , ~xf )K(tf , ~xf ; ti, ~xi)ψ(ti, ~xi). (5.3)

Thus the amplitude K(tf , χ; ti, ψ) for the transition |ψ(ti〉 → |χ(tf〉 has
been formulated in terms of the amplitude K(tf , ~xf ; ti, ~xi) for the transi-
tion (tf , ~xf )→ (ti, ~xi). The quantity K(tf , ~xf ; ti, ~xi) is called the propagator
since it represents the amplitude that the particle propagates from ~xi to ~xf
in the time span tf − ti. First of all, from the properties of U it is clear that
for tf = ti

K(ti, ~xf ; ti, ~xi) = 〈~xf |~xi〉 = δ3(~xf − ~xi), (5.4)

i.e. the particle can not travel a finite distance in zero time. Let us now
separate the path under consideration into N infinitesimal sections,

~xn = ~x(tn), ~x0 = ~x(ti), ~xN = ~x(tf )

tn = tn−1 + ε, t0 = ti, ε =
tf − ti
N

, (5.5)
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to approximate

K(tf , ~xf ; ti, ~xi) = 〈~xf |U(tf , ti)|~xi〉 ≈ 〈~xf |T̂
N∏
k=1

(
1− iεĤ(tk, ~̂x, ~̂p)

)
|~xi〉.

(5.6)

We now insert a complete set of momentum eigenstates into every factor to
obtain

K(tf , ~xf ; ti, ~xi) =
N∏
k=1

∫
d3pk
(2π)3

·
N−1∏
l=1

∫
d3xl · T̂

N∏
j=1

〈~xj|

[(
1− iε ~̂p

2

2m

)
|~pj〉〈~pj|

− iε

(
q2 ~A 2(tj, ~̂x)

8m
− q ~A(tj, ~̂x)~̂p

2m
+

1

2
qΦ(tj, ~̂x)

)
|~pj〉〈~pj|

− iε|~pj〉〈~pj|

(
q2 ~A 2(tj, ~̂x)

8m
− ~̂pq ~A(tj, ~̂x)

2m
+

1

2
qΦ(tj, ~̂x)

)

− iεq
2 ~A(tj, ~̂x)|~pj〉〈~pj| ~A(tj, ~̂x)

4m

]
|~xj−1〉

=
N∏
k=1

∫
d3pk
(2π)3

·
N−1∏
l=1

∫
d3xl ·

N∏
j=1

eiSc(tj ,~xj ;tj−1,~xj−1)

=

∫
D3pD3x eiSc(tf ,~xf ;ti,~xi), (5.7)

where

Sc(tj, ~xj; tj−1, ~xj−1) = ~pj(~xj − ~xj−1)

− iε


(
~pj − q

~A(tj ,~xj)+ ~A(tj ,~xj−1)

2

)2

2m
+ q

Φ(tj, ~xj) + Φ(tj, ~xj−1)

2

 ,
D3p =

N∏
k=1

(
iε

2πm

)3/2

d3pk,

D3x =
( m

2πiε

)3/2
N−1∏
l=1

( m

2πiε

)3/2

d3xl. (5.8)

Let us make the following approximation which is justified in the continuum
limit,

Φ(tj, ~xj) + Φ(tj, ~xj−1)

2
≈ Φ

(
tj,
~xj + ~xj−1

2

)
, (5.9)
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and similarly for ~A. We recognize Sc as the classical, canonical (but not min-
imized) action. Abbreviating x = (t, ~x) we may express it in the continuum
limit as

Sc(xf ;xi) =

xf∫
xi

[d~x · ~p− dtH(t, ~x, ~p)] . (5.10)

Note that the momentum states in eq. (5.7) could have been inserted dif-
ferently, resulting in a slightly different result for the times-sliced, classical
action Sc. E.g. in the case of the hydrogen atom ( ~A = 0) it is convenient use
Sc in the form

Sc(xj;xj−1) = ~pj(~xj − ~xj−1)− iε
(
~pj

2

2m
+ qΦ(~xj−1)

)
, (5.11)

The difference between these two versions of Sc is an overall, constant factor
of e−iεq(Φ(~xN )−Φ(~x0))/2 which vanishes in the continuum limit.

Writing ~̄Ak = ~A(tk, (xk + xk−1)/2), the p-integral in eq. (5.7) can be
readily performed,

N∏
k=1

(
iε

2πm

)3/2 ∫
d3pk e

i~pk(~xk−~xk−1)− iε
2m

(
~pk−q ~̄Ak

)2

=
N∏
k=1

e
im(~xk−~xk−1)2

2ε
+i(~xk−~xk−1)q ~̄Ak , (5.12)

so that ∫
D3p eiSc(xf ;xi) = eiS(xf ;xi), (5.13)

where S means the classical action in Lagrangian form

S(xf ;xi) =

tf∫
ti

dt L(t, ~x, ~̇x),

L(t, ~x, ~̇x) =
m~̇x 2

2
+ ~̇xq ~A(x)− qΦ(x). (5.14)

The meaning of this new formalism can be easily interpreted. The propaga-
tor, i.e. the amplitude K(xf ;xi) to find a particle at the event (tf , ~xf ) given
it has been found at (ti, ~xi), where ti < tf , is given by the a summation over
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all possible paths which connect ~xf with ~xi. This is expressed in the path
integral measure D3x ∝ Πnd

3xn, where all intermediate steps are integrated
over the whole space and the limit of infinitely many steps is performed.
Every path is weighted by a phase, however, which is given by the exponen-
tial of the classical action integrated along the path. The propagator is thus
given by

K(xf ;xi) =

xf∫
xi

D3x eiS(xf ;xi). (5.15)

In the path integral formulation it is especially easy to see how classical
mechanics arises from quantum mechanics in the limit of ”large” systems.
The situation becomes most vivid if we introduce an imaginary time τ = it
and define the so called euclidean action SE = −iS,

K(xf ;xi) =

xf∫
xi

D3x e−SE(xf ;xi),

SE(xf ;xi) =

itf∫
iti

dτ

[
m

2

(
d~x

dτ

)2

− id~x
dτ
q ~A(x) + qΦ(x)

]
. (5.16)

Eqs. (5.16) show clearly that K receives the largest contribution from those
paths which are attributed to the smallest euclidean action. Paths corre-
sponding to larger SE are exponentially suppressed. The most important
paths are thus centered around the classical path where δSE = 0. The cen-
tering around the classical path gets more and more pronounced the larger
the euclidean action SE of the system is. Thus it comes that for macroscopic
systems in very good approximation only the one path with δSE = 0 con-
tributes. This argument does not change substantially if we return to the
real time formalism. A sizable change in the action between neighboring
paths results in a rapidly oscillating phase factor eiS unless they are close to
the classical path where the action becomes extremal, δS = 0. Therefore the
contribution of neighboring paths far from the classical one are not exponen-
tially damped but instead cancel each other out due to the oscillating phase
factor eiS. Only those paths contribute where the action does not change
substantially from its extremum.

Let us draw the connection between the path integral formalism and
Schrödinger theory. Since Schrödinger’s formalism is equivalent to matrix
mechanics, this will also show the equivalence of path integrals to the latter.
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Let us note that from eq. (5.15) and the path integral measure (5.8) it is
immediately clear that

K(x3;x1) =

x3∫
x1

D3x eiS(x3;x1) =

∫
d3x2

x3∫
x2

D3x eiS(x3;x2)

x2∫
x1

D3x eiS(x2;x1)

=

∫
d3x2K(x3;x2)K(x2;x1), (5.17)

where t3 > t2 > t1, i.e. the amplitude to propagate from x1 to x3 is given by
the amplitudes for x1 → x2 and x2 → x3, integrated over all possible inter-
mediate positions ~x2. Using this property we can show that the propagator
(5.15) satisfies the Schrödinger equation. Let us consider the change of the
propagator within an infinitesimal time step ε,

K(t+ ε, ~x;x0) =

(t+ε,~x)∫
x0

D3x eiS(t+ε,~x;x0)

=

∫
d3y

( m

2πiε

)3/2

K(t, ~y;x0) exp

[
im(~x− ~y)2

2ε

+ iq(~x− ~y) ~A

(
t+ ε,

~x+ ~y

2

)
− iεqΦ

(
t+ ε,

~x+ ~y

2

)]
. (5.18)

Let us make the shift ~y → ~x+~y and further define for convenience ε = iε and
~z = ~y

√
m/ε. The rate of change in time ∂tK(t, ~x;x0), expanded in powers

of ε then reads,

i∂tK(t, ~x;x0) = lim
ε→0

K(t, ~x;x0)−K(t+ ε, ~x;x0)

ε

= lim
ε→0

1

ε

[
K(t, ~x;x0)−

∫
d3z e−~z

2/2

(2π)3/2
·
(

1− εqΦ(x)

− iq
√

ε

m
~z

(
1 +

1

2

√
ε

m
(~z~∇)

)
~A(x)− ε(~zq ~A(x))2

2m
+O(ε3/2)

)
·
(

1 +

√
ε

m
~z~∇+

ε

2m
(~z~∇)(~z~∇) +O(ε3/2)

)
K(t, ~x;x0)

]

= lim
ε→0

1

ε

[
1−

∫
d3z e−~z

2/2

(2π)3/2

(
1− εqΦ(x)

+
ε~z 2

6m

(
~∇− iq ~A(x)

)2
)]

K(t, ~x;x0)
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=


(
−i~∇− q ~A(x)

)2

2m
+ qΦ(x)

K(t, ~x;x0). (5.19)

Thus the propagator obeys the same dynamics as the wave function. K(x;x0)
also satisfies the Schrödinger equation with respect to x0 if one exchanges
∂t → −∂t0 , ~∇ → ~∇0, Ĥ → Ĥ†,(

−i∂t + Ĥ(x,−i~∇)
)
K(x;x0) = 0,(

+i∂t0 + Ĥ†(x0,−i~∇0)
)
K(x;x0) = 0. (5.20)

The propagator can hence be used to propagate the Schrödinger wave func-
tion in time. Let the state of a system at time ti be |ψ(ti)〉. At a later
time tf the state is then |ψ(tf )〉. We may then express the wave function
ψ(xf ) = 〈~xf |ψ(tf )〉 in terms of the propagator as

ψ(xf ) = 〈~xf |e−iĤ(tf−ti)|ψ(ti)〉 =

∫
d3xi 〈~xf |e−iĤ(tf−ti)|~xi〉〈~xi|ψ(ti)〉

=

∫
d3xiK(xf ;xi)ψ(xi). (5.21)

This reflects the fact that the amplitude ψ(xf ) to find the particle at xf
is equal to the amplitude K(xf ;xi) that the particle propagates from xi
to xf times the amplitude to find the particle ψ(xi) at xi, integrated over
all possible initial positions ~xi. Eq. (5.21) also makes it clear that if the
propagator satisfies the Schrödinger equation so does the wave function and
vice versa.

There is also another, very important relation between the propagator and
the wave functions. Inserting a complete set of eigenstates of the Hamiltonian
in the first line of eq. (5.7) and writing T = tf − ti yields

K(xf ;xi) =
∑
n

ψn(~xf )ψ
†
n(~xi)e

−iEnT +

∫
dpψp(~xf )ψ

†
p(~xi)e

−iEpT , (5.22)

with the wave functions ψn/p(~x) = 〈~x|En/p〉 for discrete and continuous eigen-
values, respectively.

In the next section we will calculate explicit expressions for propagators
of some simple systems. Before we proceed, however, it should be noted that
in a non-relativistic context one is usually interested in the so called causal
propagator,

K>(xf ;xi) = Θ(tf − ti)K(xf ;xi), (5.23)
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which allows only for evolution of states forward in time. Combining the
property (5.4) with eqs. (5.20) we find that the causal propagator is basically
the Green’s function of the Schrödinger equation,(

−i∂t + Ĥ(x,−i~∇)
)
K>(x;x0) = −iδ4(x− x0),(

+i∂t0 + Ĥ†(x0,−i~∇0)
)
K>(x;x0) = −iδ4(x− x0). (5.24)

In the following all calculations will always be concerned with the propagator
K if not stated otherwise since the causal propagator K> can always be
obtained by a simple multiplication of the Θ-function.

5.1.1 The propagator of the forced harmonic oscillator

The harmonic oscillator is a system which is perfectly suited for the path
integral formalism. The fact that the electromagnetic field is essentially a
field of forced harmonic oscillators distributed throughout space explains why
QED is so easily formulated in terms of Feynman’s path integral approach
(see e.g. Feynman, 1949a).

The harmonic oscillator also plays a major role in the calculation of the
path integral for the hydrogen atom. Due to a Kustaanheimo-Stiefel trans-
formation it is possible to transform the three-dimensional Coulomb problem
into a four-dimensional harmonic oscillator in terms of spinor-valued coordi-
nates. Thus we will take a closer look at the path integral of the harmonic
oscillator. For preparation of the field theory treatment in chapter 6 we will
also consider the forced harmonic oscillator.

The classical action of an harmonic oscillator, driven by a force ~F reads

S(xf ;xi) =

tf∫
ti

dt

(
m
~̇x 2 − ω 2~x 2

2
+ ~F~x

)
. (5.25)

Since this action is additive in every dimension the full, three-dimensional
propagator will simply be a product of one-dimensional propagators

K(tf , ~xf ; ti, ~xi) = K(tf , xf ; ti, xi)K(tf , yf ; ti, yi)K(tf , zf ; ti, zi). (5.26)

Let us separate the (one-dimensional) path given by positions {x(t)}, ti ≤
t ≤ tf into a part which extremizes the action of the free harmonic oscillator
{z(t)}, i.e. the classical path, plus quantum fluctuations {y(t)},

x(t) = z(t) + y(t),
δS

δx
[z]
∣∣∣
F=0

= 0. (5.27)
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Since the end points of the paths {x(t)} are held fixed, we have

z(ti) = xi, z(tf ) = xf ,

y(ti) = 0, y(tf ) = 0. (5.28)

Thus we may write the one-dimensional action of the forced harmonic oscil-
lator as

S = m

tf∫
ti

dt
ż2 − ω2z2

2︸ ︷︷ ︸
=:Sz,0

+

tf∫
ti

dt Fz

︸ ︷︷ ︸
=:Sz,F

−m
tf∫
ti

dt y
(
z̈ + ω2z

)︸ ︷︷ ︸
=0

+

tf∫
ti

dt

(
m
ẏ2 − ω2y2

2
+ Fy

)
︸ ︷︷ ︸

=:Sy,F

. (5.29)

It is easy to see why the third term in the first line vanishes. If we expand
the action around the path x = z, we obtain

S[z + y] = S[z] +

∫
dt y

δS

δz
[z] +

1

2

∫
dt y2 δ

2S

δz2
[z] + . . . . (5.30)

It is always possible to expand the action in this way and the linear term in
y always vanishes by definition of the classical path z in eq. (5.27). In the
special case of the harmonic oscillator, however, this series truncates after
the quadratic term since the full action itself is only quadratic in the position
variable. This is the reason why the path integral approach is so well suited
for the harmonic oscillator.

By a purely classical calculation we obtain

z(t) =
xf sin(ω(t− ti)) + xi sin(ω(tf − t))

sinωT
,

Sz,0 =
mω

2 sinωT

(
(x2

f + x2
i ) cosωT − 2xfxi

)
, (5.31)

where T = tf − ti. We insert this into the one-dimensional propagator

Kfi = eiSz,0+iSz,F

∫
Dy eiSy,F , (5.32)

where Kfi ≡ K(tf , xf ; ti, xi) and

Sy,F = −m
2

tf∫
ti

dt

(
y
(
∂2
t + ω2

)
y − 2y

F

m

)
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= −m
2

tf∫
ti

dt

(
y − F

m

1

∂2
t + ω2

)(
∂2
t + ω2

)(
y − 1

∂2
t + ω2

F

m

)
+

+
1

2m

tf∫
ti

dt F
1

∂2
t + ω2

F (5.33)

The first part of this equation can be brought into the form

−m
2

tf∫
ti

dt y
(
∂2
t + ω2

)
y (5.34)

by a constant shift of the path y, which leaves the measure Dy invariant.
The discretized version of this expression reads

−m
2ε

N−1∑
n=1

yn
(
yn+1 − (2− ω2ε2)yn + yn−1

)
=
m

2ε
yAy, (5.35)

with the (N − 1)× (N − 1) matrix

A =



2− ω2ε2 −1 0 0 . . .

−1 2− ω2ε2 −1 0
. . .

0 −1 2− ω2ε2 −1
. . .

0 0 −1 2− ω2ε2 . . .
...

. . . . . . . . . . . .


. (5.36)

Since the second part of eq. (5.33) is independent of y one may write the
propagator as

Kfi = eiSz,0+iSz,F+iSFGF

∫
Dye

im
2ε
yAy,

=

√
m

2πiε detA
eiSz,0+iSz,F+iSFGF , (5.37)

where we have defined

SFGF =
1

2m

tf∫
ti

dt F
1

∂2
t + ω2

F. (5.38)
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Let dn = det(An) denote the determinant of the (n− 1)× (n− 1) submatrix
An = (Aij), where i, j < n. The determinant of the matrix A = AN is then
given by dN . One can show by mathematical induction that the relation

dn+1 − 2dn + dn−1

ε2
+ ω2dn = 0, 1 < n < N − 1, (5.39)

holds among the set of determinants {dn}. The first term on the left-hand
side has the form of a discretized, second order derivative so that eq. (5.39)
resembles the equation of motion of a harmonic oscillator. Hence we find the
solution

dn = α sin(ω̃εn) + β cos(ω̃εn), ω̃ =
arcsin(ωε/2)

ε/2
, (5.40)

which is periodic in n. The constants α and β may be determined by con-
sidering the case of a free particle (ω = 0), where eq. (5.39) may be readily
solved,

dn
∣∣∣
ω=0

= n ⇒ α =
1

ω̃ε
, β = 0. (5.41)

Let us perform the limit N � ωT in dN , which yields

detA = dN =
sin(ω̃εN)

ω̃ε
≈ sinωT

ωε
. (5.42)

Thus we obtain for the one-dimensional propagator

Kfi =

√
mω

2πi sinωT
eiSz,0+iSz,F+iSFGF , (5.43)

where z and Sz,0 are given in eqs. (5.31). In order to solve the problem of
the forced harmonic oscillator we rewrite eq. (5.38) as follows,

SFGF =
1

2m

tf∫
ti

dtdt′ F (t)
1

∂2
t + ω2

δ(t− t′)F (t′). (5.44)

The quantity sandwiched in between the F ’s is the Green’s function G of the
harmonic oscillator

G(t, t′) =
1

∂2
t + ω2

δ(t− t′), (5.45)
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which satisfies the equations(
∂2
t + ω2

)
G(t, t′) =

(
∂2
t′ + ω2

)
G(t, t′) = δ(t− t′). (5.46)

Implementing the boundary conditions y(ti) = y(tf ) = 0, it is given by

G(t, t′) = Θ(t− t′)sinω(t− tf ) sinω(t′ − ti)
ω sinωT

+ Θ(t′ − t)sinω(t′ − tf ) sinω(t− ti)
ω sinωT

. (5.47)

Due to the symmetry with respect to interchange of the times t↔ t′ we may
express SFGF as

SFGF =
1

mω sinωT

tf∫
ti

dt F (t) sin(ω(t− tf ))
t∫

ti

dt′ sin(ω(t′ − ti))F (t′).

(5.48)

For given F the propagator (5.43) may now be calculated by the evaluation
of ordinary one-dimensional integrals. Here we want to give explicit solutions
to several simple but important special cases.

First let us consider the case of a constant force, F (t) = f = const.,

Sz,F = f
xf + xi

2

4 sin2 ωT
2

ω sinωT
, (5.49)

SFGF =
f 2T

2mω2

(
1−

4 sin2 ωT
2

ωT sinωT

)
. (5.50)

Taken all together, we obtain for the three-dimensional propagator

Kfi =
( mω

2πi sinωT

)3/2

exp

[
imω

2 sinωT

(
~X2 cos2 ωT

2

− 4

(
~̄X −

~f

mω2

)2

sin2 ωT

2
+
~f 2T sinωT

m2ω3

)]
, (5.51)

where ~X = ~xf−~xi and ~̄X = (~xf +~xi)/2. From this result we may now derive

the propagator for a free harmonic oscillator (~f = 0),

Kfi =
( mω

2πi sinωT

)3/2

exp

[
imω

2 sinωT

(
~X2 cos2 ωT

2
− 4 ~̄X2 sin2 ωT

2

)]
,

(5.52)
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whereas for a particle under the influence of a constant force (ω = 0) we
obtain

Kfi =
( m

2πiT

)3/2

exp

[
im ~X2

2T
+ i ~f ~̄XT − i ~f 2T 3

24m

]
, (5.53)

while the free particle propagator (ω = ~f = 0) reads

Kfi =
( m

2πiT

)3/2

exp

[
im ~X2

2T

]
. (5.54)

As a last point we note that for the free particle case eqs. (5.24) allow for a
much simpler derivation of the causal propagator K>

fi and hence Kfi,

K>
fi =

−i
−i∂tf −∆f/(2m)− i0+

δ4(xf − xi)

=

∫
d4p

(2π)4

−ieip(xf−xi)

−p0 + ~p 2/(2m)− i0+

= Θ(T )

∫
d3p

(2π)3
exp

[
−i~p

2T

2m
+ i~p ~X

]
= Θ(T )

( m

2πiT

)3/2

exp

[
im ~X2

2T

]
= Θ(T )Kfi. (5.55)

In the second line, 0+ means a very small, positive quantity which is supposed
to approach 0 as soon as it is safe to due so.

5.1.2 The path integral in spherical coordinates

For a spherically symmetric problem such as the hydrogen atom it is useful
to reformulate the path integral in spherical coordinates. For convenience we
use the imaginary time formulation of eqs. (5.16) and consider the case of a
central potential. The discretized expressions then read

Kfi =

∫
D3x e−S,

D3x =
( m

2πε

)3N/2
N−1∏
n=1

drnr
2
nd cos θndϕn,

S =
N∑
n=1

(m
2ε

(
r2
n + r2

n−1 − 2rnrn−1 cos γn
)

+ εV (rn−1)
)
, (5.56)
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cos γn = cos θn cos θn−1 + sin θn sin θn−1 cos(ϕn − ϕn−1), (5.57)

where ε = iT/N . We may express the exponential of the cosine in terms of
a spherical modified Bessel function of the first kind,

eh cos γn =
∞∑
l=0

(2l + 1)il(h)Pl(cos γn), (5.58)

which are connected to the modified Bessel functions of the first kind via

il(x) =

√
π

2x
Il+1/2(x), (5.59)

and where Pl means the Legendre polynomials. The latter are connected to
the spherical harmonics via the addition theorem

Pl(cos γn) =
4π

2l + 1

l∑
m=−l

Ylm(θn, ϕn)Y ∗lm(θn−1, ϕn−1). (5.60)

Consequently the path integral may be written as

Kfi =

∫
D3x

N∏
n=1

{
exp

[
−
(m

2ε

(
r2
n + r2

n−1

)
+ εV (rn−1)

)]
· 4π

∞∑
ln=0

iln

(mrnrn−1

ε

) ln∑
mn=−ln

Ylnmn(θn, ϕn)Y ∗lnmn(θn−1, ϕn−1)

}
.

(5.61)

Due to the orthonormality of the spherical harmonics the angular integration
merely yields a product of δ-functions so that only one sum over l and m
remains and only the spherical harmonics at the end points survive,

Kfi =
∞∑
l=0

l∑
m=−l

Ylm(θf , ϕf )

rf

Y ∗lm(θi, ϕi)

ri
Rfi,l,

Rfi,l =

∫
D′r exp

[
−

N∑
n=1

(m
2ε

(
r2
n + r2

n−1

)
− ln il

(mrnrn−1

ε

)
+ εV (rn−1)

)]
,

D′r = rfri (4π)N
( m

2πε

)3N/2
N−1∏
n=1

drnr
2
n. (5.62)

For large arguments, i.e. small ε, the Bessel function features the asymptotic
behavior

il(x)
x→∞→ ex

2x

(
1− l(l + 1)

2x
± . . .

)
. (5.63)
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The second term in bracket constitutes the well known centrifugal barrier.
We want to filter this term out by introducing a further modification to the
Bessel function,

ĩl(x) := 2x e−xil(x), (5.64)

so that the radial path integral in eqs. (5.62) reads

Rfi,l =

∫
Dr e−Sr ,

Sr =
N∑
n=1

(m
2ε

(rn − rn−1)2 − ln ĩl

(mrnrn−1

ε

)
+ εV (rn−1)

)
,

Dr =

√
m

2πε

N−1∏
n=1

√
m

2πε
drn. (5.65)

Up to the appearance of the Bessel function this expression look very similar
to the one-dimensional, cartesian case. Naively one could approximate the
Bessel function by the centrifugal barrier to obtain the action

Snaive
r =

N∑
n=1

(
m

2ε
(rn − rn−1)2 + ε

l(l + 1)

2mrnrn−1

+ εV (rn−1)

)
. (5.66)

However, this approximation is invalid for l 6= 0 since we have to integrate
over all paths whereas the paths converge slower towards the continuum limit
the closer they approach the central singularity of this r−2-potential. The
solution to this problem is elucidated in the next subsection.

5.1.3 The fixed-energy amplitude

The propagator Kfi describes the transition of an initial state |ψi〉 = |ψ(ti)〉
into a final state |ψf〉 = |ψ(tf )〉 in time. Thinking of a particle it describes
the particle’s propagation in spacetime. It is, however, very helpful instead
of the transition (ti, ~xi)→ (tf , ~xf ) to consider the transition ~xi → ~xf at fixed
energy E. More generally this means

(ti, |ψi〉)→ (tf , |ψf〉) → |ψi〉
E=const.→ |ψf〉, (5.67)

for some initial and final states. The amplitude for this transition between
states at constant energy is called the fixed-energy amplitude and is given
by the Fourier transform of the causal propagator

Gfi ≡ G(~xf ; ~xi|E) =

∫
dT eiETK>(ti + T, ~xf ; ti, ~xi), (5.68)
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where we have written T = tf − ti. More specifically, for a time independent
Hamiltonian, we obtain for Gfi,

Gfi =

∞∫
0

dT 〈~xf |e−i(Ĥ−E)T |~xi〉 = 〈~xf |
−i

Ĥ − E − i0+
|~xi〉, (5.69)

where 0+ means a very small, positive quantity which is supposed to approach
0 as soon as it is safe to due so. The operator −i/(Ĥ − E) is called ”the
resolvent” and the −i0+ insertion in eq. (5.69) tells us how to avoid the
singularities. Consequently, the fixed-energy amplitude is nothing but the
matrix elements of the resolvent. In the case of e.g. a free particle we obtain

Gfi =

∞∫
0

dT
( m

2πiT

)3/2

e
im ~X2

2T
+iET =

m

2πi| ~X|
ei|

~X|
√

2mE. (5.70)

Writing the propagator Kfi as in eq. (5.22) yields the following expression
for the fixed-energy amplitude,

iGfi =
∑
n

ψn(~xf )ψ
∗
n(~xi)

En − E − i0+
+

∫
dp

ψp(~xf )ψ
∗
p(~xi)

Ep − E − i0+
. (5.71)

Consequently the fixed-energy amplitude has poles at the positions which
correspond to the actual particle energy. From eq. (5.71) we may calculate
the discontinuity along the real axis in the complex energy plane,

disc (Gfi) = G(~xf ; ~xi|E + i0+)−G(~xf ; ~xi|E − i0+)

=
∑
n

2πδ(En − E)ψn(~xf )ψ
∗
n(~xi)

+

∫
dp 2πδ(Ep − E)ψp(~xf )ψ

∗
p(~xi). (5.72)

Since the eigenstates if the Hamiltonian satisfy the completeness relation∑
n

|n〉〈n|+
∫
dp |p〉〈p| = 1, (5.73)

we obtain for the energy integral over the discontinuity,

∞∫
−∞

dE

2π
disc (Gfi) =

∑
n

ψn(~xf )ψ
∗
n(~xi) +

∫
dk ψk(~xf )ψ

∗
k(~xi)



70 CHAPTER 5. FEYNMAN’S PATH INTEGRAL

= 〈~xf |

(∑
n

|n〉〈n|+
∫
dp |p〉〈p|

)
|~xi〉

= 〈~xf |~xi〉 = δ3(~xf − ~xi). (5.74)

From eq. (5.69) we see that the fixed-energy amplitude virtually emerges
from an integration over propagators which describe time-evolution with an
effective Hamiltonian operator

Ĥ = Ĥ − E. (5.75)

The fixed-energy amplitude has a remarkable property which yields the solu-
tion to the centrifugal barrier-problem we encountered in the last subsection
in eqs. (5.65) and which eventually allows us to solve the path integral for the
hydrogen atom. This property is based on the additional integration over the
time interval T , which allows for arbitrary, invertible reparameterizations.

First we note that we may complement the resolvent on the left and right
with regularization operators λ̂L and λ̂R,

1

Ĥ
= λ̂L

1

λ̂RĤλ̂L
λ̂R. (5.76)

Classically this corresponds to the reparameterization dT = ds λ. In the
following we consider reparameterizations of the form λ̂L/R = λ̂L/R(~x) even
though an s- or ~p-dependence would be possible as well.

Let us now consider a Hamiltonian of the form

Ĥ =
~̂p 2

2m
+ V (~̂x). (5.77)

We may now formulate the fixed-energy amplitude as a path integral,

Gfi =

∞∫
0

ds 〈~xf | λ̂Le−iλ̂RĤλ̂Lsλ̂R |~xi〉

=

∞∫
0

ds λL,fλR,i

∫ N−1∏
j=1

d3xj

N∏
k=1

〈~xk|e−iλ̂RĤλ̂Lε|~xk−1〉

≈
∞∫

0

ds λL,fλR,i

∫ N−1∏
j=1

d3xj

N∏
k=1

〈~xk|
(

1− iλ̂RĤλ̂Lε
)
|~xk−1〉. (5.78)

Let us insert a complete set of momentum eigenstates |~p〉 for every factor,∫
d3pk
(2π)3

〈~xk|
(
|~pk〉〈~pk| − iλ̂RĤ|~pk〉〈~pk|λ̂Lε

)
|~xk−1〉, (5.79)
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so that the fixed-energy amplitude reads

Gfi =

∞∫
0

ds λL,fλR,i

∫
D3xD3p eiS,

S =
N∑
n=1

[
~pn(~xn − ~xn−1)− ελn

(
~p 2
n

2m
+ Vn − E

)]
, (5.80)

where we have defined λn = λL,n−1λR,n, as well as

D3p =
N∏
k=1

(
iελn
2πm

)3/2

d3pk,

D3x =

(
m

2πiελN

)3/2 N−1∏
l=1

(
m

2πiελl

)3/2

d3xl. (5.81)

Of course we can perform the D3p integration again which yields

Gfi =

∞∫
0

ds λL,fλR,i

∫
D3x eiS,

S =
N∑
n=1

[
m(~xn − ~xn−1)2

2ελn
− ελn (Vn − E)

]
. (5.82)

Let us now investigate how we can use the gauge freedom we have obtained
from the functions λL/R to prevent singular potentials like the Coulomb po-
tential and the centrifugal barrier in eqs. (5.65) to cause any trouble. Re-
peating the steps that lead to eqs. (5.65) and using an imaginary parameter,
s→ −is, yields the fixed-energy amplitude in radial coordinates,

iGfi =

∞∫
0

ds λL,fλR,i

∞∑
l=0

Rfi,l

l∑
m=−l

Ylm(θf , ϕf )

rf

Y ∗lm(θi, ϕi)

ri
,

Rfi,l =

∫
Dr e−Sr,l ,

Dr =

√
m

2πελN

N−1∏
n=1

drn

√
m

2πελn
,

Sr,l =
N∑
n=1

[
m(rn − rn−1)2

2ελn
+ ελn (Vn − E)− ln ĩl

(
mrnrn−1

ελn

)]
. (5.83)
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The appearance of λ in the argument of the Bessel function allows us to get
rid of the singular centrifugal barrier. The choice λn = rnrn−1, for example,
yields the action

Sr,l =
N∑
n=1

[
m(rn − rn−1)2

2εrnrn−1

+ εrnrn−1 (Vn − E) + ε
l(l + 1)

2m

]
. (5.84)

Generally this means that any r−2-potential where we may approximate

rnrn−1 ·
1

r2
n

≈ 1 (5.85)

can simply be absorbed into the centrifugal barrier. If we have, say, a poten-
tial of the form

V (r) = V0(r) +
L2

2mr2
, (5.86)

we may simply write the action as

Sr,l =
N∑
n=1

[
m(rn − rn−1)2

2εrnrn−1

+ εrnrn−1 (V0,n − E) + ε
leff(leff + 1)

2m

]
, (5.87)

where

leff = −1

2
+

√(
l +

1

2

)2

+ L2. (5.88)

Since the Bessel functions ĩl are defined for any real l we may simply reformu-
late eq. (5.87) by reintroducing λ and ĩleff

. Consequently, any r−2-potentials
may be treated in spherical coordinates by ignoring them initially and in the
end substituting l→ leff in Rfi,l.

Now way have gathered all the tools necessary to solve the path integral
for the hydrogen atom, which we will attack in the next section.

5.2 The solution to the path integral for the

hydrogen atom

We now want to calculate the path integral for the hydrogen atom. Since
the Coulomb potential is singular at the origin we first have to calculate the
fixed-energy amplitude so we can make use of the additional gauge freedom
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as described in the previous subsection. In the continuum limit the action of
the Coulomb problem is given by

S =

s∫
0

ds

(
m~̇x 2

2λ
+ λ

(α
r

+ E
))

, (5.89)

where the dot means a derive with respect to s, ~̇x = d~x/ds, and the arbitrary
function λ represents our gauge freedom. The central singularity can be cured
by the choice λ = r. Schematically this yields

S
∣∣
λ=r

= αs+

s∫
0

ds

(
m~̇x 2

2r
+ Er

)

”=”αs+
m

2

s∫
0

ds

(
√
ṙ

2
−
√
−2E

m

2√
r

2

)
. (5.90)

The result would look something like a harmonic oscillator with angular
frequency ω =

√
−2E/m for E < 0, which is a problem that has already

been solved in subsection 5.1.1. However, we still need to make a suitable
choice of coordinates u in order to make sense of the term ~̇x 2/r. The hint
lies in the expression r = ~u 2, since, loosely speaking, the square root of a
vector is a spinor. So let us write

z =

(
u1 + iu2

u3 + iu4

)
, ~x = z†~σz =

 2(u1u3 + u2u4)
2(u1u4 − u2u3)

u12
+ u22 − u32 − u42

 , (5.91)

where ~σ means the Pauli matrices. Further we write

~x = A′(u) ~u, A′ =

 u3 u4 u1 u2

u4 −u3 −u2 u1

u1 u2 −u3 −u4

 . (5.92)

Indeed for these spinor-valued coordinates we have

r = ~u2. (5.93)

In order to calculate the Jacobi-determinant that belongs to this change of
coordinates we have to introduce an auxiliary dimension, parameterized by
the coordinate x4. Our choice of x4 is guided by the symmetry of the resulting
4× 4-matrix,

dx4 = u2du1 − u1du2 + u4du3 − u3du4. (5.94)
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We thus obtain

d~x = 2Ad~u, A =


u3 u4 u1 u2

u4 −u3 −u2 u1

u1 u2 −u3 −u4

u2 −u1 u4 −u3

 , (5.95)

with the four-dimensional vector ~x = (x1, x2, x3, x4). The measure of the
path integral may be augmented by a fourth dimension through an insertion
of unity,

1 =
N∏
n=1

dx4
n−1

√
m

2πiελn
exp

[
im(x4

n − x4
n−1)2

2ελn

]
, (5.96)

so that the measure reads

D4x = dx4
0

(
m

2πiελN

)2 N−1∏
n=1

d4xn

(
m

2πiελn+1

)2

. (5.97)

Note that we also have to integrate over x4
N . The action is still given by

S =
N∑
n=1

(
m(~xn − ~xn−1)2

2ελn
− ελn(Vn − E)

)
, (5.98)

but now ~x means the four-dimensional vector. Now we can perform the
coordinate transformation. Noting that

ATA = ~u 2, (5.99)

we obtain the following expression for the metric

g = d~x 2 = 4~u 2d~u 2, (5.100)

while the four-dimensional integral measure reads

d4x = 16~u 4d4u. (5.101)

Further we obtain

~xn − ~xn−1 = A(~un + ~un−1) · (~un − ~un−1). (5.102)

With respect to these coordinates the action and integration measure read,
respectively,

S =
N∑
n=1

(
m(~un + ~un−1)2(~un − ~un−1)2

2ελn
− ελn(Vn − E)

)
,
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D4x =
dx4

0

16~u 4
N

(
2m~u 2

N

πiελN

)2 N−1∏
n=1

d4un

(
2m~u 2

n

πiελn

)2

. (5.103)

In order to regularize the Coulomb potential we set

λL,n = 1, λR,n = rn ⇒ λn = rn = ~u 2
n . (5.104)

The expression (~un + ~un−1)2 in eq. (5.103) can be approximated by 4~u2
n to

lowest order in ∆~un = ~un − ~un−1. This yields

S = αs+
N∑
n=1

(
2m(~un − ~un−1)2

ε
+ εE~u2

n

)
,

D4x =
dx4

i

16r2
i

(
2m

πiε

)2 N−1∏
n=1

d4un

(
2m

πiε

)2

. (5.105)

The whole procedure concerning the transformation of the action and the
integral measure is in fact quite involved since one changes from a flat space
to a space with curvature and torsion. More details on this issue can be
found in Kleinert (1987, 2004).

It is now safe to perform the continuum limit. Setting

D4u =

(
2m

πiε

)2 N−1∏
n=1

d4un

(
2m

πiε

)2

, (5.106)

we obtain for the fixed-energy amplitude

Gfi =

∞∫
0

ds

∫
dx4

i

16ri

∫
D4u eiαs+2im

∫ s
0 ds(~̇u2−ω2~u2)

=

∞∫
0

ds

∫
dx4

i

16ri

(
2mω

iπ sinωs

)2

eiαs+
2imω
sinωs((~u2

f+~u2
i ) cosωs−2~uf~ui), (5.107)

where ω =
√
−E/(2m). Comparing with eq. (5.52) shows that this result is

closely related to the propagator of a four-dimensional harmonic oscillator.
In order to obtain an explicit expression for Gfi we have to perform the x4-
integration. For this purpose it is helpful to express the spinor z, defined in
eq. (5.91), in spherical coordinates,

z =
√
r

(
cos(θ/2) e−i(ϕ+γ)/2

sin(θ/2) ei(ϕ−γ)/2

)
, (5.108)
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where γ ∈ [0, 4π[. The definition of x4 in eq. (5.94) then yields

dx4 = r (cos θ dϕ+ dγ) . (5.109)

Since the endpoints in eq. (5.107) are held fixed the x4
i -integration reduces

to an integration over γi. The only quantity in eq. (5.107) that depends on
γi is ~uf~ui. To find the exact dependence we briefly consider the case of two
dimensions, where ~u is given by

u1 + iu2 =
√
reiϕ/2. (5.110)

In this case we would obtain

~uf~ui =
√
rfri cos

ϕf − ϕi
2

, ~xf~xi = rfri cos(ϕf − ϕi)

⇒ ~uf~ui =

√
rfri + ~xf~xi

2
. (5.111)

The form of eq. (5.111) shall be the role model for the following calculation.
In the four-dimensional case we have with eq. (5.108)

~uf~ui =

√
rfri + ~xf~xi

2
cosχ,

cosχ =

√
2rfri

rfri + ~xf~xi

(
cos

θf
2

cos
θi
2

cos
ϕf − ϕi + γf − γi

2

+ sin
θf
2

sin
θi
2

cos
ϕf − ϕi − γf + γi

2

)
=

√
2rfri

rfri + ~xf~xi

(
cos

θf − θi
2

cos
ϕf − ϕi

2
cos

γf − γi
2

− cos
θf + θi

2
sin

ϕf − ϕi
2

sin
γf − γi

2

)
, (5.112)

and further

~xf~xi = rfri (sin θf sin θi cos(ϕf − ϕi) + cos θf cos θi) . (5.113)

The expression for cosχ in eqs. (5.112) may be rewritten as

cosχ =
cos(γf − γi)/2− cos(θf+θi)/2 sin(ϕf−ϕi)/2

cos(θf−θi)/2 cos(ϕf−ϕi)/2
sin(γf − γi)/2√

1 +
(

cos(θf+θi)/2 sin(ϕf−ϕi)/2
cos(θf−θi)/2 cos(ϕf−ϕi)/2

)2
. (5.114)
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This is now an expression of the form cos a cos b−sin a sin b, so it follows that

χ =
γf − γi + β

2
, (5.115)

where

β = 2 arctan

(
cos(θf + θi)/2 sin(ϕf − ϕi)/2
cos(θf − θi)/2 cos(ϕf − ϕi)/2

)
. (5.116)

Using the identity

ez cosϕ =
∞∑

m=−∞

Im(z)eimϕ (5.117)

and writing s = −iσ yields the fixed-energy amplitude

Gfi =
−i
4π

∞∫
0

dσ

(
2mω

sinhωσ

)2

I0

(
4mω

sinhωσ

√
rfri + ~xf~xi

2

)
· eασ−2mω(rf+ri) cothωσ. (5.118)

This expression may be further rewritten if we define

k = 2mω, ν =
α

2ω
, y = ωσ, (5.119)

and make use of the identity

I0(z cos(ψ/2)) =
2

z

∞∑
l=0

(2l + 1)Pl(cosψ)I2l+1(z) (5.120)

to obtain

Gfi =
−im

2π
√
rfri

∞∫
0

dy

sinh y
e2νy−k(rf+ri) coth y

·
∞∑
l=0

(2l + 1)Pl(cos γfi)I2l+1

(
2k
√
rfri

sinh y

)
, (5.121)

where γfi means the angle formed by ~xf and ~xi. Using eq. (5.60) yields a
separation into spherical and radial parts according to eq. (5.62),

Gfi =
∞∑
l=0

l∑
m=−l

Ylm(θf , ϕf )

rf

Y ∗lm(θi, ϕi)

ri
Rfi,l,
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Rfi,l = −2im
√
rfri

∞∫
0

dy

sinh y
e2νy−k(rf+ri) coth yI2l+1

(
2k
√
rfri

sinh y

)
. (5.122)

This integral may be written in closed form in terms of Whittaker functions,

Rfi,l = −im
k

Γ(l + 1− ν)

Γ(2l + 2)
Wν,l+1/2 (2krf )Mν,l+1/2 (2kri) . (5.123)

In the following we would rather use the Kummer functions which have al-
ready encountered in chapter 3. The Whittaker functions are related to the
Kummer functions via

Ma,b(z) = zb+1/2 e−z/2M(1/2 + b− a, 1 + 2b, z)

Wa,b(z) = zb+1/2 e−z/2 U(1/2 + b− a, 1 + 2b, z),

which yields the radial fixed-energy amplitude

Rfi,l = −im
k

Γ(l + 1− ν)

Γ(2l + 2)
(2krf )

l+1(2kri)
l+1 e−krf−kri

· U(l + 1− ν, 2l + 2, 2krf )M(l + 1− ν, 2l + 2, 2krf ). (5.124)

From eq. (5.71) we know that the fixed-energy amplitude has isolated poles
at the bound state energy levels. In eq. (5.124) the Γ function has isolated
poles for negative integer arguments,

ν − l − 1 = n′ ∈ N ⇒ ν = n ∈ N, n > l + 1. (5.125)

Thus we are able to identify the bound states of the Coulomb system. In the
limit ν → n the Γ function behaves like

(−1)n
′
n′! Γ(−n′ + n− ν) ≈ 1

n− ν
≈ 2n

n2 − ν2

=
2

n

E

E +mα2/(2n2)
=

2

n

k2

2m

1

En − E
, (5.126)

where we have identified the bound state energy levels En = −mα2/(2n2)
in the last step. Let us write the fixed-energy amplitude in the form of eq.
(5.71),

Rfi,l =
∞∑

n=l+1

1

i

Rnl(rf )R
∗
nl(ri)

En − E
+

∫ (
continuum states

)
. (5.127)
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Comparing with eq. (5.124) shows that we first have to express U in terms
of M . The identity

U(a, b, z) =
π

sin πb

(
M(a, b, z)

Γ(1 + a− b)Γ(b)
− z1−bM(1 + a− b, 2− b, z)

Γ(a)Γ(2− b)

)
(5.128)

may be rewritten for −a ∈ N as

U(a, b, z) = (−1)a
Γ(b− a)

Γ(b)
M(a, b, z) + z1−bΓ(b− 1)

Γ(a)
M(1 + a− b, 2− b, z),

(5.129)

where we have used that

π

sin πz
= Γ(1− z)Γ(z) = (−1)nΓ(1− n− z)Γ(n+ z). (5.130)

However, since −a ∈ N, the second term on the right-hand side in eq. (5.129)
vanishes so that

Rfi,l =
∞∑

n=l+1

1

i

k

n

(2krf )
l+1(2kri)

l+1

En − E
e−krf−kri

Γ(n+ l + 1)

Γ(n− l)Γ2(2l + 2)

·M(l + 1− n, 2l + 2, 2krf )M(l + 1− n, 2l + 2, 2kri)

+

∫ (
continuum states

)
. (5.131)

As before we express the Kummer function in terms of the associated La-
guerre polynomials,

M(−n, α, z) =
Γ(n+ 1)Γ(α)

Γ(n+ α)
Lα−1
n (z), (5.132)

and, for k =
√
−2mEn = mα/n = Cn, obtain the same result for the radial

bound state wave functions as in eq. (3.31),

gnl(r) =

√
Cn
n

Γ(n− l)
Γ(n+ l + 1)

(2Cnr)
l+1e−CnrL2l+1

n−l−1(2Cnr). (5.133)

The complete, stationary wave function reads

ψnlm(~x) =
gnl(r)

r
Ylm(θ, ϕ). (5.134)
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The continuum or scattering states may be obtain by the replacements

ω → −iω, k → −ik, ν → iν, (5.135)

where now ω =
√
E/(2m). The radial fixed-energy amplitude now reads

Rfi,l =
m

k

Γ(l + 1− iν)

Γ(2l + 2)
Wiν,l+1/2 (−2ikrf )Miν,l+1/2 (−2ikri) , (5.136)

and the discontinuity across the branch cut then yields the continuum states,

disc (Rfi,l) = 2 Re {Rfi,l}

=
m

k

Γ(l + 1− iν)

Γ(2l + 2)
Wiν,l+1/2 (−2ikrf )Miν,l+1/2 (−2ikri)

+
m

k

Γ(l + 1 + iν)

Γ(2l + 2)
W−iν,l+1/2 (2ikrf )M−iν,l+1/2 (2ikri)

=
m

k

Miν,l+1/2 (−2ikri)

Γ(2l + 2)

[
Γ(l + 1− iν)Wiν,l+1/2 (−2ikrf ) +

+ (−1)l+1Γ(l + 1 + iν)W−iν,l+1/2 (2ikrf )
]
. (5.137)

The expression in square brackets in the last line may be reformulated by
means of the identity

Mκ,µ(z) =
Γ(2µ+ 1)

Γ(1/2 + µ+ κ)
eiπκe−iπ(µ+1/2)Wκ,µ(z)

+
Γ(2µ+ 1)

Γ(1/2 + µ− κ)
eiπκW−κ,µ(z eiπ), (5.138)

to yield

disc (Rfi,l) =
m

k

|Γ(l + 1− iν)|2

Γ2(2l + 2)
eπνMiν,l+1/2 (−2ikrf )M−iν,l+1/2 (2ikri) .

(5.139)

The radial wave functions can now be derived from the completeness relation,

∞∫
0

dE

2π
disc (Rfi,l) +

∑
n

gnl(rf )g
∗
nl(ri) = δ(rf − ri), (5.140)

where

∞∫
0

dE

2π
disc (Rfi,l) =

∞∫
0

dk hkl(rf )h
∗
kl(ri). (5.141)



5.2. THE PATH INTEGRAL FOR THE HYDROGEN ATOM 81

Since dE = kdk/m we may combine this relation with eq. (5.139) to obtain
the complete, stationary continuum wave functions,

χklm(~x) =
hkl(r)

r
Ylm(θ, ϕ), (5.142)

with the radial wave functions

hkl(r) =
|Γ(l + 1− iν)|√

2π Γ(2l + 2)
eπν/2Miν,l+1/2 (−2ikr) , (5.143)

or expressed in terms of the Kummer functions and Coulomb wave functions,
respectively,

hkl(r) =
|Γ(l + 1− iν)|√

2π Γ(2l + 2)
eπν/2+ikr(2kr)l+1M(l + 1− iν, 2l + 2,−2ikr)

=

√
2

π
Fl(−ν, kr), (5.144)

where we have dropped an unobservable prefactor of (−i)l+1 as compared to
eq. (5.143). This is the same result we already found in chapter 3 without
having to derive the normalization factor.



Chapter 6

Radiative Corrections

In this chapter we will derive the radiative corrections of order α5 to the rela-
tivistic energy levels given in chapter 4. For this purpose it will be necessary
to introduce some concepts of quantum field theory (QFT) so we can make
use of the quantum action formalism. This will allow us to derive a modified
version of the Dirac equation (4.41) that includes quantum corrections.

We will consider an electron moving in a background Coulomb field and
then calculate quantum corrections for the interaction of the electron with
the background field and with its own electromagnetic field. More elabo-
rate calculations concerning the vacuum polarization and the 3-point vertex
function can be found in appendix A.

6.1 Quantum electrodynamics

In this section we proceed from the theory of quantum mechanics used in
the previous chapters to the theory of quantum electrodynamics (QED).
We elaborate some basic principles of QFT which are needed to calculate
the lowest order radiative corrections to the relativistic energy levels. The
calculations in this section follow or are inspired by Feynman and Hibbs
(1965), Feynman (1962), Itzykson and Zuber (1980), Peskin and Schroeder
(1995), Kleinert (2004), Srednicki (2007).

6.1.1 Towards quantum field theory

In previous chapters we have considered the quantum properties of an elec-
tron, both relativistically and non-relativistically, in the fixed background
field of the much heavier proton, i.e. we treated the electromagnetic field
like a classical field. The results of the relativistic quantum theory of the

82
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electron deviates from experiment by a fraction of ∼ 3 · 10−6. The main part
of the deviation is due to the quantum nature of the electromagnetic field
itself.

In order to treat the quantum properties of the electromagnetic field, we
consider the classical action of a free 4-vector potential A = (Φ, ~A),

S[tf , Af ; ti, Ai] =
1

2

tf∫
ti

dt

∫
d3xAµ

(
ηµν∂2 − ∂µ∂ν

)
Aν , (6.1)

where Af/i = A(tf/i, ~x). While it is totally legitimate to use the action (6.1)
for the electromagnetic field to calculate its propagator from an expression
like,

Af∫
Ai

DAeiS[tf ,Af ;ti,Ai], (6.2)

it will not be useful to do so in many instances. The explicit choice of ti and
tf specifies a reference frame and thus breaks the Lorentz covariance which is
present in the classical theory. In the hydrogen atom relativistic corrections
represent only a small contribution to the essentially non-relativistic nature of
the system and often times we will have to choose the CMS as reference frame.
In many cases in this chapter, however, we will perform fully relativistic
calculations and thus it would be very useful to think about a relativistically
covariant alternative to eqs. (6.1) and (6.2).

Let us start by defining an infinitesimal 4-volume element of spacetime δ
such that ∫

d4x =
∑
x

δ, (6.3)

where the sum goes over all resulting cells in the discretized spacetime. Now
let us consider some complex scalar field ψ and an integration of the form∫

DψDψ† ∝
∏
x

dψxdψ
†
x, (6.4)

where we have written ψx = ψ(x). This integral is no longer a path integral
like in chapter 5 but a functional integral, since we now integrate over all
configurations of a field ψ defined on the whole spacetime. Let us normalize
the functional integral measure in the following way:

1 =

∫
DψDψ† eiS0 ,
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S0 =
∑
x

|ψx|2δ ≈
∫
d4x |ψx|2,

DψDψ† =
∏
x

dψxdψ
†
x

2πi/δ
, (6.5)

For the verification of the first line one needs to make the replacement δ →
δ + i0+. This functional integral satisfies the relation∫

DψDψ† ψ(x2)ψ†(x1) eiS0 =

{
0, x1 6= x2

i/δ, x1 = x2
. (6.6)

The right-hand side of this equation evaluates to either zero or infinity in
the continuum limit. From eq. (6.3) it further follows that the spacetime
integral evaluates to i so that we may write∫

DψDψ† ψ(x2)ψ†(x1) eiS0 = iδ4(x2 − x1). (6.7)

Using this representation of the δ function we can find an alternative way
to calculate the causal propagator according to eq. (5.55) for a system with
Hamiltonian Ĥ,

K>
fi =

−i
−i∂tf + Ĥf − i0+

δ4(xf − xi)

=

∫
DψDψ† 1

i∂tf−Ĥf+i0+
ψ(xf )ψ

†(xi) e
iS0∫

DψDψ† eiS0

=

∫
DψDψ† ψ(xf )ψ

†(xi) e
iS∫

DψDψ† eiS
, (6.8)

where now

S =

∫
d4xψ†(i∂t − Ĥ + i0+)ψ. (6.9)

In the second line in eq. (6.8) we have made a change of variables, ψ →
(i∂t − Ĥ + i0+)ψ. The resulting new factors emerging from the functional
integral measure are canceled out by the numerator.

Let us summarize our recent findings: In chapter 5 we have calculated
the non-relativistic, causal propagator K>

fi by considering the two events xi
and xf , where tf ≥ ti, and integrating over all spatial paths which connect ~xi
with ~xf , weighted with eiS. Now we have found that the causal propagator
can also be calculated by defining a Lorentz invariant action (6.9) in which
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a Lagrangian density is integrated over the whole spacetime. The causal
propagator then emerges from the expectation value 〈ψ(xf )ψ

†(xi)〉, which
measures the correlation between excitations of the field ψ at the two events
xi and xf . In other words, the causal propagator K>

fi to find a particle at
xf , which had been found before at xi, is given by the expectation value
〈ψ(xf )ψ

†(xi)〉 that an excitation at xi of the field ψ is correlated with an
excitation at xf . The field ψ is in this case not the Schrödinger wave function

of course but rather connected to an operator ψ̂†(x) which adds to a multi-
particle state |Φ〉 a particle of species ψ at the event x. Correspondingly, the
operator ψ̂(x) removes such a particle at the event x.

6.1.2 Electrons in an external potential

In the previous subsection we have introduced the concept of QFT to calcu-
late causal propagators (in the following we will simply call them propaga-
tors) in a relativistic context. Here we will as a first step consider a scenario
which is already familiar from the quantum mechanical treatment in the
previous chapters: the interaction of an electron with an external 4-vector
potential V . As before the electron is treated as a test charge of reduced
mass m in this classical potential and we assume that the Dirac equation
corresponding to this problem may be solved analytically.

According to eq. (6.9) the action of such a system reads

SΨ,V =

∫
d4x Ψ̄(−HΨ,V )Ψ, HΨ,V = −i/∂ + e /V +m, (6.10)

where Ψ is a Dirac spinor representing the electron field, which is moreover
Grassman-valued, i.e. it obeys the following anti-commuting algebra,

{Ψ(x1),Ψ(x2)} = 0, {Ψ(x1), Ψ̄(x2)} = 0. (6.11)

Functional derivatives of Ψ and Ψ̄ are hence calculated according to

δΨ(x1)Ψ(x2) = −Ψ(x2)
←−
δ Ψ(x1) = δ4(x1 − x2),

δΨ̄(x1)Ψ̄(x2) = −Ψ̄(x2)
←−
δ Ψ̄(x1) = δ4(x1 − x2),

δΨ(x1)Ψ̄(x2) = δΨ̄(x1)Ψ(x2) = 0. (6.12)

In this relativistic, field theoretic context the expectation value of an operator
is calculated via

〈Ô[Ψ̄,Ψ]〉 =

∫
DΨDΨ̄O[Ψ̄,Ψ] eiSΨ,V [Ψ̄,Ψ]∫
DΨDΨ̄ eiSΨ,V [Ψ̄,Ψ]

. (6.13)
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The denominator in this expression is an integral over all possible field con-
figurations and hence represents the partition function Z of the theory,

Z =

∫
DΨDΨ̄ eiSΨ,V [Ψ̄,Ψ]. (6.14)

Defining now Dirac-spinor valued Grassman fields η and η̄ as external sources
for the fields Ψ̄ and Ψ, respectively, we can turn the partition function Z into
a generating functional Z[η, η̄] for correlation functions,

Z[η, η̄] =

∫
DΨDΨ̄ eiSΨ,V [Ψ̄,Ψ]+

∫
d4x (Ψ̄η+η̄Ψ). (6.15)

However, it is even more practical to define the connected generating func-
tional W [η, η̄] via

W [η, η̄] = lnZ[η, η̄], (6.16)

so that expectation values may be calculated according to eq. (6.13) very
conveniently by differentiating W with respect to η and η̄,

〈Ô[Ψ̄,Ψ]〉 = O[−δη, δη̄]W [η, η̄]
∣∣∣
η=η̄=0

. (6.17)

The minus sign in front of δη is due to the anti-commuting nature of the
Grassman fields. Completing the square in the exponent of the generating
functional and shifting variables like in eqs. (5.33) and (5.34) yields

Z[η, η̄] = Z0 e
∫
d4xd4x′ η̄(x)SV (x,x′)η(x′),

Z0 =

∫
DΨDΨ̄ eiSΨ,V [Ψ̄,Ψ] ≡ 1,

SV (x, x′) =
1

−HΨ,V + i0+
iδ(x− x′), (6.18)

where we have rescaled the functional integral measure such that the partition
function, i.e. the generating functional in the absence of external sources, is
equal to unity, Z[0, 0] = Z0 = 1. Obviously the quantity SV which appears
in the exponent of the generating functional is the (causal) propagator of the
electron under the influence of the classical, external potential V .

An important quantity which may be readily calculated from eqs. (6.18)
is the electron propagator S in the absence of the external potential, V = 0,

SV=0(xf , xi) ≡ S(xf − xi)

=
1

i/∂f −m+ i0+
iδ(xf − xi)
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=
−i/∂f −m

−∂2
f +m2 − i0+

iδ(xf − xi)

= i

∫
d4p

(2π)4

(/p−m)eip(xf−xi)

p2 +m2 − i0+

=

∫
d̃p e−iE|T |

∑
s=±

[
Θ(T )Ψ

(+)
s,~p (~xf )Ψ̄

(+)
s,~p (~xi)

−Θ(−T )Ψ
(−)
s,~p (~xf )Ψ̄

(−)
s,~p (~xi)

]
, (6.19)

where T = tf − ti as usual and we have used the time-independent, free

wave functions Ψ
(±)
s,~p (~x) defined in eqs. (4.37) and the relativistic energy

E = (~p 2 + m2)1/2. Note that for V = 0 the theory becomes invariant under
spacetime translations so that the propagator only depends on the difference
xf − xi in this case. While remaining integral in eq. (6.19) can be done in
closed form, the resulting expression is rarely useful so we would like to keep
it in the current form.

Apparently the (causal) propagator has picked up contributions from
paths which travel backwards in time. In the case of fermions like the elec-
tron these correspond to antiparticle contributions but they are also present
in the photon propagator. It is now clear that we would lack these contribu-
tions had we calculated the propagator from a functional integral like in eq.
(6.2).

6.1.3 The free electromagnetic field

Our second step towards the full theory of QED is to consider the QFT
of the free electromagnetic field, i.e. the theory of non-interacting photons.
According to eq. (6.9) the action for this system is simply given by the
classical one,

SA =

∫
d4x

1

2
Aµ(ηµν∂2 − ∂µ∂ν)Aν , (6.20)

where A is the well known 4-vector potential. The action SA is invariant
under the gauge transformation,

A→ A+ ∂Γ, (6.21)

for some arbitrary function Γ(x) of spacetime. The gauge freedom of the
photon field A allows us to replace the term ∂µ∂ν in its Hamiltonian with
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some operator Gµν which is in accord with the choice of gauge and drops out
in gauge invariant expressions,

SA =

∫
d4x

1

2
Aµ(−Hµν

A )Aν , Hµν
A = −ηµν∂2 − Gµν . (6.22)

Like in eqs. (6.15) and (6.16) we define the generating functional of the free
electromagnetic field in the presence of a 4-vector valued, external source J
and the connected generating functional as

Z[J ] =

∫
DAeiSA[A]+

∫
d4x JµAµ , W [J ] = lnZ[J ]. (6.23)

As for eqs. (6.18) we complete the square in the exponent of the generating
functional and shift variables to obtain

Z[J ] = Z0 e
∫
d4xd4x′ 1

2
Jµ(x)Dµν(x−x′)Jν(x′),

Z0 =

∫
DAeiSA[A] ≡ 1,

Dµν(x− x′) =
1

−Hµν
A (x) + i0+

iδ(x− x′), (6.24)

where we have scaled the functional integral measure such that the partition
function is equal to unity, Z[0] = Z0 = 1. Expectation values of operators
〈Ô[A]〉 may be calculated analogous to eq. (6.17) by differentiating W with
respect to J ,

〈Ô[A]〉 = O[δJ ]W [J ]
∣∣∣
J=0

. (6.25)

Calculating the free photon propagator D is fairly easy. However, we first
have to inspect the influence of gauge freedom on the propagator and the
partition function more closely. Focusing on the partition function we see
from eq. (6.23) that in the absence of the source J a gauge transformation
according to eq. (6.21) yields

Z[0] =

∫
DAeiSA[A] =

∫
DA′ eiSA[A′]. (6.26)

Simply renaming the field A′ → A shows that the partition function is invari-
ant under gauge transformations. This remains true if a source J is added
since it may be defined to couple to the transformed field instead. Since two
fields A and A′ correspond to the same physical situation if they are related
to each other by a gauge transformation we have to fix a gauge to enforce
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that every physically inequivalent field configuration is counted only once.
To do this formally we will use the method of Faddeev and Popov (1967),
i.e. we insert unity into the partition function (6.26) in the form

1 =

∫
DΓ δ[G[A′]]

∣∣∣∣det
δG[A′]

δΓ

∣∣∣∣ , A′ = A+ ∂Γ, (6.27)

where δ[f ] is the functional generalization of the δ-function and G[A′] is some
condition that the gauge transformed field A′ has to satisfy. E.g. Lorenz-
gauge is enforced by G[A′] = ∂µA

′µ while Coulomb-gauge needs G[A′] = ~∇ ~A′,
etc. In the following the determinant in eq. (6.27) will be independent of A
so that we can treat it as a constant under the functional integral. Inserting
eq. (6.27) into eq. (6.26) then yields

Z[0] =

∫
DADΓ

∣∣∣∣det
δG[A′]

δΓ

∣∣∣∣ δ[G[A′]] eiSA[A]. (6.28)

Transforming A→ A′ and then renaming yields

Z[0] =

(∫
DΓ

∣∣∣∣det
δG[A]

δΓ

∣∣∣∣) ∫ DAδ[G[A]] eiSA[A]. (6.29)

We have thus managed to formally extract an infinitely large prefactor out
of the functional integral and instead integrate only over physically inequiv-
alent field configurations. Since such a prefactor always cancels out when
an expectation value is calculated we may simply redefine the generating
functional and the partition function as

Z[J ] = Z0 e
∫
d4xd4x′ 1

2
Jµ(x)Dµν(x−x′)Jν(x′),

Z0 =

∫
DAδ[G[A]] eiSA[A] ≡ 1, (6.30)

where a proper rescaling of the functional integral measure has also been
performed. Let us now calculate the free photon propagator. First, in the
Coulomb gauge, ~∇ ~A = 0, we have

Di0(x) = 0, Dij(x) =

(
δi
k − ∂i∂

k

∆

)
Dkj(x). (6.31)

Hence the propagator reads

D00(xf − xi) =
1

−∆2
f

iδ4(xf − xi)
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= iδ(T )

∫
d3k

(2π)3

ei
~k ~X

~k2
=
iδ(T )

4π| ~X|
,

Dij(xf − xi) =

(
ηij −

∂f,i∂f,j
∆f

)
1

∂2
f + i0+

iδ4(xf − xi)

= i

∫
d4k

(2π)4

(
ηij −

kikj
~k2

)
eik(xf−xi)

−k2 + i0+

=

∫
d̃k ei

~k ~X

(
ηij −

kikj
~k2

)(
Θ(T )e−iωT + Θ(−T )eiωT

)
, (6.32)

where ~X = ~xf − ~xi as well as ω = |~k| and d̃k = d3k/((2π)32ω). While the
remaining integral in eqs. (6.32) can be done in closed form, the resulting
expression is rarely useful so we would like to keep it in the current form. Also
very important is Lorenz gauge, ∂µA

µ = 0, where the propagator satisfies

Dµν(x) =

(
δµ
ρ − ∂µ∂

ρ

∂2

)
Dρν(x), (6.33)

so that we obtain

Dµν(xf − xi) =

(
ηµν −

∂µ∂ν
∂2

)
1

∂2
f + i0+

iδ4(xf − xi)

= i

∫
d4k

(2π)4

(
ηµν −

kµkν
k2

)
eik(xf−xi)

−k2 + i0+

=

∫
d̃k ei

~k ~X

(
ηµν −

kµkν
k2

)(
Θ(T )e−iωT + Θ(−T )eiωT

)
.

(6.34)

Finally, in Feynman gauge we have

Dµν(xf − xi) =
ηµν

∂2
f + i0+

iδ4(xf − xi)

= iηµν

∫
d4k

(2π)4

eik(xf−xi)

−k2 + i0+

= ηµν

∫
d̃k ei

~k ~X
(
Θ(T )e−iωT + Θ(−T )eiωT

)
. (6.35)

6.1.4 Quantum electrodynamics

The theory of QED emerges when the electron field from subsection 6.1.2 is
allowed to interact with the free photon field from subsection 6.1.3. In the
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case of the hydrogen atom it is very helpful to separate the photon field into
a classical, external potential V like in subsection 6.1.2, which represents
the Coulomb potential and a quantum field A which give rise to the Lamb
shift. In the following, however, we will only consider the quantum field A
to clear up the notation. The external potential can be restored anytime by
the replacement A→ A+ V .

Naively we might write the full QED action as,

Snaive = SΨ,0 + SA + Sint, Sint = −e
∫
d4x Ψ̄ /AΨ, (6.36)

where SΨ,0 and SA are given in eqs. (6.10), with V = 0, and (6.22), respec-
tively. However, the interaction of photons with matter gives the fields A and
Ψ and parameters e and m a different meaning than before. In subsections
6.1.2 and 6.1.3 we could identity these quantities with observables like field
strength, electron charge and (reduced) mass. The interaction represented
by Sint, however, includes self interaction of the electron with its own electro-
magnetic field, thus effectively changing its mass from m. But the interaction
with the own electromagnetic field also changes how the electron interacts
with photons from other sources and hence effectively changes e. The fields
A and Ψ are effected in the same way. To account for this change of param-
eters due to the omnipresent interaction we have to replace the action (6.36)
by

S =

∫
d4x

[
ZA
2
Aµ(ηµν∂2 + Gµν)Aν + Ψ̄(ZΨi/∂ − Zmm− Zee /A)Ψ

]
. (6.37)

This action is obtained from eq. (6.36) by simply rescaling A → Z
1/2
A A and

similar for Ψ, e and m. Perturbative calculations show that Zi = 1 + O(α).
We may adjust the Z-factors such that A, Ψ, e and m take certain values
under certain conditions, i.e. we impose renormalization conditions. E.g. we
might want to adjust m such that it equals the measured (reduced) mass of
an electron. Other normalizations might be useful as well, depending on the
situation.

Since we will have to resort to perturbation theory to calculate radiative
corrections to the hydrogen energy levels we have to separate the action (6.37)
into a part which we now how to handle analytically plus a perturbative part
which we call Sint. For the present case we set

S = SA + SΨ + Sint (6.38)

with the the same SA and SΨ = SΨ,0 as in subsections 6.1.2 and 6.1.3,

SA =

∫
d4x

1

2
Aµ(−Hµν

A )Aν , Hµν
A = −ηµν∂2 − Gµν ,
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SΨ =

∫
d4x Ψ̄(−HΨ)Ψ, HΨ = −i/∂ +m, (6.39)

and with the interaction part

Sint =

∫
d4x

[
1

2
Aµ(−δHµν

A )Aν + Ψ̄(−δHΨ − Zee /A)Ψ

]
, (6.40)

where, setting Zi = 1 + δi,

δHµν
A = −δA(ηµν∂2 + Gµν), δHΨ = −δΨi/∂ + δmm. (6.41)

Thus we have separated the full QED action (6.37) into a part containing the
free electromagnetic and electron fields and into another part containing the
interaction of electrons with the electromagnetic field and the corresponding
rescaling terms.

A peculiarity of this separation is that in perturbative calculations the
contributions from highly energetic sub-processes cause certain correction
terms to become infinitely large. However, all problematic terms of this kind
may be regulated such that they diverge only in a well defined limit and thus
can be absorbed into the renormalizing Z-factors.

Historically the appearance of these divergences and the necessity of
renormalization represented a major problem for the theory of QED, which
was finally solved by Tomonaga, Schwinger, Feynman and Dyson.

While it is surprising at first that e.g. the correction term δmm to the
electron mass is infinitely large, one might consider the following: Say, that
we have adjusted the Z-factors such that the parameter m is equal to the
free electron mass as measured in experiment, m = mex,free. Say further, we
compare the mass of a free electron to that of an electron in a bound state,

mex,free −mex,bound = (δm,free − δm,bound)mex,free. (6.42)

We now find that the infinite parts in the Z-factors cancel out in this expres-
sion since highly energetic processes are insensitive to whether the electron
is bound or not. The remaining correction is indeed small and in excellent
agreement with experiment. The tricky part in the separation in eq. (6.38)
is that SΨ actually describes an unphysical ”uncharged electron”. A physical
electron with charge −e, however, is always interacting with its own elec-
tromagnetic field which moreover becomes stronger the closer the electron is
approached. Therefore self interaction becomes more important the higher
the energy of the photons under consideration. Consequently, the mass dif-
ference relative to the ”uncharged electron” becomes infinite in the absence
of a cut off (or a different regularization) on the photon energy.
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Let us now proceed by inspecting the action of QED a little closer. While
the naive action Snaive is invariant under the simultaneous gauge transforma-
tion,

A→ A+ ∂Γ, Ψ→ eiqΓΨ, Ψ̄→ e−iqΓΨ̄, (6.43)

for some arbitrary function Γ(x) of spacetime, this is only true for S in eq.
(6.37) if ZΨ = Ze. Fortunately this is ensured by an identity due to (Ward,
1950) so that the action S is also invariant under the gauge transformation
(6.43).

Following the procedure of subsections 6.1.2 and 6.1.3 we define the gener-
ating functional Z[η, η̄, J ] and the connected generating functional W [η, η̄, J ]
of QED using the Dirac-spinor and 4-vector valued, external sources η, η̄ and
J ,

Z[η, η̄, J ] =

∫
DΨDΨ̄DAδ[G[A]] eiS[Ψ̄,Ψ,A]+

∫
d4x (Ψ̄η+η̄Ψ+JµAµ),

W [η, η̄, J ] = lnZ[η, η̄, J ]. (6.44)

As before expectation values may be calculated very conveniently by differ-
entiating W with respect to η, η̄ and J ,

〈Ô[Ψ̄,Ψ, A]〉 = O[−δη, δη̄, δJ ]W [η, η̄, J ]
∣∣∣
η=η̄=J=0

. (6.45)

As usual we complete the square in the exponent of the generating functional
and shift variables to obtain

Z[η, η̄, J ] = eiSint[−δη ,δη̄ ,δJ ]Z0[η, η̄, J ],

Z0[η, η̄, J ] = Z0 e
∫
d4xd4x′ (η̄(x)S(x−x′)η(x′)+ 1

2
Jµ(x)Dµν(x−x′)Jν(x′)),

Z0 =

∫
DΨDΨ̄DAδ[G[A]] eiSA[A]+iSΨ[Ψ̄,Ψ] ≡ 1, (6.46)

where we have scaled the functional integral measure such that the partition
function of the non-interacting theory is equal to unity, Z0[0, 0, 0] = Z0 = 1.

From eqs. (6.45) and (6.46) we may write the electron and photon prop-
agators, S and D, of the full theory as

S(xf − xi) = −δη̄(xf )δη(xi)W [η, η̄, J ]
∣∣∣
η=η̄=J=0

= S(xf − xi) +
1

Z[η, η̄, J ]
eiSint[−δη ,δη̄ ,δJ ]

·
∫
d4xS(xf − x)η(x)

∫
d4y η̄(y)S(y − xi) · Z0[η, η̄, J ]

∣∣∣
η=η̄=J=0

,
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Dµν(xf − xi) = δJµ(xf )δJν(xi)W [η, η̄, J ]
∣∣∣
η=η̄=J=0

= Dµν(xf − xi) +
1

Z[η, η̄, J ]
eiSint[−δη ,δη̄ ,δJ ]

·
∫
d4xDµα(xf − x)Jα(x)

∫
d4y Jβ(y)Dβν(y − xi) · Z0[η, η̄, J ]

∣∣∣
η=η̄=J=0

.

(6.47)

From these expressions it is apparent that indeed the electron and photon
propagators of the non-interacting theory, where Sint = 0, are simply given
by S and D in the exponent of the generating functional,

S(xf − xi)
∣∣∣
Sint=0

= S(xf − xi),

D(xf − xi)
∣∣∣
Sint=0

= Dµν(xf − xi). (6.48)

Let us now define the self energy Σ of the electron and the vacuum polariza-
tion Π of the photon in the following way:

S−1(x− y) = S−1(x− y)− iΣ(x− y),

(D−1)µν(x− y) = (D−1)µν(x− y)− iΠµν(x− y). (6.49)

The quantities Σ and Π capture the effect of self interaction of the electron
and photon, respectively, that we had mentioned above. One should keep
in mind that the presence of an external potential would most likely destroy
the translational invariance of S, D, Σ and Π, i.e. S(x, y) 6= S(x − y), etc.
Performing a Fourier transform in eqs. (6.49) and inverting yields the very
useful expressions

S(x) =
1

i

∫
d4p

(2π)4

eipx

/p+m− Σ(p)− i0+
,

Dµν(x) =

∫
d4k

(2π)4

eikx

(D̃−1)µν(k)− iΠµν(k)
, (6.50)

with the Fourier transformed expressions

Σ(p) =

∫
d4x e−ipxΣ(x), Π(k) =

∫
d4x e−ikxΠ(x). (6.51)

The exact form of D is specific to choice of gauge of course. E.g. in the case
of Coulomb gauge, we obtain

D00(x) = i

∫
d4k

(2π)4

ei
~k~x

~k2 + Π00(k)
,
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Dij(x) =
1

i

∫
d4k

(2π)4

(
δi
l − kik

l

~k2

)
ei
~k~x

k2ηlj − Πlj(k)− i0+
, (6.52)

while in Lorenz gauge we have

Dµν(x) =
1

i

∫
d4k

(2π)4

(
δµ
ρ − kµk

ρ

k2

)
ei
~k~x

k2ηρν − Πρν(k)− i0+
. (6.53)

Finally, in Feynman gauge we have

Dµν(x) =
1

i

∫
d4k

(2π)4

ei
~k~x

k2ηµν − Πµν(k)− i0+
. (6.54)

Further we may expand eqs. (6.49) in a geometric series for S and D,

Sfi = Sfi +

∫
a,b

SfaiΣabSbi +

∫
a,b,c,d

SfaiΣabSbciΣcdSdi + . . . ,

Dµν,fi = Dµν,fi +

∫
a,b

Dµρ,faiΠ
ρσ
abDσν,bi

+

∫
a,b,c,d

Dµρ,faiΠ
ρσ
abDσα,bciΠ

αβ
cd Dβν,di + . . . , (6.55)

where
∫
a,b,...

=
∫
d4ad4b . . . and Σab = Σ(a− b), etc. In order to calculate the

O(α5) corrections to the hydrogen energy levels we have to consider the O(α)
contributions to Σ and Π. From eqs. (6.47) we may infer the expressions,

Σ(x− y) = ie2γµS(x− y)Dµν(x− y)γν

− δHΨ(x)δ4(x− y) +O(α2),

Πµν(x− y) = −ie2 Tr[S(x− y)γµS(y − x)γν ]

− δHµν
A (x)δ4(x− y) +O(α2). (6.56)

6.1.5 The quantum action

The field theoretic formalism developed in subsections 6.1.1 to 6.1.4 is very
powerful but in the context of a bound state we can go even further with the
quantum action formalism.

The Legendre transform Γ of the connected generating functional W de-
fined in eq. (6.44) is called the quantum action or effective action,

iΓ[Ω, Ω̄, B] = W [η, η̄, J ]−
∫
d4x

(
Ω̄[η]η + η̄Ω[η̄] + JµBµ[J ]

)
. (6.57)
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The functionals W and Γ satisfy the relations

δη̄W = Ω, iδΩΓ = η̄,

δηW = −Ω̄, iδΩ̄Γ = −η,
δJW = B, iδBΓ = −J. (6.58)

The equations in the right row are called the quantum equations of motion
for the fields Ω̄, Ω and B. The meaning of these variables can be elucidated
by considering eq. (6.45),

Ω[η̄] = 〈Ψ〉η̄, Ω̄[η] = 〈Ψ̄〉η, B = 〈A〉J . (6.59)

Thus the functionals (Ω, Ω̄, B) correspond to the expectation values of the
fields (Ψ, Ψ̄, A), i.e. their classical values in the presence of non-vanishing
sources (η, η̄, J).

Let us now expand the quantum action Γ in terms of the fields (Ω, Ω̄, B)
and only keep the first few terms,

Γ[Ω, Ω̄, B] =

∫
d4xd4y Ω̄(x)

δ2Γ

δΩ(y)δΩ̄(x)
Ω(y)

+
1

2

∫
d4xd4y Bµ(x)

δ2Γ

δBµ(x)δBν(y)
Bν(y)

+

∫
d4xd4yd4z Ω̄(x)

δ3Γ

δΩ(y)δΩ̄(x)δBµ(z)
Ω(y)Bµ(z) + . . . .

(6.60)

Higher orders in the expansion will not be needed in the rest of this work.
Obviously the quantum action Γ is gauge invariant just like W and hence not
all combinations of Ω, Ω̄ and B can arise in the expansion. Also from the non-
interacting theory one easily finds that Γ[0, 0, 0] = 0. From differentiations of
the relations (6.58), taking care of the anti-commutativity of the Grassman-
valued fields, we obtain

δ4(x− y) = δΩ(x)Ω(y) = δΩ(x)δη̄(y)W

=

∫
d4z [δΩ(x)η(z)] [δη(z)δη̄(y)W ]

=

∫
d4z [δΩ(x)δΩ̄(z)iΓ] [δη̄(y)δη(z)W ],

δµνδ
4(x− y) = δBµ(x)Bν(y) = δBµ(x)δJν(y)W

=

∫
d4z [δBµ(x)J

ρ(z)] [δJρ(z)δJν(y)W ]
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= −
∫
d4z [δBµ(x)δBρ(z)iΓ] [δJρ(z)δJν(y)W ]. (6.61)

Hence, according to eqs. (6.47), we obtain for vanishing sources, η = η̄ =
J = 0,

δ2Γ

δΩ̄(x)δΩ(y)
= iS−1(x− y),

δ2Γ

δBµ(x)δBν(y)
= i(D−1)µν(x− y). (6.62)

Similarly the remaining coefficient in eq. (6.60) may be calculated as follows:

0 = δBµ(w)δ
4(x− y)

= δBµ(w)

∫
d4z [δΩ(x)δΩ̄(z)iΓ] [δη̄(y)δη(z)W ]

=

∫
d4z [δΩ(x)δΩ̄(z)δBµ(w)iΓ] [δη̄(y)δη(z)W ]

−
∫
d4zd4v [δBµ(w)δBν(v)iΓ] [δΩ(x)δΩ̄(z)iΓ] [δJν(v)δη̄(y)δη(z)W ]. (6.63)

Again setting η = η̄ = J = 0, we define the 3-point vertex function V3 as

−eVµ3 (x, y, z) = δΩ(y)δΩ̄(x)δBµ(z)Γ

= i

∫
d4ud4vd4w S−1(y − u)(D−1)µν(z − v)

· [δJν(v)δη̄(u)δη(w)W ]S−1(w − x). (6.64)

Inserting these results into eq. (6.60) for the quantum action yields

Γ[Ω, Ω̄, B] =

∫
d4xd4y

[
Ω̄(x)

(
iS−1(x− y)− (eV3B)(x, y)

)
Ω(y)

+
i

2
Bµ(x)(D−1)µν(x− y)Bν(y)

]
, (6.65)

where

(eV3B)(x, y) =

∫
d4z eVµ3 (x, y, z)Bµ(z). (6.66)

Using the relations (6.58) we may derive from Γ the quantum equations of
motion for the fields Ω and B ,

δΩ̄Γ = 0, δBΓ = 0, (6.67)

which yields∫
d4y iS−1(x− y)Ω(y) =

∫
d4y (eV3B)(x, y)Ω(y),
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d4y i(D−1)µν(x− y)Bν(y) =

∫
d4yd4z Ω̄(y)eV3(y, z, x)Ω(z). (6.68)

Analogous to eqs. (6.56) we expand the 3-point vertex function to first order
in α,

Vµ3 (x, y, z) = γµδ4(x− z)δ4(y − z) + δVµ3 (x, y, z),

δVµ3 (x, y, z) = δeγ
µδ4(x− z)δ4(y − z)

− e2γαS(x− z)γµS(z − y)γβDαβ(x− y) +O(α2), (6.69)

where we have assumed that δe = Ze − 1 = O(α). It will be helpful to use
eqs. (6.49) and (6.69) to write the quantum action in the form

Γ[Ω, Ω̄, B] =

∫
d4x

(
Ω̄
[
−HΨ − e /B

]
Ω− 1

2
BµHµν

A Bν

)
+

∫
d4xd4y

(
Ω̄(x) [Σ(x− y)− (δV3eB)(x, y)] Ω(y)

+
1

2
Bµ(x)Πµν(x− y)Bν(y)

)
. (6.70)

Apparently the first two lines of eq. (6.70) are just equal to the classical
action like in eq. (6.36). Similarly the quantum equations of motion (6.68)
may be rewritten as

[
HΨ + e /B(x)

]
Ω(x) =

∫
d4y [Σ(x− y)− (δV3eB)(x, y)] Ω(y),

Hµν
A Bν(x) =

∫
d4yΠµν(x− y)Bν(y)

−
∫
d4yd4z Ω̄(y)eV3(y, z, x)Ω(z). (6.71)

Now we have reached a good starting point for the calculation of radiative
corrections to the relativistic energy levels.

6.2 The quantum equations of motion for the

hydrogen atom

In this section we apply the quantum action formalism elaborated in the
previous section to the case of the hydrogen atom. The calculation of the
corrections to the hydrogen energy levels is performed in section 6.3.
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We will rename the electron and photon fields from the previous section,
(Ω, Ω̄, B), back to their original names,

(Ω, Ω̄, B)→ (Ψ, Ψ̄, A). (6.72)

Keep in mind, however, that their meaning has changed from the quantum
fields in subsection 6.1.4 to their expectation values as in subsection 6.1.5.
Further we will regard the photon field A as a pure background field, while
the dynamical quantum part of A is to be considered in the self energy Σ of
the electron.

The quantum equation of motion for an electron in an external photon
field A as given in eq. (6.71) is a Dirac equation for Ψ that includes radiative
corrections,[
−i/∂ +m+ e /A(x)

]
Ψ(x) =

∫
d4y [Σ(x− y)− (δV3eA)(x, y)] Ψ(y). (6.73)

The correction terms on the right-hand side of this equation comprise a
variety of contributions which are collectively denoted as Lamb shift and the
major part of which is due to the modified self energy of the electron in the
hydrogen atom as compared to a free electron.

In this chapter we will calculate the order α5 corrections to the energy
levels. In order to do this we have to discriminate photons of different wave-
lengths against each other. Hard photons, with momenta of the order of the
rest mass m, are important only in the immediate vicinity of the proton, i.e.
over distance scales ∼ m−1. They contribute only to high energy processes
which are encountered e.g. in the Uehling potential. The coulombic part of
the proton potential is generated by soft photons with momenta of the order
of the electron momentum, mα. Their wavelengths are of the order of the
atomic size, ∼ (mα)−1. Their contributions to the vacuum polarization are
derived in appendix A in the limit of small photon momenta since mα� m.
However, there is another energy scale to cover, the ultra soft (US) scale,
consisting of photons with momenta of the order of the binding energy, mα2.
Those photons do not contribute to the Coulomb potential but to a shift of
the energy levels. Will we introduce an ultra soft cutoff K, which satisfies

mα2 � K ∼ mα� m (6.74)

to separate the ultra soft from the soft contributions. It is important to realize
that this procedure breaks Lorentz covariance. In the following when we
speak of soft and ultra soft photon momenta or non-relativistic electrons we
refer to the CMS. Throughout the whole chapter we will perform calculations
for ultra soft and soft photons separately.
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6.2.1 The photon field

Let us apply the above mentioned separation to the photon field A by dividing
A into two parts,

A = A> + A<, (6.75)

where A> contains only contributions from soft photons (momentum k & K)
and A< those from ultra soft photons (k � K). The ultra soft part is simply
taken as a free photon field whereas the soft part yields the background
potential of the proton. A> is taken to be the solution to the second line of
eq. (6.68), where the right-hand side is set to be the 4-current of a proton
at rest in the origin,∫

d4y (D−1)µν(x− y)A>ν (y) = −iJν(x), Jν = eδν0δ
3(~x). (6.76)

Let us choose the Coulomb gauge, ~∇ ~A> = 0, and use eqs. (6.32) and (6.52)
to write down the solution to this equation,

eA>µ (x) = −ie
∫
d4yDµν(x− y)Jν(y) = ηµ0e

2

∫
d3k

(2π)3

ei
~k~x

~k2 + Π00(0, ~k)

= ηµ0
α

r
+ eδA>µ (x),

eδA>µ (x) ≈ −ηµ0e
2

∫
d3k

(2π)3

ei
~k~x

~k4
Π00(0, ~k). (6.77)

In the modification eδA> to the Coulomb potential we have kept the first non-
trivial term of the geometric series (6.55) since it contributes to the O(α5)-
corrections to the energy levels. The vacuum polarization Π is calculated in
A.1 to the first order in α for soft photon momenta, k2 � m2. eδA> is then
obtained from eq. A.15 as

eδA>µ (x) = ηµ0e
2

∫
d3k

(2π)3

ei
~k~x

~k2
Π(0, ~k)

= ηµ0
4α2

15m2
δ3(~x). (6.78)

We will solve eq. (6.73) with the Coulomb part of A> and treat the correction
term δA> as well as the ultra soft field A< as a perturbation. The ultra soft
contributions then appear to lowest order only in the electron self energy and
not in the three point vertex function,

(δV3eA) = δV>3 eA>, Σ = Σ> + Σ<. (6.79)
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Correspondingly the soft field contains the Coulomb potential and correc-
tions to it, while the soft vertex function contains corrections to the way the
electron interacts with the potential. The complete contribution of the ultra
soft field, however, is accounted for in the ultra soft self energy Σ<.

In the following we will consider the electron field Ψ to be the exact
solution to the equation[

−i/∂ +m− γ0α

r

]
Ψ(x) = 0, (6.80)

while the remaining terms in eq. (6.73) are included in a perturbation Hamil-
tonian Ĥ(1),

Ĥ(1)Ψ(x) = eδ /A
>

(x)Ψ(x)−
∫
d4y [Σ(x− y)− (δV>3 eA>)(x, y)] Ψ(y).

(6.81)

The solutions to eq. (6.80) are of course the ones derived in chapter 4,
while the radiative corrections to the Dirac energy levels are given by the
expectation value of the perturbation Hamiltonian Ĥ(1).

6.2.2 The soft vertex function

Let us write down the Fourier transform of δV3eA,

(δV3eA)(x, y) =

∫
d4p

(2π)4

d4p′

(2π)4
eipx−ip

′yδVµ3 (p, p′)eÃµ(p′ − p), (6.82)

with the momentum space expression in Feynman gauge,

δVµ3 (p, p′) = ie2

∫
d4l

(2π)4

γνS̃(p′ + l)γµS̃(p+ l)γν

l2 +m2
γ − i0+

+ δeγ
µ +O(α2). (6.83)

The correction to the vertex function is given in appendix A.2 in the limit of
small photon momenta as

δVµ3 (p, p′) = γµ
α

3π

q2

m2

(
ln
mγ

m
+

3

8

)
− α

2π

iSµνqν
m

, q = p′ − p, (6.84)

This expression includes contributions from all scales. We have to exclude
the ultra soft photons, however, since these are to be considered in the ultra
soft self energy Σ< only. Thus we have to calculate the first order correction
to the vertex function, δV<3 , from eq. (6.83) by inserting the ultra soft cutoff
K and using free electron propagators,

ūs′(~p
′)δV<µ3 (p, p′)us(~p)
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= δ<e ūs′(~p
′)γµus(~p)− ie2

∫
K

d4l

(2π)4

·
ūs′(~p

′)γν
(
/p′ + /l −m

)
γµ
(
/p+ /l −m

)
γνus(~p)

((p′ + l)2 +m2 − i0+) ((p+ l)2 +m2 − i0+)
(
l2 +m2

γ − i0+
)

≈ δ<e ūs′(~p
′)γµus(~p)

− ie2

∫
K

d4l

(2π)4

4pp′ūs′(~p
′)γµus(~p)

(2p′l − i0+) (2pl − i0+)
(
l2 +m2

γ − i0+
)

= ūs′(~p
′)γµus(~p)

(
δ<e +

α

π
I(p, p′)

)
, (6.85)

where Z<
e = 1 + δ<e is the renormalization factor specific to the ultra soft

regime,

Ze = Z>
e + Z<

e . (6.86)

In going to the second line of eq. (6.85) we have neglected /l against m in the
numerator and l2 against pl and p′l in the denominator. We calculate δV<3
for non-relativistic electrons, i.e. in the CMS we have

p = E

(
1
~v

)
, p′ = E ′

(
1
~v ′

)
, q = p′ − p ≈ E

(
0

~v ′ − ~v

)
, (6.87)

where

E ′ ≈ E =
m√

1− v2
, ~v2 ≈ ~v ′2 = v2, ~v~v ′ ≈ v2 cos θ. (6.88)

To calculate the integral I we perform the l0-integration in the complex plane,
closing the contour above the real axis. Further we write

l = |~l|, l̂ =
~l

l
, El =

√
l2 +m2

γ, (6.89)

so that

I(p, p′) =
p′p

E2

K∫
0

dl l2

E3
l

∫
dΩ

4π

1

1− ~v~l/El
1

1− ~v ′~l/El

=
p′p

E2

K∫
0

dl l2

E3
l

1∫
0

dx

1∫
−1

d cosϑ

2(1− (l/El)|x~v + (1− x)~v ′| cosϑ)2

=
p′p

E2

K∫
0

dl l2

E3
l

1∫
0

dx

1− (l/El)2(x~v + (1− x)~v ′)2
. (6.90)
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For non-relativistic electrons (in the CMS) we have v � 1 and may expand
I(p′, p) to linear order in v2, using q2 ≈ 4m2v2 sin2 θ/2,

I(p′, p) = −
K∫

0

dl l2

E3
l

(1− v2 cos θ)

1∫
0

dx

(
1 +

l2

E2
l

(x~v + (1− x)~v ′)2

)

≈ −
K∫

0

dl l2

E3
l

(
1− v2 +

q2

2m2
+

l2

E2
l

(
v2 − q2

6m2

))

= −
[(

arsinh
K
mγ

− 1

)(
1− v2 +

q2

2m2

)
+

(
arsinh

K
mγ

− 4

3

)(
v2 − q2

6m2

)]
≈ −

[
q2

3m2

(
ln

2K
mγ

− 5

6

)
− v2

3
− 1 + ln

2K
mγ

]
. (6.91)

The definition of the electron charge,

ūs′(~p
′)δV<µ3 ūs(~p)

∣∣∣∣∣ p2 = p′2 = −m2

q2 = 0

= 0, (6.92)

enforces

Z<
e = Z<

Ψ = 1− α

π

[
v2

3
+ 1− ln

2K
mγ

]
. (6.93)

It appears worrisome that the velocity v2 appears in the counter term since
it will become −∆/m2 in position space. In order to check that this term can
indeed be absorbed into a counter-term, we have to inspect the derivative
of the ultra soft self energy, ∂/pΣ

<. So far, however, the soft vertex function
reads

δV>3 = δV3 − δV<3 = γµ
α

3π

q2

m2

(
ln

2K
m
− 11

24

)
− α

2π

iSµνqν
m

. (6.94)

Thus we are able write down the first part of the perturbation Hamiltonian
(6.81) explicitly,

Ĥ(1)Ψ(x) = γ0

[
4α2

3m2

(
ln

m

2K
+

31

120

)
δ3(~x)− iα2

4πm

~γ~x

r3

]
Ψ(x)+

+

∫
d4yΣ(x− y)Ψ(y). (6.95)
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6.2.3 Renormalization of the free ultra soft self energy

In this subsection we check that the renormalization of the free ultra soft self
energy is consistent with the result (6.93) for the soft vertex function. Let
us write the self energy of a free electron in terms of its Fourier transform,

Σfree(x− y) =

∫
d4p

(2π)4
eip(x−y)Σfree(p), (6.96)

with the momentum space expression in Feynman gauge,

Σfree(p) = e2

∫
d4l

(2π)4

γµS̃(/p+ /l)γµ

l2 +m2
γ − i0+

− δΨ/p− δmm+O(α2). (6.97)

The self energy is renormalized such that it vanishes for a free electron, and
that the residue of the free electron propagator is one,

ūs(~p)Σfree(p)us(~p) = 0, ūs(~p)∂/pΣfree(p)us(~p) = 0. (6.98)

These are the two conditions which constrain ZΨ and Zm. We make the
separation Zi = Z>

i + Z<
i again. The electron propagator in eq. (6.97) is

substituted by a free propagator, so that

ūs(~p)[Σ
<
free(/p) + δ<m − δ<Ψ]us(~p)

= −ie2

∫
d4l

(2π)4

ūs(~p)γµ
(
−/p− /l +m

)
γµus(~p)

(l2 +m2
γ − i0+)((p+ l)2 +m2 − i0+)

≈ ie2mūs(~p)us(~p)

∫
d4l

(2π)4

1

(l2 +m2
γ − i0+)(pl − i0+)

= e2mūs(~p)us(~p)

∫
d3l

(2π)32E2
l

1

E − ~v~l/El

=
mα

πE
ūs(~p)us(~p)

K∫
0

dl l2

E2
l

1

−2vl/El
ln

1− vl/El
1 + vl/El

≈ α

π
ūs(~p)us(~p)

(
1− v2

2

) K∫
0

dl l2

E2
l

(
1 +

v2

3

l2

E2
l

)
. (6.99)

In the limit of mγ → 0 we have

K∫
0

dl l2

E2
l

= K −
K∫

0

dl m2
γ

E2
l

→ K,
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K∫
0

dl l4

E4
l

=

K∫
0

dl

(
1−

2m2
γ

E2
l

+
m4
γ

E4
l

)
→ K−

m3
γ

2
∂mγ

arctan l
mγ

mγ

→ K,

so that we obtain a condition for the Z-factors,

Z<
m − Z<

Ψ =
αK
π

(
1− v2

6

)
. (6.100)

Let us now check our result from subsection 6.2.2 on Z<
e = Z<

Ψ by calculating
the derivative of Σ<

free,

ūs(~p)[∂/pΣ
<
free(/p) + Z<

Ψ − 1]us(~p)

= −ie2ūs(~p)

[
∂/p

∫
d4l

(2π)4

1

(l2 +m2
γ − i0+)

γµ
1

/p+ /l +m− i0+
γµ

]
us(~p).

(6.101)

In order to calculate the derivative with respect to /p we note that

∂/p = (γµ)−1∂pµ = −γµ∂pµ (6.102)

and hence

∂/pγ
µ 1

/p+ A
γµ = γαγµ

1

/p+ A
γα

1

/p+ A
γµ. (6.103)

For the present case we thus obtain

ūs(~p)[∂/pΣ
<
free(/p) + δ<Ψ]us(~p) = −ie2

∫
d4l

(2π)4

ūs(~p)us(~p)

(l2 +m2
γ − i0+)

m2

(pl − i0+)2
,

(6.104)

which can be calculated using

K∫
0

dl l2

E3
l

= arsinh
K
mγ

− 1→ ln
2K
mγ

− 1,

K∫
0

dl l2m2
γ

E5
l

=
1

3
. (6.105)

According to eq. (6.98) we then obtain

Z<
e = Z<

Ψ = 1− α

π

(
v2

3
+ 1− ln

2K
mγ

)
, (6.106)

in agreement with eq. (6.93).
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6.3 Calculation of the energy corrections

Now we will calculate the radiative corrections to the energy levels. One
should note that to the order α5 only the Schrödinger energy levels enter the
calculation. For the same reason we will often times approximate the Dirac
wave function by the non-relativistic Schrödinger pendant.

6.3.1 The energy corrections

The shift of the energy levels caused by the perturbation Hamiltonian (6.81)
is given by

δEnk =
1

T

∫
d4x Ψ̄nkm(x)Ĥ(1)Ψnkm(x), (6.107)

where T is the temporal extent of the integration range. In previous chapters
we have simply calculated the energy levels and afterwards presented them
like in eqs. (2.56) and (4.69) as measured relative to the ground state. In
QFT, however, we will on several occasions encounter intermediate results
containing divergent terms. Those unphysical contributions may be absorbed
into the Z-factors in eqs. (6.83) and (6.97) by specifying renormalization
conditions on Σ, ∂/pΣ and δV3. Additionally, we have introduced the arbitrary
cutoff K so we can not make sense of the direct result of eq. (6.107). In
any case, however, the unphysical, arbitrary terms cancel out whenever a
measurable quantity is calculated. E.g. Bethe (1947) derived a physical
result from eq. (6.107) by simply calculating the difference δEnk − δEfree,
where δEfree is the energy shift of a free electron that follows from eq. (6.107).
In the following we will therefore calculate the quantity

∆Enk = δEnk − δE1,−1 (6.108)

so we save ourselves a lot of trouble by directly canceling out the Z-factors,
the K-dependent terms and a lot of other terms that we otherwise would
have to carry through the calculation.

Inserting eq. (6.81) into eq. (6.108) yields

T∆Enk =

∫
d4x
[
Ψ̄nkm(x)eδ /A

>
(x)Ψnkm(x)− Ψ̄1,−1,0(x)eδ /A

>
(x)Ψ1,−1,0(x)

]
−
∫
d4xd4y

[
Ψ̄nkm(x)Σ(x− y)Ψnkm(y)− Ψ̄1,−1,0(x)Σ(x− y)Ψ1,−1,0(y)

]
+

∫
d4xd4y

[
Ψ̄nkm(x)(δV>3 eA>)(x, y)Ψnkm(y)
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− Ψ̄1,−1,0(x)(δV>3 eA>)(x, y)Ψ1,−1,0(y)
]
. (6.109)

In order to calculate the main part of the Lamb shift we need to consider eq.
(6.97) where S = Sc represents an electron propagator in the Coulomb field.
We separate Σ into soft and ultra soft parts again,

Σ = Σ> + Σ<. (6.110)

However, soft and hard photons do not feel the binding of the electron in the
hydrogen atom so the electron looks nearly free at these energies and

∫
Ψ̄ΣΨ

changes only negligibly for the different bound state levels. We may thus
approximate∫ [

Ψ̄nkmΣΨnkm − Ψ̄1,−1,0ΣΨ1,−1,0

]
≈
∫ [

Ψ̄nkmΣ<Ψnkm − Ψ̄1,−1,0Σ<Ψ1,−1,0

]
.

(6.111)

The remaining self energy comprises only ultra soft contributions, or more
specifically,

Σ<(x− y) = ie2γµ∆<
µν(x− y)Sc(x− y)γν , (6.112)

∆<
µν(x− y) = ηµν

∫
K
d̃q e−i|~q||y

0−x0|+i~q(~y−~x), (6.113)

Sc(x− y) = sgn(x0 − y0)
∑
n′k′m′

Ψ
(±)
n′k′m′(~x)Ψ̄

(±)
n′k′m′(~y) e−iEn′k′ |x

0−y0|

+ (continuum states), (6.114)

where we have employed Feynman gauge in the photon propagator. Substi-
tuting the propagators (6.113) and (6.114) into the self energy (6.112) yields

Σ<(x− y) = i sgn(x0 − y0)
α

π

∑
n′k′m′

K∫
0

dq q dΩ

4π
·

· γµΨn′k′m′(~x)Ψ̄n′k′m′(~y)γµei~q(~x−~y)−i(En′k′+q)|x0−y0|, (6.115)

where q = |~q| and the sum
∑

n′k′m′ is understood to include continuum states.
This result is to be inserted into eqs. (6.95) and (6.109).

6.3.2 Soft contributions

Let us separate the energy shift into two parts,

δEnk = δES
nk + δEUS

nk , (6.116)
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due to soft (S) and ultra soft photons (US). According to eq. (6.95), we have

δES
nk =

∫
d3xΨ†nkm(~x)

[
4α2

3m2

(
ln

m

2K
+

31

120

)
δ3(~x)− iα2

4πm

~γ~x

r3

]
Ψnkm(~x)

=
4α2

3m2

(
ln

m

2K
+

31

120

)
|Ψnkm(~o)|2

− iα2

4πm

∫
d3xΨ†nkm(~x)

~γ~x

r3
Ψnkm(~x). (6.117)

To order α5, only the lowest order parts of |Ψ|2 contribute. According to the
results of section 4.4 this leaves only us with

|Ψnkm(~o)|2 ≈ lim
r→0

∣∣∣∣u−n,−1(r)

r

∣∣∣∣2 δk,−1 =
C3
n,−1

πn2
(L1

n−1(0))2δk,−1

=
C3
n,−1

π
δk,−1 ≈

m3α3

πn3
δk,−1, (6.118)

where, of course, it is more common to write δk,−1 = δl,0. The first part of
δES

nk is thus obtained as

4mα5

3πn3

(
ln

m

2K
+

31

120

)
δl,0. (6.119)

Let us now turn to the second part of eq. (6.117),

− iα2

4πm

∫
d3xΨ†

~γ~x

r3
Ψ = − iα2

4πm

∫
d3x

[
ϕ†
~σ~x

r3
χ− χ†~σ~x

r3
ϕ

]
= − α2

8πm2

∫
d3x

[
ϕ†
~σ~x

r3
~σ~∇ϕ+ (~σ~∇ϕ)†

~σ~x

r3
ϕ

]
=

α2

8πm2

∫
d3xϕ†

[
~σ~∇, ~σ~x

r3

]
ϕ, (6.120)

where we have used eq. (4.43) to write χ ≈ −i~σ~∇ϕ/(2m) in the second line
and performed a partial integration in the third line. The commutator may
be written as [

~σ~∇, ~σ~x
r3

]
= 4πδ3(~x) +

2(K − 1)

r3
, (6.121)

where K = 1 + 2~S~L = ~J2 − ~L2 − ~S2 as in chapter 4. Again we approximate
the Dirac wave function by its Schrödinger equivalent so that the result of
eq. (6.120) becomes

mα5

2πn3

(
δl,0 − (1− δl,0)

1 + k

l(l + 1)(2l + 1)

)
. (6.122)
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The last term is not present for l = 0, i.e. k = −1. Thus we may write this
expression most conveniently as

− mα5

2πn3(2l + 1)k
. (6.123)

Taking eqs. (6.119) and (6.123) together, we obtain

δES
nlk =

4mα5

3πn3

(
ln

m

2K
+

31

120

)
δl,0 −

mα5

2πn3(2l + 1)k

=
mα5

πn3

[(
4

3
ln

m

2K
+

31

90

)
δl,0 −

1

2k(2l + 1)

]
. (6.124)

Despite the fact that soft contributions to the Lamb shift are rather small,
they are still very important from the theoretical side because they allows
us to eliminate the arbitrary parameter K in combination with the ultra soft
contributions.

6.3.3 Ultra soft contributions

The largest fraction of the Lamb shift originates from the ultra soft self energy
(6.115) which we are now going to calculate. Since we aim to calculate the
difference ∆Enk = δEnk − δE1,−1 we will drop any contributions occuring in
the calculation that do not depend on the hydrogen quantum numbers n, k,
m. The ultra soft contribution to the energy levels reads

δEUS
nk =

α

π

∑
n′k′m′

K∫
0

dq q dΩ

4π
|In′k′m′nkm |2

(
1

En + E ′n + q
+

1

En − E ′n − q

)
,

(6.125)

(Iµ)n
′k′m′

nkm =

∫
d3x Ψ̄n′k′m′(~x)γµei~q~xΨnkm(~x). (6.126)

Keep in mind, however, that the sum
∑

n′k′m′ also includes continuum states.
Let us abbreviate I = In

′k′m′

nkm , Ψ = Ψnkm, Ψ′ = Ψn′k′m′ and separate I into a
transverse and a longitudinal (and temporal) part,

|I|2 = |I‖|2 + |I⊥|2, (6.127)

where

|I‖|2 = −|I0|2 + |~I~q|2/q2, |I⊥|2 = |(1− ~q ⊗ ~q/q2)~I|2. (6.128)
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The first term in brackets in eq. (6.125) is approximately 1/(2m) and there-
fore we make only a small error be writing∑

n′k′m′

|I|2

En + E ′n + q
≈
∑
n′k′m′

∫
d3xd3y

Ψ̄(~y)γµΨ′(~y)ei~q(~x−~y)Ψ̄′(~x)γµΨ(~x)

2m

≈
∫
d3xd3y

Ψ̄(~x)γµγ
0δ3(~x− ~y)γµΨ(~y)

2m
=

1

m
. (6.129)

Hence this part approximately cancels out in the difference (6.108) and may
be dropped. Next let us look at the longitudinal part of I in the remaining
part of eq. (6.125),

|I‖|2

En − E ′n − q
=
−q2|

∫
d3xΨ′†ei~q~xΨ|2 + |

∫
d3xΨ′†γ0~γ~q ei~q~xΨ|2

q2(En − E ′n − q)
. (6.130)

Using (
−iγ0~γ ~∇+ γ0m− α

r

)
Ψn(~x) = EnΨn(~x) (6.131)

we may rewrite the second term as∣∣∣∣∫ d3xΨ′†
[
−iγ0~γ ~∇+ γ0m− α

r
, ei~q~x

]
Ψ

∣∣∣∣2 = (En − En′)2

∣∣∣∣∫ d3xΨ′†ei~q~xΨ

∣∣∣∣2 .
(6.132)

The longitudinal part thus reads

|I‖|2

En − E ′n − q
=
En − E ′n + q

q2

∣∣∣∣∫ d3xΨ′†ei~q~xΨ

∣∣∣∣2 . (6.133)

Since the wave function is exponentially damped by a factor of the order mα,
while the phase factor of the ultra soft photon varies with angular velocity
q ∼ mα2, we may use the dipole approximation and set ei~q~x ≈ 1. Then by
the orthonormality of the wave functions,∫

d3xΨ′†Ψ = δnn′δkk′δmm′ ⇒
∑
n′k′m′

|I‖|2

En − E ′n − q
≈ 1

q
. (6.134)

Thus we may also drop the longitudinal part since it only gives a constant
contribution. Let us turn to the transverse part. We may again use the
dipole approximation and perform the spherical integral to obtain∫

dΩ

4π
|I⊥|2 =

2

3

∣∣∣∣∫ d3x Ψ̄′~γΨ

∣∣∣∣2 =
2

3
|~I|2. (6.135)
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Again we make use of the dipole approximation so that the energy shift reads

δEUS
nk =

2α

3π

∑
n′,k′,m′

|~I|2
(
−K + (En′ − En) ln

K
|En − En′ |

)
, (6.136)

where we have used that K � |En − En′ |. Let us consider the first term on
the right-hand side. The sum over the squared integral reads∑

n′,k′,m′

|~I|2 ≈
∑

n′,k′,m′

∫
d3xd3y Ψ̄(~y)~γΨ′(~y)Ψ̄′(~x)~γΨ(~x). (6.137)

Due to the negligible overlap we make only a small error by using complete-
ness relation to replace∑

n′,k′,m′

Ψ′(~y)Ψ′†(~x)→ δ3(~x− ~y). (6.138)

This replacement together with the orthonormality condition of the wave
functions yields a constant result for the first term in eq. (6.136) so it may
be dropped. We now want to combine our result for δES

nk from eq. (6.124)
with δEUS

nk in order to get rid of the arbitrary and unphysical scale K. For

this we need to calculate the quantity
∑
|~I|2(En′ −En). Using eq. (4.43) to

write χ ≈ −i~σ~∇ϕ/(2m), we may rewrite the overlap integral as

~I =

∫
d3x Ψ̄′~γΨ ≈

∫
d3x

ϕ′†{~σ,−i~σ~∇}ϕ
2m

=

∫
d3x

ϕ′†~∇ϕ
im

. (6.139)

Then we note that, to this order of accuracy, HSϕnkm = Enϕnkm, where HS =
−∆/(2m)− α/r is the relative-motion, stationary Schrödinger Hamiltonian
from eq. (3.16). With this knowledge, let us first inspect the quantity∑

n′,k′,m′

|~I|2(En′ − En) = − 1

2m2

∫
d3xϕ†

(
~∇
[
HS, ~∇

]
+
[
~∇, HS

]
~∇
)
ϕ

= − 1

2m2

∫
d3xϕ†

(
~∇
[
−α
r
, ~∇
]

+
[
~∇,−α

r

]
~∇
)
ϕ

=
2πα

m2
|ϕ(~o)|2 ≈ 2mα4

n3
δk,−1. (6.140)

In the second line we have performed a partial integration of one integral,
which gives us a minus sign, and then rewritten the factor En′ − En as HS

acting on ϕ. This allows us to make use of the completeness relation to take
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out ϕ′ and one integral. The resulting commutator simply yields a δ-function.
Consequently, to this order of accuracy, we have

δEUS
nk =

4mα5

3πn3
δl,0 lnK +

2α3

3π

∑
n′,k′,m′

|α−1~I|2(En′ − En) ln
1

|En − En′|
,

(6.141)

where we have regarded the fact that ~I = ~In
′k′m′

nkm , given in eq. (6.139), is of
the order α. First we observe that the logarithmic term containing K vanishes
for non-S-wave states and hence we may replace K with some arbitrary value
as, for example Ryd = mα2/2. But the dependence on K vanishes even for
l = 0 since combining eqs. (6.124) and (6.141) yields the total energy shift

δEnk =
4mα5

3πn3

[(
31

120
+ ln

1

α2

)
δl,0 −

3

8k(2l + 1)

]
+

2α3

3π

∑
n′,k′,m′

|α−1~I|2(En′ − En) ln
Ryd

|En − En′ |
. (6.142)

Following Bethe (1947) we now introduce the average of the logarithm in eq.
(6.142), the so called Bethe logarithm, via1

ln γ(n, l) =
n3

4

∑
n′,k′,m′

|α−1~In
′k′m′

nkm |2
(

1

n2
− 1

n′2

)
ln
|En − En′ |

Ryd
, (6.143)

which is independent of the magnetic quantum number m as we will show
in subsection 6.3.4. In this notation the fifth-order correction to the energy
levels reads

δEnk =
4mα5

3πn3

[(
31

120
+ ln

1

α2

)
δl,0 −

3

8k(2l + 1)
− ln γ(n, l)

]
. (6.144)

Thus the final values for the energy levels, relative to the ground state, in-
cluding the result of the Dirac theory (4.68) read

∆Enk = Ryd

[
1− 1

n2
+ α2

(
1

4
+

3

4n4
− 1

|k|n3

)
− 8α3

3π

(
19

30
+ ln

1

α2γ(n, l)

)
1Strictly speaking this can only be interpreted as an actual average in the case of

S-states, where may we rewrite eq. (6.143) as

ln γ(n, l) =

∑′ |α−1~I|2(E′ − E) ln |E−E
′|

Ryd∑′ |α−1~I|2(E′ − E)
.

For l 6= 0, however, the denominator in this expression would vanish.
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+
8α3

3πn3

((
31

120
+ ln

1

α2

)
δl,0 −

3

8k(2l + 1)
− ln γ(n, l)

)]
±O(α6).

(6.145)

6.3.4 Calculating the Bethe logarithm

Let us reformulate the overlap integral

~I =

∫
d3x

ϕ′†~∇ϕ
im

(6.146)

by writing −i~∇/m = [HS, ~r] and hence

~In
′k′m′

nkm = (En′ − En)Jn
′k′

nk
~Gk′m′

km ,

Jn
′k′

nk =

∞∫
0

dr r gn′k′(r)gnk(r),

~Gk′m′

km =

∫
dΩ Ω†k′m′~erΩkm. (6.147)

From eq. (4.91) we see that, to this order in α, J may be solely expressed by
the radial Schrödinger wave functions gSnl. Also from eq. (B.13) we see that
only allowed values are m′ = m, m±1 and l′ = l±1, or in terms of k and k′,

k′ = k ± 1, −k − 1± 1. (6.148)

Inserting this into the sum of the Bethe logarithm (6.143) yields

n′−1∑
k′=−n′

|k′|−1/2∑
m′=−|k′|+1/2

|~In′k′m′nkm |2 = (En′ − En)2

·

[
|Jn

′,l−1
nl |2

m+1∑
m′=m−1

(
|~Gl−1,m′

lm |2 + |~G−l,m
′

lm |2
)

+|Jn
′,l+1

nl |2
m+1∑

m′=m−1

(
|~Gl+1,m′

lm |2 + |~G−l−2,m′

lm |2
)]

. (6.149)

From eq. (B.13) we have ~G−l−2,m±1
lm = ~G−l−2,m

lm = 0 as well as

~Gl−1,m±1
lm = ±~e±

√
(l − 1

2
∓m)(l − 3

2
∓m)

√
2(2l − 1)

, ~Gl−1,m
lm = ~ez

√
(l − 1

2
)2 −m2

2l − 1
,
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~Gl+1,m±1
lm = ∓~e±

√
(l + 1

2
±m)(l + 3

2
±m)

√
2(2l + 1)

, ~Gl+1,m
lm = ~ez

√
(l + 1

2
)2 −m2

2l + 1
,

~G−l,m±1
lm = ~e±

√
2

√
l2 − (1

2
±m)2

(2l − 1)(2l + 1)
, ~G−l,mlm = ~ez

2m

(2l − 1)(2l + 1)
.

(6.150)

The sum in the Bethe logarithm thus becomes

∑
k′,m′

|~In′k′m′nkm |2 = (En′ − En)2 l|J
n′,l−1
nl |2 + (l + 1)|Jn

′,l+1
nl |2

2l + 1
(6.151)

so the complete Bethe logarithm (6.143) reads

ln γ(n, l) =
m2α2n3

16

∑
n′

l|Jn
′,l−1

nl |2 + (l + 1)|Jn
′,l+1

nl |2

2l + 1

·
(
En′ − En

Ryd

)3

ln
|En − En′ |

Ryd
, (6.152)

where we have to regard the fact that J is of the order (mα)−1. The major
contribution to eq. (6.152) comes from the continuum states. This expression
has to be evaluated numerically and a simple numerical calculation performed
by the author yields

ln γ(1, 0) = 2.985, δE1,−1 = 3.359 · 10−5 eV,

ln γ(2, 0) = 2.817, δE2,−1 = 4.293 · 10−6 eV. (6.153)

But already this crude result improves the results of the Dirac theory tremen-
dously. The shift of the ground state energy level δE1,−1 is by far the largest
and simply including this shift in eq. (6.145) and ignoring all other order
mα5-contributions reduces the relative deviation from experiment down to
∼ 3·10−8 i.e. two orders of magnitude for all non-S states. But even for the S
states this already reduces the deviation below 5 ·10−7. And also the shift for
the 2S state in eqs. (6.153) accounts for 1038 MHz of the 1057 MHz measured
for the 2S1/2-2P1/2 splitting by Lamb and Retherford (1947). Over the years
detailed calculations of the Bethe logarithm have been performed. In table
6.1 we present very accurate results from Drake and Swainson (1990) for the
states displayed in the previous tables. These values have also been used
to compute the energy levels corrected up to order α5 from eq. (6.145) in
table 6.2. Jentschura and Mohr (2005) have calculated the Bethe logarithm
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Table 6.1: Numerical results for the Bethe logarithm from Drake and Swain-
son (1990) for some of the lowest lying hydrogen states and the corresponding
fifth-order corrections from eq. (6.144).

State ln γ(n, l) δEnk (eV)
1S1/2 2.984128555765498 3.35940976992458 · 10−5

2S1/2 2.811769893120563 4.29589892444639 · 10−6

2P1/2 -0.030016708630213 −5.32544917436815 · 10−8

2P3/2 4.01908763410275 · 10−8

3S1/2 2.767663612491822 1.28018610080462 · 10−6

3P1/2 -0.038190229385312 −1.44212817216688 · 10−8

3P3/2 1.32662347478746 · 10−8

3D3/2 -0.005232148140883 −3.28393634350078 · 10−9

3D5/2 5.02231859736224 · 10−9

4S1/2 2.749811840454057 5.41329635333724 · 10−7

4P1/2 -0.041954894598086 −5.82013533143648 · 10−9

4P3/2 5.86053567915214 · 10−9

4D3/2 -0.006740938876975 −1.27966851564170 · 10−9

4D5/2 2.22453278753488 · 10−9

4F5/2 -0.001733661482126 −1.12999848892155 · 10−9

4F7/2 1.21501976498660 · 10−10

for states up to n ≤ 200. One can see that radiative corrections improve
the results of the Dirac theory by roughly a factor one hundred. Also the
famous splitting between the 2S1/2 and 2P1/2 levels is calculated to this order
of accuracy to yield ≈ 1051.62 MHz which deviates only by 0.6% from the
experimentally observed 1057.83653507 MHz.
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Table 6.2: Experimental values of the hydrogen energy levels as given in
Kramida (2010) are compared with the relativistic energy levels Enk includ-
ing corrections up to fifth order in α as given in eq. (6.145). The lowest
order radiative corrections improve the accuracy of the pure Dirac theory by
roughly a factor one hundred.

State Exp. levels (eV) ∆Enk (eV) Deviation

1S1/2 0 0
2P1/2 10.1988055286 10.1988058225823 3 · 10−8

2S1/2 10.1988099034600 10.1988101717357 3 · 10−8

2P3/2 10.1988508929 10.1988511739767 3 · 10−8

3P1/2 12.087492922 12.087493247092 3 · 10−8

3S1/2 12.087494224 12.0874945416994 3 · 10−8

3D3/2 12.087506341 12.087506667992 3 · 10−8

3P3/2 12.087506364 12.0875066845422 3 · 10−8

3D5/2 12.087510821 12.0875111462192 3 · 10−8

4P1/2 12.74853166921 12.7485320020757 3 · 10−8

4S1/2 12.74853221952 12.7485325492255 3 · 10−8

4D3/2 12.7485373313 12.7485376638598 3 · 10−8

4P3/2 12.74853733962 12.748537671 3 · 10−8

4D5/2 12.74853922041 12.7485395531119 3 · 10−8

4F5/2 12.748539221 12.7485395497574 3 · 10−8

4F7/2 12.7485401632 12.7485404938828 3 · 10−8

Continuum 13.598433770784 13.5984341184646 3 · 10−8



Chapter 7

The group theoretic approach

Group theory has many applications in physics as it approaches the concept
of symmetries in a systematic way. Symmetries put restrictions on the states
and dynamics of physical systems. The orbital eigenstates of the hydrogen
atom follow from its manifest SO(3) symmetry and the energy levels from its
hidden SO(4) symmetry. In this light sections 2.2 and 2.3 already presented
applications of group theory.

Further properties of the hydrogen atom can be derived from its symmetry
group SO(4,1) (Bander and Itzykson, 1966a,b, and references therein). In a
series of papers, Kleinert (1968a,b), Barut and Kleinert (1967a,b,c) showed
that the hydrogen atom possesses the even larger symmetry group SO(4,2),
the dynamic group, from which not only energy levels and states but also
the matrix elements of the dipole and momentum operators can be derived.
Thus all properties of the hydrogen atom that are known from Schrödinger
theory can also be derived from group theory.

This chapter is restricted to the derivation of the bound state energy
levels and radial eigenstates from the SO(4) and SO(2,1) symmetry groups,
respectively. We compare the results to Schrödinger theory and briefly in-
troduce the generators of the dynamical group SO(4,2). More information
on the application of group theory to the hydrogen atom can be found e.g.
in Kleinert (2004), Kibler (2004), Gilmore (2008).

7.1 Deriving hydrogen energy levels from the

SO(4) symmetry group

As a first application of group theory we will derive the hydrogen energy
levels. Important ground work has already been done in sections 2.2 and
2.3, where we worked out algebraic properties of the angular momentum and

117
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LRL operators ~̂L and ~̂U , respectively. The derivation of the energy levels,
however, is much simpler with the group theoretic approach presented in this
section.

Let us rewrite the most important results from chapter 2, which are the
commutation relations (2.17) and (2.39) of angular momentum and LRL
operator among each other,

[L̂j, L̂k] = iεjklL̂l,

[Û j, L̂k] = iεjklÛl,

[Û j, Ûk] = − Ĥ

Ryd
iεjklL̂l, (7.1)

with the Hamiltonian, eqs. (2.34) and (2.37),

[L̂j, Ĥ] = 0, [Û j, Ĥ] = 0, (7.2)

and the square of the LRL operator, eq. (2.38),

~̂U2 = 1 +
Ĥ

Ryd
(1 + ~̂L2). (7.3)

The commutation relations in the first line of eq. (7.1), define the Lie algebra
of SO(3). The fact that the angular momentum operator commutes with Ĥ
means, that SO(3) is a symmetry group of the Hamiltonian, i.e. Ĥ is invariant
under SO(3) transformations. Since the LRL operator commutes with Ĥ as
well, means that the symmetry group is even larger.

The angular momentum and LRL operator together can serve as genera-
tors of SO(4), where the latter has to be rescaled first. In order to show this,
we define the 4× 4-matrix-valued, totally antisymmetric operator T̂AB as

T̂jk = εjklL̂
l, T̂j4 =

√
Ryd

−Ĥ
Ûj, (7.4)

where uppercase indices take values {1, 2, 3, 4} while lowercase indices are
restricted to the usual values {1, 2, 3}. The components T̂AB satisfy the
commutation relations of SO(4) generators,

[T̂AB, T̂CD] = i
(
gAC T̂BD − gADT̂BC − gBC T̂AD + gBDT̂AC

)
,

(gAB) = diag(1, 1, 1, 1), (7.5)
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where g is the metric of four dimensional euclidean space. Hence we find
that SO(4) is also a symmetry of the Hamiltonian. In order to derive the
energy levels, we now define the operators

~̂J =
1

2

(
~̂L+

√
Ryd

−Ĥ
~̂U

)
,

~̂K =
1

2

(
~̂L−

√
Ryd

−Ĥ
~̂U

)
. (7.6)

They obviously commute with the Hamiltonian,

[Ĵ j, Ĥ] = 0, [K̂j, Ĥ] = 0, (7.7)

and further satisfy the following commutation relations among each other

[Ĵ j, Ĵk] = iεjklĴl,

[K̂j, K̂k] = iεjklK̂l,

[Ĵ j, K̂k] = 0. (7.8)

The first two lines are identical to the first line of eq. (7.1), which means that
both operators are generators of SO(3). Their eigenvalues and eigenvectors
can thus be found completely analogous to the procedure for the angular
momentum operator in section 2.2. Since both operators commute with each
other we can even find a basis |j,mj, k,mk〉 which diagonalizes them both
simultaneously,

Ĵ3|j,mj, k,mk〉 = mj|j,mj, k,mk〉,
K̂3|j,mj, k,mk〉 = mk|j,mj, k,mk〉,
~̂J 2|j,mj, k,mk〉 = j(j + 1)|j,mj, k,mk〉,
~̂K 2|j,mj, k,mk〉 = k(k + 1)|j,mj, k,mk〉. (7.9)

The quantum numbers j, mj, k, mk are allowed to take the same values as l
and m in section 2.2. Making use of

~̂U ~̂L = ~̂L~̂U = 0, (7.10)

we readily calculate squares of ~̂J and ~̂K,

~̂J 2 = ~̂K 2 = −1

4

(
1 +

Ryd

Ĥ

)
, (7.11)
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and find them to be equal. This implies that their eigenvalues must be equal
as well,

j ≡ k. (7.12)

Their eigenvectors can thus be characterized by only three quantum numbers,

|j,mj, k,mk〉 = |j,mj,mk〉. (7.13)

Using eq. (7.11) we may express the Hamiltonian in terms of ~̂J ,

Ĥ = − Ryd

1 + 4 ~̂J 2
. (7.14)

The action of the Hamiltonian on a state |j,mj,mk〉 is then readily calculated,

Ĥ|j,mj,mk〉 = − Ryd

(2j + 1)2
|j,mj,mk〉. (7.15)

Since mj and mk are independent from each other, the multiplicity of states
with quantum number j is (2j + 1)2, which is consistent with the expected
multiplicity of states with principal quantum number n. We can thus identify
n = 2j + 1 to obtain the well known energy levels

En = −Ryd

n2
, (7.16)

which we previously presented in eq. (2.55) and which are compared to the
experimentally measured values in table 2.1. The group theoretic approach,
utilizing the SO(4) symmetry of the Hamiltonian, however, has greatly sim-
plified the derivation of the energy levels as compared to section 2.3.

7.2 Deriving radial wave functions from the

SO(2,1) symmetry group

In sections 3.2 and 3.3 we derived the wave functions from Schrödinger the-
ory. Due to the underlying SO(3) symmetry, these factorize into radial and
spherical parts as in eq. (3.19). For the abstract hydrogen states, |n, l,m〉,
we therefore expect a factorization of the form,

|n, l,m〉 = |n, l〉 ⊗ |l,m〉, (7.17)
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where the spherical part, |l,m〉, is an eigenstate of the angular momentum
operator as given in eq. (2.29). Its position space components are given by
the spherical harmonics, Ylm(θ, ϕ) = 〈~x|l,m〉. Hence we already succeeded
in deriving the spherical wave functions from a group theoretic approach. In
this section we will also derive the radial part, |n, l〉, which encodes most of
the physics of the hydrogen atom.

In a first step, let us separate the radial and spherical parts in the Hamil-
tonian by defining the radial momentum operator,

p̂r =
1

r̂2
(~̂x~̂p)r̂, (7.18)

which translates to −i/r · ∂rr in position space. We find that in terms of p̂r,
the Hamiltonian reads

Ĥ =
p̂2
r

2m
+

~̂L2

2mr̂2
− α

r̂
. (7.19)

Further, p̂r has the commutation relations

[r̂, p̂r] = i, [p̂r, L̂
j] = 0, [p̂r, Ĥ] =

i~̂L2

mr̂3
− iα

r̂2
. (7.20)

The action of the Hamiltonian on an eigenstate |n, l,m〉, with energy En,
leads to the equation

0 =
(
Ĥ − En

)
|n, l,m〉

=

(
p̂2
r

2m
+
l(l + 1)

2mr̂2
− α

r̂
− En

)
|n, l,m〉, (7.21)

where we applied eq. (2.26) according to the factorization in eq. (7.17). In
order to derive the radial wave functions we will consider the action of an
operator Ĥl on the radial states |n, l〉, where

Ĥl =
r̂p̂2

r

2mα
+
l(l + 1)

2mαr̂
− 1. (7.22)

This is equal to r̂Ĥ/α after the angular momentum eigenstate |l,m〉 has
acted on it. For simplicity we will omit the index l and just write Ĥ ≡ Ĥl.
Thus, the radial states are governed by the equation,

0 =

(
Ĥ − r̂

α
En

)
|n, l〉. (7.23)
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The operator Ĥ has the commutation relations

[r̂, Ĥ] =
ir̂p̂r
mα

,

[p̂r, Ĥ] =
i

r̂

(
− r̂p̂2

r

2mα
+
l(l + 1)

2mαr̂

)
,

[r̂p̂r, Ĥ] = i

(
r̂p̂2

r

2mα
+
l(l + 1)

2mαr̂

)
. (7.24)

These relations lead us to the definition of the following operators:

ŵ1 = r̂p̂r,

ŵ2 =
1

2

(
r̂p̂2

r

mα
−mαr̂ +

l(l + 1)

mαr̂

)
,

ŵ3 =
1

2

(
r̂p̂2

r

mα
+mαr̂ +

l(l + 1)

mαr̂

)
. (7.25)

In terms of these operators, we may express,

Ĥ =
ŵ2 + ŵ3

2
− 1,

mαr̂ = ŵ3 − ŵ2. (7.26)

From their commutation relations among each other,

[ŵ1, ŵ2] = iŵ3,

[ŵ2, ŵ3] = −iŵ1,

[ŵ3, ŵ1] = −iŵ2, (7.27)

we see that the ŵi are generators of SO(2,1). We will investigate the prop-
erties of the eigenstates of ŵ3 in close analogy to the procedure for SO(3) in
section 2.2. Let |χw,l〉 be the eigenstate of ŵ3 with eigenvalue w,

ŵ3|χw,l〉 = w|χw,l〉. (7.28)

We can then define raising and lowering operators,

ŵ± = ŵ2 ± iŵ1, (7.29)

which satisfy the commutation relations

[ŵ3, ŵ±] = ±ŵ±, [ŵ−, ŵ+] = 2ŵ3, (7.30)
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and thus allow the transformation of one eigenstate into another,

ŵ±|χw,l〉 = C±w,l|χw±1,l〉. (7.31)

By repeated application of the raising and lowering operators we can calculate
all eigenstates of ŵ3 once the state |χw,l〉 for a given value of w is known.
Since the energy spectrum of the hydrogen atom is bounded from below, we
expect the spectrum of ŵ3 to have a lower bound as well. I.e. for some value
k, we have

ŵ−|χk,l〉 = 0. (7.32)

The operator Ω̂ is the SO(2,1) analogue of ~̂L2,

Ω̂ = (ŵ3)2 − (ŵ2)2 − (ŵ1)2

= (ŵ3)2 − ŵ3 − ŵ+ŵ−

= (ŵ3)2 + ŵ3 − ŵ−ŵ+. (7.33)

It commutes with all ŵ-operators,

[Ω̂, ŵj] = 0, (7.34)

so its eigenvalues are independent of w. Indeed, using the definition of the
ŵ-operators, we see that

Ω̂ = l(l + 1). (7.35)

Acting with the lowest state |χk,l〉 on Ω̂ and using the second line of eq.
(7.33) yields

k(k − 1) = l(l + 1), (7.36)

and hence k = l + 1 or k = −l. We need to make sure the spectrum of ŵ3

has no upper limit as the physical application requires. Let us assume there
was such an upper limit k′ for which the equation

ŵ+|χk′,l〉
!

= 0 (7.37)

is satisfied. From the third line of eq. (7.33) we then infer

k′(k′ + 1) = l(l + 1), (7.38)
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and hence k′ = −l − 1 or k′ = l. It follows that the eigenvalues of physical
states must satisfy

w ≥ l + 1. (7.39)

Before we proceed with the construction of a complete basis of eigenstates
of ŵ3, we first investigate how these states relate to the eigenstates of Ĥ. In
terms of the of the ŵ-operators, eq. (7.23) reads(

ŵ2 1− En
2

+ ŵ3 1 + En
2
− 1

)
|n, l〉 = 0, (7.40)

where we have written En = −En Ryd for the energy levels. We will now
eliminate ŵ2 from this equation by means of a n-dependent unitary transfor-
mation matrix

Ûn = eiϑn(ŵ1−i/2). (7.41)

The transformed ŵ3 may be calculated using eq. (7.27) in combination with
the Baker-Campbell-Hausdorff formula (see appendix B),

Ûnŵ
3Û †n = ŵ3 coshϑn − ŵ2 sinhϑn. (7.42)

Setting ϑn = (1/2) ln En, we obtain

Ûnŵ
3Û †n =

1√
En

(
ŵ2 1− En

2
+ ŵ3 1 + En

2

)
. (7.43)

Hence we may write eq. (7.40) as

Ûn

(
ŵ3
√
En − 1

)
Û †n|n, l〉 = 0. (7.44)

We now identify the principal quantum number n with the eigenvalues of ŵ3

and make the Ansatz

|n, l〉 = Ûn|χn,l〉, (7.45)

to obtain the equation

Ûn

(
n
√
En − 1

)
|χn,l〉 = 0. (7.46)

This implies En = 1/n2 and yields the well known energy levels

En = −Ryd

n2
. (7.47)
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Let us now return to the construction of the radial wave functions from the
eigenvectors of ŵ3. In position space the action of the ladder operators ŵ±

on the states |χn,l〉 yields the equation

〈~x|ŵ±|χn,l〉 =

(
±∂rr −

1

2

(
∂ 2
r r

mα
+mαr − l(l + 1)

mαr

))
χn,l(r), (7.48)

where χn,l(r) = 〈~x|χn,l〉 is the position space eigenfunction. With the defini-
tion x = 2mαr, we now make the general ansatz

χn,l(r) = xle−x/2hn,l(x). (7.49)

Inserting this into eqs. (7.48) and (7.31), yields the following recurrence
relations for hn,l,

C+
n,lhn+1,l(x) = −

(
x∂2

x + 2(l + 1− x)∂x − 2(l + 1) + x
)
hn,l(x),

C−n,lhn−1,l(x) = −
(
x∂2

x + 2(l + 1)∂x
)
hn,l(x). (7.50)

Since the lowest state gets annihilated by ŵ−, we have C−l+1,l = 0 in which
case the second line implies

hl+1,l(x) = const. (7.51)

Inserting the solutions repeatedly into the first line of eq. (7.50) yields the
non-constant parts of the lowest few functions,

hl+1,l(x) ∝ const.,

hl+2,l(x) ∝ 2l + 2− x,
hl+3,l(x) ∝ x2 − 2x(2l + 3) + (2l + 2)(2l + 3). (7.52)

As these expressions are proportional to the associated Laguerre polynomials
Lαn, we suspect that all hn,l take the following form,

hn,l(x) = An,lL
2l+1
n−l−1(x), (7.53)

with some normalization constant An,l. Let us prove this claim by induction.
The expressions for the lowest few functions above may serve as base case.
For the induction step we need to show that the right hand sides of eq.
(7.50) are proportional to L2l+1

n−l and L2l+1
n−l−2, respectively. Making repeated

use of the relations in eq. (B.17) and omitting the argument x to unclutter
notation, we can show that(

x∂2
x + 2(l + 1− x)∂x − 2(l + 1) + x

)
L2l+1
n−l−1
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= xL2l+3
n−l−3 − 2(l + 1− x)L2l+2

n−l−2 + (x− 2l − 2)L2l+1
n−l−1

= (n+ l)L2l+2
n−l−3 + (2x− n− l)L2l+2

n−l−2 + (x− 2l − 2)L2l+1
n−l−1

= (n+ l)L2l+1
n−l−2 + (x− 2n)L2l+1

n−l−1

= −(n− l)L2l+1
n−l , (7.54)

for the right hand side of the first line of eq. (7.50). Performing the same
calculation for the second line yields(

x∂2
x + 2(l + 1)∂x

)
L2l+1
n−l−1 = xL2l+3

n−l−3 − 2(l + 1)L2l+2
n−l−2

= (n+ l)(L2l+2
n−l−3 − L

2l+2
n−l−2)

= −(n+ l)L2l+1
n−l−2. (7.55)

And hence we have proven our claim (7.53). Inserting the results into eq.
(7.50) yields expressions for the coefficients C±n,l,

C+
n,l = (n− l) An,l

An+1,l

,

C−n,l = (n+ l)
An,l
An−1,l

. (7.56)

The normalization factor An,l can be determined by the normalization con-
dition of the full hydrogen state |n, l,m〉,

1 = 〈n, l,m|n, l,m〉 =

∞∫
0

dr r2|χn,l|2

=
|Anl|2

(2mα)3

∞∫
0

dx x2l+2e−x(L2l+1
n−l−1)2. (7.57)

This integral has already been evaluated in eq. (3.30). The normalization
factor is therefore readily obtained,

An,l =

√
(2mα)3

2n

(n− l − 1)!

(n+ l)!
. (7.58)

For the coefficients C±n,l we then obtain

C+
n,l =

√
n+ 1

n
(n− l)(n+ l + 1),
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C−n,l =

√
n− 1

n
(n+ l)(n− l − 1). (7.59)

Finally, the action of the ladder operators ŵ± can be written in abstract
notation as

ŵ±|χn,l〉 =

√
n± 1

n
(n∓ l)(n± (l + 1)) |χn±1,l〉. (7.60)

The radial states |n, l〉 can then be raised and lowered using

Ûn±1ŵ
±Û †n|n, l〉 =

√
n± 1

n
(n∓ l)(n± (l + 1)) |n± 1, l〉. (7.61)

Now there is only one task left that needs to be done and that is to draw
the connection from the radial wave functions χn,l derived in this section to
the ones derived in section 3.2 using the Schrödinger equation. Let us write
χn,l(r) for clarity,

χn,l(r) =

√
4C 3

1

n

(n− l − 1)!

(n+ l)!
(2C1r)

le−C1rL2l+1
n−l−1(2C1r), (7.62)

where we have used eq. (3.27) to write x = 2C1r. The total radial wave
function reads

〈~x|n, l〉 = 〈~x|Ûn|χn,l〉 = eϑn∂rr+ϑn/2χn,l(r). (7.63)

The operator eϑn∂rr is actually called tilt operator (see Kleinert, 1968a, Klein-
ert, 2004). One can show that its action on any function that can be expanded
in powers of r amounts to

eϑn∂rrf(r) = eϑnf(eϑnr). (7.64)

This result is frankly not restricted to position space but is valid in any basis.
Consequently, the total radial wave function reads

〈~x|n, l〉 =
χn,l(r/n)

n3/2

= 2Cn

√
Cn
n

(n− l − 1)!

(n+ l)!
(2Cnr)

le−CnrL2l+1
n−l−1(2Cnr). (7.65)

This expression is indeed equal to the radial wave function gn,l/r, defined in
eqs. (3.19) and (3.31).
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7.3 The generators of SO(4,2)

The dynamical group of the hydrogen atom is SO(4,2). It contains the SO(4)
and SO(2,1) subgroups from which we derived the hydrogen eigenstates and
energy levels in previous sections. Dynamical quantities like the dipole and
momentum operators can be expressed in terms of SO(4,2) group operations.
In this section we merely present its generators in terms of the physical
operators ~̂p and ~̂x. In depth information, including other representations in
terms of spinors or the square root coordinates (u1, u2, u3, u4) introduced in
section 5.2, can be found in Kleinert (1968a,b), Kleinert (2004).

Let T̂AB be a 6× 6-matrix-valued, totally antisymmetric operator whose
components are equal to the fifteen generators of SO(4,2). The T̂AB must
then satisfy the commutation relations

[T̂AB, T̂CD] = i
(
gAC T̂BD − gADT̂BC − gBC T̂AD + gBDT̂AC

)
,

(gAB) = diag(1, 1, 1, 1,−1,−1) (7.66)

where uppercase indices take values {1, 2, 3, 4, 5, 6} and g is the metric of six
dimensional Minkowski space with two timelike dimensions. In the following
we will find expressions for all of the components T̂AB.

From previous considerations we already know that the components of the
angular momentum operator span a SO(3) subgroup and are thus among the
generators of SO(4,2). The LRL operator, however, is not an advantageous
choice as a generator in the representation we are developing. In the last
section we introduced the ŵ-operators. Now we introduce the following set
of closely related operators:

Ŵ 1 = ~̂x~̂p− i,

Ŵ 2 =
1

2

(
r̂~̂p 2

mα
−mαr̂

)
,

Ŵ 3 =
1

2

(
r̂~̂p 2

mα
+mαr̂

)
, (7.67)

which are equal to the ŵ-operators when expressed in terms of p̂r and after

~̂L2 has been replaced by its eigenvalue. Consequently they have the same
commutation relations among each other,

[Ŵ 1, Ŵ 2] = iŴ 3,

[Ŵ 2, Ŵ 3] = −iŴ 1,
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[Ŵ 3, Ŵ 1] = −iŴ 2. (7.68)

We readily verify that the Ŵ j and L̂k commute with each other,

[Ŵ j, L̂k] = 0. (7.69)

The Ŵ i generate a SO(2,1) subgroup of SO(4,2) and hence we already know
six of the total fifteen generators. In order to find the remaining generators,
we consider the following commutation relations

[r̂, L̂j] = 0, [p̂j, L̂k] = iεjklp̂l,

[r̂, Ŵ 1] = ir̂, [p̂j, Ŵ 1] = −ip̂j,

[r̂, Ŵ 2] =
iŴ 1

mα
, [p̂j, Ŵ 2] = −i x̂

j

r̂2
Ŵ 2,

[r̂, Ŵ 3] =
iŴ 1

mα
, [p̂j, Ŵ 3] = −i x̂

j

r̂2
Ŵ 3. (7.70)

These relations lead us to the definition of the operator ~̂Γ,

~̂Γ = r̂~̂p. (7.71)

Its commutators with ~̂L and the Ŵ -operators read

[Γ̂j, Γ̂k] = −iεjklL̂l,
[Γ̂j, L̂k] = iεjklΓ̂l,

[Γ̂j, Ŵ 1] = 0,

[Γ̂j, Ŵ 2] = i

(
Ŵ 1p̂j

mα
− x̂j

r̂
Ŵ 2

)
,

[Γ̂j, Ŵ 3] = i

(
Ŵ 1p̂j

mα
− x̂j

r̂
Ŵ 3

)
. (7.72)

The first three lines look very promising. However, if ~̂Γ is indeed a generator
of SO(4,2) then the right hand sides of the last two lines need to be generators
as well so that eq. (7.66) can be satisfied. Hence we define

~̂U =
~̂x

r̂
Ŵ 2 − Ŵ 1~̂p

mα
,

~̂V =
~̂x

r̂
Ŵ 3 − Ŵ 1~̂p

mα
. (7.73)
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The commutators of these new operators with allr the previously found gen-
erators read

[Û j, L̂k] = iεjklÛl, [V̂j, L̂k] = iεjklV̂l,
[Û j, Γ̂k] = iδjkŴ 2, [V̂j, Γ̂k] = iδjkŴ 3,

[Û j, Ŵ 1] = −iV̂j, [V̂j, Ŵ 1] = −iÛ j,
[Û j, Ŵ 2] = −iΓ̂j, [V̂j, Ŵ 2] = 0,

[Û j, Ŵ 3] = 0, [V̂j, Ŵ 3] = iΓ̂j. (7.74)

Among each other, they have the commutators,

[Û j, Ûk] = iεjklL̂l,

[V̂j, V̂k] = −iεjklL̂l,
[Û j, V̂k] = iδjkŴ 1. (7.75)

Now we are able to populate the entries of T̂AB in the following way,

T̂jk = εjklL̂
l, T̂45 = Ŵ 1,

T̂j4 = Ûj, T̂46 = Ŵ 2,

T̂j5 = V̂j, T̂56 = Ŵ 3,

T̂j6 = Γ̂j, (7.76)

or written in matrix notation,

(T̂AB) =



0 L̂3 −L̂2 Û1 V̂1 Γ̂1

−L̂3 0 L̂1 Û2 V̂2 Γ̂2

L̂2 −L̂1 0 Û3 V̂3 Γ̂3

−Û1 −Û2 −Û3 0 Ŵ 1 Ŵ 2

−V̂1 −V̂2 −V̂3 −Ŵ 1 0 Ŵ 3

−Γ̂1 −Γ̂2 −Γ̂3 −Ŵ 2 −Ŵ 3 0


. (7.77)

Using the commutation relations worked out in this section, one can verify
that this definition of T̂AB indeed satisfies eq. (7.66). All dynamical variables
can be expressed in terms of the generators of SO(4,2),

mαx̂j = T̂j5 − T̂j4,
p̂j
mα

= (T̂56 − T̂46)−1T̂j6,

mαr̂ = T̂56 − T̂46,
~̂p 2

(mα)2
= (T̂56 − T̂46)−1(T̂56 + T̂46). (7.78)



Chapter 8

The two-particle Dirac equation

In the non-relativistic approach to the hydrogen atom in chapter 2, we consid-
ered the two-particle system of proton and electron and introduced CM and
relative coodinates. This lead to a separation of the Hamiltonian and reduced
the problem to a single particle of reduced mass m interacting with an exter-
nal potential−α/r. There is no simple way in the relativistic treatment of the
hydrogen atom that leads to an analogous separation of the Dirac Hamilto-
nian. For this reason we started directly with the single-particle Hamiltonian
in eq. (4.41) in chapter 4. A rigorous treatment of the relativistic hydrogen
atom, however, should start with the full two-particle Hamiltonian. An an-
alytic solution for this relativistic problem was only obtained by Marsch in
2005. This chapter illustrates his approach.

8.1 Preparations

Let us consider the relativistic two-particle system consisting of electron and
proton bound together in a hydrogen atom. The general Dirac equation for a
single particle of mass m and charge e reads in the Hamiltonian formulation

i∂tΨ(x) =
(
−eA0 − iγ0~γ ~∇− eγ0~γ ~A+ γ0m

)
Ψ(x), (8.1)

where Ψ is a four-component Dirac spinor as familiar from chapter 4. In the
case of the two-particle problem, however, we consider Ψ to be an element
of the two-particle Fock space,

Ψ(x) = Ψp(x)⊗Ψe(x), (8.2)

where Ψp and Ψe represent four-component Dirac spinors describing the pro-
ton and electron, respectively. Analogous to chapter 3 we call the positions

131



132 CHAPTER 8. THE TWO-PARTICLE DIRAC EQUATION

of proton and electron ~xp and ~xe, respectively and change to the CMS,

~R =
mp~xp +me~xe

M
≡ 0, ~r = ~xe − ~xp,

~∇R = ~∇p + ~∇e ≡ 0, ~∇ ≡ ~∇r = ~∇e = −~∇p, (8.3)

where M = mp+me and we let the vector potential A represent the Coulomb
potential,

eA = −α
r
et, (8.4)

The Hamiltonian for this system then reads

H =
(
−α
r

+ iγ0~γ ~∇+ γ0mp

)
⊗
(
−α
r
− iγ0~γ ~∇+ γ0me

)
, (8.5)

where mp and me means the proton and electron mass, respectively. Further
we define the nuclear and electron spin operators,

~I =
1

2
(γ5γ

0~γ)⊗ 1, ~S =
1

2
1⊗ (γ5γ

0~γ), (8.6)

to obtain the following explicit expression for the Hamiltonian of the hydro-
gen atom

H =

(
−α

r
+mp 2i~I ~∇

2i~I ~∇ −α
r
−mp

)
⊗
(
−α

r
+me −2i~S ~∇

−2i~S ~∇ −α
r
−me

)
(8.7)

In the following it will be useful to express the Hamiltonian in a spin basis,

e1 = |+〉 ⊗ |+〉, e2 = |+〉 ⊗ |−〉, e3 = |−〉 ⊗ |+〉, e4 = |−〉 ⊗ |−〉. (8.8)

Again, we make the ansatz suitable for a stationary problem,

Ψ(t, ~x) = e−iEtΨ(~x), (8.9)

and obtain for eqs. (8.1) and (8.7),

−E − α
r +M −2i~S~∇ 2i~I ~∇ 0

−2i~S~∇ −E − α
r + µM 0 2i~I ~∇

2i~I ~∇ 0 −E − α
r − µM −2i~S~∇

0 2i~I ~∇ −2i~S~∇ −E − α
r −M


Ψ(~x) = 0,

(8.10)



8.2. DERIVATION OF THE SPHERICAL SOLUTION 133

where M = mp + me und µ = (mp − me)/M . Before we proceed to the
actual derivation of the solution let us consider the total angular momentum
operator,

~J = ~L+ ~S + ~I, (8.11)

where ~L = −i~r × ~∇. One finds that[
H, ~J

]
= (γ0~γ × ~∇)⊗ 1− 1⊗ (γ0~γ × ~∇)︸ ︷︷ ︸

=[H,~L]

−(γ0~γ × ~∇)⊗ 1︸ ︷︷ ︸
=[H,~I]

+1⊗ (γ0~γ × ~∇)︸ ︷︷ ︸
=[H,~S]

= 0. (8.12)

Correspondingly there exists a basis which diagonalizes the Hamiltonian and
the total angular momentum operator simultaneously. This will proof useful.

8.2 Derivation of the solution to the spherical

Dirac equation

We define the operators

KI = 1 + 2~I~L, KS = 1 + 2~S~L. (8.13)

Before in inspecting their spectrum and eigenbasis, we note that

−i~σ~∇ = −i~σ~er ~σ~er ~σ~∇ = h
(
−i∂r + ~σ~er × ~∇

)
= ih

(
− ∂r +

2~S~L

r

)
or ih

(
− ∂r +

2~I~L

r

)
=
i

r
h
(
−∂rr +KS/I

)
, (8.14)

where we have defined a helicity operator

h = ~σ~er =

(
cos θ e−iϕ sin θ
eiϕ sin θ cos θ

)
. (8.15)

Further we introduce the variables

x = Mr, e =
E

M
, DS/I = −∂xx+KS/I (8.16)
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so that the Dirac equation (8.10) reads

−e− α
x + 1 i

xhSDS − i
xhIDI 0

i
xhSDS −e− α

x + µ 0 − i
xhIDI

− i
xhIDI 0 −e− α

x − µ
i
xhSDS

0 − i
xhIDI

i
xhSDS −e− α

x − 1


Ψ(x) = 0. (8.17)

Let us now consider the operators KS/I . Their commutator reads

[KS, KI ] = 4i
(
~S × ~I

)
~L

!
= 0. (8.18)

In order to solve eq. (8.17) we have to find a basis, in which the commutator
(8.18) vanishes. Let us insvestigate the algebraic properties of KS/I . The
total spin operator is given by

~Q = ~S + ~I. (8.19)

One should note that

KI +KS = 2 + ~J2 − ~L2 − ~Q2. (8.20)

In the following we seek a basis of eigenvectors,

KI/SΨ = kΨ, (8.21)

or, using eq. (8.20),

k = 1 +
1

2
(j(j + 1)− l(l + 1)− q(q + 1)) =


1, q = 0, j = l

l + 1, q = 1 j = l + 1
−l, q = 1 j = l − 1

.

(8.22)
One can see that k ≡ 1 for the singulet state and k = ±1,±2, ... for the
triplet states. In the spin basis of eq. (8.8) the matrix elements of KS/I read

KS =


1 + L3 L− 0 0
L+ 1− L3 0 0
0 0 1 + L3 L−
0 0 L+ 1− L3

 (8.23)

KI =


1 + L3 0 L− 0

0 1 + L3 0 L−
L+ 0 1− L3 0
0 L+ 0 1− L3

 . (8.24)
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We now make the following ansatz,

Ψ(~x) = ψ1(x)φ1(θ, ϕ)+ψ2(x)φ2(θ, ϕ)+ψ3(x)φ3(θ, ϕ)+ψ4(x)φ4(θ, ϕ), (8.25)

where

φ1 = Yl,m−1e1, φ2 = Ylme2, φ3 = Ylme3, φ4 = Yl,m+1e4, (8.26)

and where Ylm are the spherical harmonics. The operators KS/I then become

KS =


m B(−m) 0 0

B(−m) 1−m 0 0
0 0 1 +m B(m)
0 0 B(m) −m

 (8.27)

KI =


m 0 B(−m) 0
0 1 +m 0 B(m)

B(−m) 0 1−m 0
0 B(m) 0 −m

 , (8.28)

where L±Ylm = B(±m)Yl,m±1 and

B(m) =
√

(l −m)(l +m+ 1) =
√

(k +m)(k −m− 1). (8.29)

Note that B(m − 1) = B(−m). We now choose a new basis such that the
singlet and triplet states live in different subspaces,

Φ0 =
1√
2

(e2 − e3)Ylm, Φ1 = Yl,m−1e1,

Φ2 =
1√
2

(e2 + e3)Ylm, Φ3 = Yl,m+1e4. (8.30)

The change of the basis (8.26) to (8.30) is conducted via the orthogonal
transformation matrix

U =


0 1√

2
− 1√

2
0

1 0 0 0
0 1√

2
1√
2

0

0 0 0 1

 , U−1 = UT =


0 1 0 0
1√
2

0 1√
2

0

− 1√
2

0 1√
2

0

0 0 0 1

 .

(8.31)
In this new basis the operators KS/I become K ′S/I = UKS/IU

−1 = K+±K−,
where

K+ =


1 0 0 0

0 m B(−m)/
√

2 0

0 B(−m)/
√

2 1 B(m)/
√

2

0 0 B(m)/
√

2 −m

 (8.32)
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K− =


0 B(−m)/

√
2 −m −B(m)/

√
2

B(−m)/
√

2 0 0 0
−m 0 0 0

−B(m)/
√

2 0 0 0

 . (8.33)

The matrix K+ has the eigenvalues 0, −l, l + 1, where 0 has to e excluded
as we have seen in the algebraic treatment (k 6= 0). The corresponding
eigenvectors read

λ = l + 1 = k : E1 =
1√

2(l + 1)(2l + 1)


√

(l +m)(l +m+ 1)√
2
√

(l −m+ 1)(l +m+ 1)√
(l −m)(l −m+ 1)


(8.34)

λ = −l = k : E2 =
1√

2l(2l + 1)


√

(l −m)(l −m+ 1)

−
√

2
√

(l −m)(l +m)√
(l +m)(l +m+ 1)

 . (8.35)

In terms of the quantum number k there exists a common expression for both
eigenvectors,

E1

∣∣∣
k>0

= E2

∣∣∣
k<0

=
1√

2k(2k − 1)


√

(k +m)(k +m− 1)

sgn k
√

2
√

(k +m)(k −m)√
(k −m)(k −m− 1)

 . (8.36)

Note further that K−E1/2 = 0. Obviously the triplet and singlet states do not
mix. The same should be true for Φ0. Setting K−Φ0 = 0 implies, however,
that l = 0 i. e. k = 1. There we define

TΩkm(θ, ϕ)

=
1√

2k(2k − 1)

[√
(k +m)(k +m− 1)Y−k,m−1(θ, ϕ) |+〉 ⊗ |+〉+

+ sgn k
√

(k +m)(k −m)Y−k,m(θ, ϕ) (|+〉 ⊗ |−〉+ |−〉 ⊗ |+〉) +

+
√

(k −m)(k −m− 1)Y−k,m+1(θ, ϕ) |−〉 ⊗ |−〉
]
, (8.37)

=

√
k2 −m2

2k(2k − 1)


√

k+m−1
k−m Y−k,m−1(θ, ϕ)

sgn k Y−k,m(θ, ϕ)
sgn k Y−k,m(θ, ϕ)√
k−m−1
k+m

Y−k,m+1(θ, ϕ)

 , (8.38)

(8.39)
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as well as,

SΩkm(θ, ϕ) =
δk1√
8π

(|+〉 ⊗ |−〉 − |−〉 ⊗ |+〉) =
δk1√
8π


0
1
−1
0

 . (8.40)

These objects satisfy KI/S
S/TΩkm = kΩkm. They represent solutions of the

spherical Dirac equation with quantum numbers (k,m). Further we note
that {KI/S, hI/S} = 0 and hI/S

2 = 1 implies

KI/ShI/SΩkm = −khI/SΩkm. (8.41)

Thus the explicit expression for hI/SΩ reads

hS/I
TΩkm(θ, ϕ) =

√
k2 −m2

2k(2k + 1)



√
k−m+1
k−m Yk,m−1(θ, ϕ)

∓ sgn k
√

k+m
k−m Yk,m(θ, ϕ)

± sgn k
√

k−m
k+m

Yk,m(θ, ϕ)

−
√

k+m+1
k+m

Yk,m+1(θ, ϕ)

 . (8.42)

Finally we may write the wave function (8.25) as

Ψ(r, θ, ϕ) =

(
F1(x), ihSF2(x), ihIF3(x), hShIF4(x)

)
Ωkm(θ, ϕ)

x
, (8.43)

where we have already included an ansatz for the radial Dirac equation (8.17).

8.3 Solving the radial Dirac equation

Inserting eq. (8.43) with the new ansatz for the radial part into eq. (8.17)
we obtain

−e− α
x + 1 ∂x +

k
x −∂x − k

x 0
−∂x + k

x −e− α
x + µ 0 ∂x +

k
x

∂x − k
x 0 −e− α

x − µ −∂x − k
x

0 −∂x + k
x ∂x − k

x −e− α
x − 1

 F (x) = 0. (8.44)

Keeping in mind our previous experience with the Coulomb problem we make
the ansatz

~F (x) = zγe−z ~H(z), z = κx, γ, κ > 0 (8.45)
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to obtain, after a multiplication by −1,
e1 +

α
z −∂z + 1− k+γ

z ∂z − 1 + k+γ
z 0

∂z − 1− k−γ
z e2 +

α
z 0 −∂z + 1− k+γ

z

−∂z + 1 + k−γ
z 0 e3 +

α
z ∂z − 1 + k+γ

z

0 ∂z − 1− k−γ
z −∂z + 1 + k−γ

z e4 +
α
z

 ~H(z) = 0,

(8.46)

where we have defined

e1 = (e− 1)/κ, e2 = (e− µ)/κ e3 = (e+ µ)/κ e4 = (e+ 1)/κ. (8.47)

Let us make the ansatz

~H(z) =
N∑
i=0

~aiz
i, (8.48)

where N < ∞, which is required to make the wave function normalizable.
Using the substitution r = γ + i yields the recursive relation

α −k − r k + r 0

−k + r α 0 −k − r

k − r 0 α k + r

0 −k + r k − r α


~ai =



−e1 −1 1 0

1 −e2 0 −1

−1 0 −e3 1

0 1 −1 −e4


~ai−1,

(8.49)

or shorter,
Mi~ai = N~ai−1. (8.50)

Four constraints may be derived from eq. (8.50). First we have

M0~a0 = 0 ⇒ detM0 = 0 ⇒ γ =

√
k2 − α2

4
, (8.51)

and second,

~a0 ∝


k + γ
α/2
−α/2
k − γ

 , (8.52)

the third and fourth constraints read, respectively,

detN = 0 ⇒ 0 = e1e2e3e4 + (e1 + e4)(e2 + e3), (8.53)
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N~aN = 0 ⇒ ~aN =


−e4
e1e3e4
e2+e3

− e1e2e4
e2+e3

e1

 , (8.54)

where the first line is required in order to exclude the trivial solution of the
second line. From eq. (8.53) we obtain the following relation for κ,

κ =

√
(1− e2)(e2 − µ2)

4e2
. (8.55)

The as usual the energy levels may be derived from the termination of the
power series,

MN~aN = N~aN−1. (8.56)

By Gaussian elimination we can make one line on the right-hand side vanish.
This line then contains the following information

~Q~aN = 0, ~Q =


((k − r)e1 − α)e2e3e4

(α + re2)e3(e1 + e4)− ke2e3(e1 − e4)
−(α + re3)e2(e1 + e4) + ke2e3(e1 − e4)

((k + r)e4 + α)e1e2e3

 . (8.57)

Using eq. (8.54) for ~aN we obtain the relation

(e2 + e3) (e1 + e4) =
α

2r

(
e2e3

e2
1 + e2

4

e1 + e4

+ e1e4
e2

2 + e2
3

e2 + e3

)
. (8.58)

Substituting the expressions from eq. (8.47) yields the equation

4e2 =
α

2rκ

(
(e2 − µ2)

e2 + 1

2e
+ (e2 − 1)

e2 + µ2

2e

)
⇔ α

2r

e4 − µ2

e2
=
√

(1− e2)(e2 − µ2). (8.59)

This equation implies that µ ≤ e ≤ 1. We may thus write e = 1 − ζ and
expand the square of eq. (8.59) up to quadratic order in ζ,

0 ≈ 2ζ(1− µ2)− ζ2(5− µ2)− α2

4r2
(1− 4ζ + 6ζ2 − µ2)2(1 + 2ζ + 3ζ2)2

≈
√

2ζ(1− µ2)− ζ2(5− µ2)− α

2r
(1− 4ζ + 6ζ2 − µ2)(1 + 2ζ + 3ζ2)

(8.60)
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0 =
( α

2r

)2
(
e4 − µ2

e2

)2

− (1− e2)(e2 − µ2). (8.61)

In terms of the variable y = e2 we obtain the quartic equation(
1 +

( α
2r

)2
)
y4 −

(
1 + µ2

)
y3 +

(
1− 2

( α
2r

)2
)
y2 + µ4

( α
2r

)2

= 0. (8.62)



Appendix A

Elementary calculations in
QED

In this appendix we perform one-loop QED calculations concerning the vac-
uum polarization Π and 3-point vertex function V3, given in eqs. (6.56) and
(6.69), to the extend needed for the calculations in chapter 6. We consider
unbound electrons and use the on-shell (OS) renormalization scheme. For
definitions and notation see chapter 6.

A.1 The vacuum polarization

In this section we calculate the vacuum polarization Π in the limit of small
photon momenta, k2 � m2, to the linear order in α. Let us start from the
second line of eq. (6.56),

Πµν(x− y) = −ie2 Tr[S(x− y)γµS(y − x)γν ]

+ δA(ηµν∂2
x + Gµν(x))δ4(x− y) +O(α2). (A.1)

Let us choose Lorenz gauge, i.e. Gµν = −∂µ∂ν . Using eqs. (6.19) and defining
P µν = ηµν − kµkν/k2, the Fourier transform of Π reads

Πµν(k) + δAk
2P µν = −ie2

∫
d4l

(2π)4
Tr
(
S̃(l − k)γµS̃(l)γν

)
= ie2

∫
d4l

(2π)4
Tr

(/l + /k −m)γµ(/l −m)γν

((l + k)2 +m2) (l2 +m2)

= 4ie2

∫
dF2

∫
d4l

(2π)4

Nµν

(x1(l + k)2 + x2l2 +m2)2

141
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= −4e2

1∫
0

dx

∫
d4q̄

(2π)4

Nµν

(q̄2 +D)2 . (A.2)

In the third line we have introduced Feynman parameters {xi} with integra-
tion measure ∫

dFn = (n− 1)!

1∫
0

(
n∏
i=1

dxi

)
δ

(
n∑
i=1

xi − 1

)
, (A.3)

also we have performed a Wick rotation in the fourth line,

q̄ = (−iq0, ~q), q = l + x1k, (A.4)

and, replacing x1 → x, made the substitutions

Nµν = 2(l + k)(µlν) −
(
l(l + k) +m2

)
ηµν

= 2q̄µq̄ν + 2x(1− x)k2P µν −
(
q̄2 +D

)
ηµν + (linear in q̄) ,

D = x(1− x)k2 +m2. (A.5)

Since the integral in eq. (A.2) diverges we have to choose a way to regu-
larize it so the infinite parts may be absorbed properly into δA. We choose
dimensional regularization, i.e. we perform the integral in d− ε dimensions,
where d = 4. Also we replace e → eµ̃ε/2 to keep e non-dimensional in d − ε
dimensions. Inserting α = e2/(4π) and using the formulae∫

ddq̄

(2π)d
(q̄2)a

(q̄2 +D)b
=

Γ
(
b− a− d

2

)
Γ
(
a+ d

2

)
(4π)d/2Γ (b) Γ

(
d
2

) D−b+a+d/2, (A.6)

and ∫
ddq qµqνf(q2) =

1

d
ηµν
∫
ddq f(q2), (A.7)

we obtain for eq. (A.2)

Πµν(k) + δAk
2P µν

= −16παµ̃ε
1∫

0

dx

[(
2

4− ε
− 1

)
4− ε

2

Γ
(
−1 + ε

2

)
(4π)2−ε/2 D1−ε/2ηµν

+
(
2x(1− x)k2P µν −Dηµν

) Γ
(
ε
2

)
(4π)2−ε/2D

−ε/2

]
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= −16παµ̃ε
1∫

0

dx
Γ
(
ε
2

)
(4π)2−ε/2D

−ε/2 · 2x(1− x)k2P µν . (A.8)

Writing Πµν(k) = Π(k)k2P µν yields

Π(k2) = −2α

π

1∫
0

dxΓ
( ε

2

)(4πµ̃2

D

)ε/2
x(1− x)− δA. (A.9)

In the limit ε→ 0 we make use of the two approximations

Γ
( ε

2

)
=

2

ε
− γ +O(ε), Aε/2 = 1 +

ε

2
lnA+O(ε2), (A.10)

with the Euler-Mascheroni constant. Substituting further µ2 = 4πe−γµ̃2, we
obtain

Π(k2) =
2α

π

1∫
0

dx x(1− x) ln
D

µ2
− α

3π

2

ε
− δA. (A.11)

In the OS-scheme, the polarization tensor is set to satisfy the renormalization
condition

Π(0) = 0, (A.12)

which constrains δA to

δA = − α

3π

(
2

ε
− ln

m2

µ2

)
. (A.13)

Thus we are left with

Π(k2) =
2α

π

1∫
0

dx x(1− x) ln
D

m2
. (A.14)

While the integral can be done in closed form, it will suffice for our pur-
poses to consider the case where photon momenta are small compared to the
electron mass, k2 � m2 (soft photons, see chapter 6). In this case we may
expand the logarithm in eq. (A.14) to first order in k2/m2 which yields

Π(k2) =
α

15π

k2

m2
+O

(
k4

m4

)
. (A.15)

This expression causes a modification of the electron-proton interaction po-
tential which is hence no longer a pure Coulomb potential. The influence on
the relativistic energy levels is calculated in chapter 6.
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A.2 The 3-point vertex function

In this section we calculate the 3-point vertex function V3 in the limit of
small photon momenta, k2 � m2, to the linear order in α. Let us start from
eq. (6.69),

Vµ3 (x, y, z) = γµδ4(x− z)δ4(y − z) + δVµ3 (x, y, z)

δVµ3 (x, y, z) = δeγ
µδ4(x− z)δ4(y − z)

− e2γαS(x− z)γµS(z − y)γβDαβ(x− y) +O(α2). (A.16)

Employing Feynman gauge the Fourier transform of V3 reads

Vµ3 (p, p′) = Zeγ
µ − e2

∫
d4l

(2π)4
γνS̃(p′ + l)D̃νρ(l)γ

µS̃(p+ l)γρ

= Zeγ
µ − ie2

∫
d4l

(2π)4

γν
(
/p′ + /l −m

)
γµ
(
/p+ /l −m

)
γν

((p′ + l)2 +m2) ((p+ l)2 +m2)
(
l2 +m2

γ

)
= Zeγ

µ − ie2

∫
dF3

∫
d4q̄

(2π)4

γν /̄qγµ/̄qγν +Nµ

(q̄2 +D)3

= Zeγ
µ − ie2

∫
dF3

∫
ddq̄

(2π)d

(d−2)2

d
q̄2γµ +Nµ

(q̄2 +D)3

= Zeγ
µ +

e2

16π2

∫
dF3

(
4πµ̃

D

)ε/2(
(1− ε) Γ

( ε
2

)
γµ +

1

2

Nµ

D

)
= Zeγ

µ +
α

4π

∫
dF3

((
2

ε
− 2− ln

D

µ2

)
γµ +

1

2

Nµ

D

)
. (A.17)

In the third line we have introduced Feynman parameters, substituted the
variable q = l + x1p + x2p

′ and performed a Wick rotation. In line four we
have continued the integral to d = 4− ε dimensions, performed it in line five
and expanded the resulting expression for small ε in line six. Further we have
introduced the variables

D = x1(1− x1)p2 + x2(1− x2)p′2 − 2pp′x1x2 + (x1 + x2)m2 + x3mγ,

Nµ = γν
(
−x1/p+ (1− x2)/p

′ −m
)
γµ
(
(1− x1)/p− x2/p

′ −m
)
γν

= 2
(
(1− x1)/p− x2/p

′) γµ (−x1/p+ (1− x2)/p
′)−

− 4m ((1− 2x1)p+ (1− 2x2)p′)
µ

+ 2m2γµ. (A.18)

In the OS-scheme we impose the renormalization condition such that e is
equal to the elementary charge as measured in low-energy experiments, i.e.

ūs′(~p
′)eVµ3 (p, p′)us(~p)

∣∣∣∣∣ p2 = p′2 = −m2

k2 = 0

= eūs′(~p
′)γµus(~p)

∣∣∣∣∣ p2 = p′2 = −m2

k2 = 0

,

(A.19)
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where k = p′ − p. We make use of the relations(
/p+m

)
us(~p) = 0, ūs(~p)

(
/p+m

)
= 0, (A.20)

as well as

ūs′(~p
′) (p′ + p)

µ
us(~p) = ūs′(~p

′) (2mγµ + 2iSµνkν)us(~p), (A.21)

where Sµν = i
4

[γµ, γν ], to rewrite ūNu as

1

2
ūs′(~p

′)Nµus(~p)

=
(
2pp′(x3 + x1x2) +m2(2(1− x3)− x2

1 − x2
2)
)
ūs′(~p

′)γµus(~p)−
−mx3(1− x3) ūs′(~p

′) (p+ p′)
µ
us(~p)

−m (x2 − x1)(2− x3) ūs′(~p
′)kµus(~p)

→
(
2pp′(x3 + x1x2) +m2(2(1− x3)2 − x2

1 − x2
2)
)
ūs′(~p

′)γµus(~p)−
− 2imx3(1− x3)ūs′(~p

′)Sµνkνus(~p), (A.22)

where we have used the symmetry in x1, x2 in the last line. Thus the sand-
wiched 3-point vertex function reads

ūs′(~p
′)Vµ3 (p, p′)us(~p) = ūs′(~p

′)

(
F1(k)γµ − i

m
F2(k)Sµνkν

)
us(~p), (A.23)

where

F1(k) = Ze −
α

4π

∫
dF3

(
2− 2

ε
+ ln

D

µ2
− 1

2

Ñ

D

)
,

F2(k) =
α

2π

∫
dF3

m2x3(1− x3)

D
, (A.24)

and

Ñ = 4pp′(x3 + x1x2) + 2m2(2(1− x3)2 − x2
1 − x2

2). (A.25)

Considering on-shell electrons we can set p2 = p′2 = −m2 and pp′ = −m2 −
k2/2 to obtain

D = k2x1x2 + (1− x3)2m2 + x3m
2
γ,

Ñ = 2m2(1− 4x3 + x2
3)− 2k2(x3 + x1x2). (A.26)
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For k2 � m2 we calculate the integral for F2 in the second line of eqs. (A.24)
to the zeroth order in k2/m2 since the coefficient of F2 in eq. (A.23) already
includes k,

F2(k) ≈ F2(0) =
α

2π
. (A.27)

The first integral for F1 in eqs. (A.24) may be expanded to first order in
k2/m2 to yield∫

dF3 ln
D

µ2
≈ ln

m2

µ2
+

∫
dF3

(
2 ln(1− x3) +

k2

m2

x1x2

(1− x3)2

)
= ln

m2

µ2
− 1 +

k2

2m2
. (A.28)

The second integral in the expression for F1 is also expanded to first order
in k2/m2 to yield

−1

2

∫
dF3

Ñ

D
= −I1 +

k2

m2
(I2 + I3),

I1 =

∫
dF3

(1− 4x3 + x2
3)

(1− x3)2 + x3m2
γ/m

2
= 5 + 4 ln

mγ

m
,

I2 =

∫
dF3

x3 + x1x2

(1− x3)2 + x3m2
γ/m

2
= −11

6
− 2 ln

mγ

m
,

I3 =

∫
dF3

x1x2(1− 4x3 + x2
3)

((1− x3)2 + x3m2
γ/m

2)2
=

5

6
+

2

3
ln
mγ

m
. (A.29)

We insert these results into the first line of eq. (A.24) to obtain

F1(k) = Ze +
α

2π

(
2 +

1

ε
− ln

m

µ
+ 2 ln

mγ

m

+
k2

m2

(
1

4
+

2

3
ln
mγ

m

)
+O

(
k4

m4

))
. (A.30)

The renormalization constraint of the OS-scheme (A.19) enforces F1(0) = 1
and hence we set Ze to equal

Ze = 1− α

2π

(
2 +

1

ε
− ln

m

µ
+ 2 ln

mγ

m

)
. (A.31)

Finally, we may write the 3-point vertex function to the linear order in α and
k2/m2 as

Vµ3 (k) = γµ
(

1 +
α

3π

k2

m2

(
ln
mγ

m
+

3

8

))
− α

2π

iSµνkν
m

. (A.32)
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The order α corrections to the 3-point vertex function modify the way the
electron interacts with photons. They represent yet another contribution to
the level shift calculated in chapter 6.



Appendix B

Useful formulae and special
functions

In this appendix many definitions, relations and identities are listed, which
have been used in the course of this dissertation. Concerning the special
functions, most of the relations are taken from the book of Abramowitz and
Stegun (1968).

Associated Legendre functions The associated Legendre functions are
solutions to the equation[

(1− x2) ∂2
x − 2x ∂x + l(l + 1)− m2

1− x2

]
Plm(x) = 0, (B.1)

where l, |m| ∈ N, |m| ≤ l. Explicitly, they are given by

Plm(x) =

b(l−m)/2c∑
k=0

(−1)k+m (2l − 2k)!xl−m−2k (1− x2)
m
2

2l k! (l − k)! (l −m− 2k)!
. (B.2)

If m = 0 the associated Legendre functions are equal to the Legendre poly-
nomials, Pl0 = Pl. Since −l is equivalent to l− 1 in eq. (B.1), one can define
P−l,m := Pl−1,m. The Legendre functions have the properties

Pl,−m = (−1)m
(l −m)!

(l +m)!
Plm,

xPlm =
(l +m)Pl−1,m + (l −m+ 1)Pl+1,m

2l + 1
,

√
1− x2Plm =

Pl−1,m+1 − Pl+1,m+1

2l + 1
. (B.3)
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The Legendre functions also satisfy the orthogonality relation

1∫
−1

dxPkm(x)Plm(x) =
2

2l + 1

(l +m)!

(l −m)!
δkl. (B.4)

Spherical harmonics The spherical harmonics are solutions to the equa-
tion [

(1− x2) ∂2
x − 2x ∂x + l(l + 1) +

1

1− x2
∂2
ϕ

]
Ylm(x, ϕ) = 0, (B.5)

where l ∈ N. Comparing with eq. (B.1) makes the close connection to
Legendre functions obvious. Consequently, the spherical harmonics are given
by

Ylm(x, ϕ) =

√
2l + 1

4π

(l −m)!

(l +m)!
Plm(x) eimϕ, (B.6)

where |m| ∈ N, |m| ≤ l. From the identities (B.3) follows

Y−l,m = Yl−1,m, Yl,−m = (−1)mY ∗l,m, (B.7)

xYlm =

√
(l +m)(l −m)

(2l + 1)(2l − 1)
Yl−1,m +

√
(l +m+ 1)(l −m+ 1)

(2l + 1)(2l + 3)
Yl+1,m, (B.8)

√
1− x2eiϕYlm =

√
(l −m− 1)(l −m)

(2l + 1)(2l − 1)
Yl−1,m+1

−

√
(l +m+ 1)(l +m+ 2)

(2l + 1)(2l + 3)
Yl+1,m+1. (B.9)

From these relations it also follows that

√
1− x2e−iϕYlm = −

√
(l +m− 1)(l +m)

(2l + 1)(2l − 1)
Yl−1,m−1

+

√
(l −m+ 1)(l −m+ 2)

(2l + 1)(2l + 3)
Yl+1,m−1. (B.10)

The spherical harmonics satisfy the orthonormality relation,

1∫
−1

dx

2π∫
0

dϕY ∗lm(x, ϕ)Ykn(x, ϕ) = δklδmn, (B.11)
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and the completeness relation

∞∑
l=0

l∑
m=−l

Y ∗lm(x, ϕ)Ylm(x′, ϕ′) = δ(x− x′)δ(ϕ− ϕ′). (B.12)

Taking the previous relations together, one can derive another important
relation,

1∫
−1

dx

2π∫
0

dϕYlm(x, ϕ)~er Y
∗
l′m′(x, ϕ)

=

1∫
−1

dx

2π∫
0

dϕYlm(x, ϕ)
[√

1−x2eiϕ

2
~e+ +

√
1−x2e−iϕ

2
~e− + x~ez

]
Y ∗l′m′(x, ϕ)

= ~e+
δm+1,m′√

2

[
δl−1,l′

√
(l−m−1)(l−m)
(2l+1)(2l−1)

− δl+1,l′

√
(l+m+1)(l+m+2)

(2l+1)(2l+3)

]
+

+ ~e−
δm−1,m′√

2

[
−δl−1,l′

√
(l+m−1)(l+m)
(2l+1)(2l−1)

+ δl+1,l′

√
(l−m+1)(l−m+2)

(2l+1)(2l+3)

]
+

+ ~ez δm,m′
[
δl−1,l′

√
(l+m)(l−m)
(2l+1)(2l−1)

+ δl+1,l′

√
(l+m+1)(l−m+1)

(2l+1)(2l+3)

]
, (B.13)

where ~e± = (1,∓i, 0)/
√

2.

Associated Laguerre polynomials The associated Laguerre polynomi-
als are solutions to the equation[

x ∂2
x + (α + 1− x) ∂x + n

]
Lαn(x) = 0, (B.14)

where n ∈ N, α ∈ R. Explicitly, they are given by

Lαn(x) =
n∑
k=0

(
n+ α
n− k

)
(−x)k

k!

=
1

n!
∂z
n e−

xz
1−z

(1− z)1+α

∣∣∣∣∣
z=0

=

∮
C

dz

2πi

e−
xz

1−z

(1− z)1+αzn+1
, (B.15)

where the contour C encircles the origin z = 0 counterclockwise but not the
singularity at z = 1. If α = 0 the associated Laguerre polynomials reduce to
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the ordinary ones, L0
n = Ln. From the contour description, one can derive

the rescaling relation

Lαn(ax) =
n∑
k=0

(
n+ α
n− k

)
ak(1− a)n−kLαk (x), (B.16)

where a ∈ R. Useful recurrence relations are

∂xL
α
n(x) = −Lα+1

n−1(x),

Lαn(x) = Lαn+1(x)− Lα−1
n+1(x),

xLαn(x) = (n+ α)Lα−1
n (x)− (n+ 1)Lα−1

n+1(x). (B.17)

The associated Laguerre polynomials satisfy the orthogonality relation

∞∫
0

dx xαe−xLαn(x)Lαm(x) =
Γ(n+ α + 1)

n!
δnm. (B.18)

Kummer function The Kummer function satisfies the equation,[
x ∂x

2 + (b− x) ∂x − a
]
M(a, b, x) = 0. (B.19)

Explicitly, it is given by

M(a, b, x) =
∞∑
j=0

(a)j xj

(b)j j!
= 1 +

a

b

x

1!
+
a(a+ 1)

b(b+ 1)

x2

2!
+ . . . , (B.20)

where (a)j = Γ(a+ j)/Γ(a) means the ascending factorial. If a is a negative
integer, the Kummer function may be expressed in terms of the aforemen-
tioned Laguerre polynomials,

M(−n, b, x) =
n!

(b)n
Lb−1
n (x), n ∈ N. (B.21)

Other useful relations are given by

M(a, b, x) = exM(b− a, b,−x),

x∂xM(a, b, x) = a(M(a+ 1, b, x)−M(a, b, x))

= (b− 1)(M(a, b− 1, x)−M(a, b, x))

= (b− a)M(a− 1, b, x) + (a− b+ x)M(a, b, x)

= x
a− b
b

M(a, b+ 1, x) + xM(a, b, x) (B.22)
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Coulomb wave functions The Coulomb wave functions are solutions to
the equation [

x2∂2
x + x2 − 2ηx− l(l + 1)

]
Fl(x) = 0. (B.23)

They are expressed most conveniently they in terms of the aforementioned
Kummer function,

Fl(η, x) =
|Γ(l + 1 + iη)|

2 Γ(2l + 2)
(2x)l+1e−ix−πη/2M(l + 1− iη, 2l + 2, 2ix). (B.24)

Very important is the expansion in terms of spherical Bessel functions, jl,

Fl(η, x) =
|Γ(l + 1 + iη)|

Γ(2l + 2)
2l(2l + 1)!!x e−πη/2

∞∑
k=l

bkjk(x), (B.25)

bl = 1, bl+1 =
2l + 3

l + 1
η,

bk =
2k + 1

k(k + 1)− l(l + 1)

(
2η bk−1 −

(k − 1)(k − 2)− l(l + 1)

2k − 3
bk−2

)
,

for k > l + 1. In the special case η = 0 this reduces to

Fl(0, x) = xjl(x). (B.26)

For positive η = µ/k the Coulomb wave functions satisfy the completeness
relation

∞∫
0

dk Fl

(µ
k
, kr
)
Fl

(µ
k
, kr′

)
=
π

2
δ(r − r′), µ ≥ 0. (B.27)

Bessel functions The Bessel functions and spherical Bessel functions of
the first kind, J and j, respectively, satisfy the equations[

x2 ∂2
x + x ∂x + x2 − ν2

]
Jν(x) = 0, (B.28)[

x2 ∂2
x + 2x ∂x + x2 − l(l + 1)

]
jl(x) = 0, (B.29)

where ν ∈ C and l ∈ Z. The spherical and ordinary Bessel functions of the
first kind are related to each other by

jl(x) =

√
π

2x
Jl+1/2(x). (B.30)

Explicitly, they are given by

Jν(x) =
(x

2

)ν ∞∑
k=0

(−x2/4)
k

Γ(ν + k + 1) k!
,
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jl(x) =
(x

2

)l ∞∑
k=0

(−x2/2)
k

(3/2)l+k k!
. (B.31)

The Bessel functions Jν satisfy the very important completeness relation,

∞∫
0

dk k Jν(kr)Jν(kr
′) =

δ(r − r′)
r

. (B.32)

Baker-Campbell-Hausdorff formula Let Â and B̂ be operators. We
then have

eÂB̂e−Â =
∞∑
k=0

R̂k

k!
,

R̂k =
k∑

m=0

(
k
m

)
ÂmB̂(−Â)k−m. (B.33)

By means of the well known relation of the binomial coefficients,(
k + 1
m

)
=

(
k
m

)
+

(
k

m− 1

)
, (B.34)

it is easy to show that the coefficients R̂k obey the recursive relation

R̂0 = B̂, R̂k+1 = [Â, R̂k]. (B.35)
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