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§17. Initial Value Problems for Non-Space-Like Initial Mun
ifolds

The mean value theorem of §16 illuminates the situation regarding
initial value problems for ultrahyperbolic differential equations aml
for hyperbolic differential equations with non-space-like initial mun
ifolds. In particular, we shall see why initial value problems ul
this kind are not meaningful or “well posed” in the sense of ('l;
I11, §6.

1. Functions Determined by Mean Values over Spheres with Centeis
in a Plane. The integral of a function f(z, t) = f(zy, -+, @, 1)
over the sphere of radius r and center (z, 0) in 2, t-space is given Iy

(1) 0w = [ ja+ ) dS = Qi)

$24r2y2

Obviously Q[f] only depends on the even part f(z, t) + f(z, —t) ol |
We wish to determine f(z, t) + f(z, —t) for prescribed g(=z, r)
For this purpose we form the integral of f over the solid sphere ol
radius 7 and center (z, 0):

flz + & 1) dt dr.

2 Gz, r) = ,p) dp =

@ G =[omnd=[

Differentiating G with respect to one of the z variables, z;, we finl
(3) G = [, . Jule+ ) dear

1

T Jp2pe2yp2

f(z + & 7)&: dS.

Hence

Qlf(z, t)z.]

I

.\M»ﬁ»n: f@+ & 7)(z: + &) dS

P *
Hmﬁﬁau _.,..v + Q.Q_h..AHu q.u - H&AH. ___.v +r M..m.ﬁ. Qmu«.‘ tv ip

= Dyg,

where D; is a linear operator acting on functions g(z, r). Applying
the same argument to the function z.f in place of f and repeating this
process indefinitely we see that for any polynomial P(zy, -+, x,)
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the integral of the function Pf over the sphere of radius r and center
(z, 0) is given by _

QF@-& el .mnuﬁbuu "ty bavmw

and hence is known when g is known. We have also

@  aeefl={  P@(fe) +1,—m) D,
(n—z)2<r2 T
where

= VA= G

In virtue of the completeness of the polynomials P in the sphere the
funetion

(5) fn,7) + fln, —7) b I

T

and hence f itself is determined uniquely by the known expressions
P{Dy; »»- ».._Uau%.p

We now observe the following important fact: To calculate the
operator D; g for any system of values zi, -, xa, 1 it is sufficient
to know the mean value g(z, r) of f(z, t) for

0<r<

1]
r ¥
(6) s
2 (m— 23) < &,
i=1
where ¢ may be arbitrarily small. The same is true for the calcula-
tion of all polynomials P(D,, ---, D,)g.

From this follows: The values of g in the region characterized by
(6) uniquely determine the even part of the function f in the entire
solid sphere

Ma“ﬁap.law%+mmﬁw.

=]
This, in turn, uniquely determines the integral g(z, ¢, r) over any

1 The fact that the funection (5) is singular for = = 0 does not affect this
conclusion. We only have to smooth out the function (5) in a neighborhood
of the sphere |n — x| = r and choose for the polynomials P a sequence ap-
proximating uniformly this smoothed funection.
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té
or
r

Ficugre 59

sphere with center at ¢ = 0 in the interior of the sphere in whicl |
is known, provided that

(7) r+ Wﬁamlam%m;.

fml
Thus we have shown:

g 18 uniquely determined in the entire double cone (77) by its values 1
the cylindrical region (6) of arbitrarily small thickness e. See I
ure 59.

2. Applications to the Imitial Value Problem. We consider fl
ultrahyperbolic equation

3 n
Amv m ﬁ!.&.n - v.MnEﬁaun |_I Uit
in 15...._“ we single out .41 = ¢ and suppose n > 2, but do not, news
sarily assume [ = n 4+ 1. We try to determine a solution by pu
scribing its values on the plane { = 0. Thus for ¢ = 0, let

.SAHu Y, OV = %Anﬂ. “_\v and guﬁﬁu Y, Ow = ﬂ.ﬁ.ﬂ- m\u

be m?wn.. We consider the initial values in a domain of the ,y-spac
where y is assumed to lie in some domain G of the y-space, while &
varies inside the small sphere

®) Ty

in z-space. The domain in which the initial values are prescrilusl
is thus the “product domain” of a small sphere in the z-space and nu
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arbitrary domain G in y-space. Consider the solution » as a func-
tion of z, ¢ with y as parameter. Then our prescribed values ¢ de-
termine the integrals of « over the surfaces of those spheres in z,i-
space whose centers z;, ¢ lie in
t=0, ,M, (z: — 23)* < €,

and whose radii are not greater than the radius r° of the largest
sphere about the point y in y-space which still lies entirely in G.

This follows immediately from the mean value theorem of §16 for
n > 1. If n < [, this mean value theorem at first yields only the
integrals

i=1

n
.\,‘\. u(z, t) Aﬁw -8 =2 va:-s:u dz di
¥, :
over the interior V, of every sphere in z,i-space with radiusr < #°
and center 21, -+, ¥n, t = 0; here D i (z: — 23)’ < €. If we
denote the integral of u over the surface of such a sphere of radius r
by I(r), the integral above can be written as

c‘ﬂ-w Hmbv?.u _ bﬁv:!n—:n h.m.c.

But if this expression is known for r < #°, then I(r) is also uniquely
determined for » < . This follows from our earlier discussion (cf.
§16) by solving an Abelian integral equation. Our assertion is thus
proved also for ! > =.

By article 1 the even function u(x, y, t) + u(x, y, —t) is uniquely
determined in the entire sphere ’

2 (m— ) 2
i=1
by the given values of . Similarly the even function

ul(z,y, t) + w2, y, —t)

is determined by ¢. It follows immediately that u(z, y, t) is deter-
mined uniquely. ‘In particular, the initial values u(z, y, 0) are de-
termined for { = 0 in the sphere

(10) T~ <

i=]
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of the n-dimensional initial space R, , and we therefore obfain 11

remarkable result:
If the initial values of a solution w of the ultrah )
4 yperbolic equalion |
are known for y in G and for z in an arbitrarily small sphere
(i —2D) < &
m cf. article 1), then the initial values are uniquely determined everiyuhs
in the larger sphere

2 (z: — a%)? < ()7,

d=1

where r° is defined as above.
A consequence of this result is: One cannot arbitrars
Wi H rhTir eyl
initial values u(z, y, 0). i
For example, if, with given @, one prescribes initial vl
u(4, ¥2, %, 0) to solve the equation

ﬁ:,v Uy T gﬂ = Uzz — Uy = 0
in a thin eylindrical disk

t=0, Wm-v)’+@-n)'<d |lz-2"] .

then u(yi, y2, =, 0) is @ priors uniquely determined in the doubl
cone

t=0, V-9 F @m-—v)+|z-2"|<a.
See Figure 60.

Fiaure 60
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Similarly, consider the wave equation
AHMV Uyy — Uzyzy — Yroze — Uy = 0
in which, however, the roles of the space variable y and the time
variable i are interchanged. If thé function u(y, 1 , 22, t) is pre-
scribed in the thin eylinder

t=0, (@m-aP+@-a'<d  |y-9l<e
parallel to the y-axis, the initial value u(y, 1, z2 , 0) is at once
uniquely determined in the double cone
Vo =B+ (m—a)r+ly—¢|Le

See Figure 61.

Thus we see: On a non-space-like plane, it is not possible to pre-
scribe arbitrarily the initial values for the solution of the wave equation.

If, in the case of the genecral equation (8), the initial value
w(Yr, Yo, o2 Y13 T,y 0 , T, 0) is prescribed for

n

i
Y- <d, XEi—z)<E,

i=1 =1

then it is @ priori known for the region

\—\M (y: — .QMVM + M (z: — H.U“ <a,

3=1

gesl

Firuure 61
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and the solution u(y, =, t) is uniquely determined for
I i
W=+ 4/ (-2 + £ <al

im=] =1

For the potential equation (I = 0)

AHWV ‘mﬁn—h_ I_I e + Uzpzy + Uy = Ou

this means: If a solution u is an even Sfunction of &, then the 14/,
u(z, 0) in an arbitrarily small sphere

Ma.nm <é
i=1

uniquely determine for arbitrary a the values of the solution in th
main

.Mw_ew +£<d
In particular, for ¢ = 0, the values u(z, 0) uniquely determing (1
initial values of u. The statement for the initial values j
true without restriction to even solutions.

This result concerning the potential equation might have i
expected from the analytic character of its solutions, which wn
ready known to us. In the case of hyperbolic and ultrahyperbli
differential equations, however, the relations obtained above In
tween the values of a solution on the initial plane are not so ohviou
In fact, these initial functions may very well not even be analyi
Thus, in investigating the values of the solutions of hyperbolie uil
ultrahyperbolic differential equations along non-space-like plan:
we are dealing with the remarkable phenomenon of functions wlic 1.
are not necessarily analytie, yet whose values in an arbitrarily sl
region determine the function in a substantially bigger domain.'

HoBpa

§18. Remarks About Progressing Waves, Transmission of Siy
nals and Huyghens’ Principle

1. Distortion-Free Progressing Waves. While the term “wave'
was used in this book quite generally for any solution of a hyperholio

t Cf. F. John [3] where, by a different method, even more extensive resulis
are obtained for general linear equations with analytic coefficients.
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roblem,! there are certain specific classes of waves o». %E,WGMWM
wﬂeaummr.mcw example “standing waves”, umwﬂ.omms.ﬂom_ oﬂm ?Mu MMa oA
i i i f the space variables.
?so.aoﬁ < “Ma Mmﬂ_ﬂw% MMMMM%M M:&ro.. Mu the importance of mﬂon:.m_.
msﬁan_ﬁca the progressing waves, discussed in Chapter III for 9.*.-
fort _.,..\ﬂmm_ uations with constant coefficients and more generally in
?H.osspr v esent chapter. This concept is a key for the theory of
o &. o.MM of signals, indeed a central subjeet in the Sﬂoﬁ.z.m of
w%%%m_w differential cquations. Ior brevity we shall consider a
o oacmﬁoﬁmﬂ—:ﬂuﬂ MHH §3 we define a family of Eiﬁ.a.oa& pro-
%MM«.MM@ MHM@ as a mﬁrw_% ,& solutions of L[u] = 0 depending on an

arbitrary function S(¢) and having the form

(D u = S((z, 1)), . )
where S is called the wave form M.Em o(z, t) is M mw& BMMMM WWMMMMH
of the space variables z and the time ¢ = Z. Suchap

might be e sl

The solution u represents the undistorted motion of the wave form S

gﬂw%.“ Mﬂﬂamw.gﬁpmzomm of S(s), we conclude that ¢ must satisfy

Ligl = 0,

and the characteristic equation
Q(D¢) = 0. .
The first equation is obtained by the special mcvm&;csonv”m@v = M.H
the second follows if we choose 8 = 5(¢ — ¢) with an ar .55: co -
tant ¢ (see §4). Thus we may state: The phase function ¢ is a charac
Mmamao function, i.e., the phase surfaces ¢ = const. are characteris-
i fronts. . . .
EGHM H4M$ of this overdeterminacy of ¢, some mﬁmamss.i equations
lv 0 exist which do admit families of :Jm_mﬁowﬂm@ progressing
hgmm This is the case, e.g., for linear &mozwne&. equations Lu] = 0
Sw._ﬂ monmwmﬁw coefficients containing only ?m highest order g..E.N
HH particular for the wave equation (see Ch. III, §3). However, i
1T avoid confusion we have consistently reserved the name ‘‘wave front

f rfaces of discontinuity which satisfy not _&a.olmmbw__.&mﬁmnsv_ equa-
%Mumﬁi._ the associated characteristic equation of first order.
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general the conditions for ¢ are not compatible. It is therefore o
propriate to introduce the less restrictive concept of “relatively
distorted” progressing wave families having the form

(2) u = g(z, t)8(¢),

where again S(¢) is arbitrary and where not only the phase fui i
é(x, t), but also the distortion factor g, is specific. Such waver (i

can serve as suitable carriers of signals inasmuch as the fucto
simply represents an attenuation. Spherical waves in three 1h

dimensions, e.g., Ll w.l i or _.mﬁu. ) » are typical examples of (1 1.

relatively undistorted wave families. Concentric spheres in 1
define the moving characteristic phase surfaces.

Again the conditions restrict (2) to a characteristic funetion; th
imply an overdetermined system of differential equations for {he
tortion factor g. We recognize this simply, e.g., by substituting (
in the differential equation and by realizing that the arbitrarine:
S implies the vanishing of all the coefficients of S, 8,87, ..,

Hence, an equation L[u] = 0 has the desirable property of poue
ing relatively distortion-free families of solutions only in exceptionn!
cases. Of course, if a differential equation Lu] = 0 does have (i
property, an entire class of equivalent differential equations posse:
the same property. Two differential equations Llu] = 0 il

*[u*] = 0, for two functions u(z) and u*(z), are called equivalin
if they can be transformed into each other by a transformation of {Iu
form 27 = ai(zo, 21, -+, 2a), u* = f(z)u.

The question of determining all operators L which allow such
families of solutions has hardly been touched.*

! A special fact, easily proved, is:

In the case of two variables z;, = Z, t = xo = y, the only differential equalion
of second order which admit relatively distortion-free progressing wave familicn
in both space directions are u., = 0 and equations equivalent to it.

Certainly, the differential equation is equivalent to an equation of the form
2uzy + Bu. + Cu = 0, where B and C are functions of z and y, where z | Y
and z — y represent the time and space coordinates, respectively, and wher
% = const., ¥ = const. are the characteristics. The existence of the wave
family u = g(z, y)S(y) requires that 9= = 0 holds as well as 2g., + Bg, + Cg= 1

and hence C = 0. If, in addition, a wave family u = A(z, y)}S(z) advaneing in
another direction is to exist, then 2hy + Bh = 0 must be satisfied together
with 2k;, + Bh. = 0 so that B, = 0 follows. But the equation
2uzy + B(yu:, = 0
is equivalent to the equation u,, = 0.
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There is a related problem for which a solution is known: Con-

sider the wave equation with four independent variables. dﬁ.ﬁﬂ
are the possible wave fronts of relatively undistorted progressing
waves? The answer is that all such wave fronts are cyclides of
Dupin,' which include planes and spheres as special cases. .

In general, in order to mitigate or to eliminate the overdeterminacy
of the distortion factor g, one must introduce more such factors, as
indeed we did in §4, defining progressing waves of higher degree, or
even complete progressing waves. According to §§4 .Ea 5 such
waves provide an important step towards the nc:m_._u:n_wjz. of solu-
tions, although they do represent a distortion of the initial shape
of the signal. o . .

2. Spherical Waves. The problem of transmission .om m_mam_m. is
further clarified by the concept of “‘spherical waves” which m.oﬁm..&ﬁm
the spherical solutions of the three-dimensional wave om_:msg. We
confine ourselves to the case of linear differential 25&«5«5 Lul =0
of second order and consider a time-like? line A m.?mu in the form
z; = E(A\) with a parameter A. (The time ﬁﬁmvﬂ is not em-
phasized here.) With the point £(\) as vertex we consider the char-
acteristic conoid or spherical wave front I'(z; £) = 0.

For given x, we may determine X as a function of ?o:.p _wrm equa-
tion I'(x, £(\)) = 0; we write A\ = ¢(x). The characteristic conoid
with vertex £(¢(z)) is given by the Sgﬂmou.i@ = const. A
family of relatively undistorted spherical waves issuing #.93” A may
then be defined as a solution u of the second order differential equa-
tion in the form

u(z) = g(z)8(s(x))

with specific g and arbitrary S. . .

Little is known about the scope of this concept, .ir_nw. obviously
relates spherical waves to the problem of E.mumuﬁ_ﬁum with perfect
fidelity signals in all directions. All we can n—o.ro_.m is to ?EE.@.S
a conjecture which will be given some support in mz.»p&m m." Families
of spherical waves for arbitrary time-like lines A m..?a ﬁ@ in S@ case
of two and four variables, and then only if the differential equation is
equivalent to the wave equation. : . .

A proof of this conjecture would show that the four-dimensional

1 8ee . (5. Friedlander [1] and M. Riesz [1].
2 See §3, 7.
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physical space-time world of classical physics enjoys an ewonti
distinction.

H.H.ﬁd we merely emphasize that for the wave equation using 11
{-axis as the time-like line A and with »* = 2* + ¥* + 2°, we haos
such waves with ¢ =t — r and g = 1/r. For other straight tin
like lines, spherical waves are obtained by Lorentz transforn

In the case of an even number of independent v:
n +1=2vr+ 4 Q. = 1,2, ---), solutions exist in the form of fuaiu
__.mw of progressing waves' of higher order. The explicit soluli
given m.ﬁ §12, 4 or §15, 4 no longer enjoy the property of freedun
from distortion, but still represent a progressing phenomenon.

As to equations of higher order, it is worth noting, as an examj:h
that m.ow all even values of » + 1 the (» + 1)/2-th iterated wunis
equation of order n + 1

_?i:u |. mu Aa.tr_n
h ?_!A%IDV :HO.

possesses undistorted families of spherical waves

u= 8(i—r), w=2S80t+r),

although the wave equation itself

@u
E&MAMNMIDVQHO
does not. This fact is simply another interpretation of the theorvin
ﬁuo.ga in §13, 4. It indicates that higher order equations admui
various possibilities not existing for second order.

Finally it should be recalled that ¢ndividual progressing spherical
waves of higher degree with specific S, not necessarily families with
arbitrary S, occur and are of importance (§4). In particular, the
fundamental solution of §15, e.g., Hadamard’s expression for the
fundamental solution of single second order equations (§15, 6)
represented by such waves:

R = 8(T)g(z, &) + Si(T)g'(z, 8) + -,

where S(T') is a specific distribution.
3. Radiation and Huyghens’ Principle. Huyghens’ principle dis

1 The notation is slightly different from that above.
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cussed on various occasions in this volume, stipulates that the solu
tion at a point £ 7 does not depend on the totality of initial datn
within the conoid of dependence (see §7) but only on data on the
characteristic rays through £ 7. (Again we emphasize 2o = 1
and & = 7.) The principle is-tantamount to the statement that
the radiation matrix of §15 vanishes identically except on the rays
through £, 7. Equivalently we may state: A sharp signal issued at the
time 7 and the location £ is transmitted as a sharp signal along the
rays and remains unnoticeable outside the ray conoid. The principle
does not, however, state that signals are transmitted without dis-
tortion.

For single differential equations of sccond order with constant co-
efficients we have seen: Only for the wave equation in 3,517 -
space dimensions, and for equivalent equations, is Huyghens’ prin-
ciple valid. For differential equations of second order with variable
coefficients Hadamard’s conjecture' states that the same theorem
holds even if the coefficients are not constant. Examples to the
contrary show that this conjecture cannot be completely true in this
form,? although it is highly plausible that somehow it is essentially
correct.’ .

Altogether, the question of Huyghens’ principle for second order
equations should be considered in the light of the much more com-
prehensive problem of the exact domains of dependence and influence
for any hyperbolic problem (see §7), 2 problem which is still com-
pletely open. _ .

Concerning the transmission of signals which not only remain
sharp but are undistorted, the conjecture in article 2 stated that
this phenomenon is possible only in three space dimensions. For an
isotropic homogeneous medium, i.e., for constant coefficients (and
second order equations), the proof of this conjecture is contained
in the preceding discussions. Thus our actual physical world, in
which acoustic or electromagnetic signals are the basis of communi-

1 This famous conjecture in fact was not categorically asserted by Hadamard.

z An example to the contrary for seven space dimensions was recently
given by K. L. Stellmacher [1].

3 Hadamard has identified the condition of validity of Huyghens’ principle
with the vanishing of the logarithmical term in his expression of the funda-
mental solution for odd number n of space dimensions. In our version Huy-
ghens’ principle means that the series (44) in §15 does not contain terms with
the Heaviside function and its integrals.
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cation, seems to be singled out among other mathematically i
ceivable models by intrinsic simplicity and harmony. .
.M\mﬁ_ at _mmm_.” in an approximate sense, any hyperbolic systen li
E._mm preservation of sharpness of signals in the sense of the gtk
m__a& méﬁ_u.gm, principle (see §15, 3). This generalized :_\:.._ ili
is .ﬁrwu.a.owm mﬁimomsﬁ for the mathematical understanding of t1u
mission of m_m.sm_m. This is true all the more since the validily
Hﬂc.wmgnm. principle is at best a highly unstable property :._. a il __
ential ovmgﬁoﬁ this property is destroyed by infinitesimal 1_._ i
of the o.ommwﬁm:&m of the operator. It would seem, therefore ._ hint ____
mo:o-.&.ﬁmm Huyghens’ principle should be no:m&a%m as :“_. SO
expression of physical reality. e

Appendix to Chapter VI
Ideal Functions or Distributions

§1. Underlying Definitions and Concepts

.,._.mun. .Muﬂwasamou.... In this appendix we shall discuss the concepl ol
istributions or “ideal functions™.! The specific use of these idenl

functions in the preceding chapters wi e
g chapters will be justified within :
aval Pk justified within a mon

HMo mro“gﬁ be understood that “function” may mean a function
vector with k components. The functions involved may be comples

valued, but the i : ;
- aoavobmﬁm.m independent variable z is always a real vector will

Much of the substance of th
. . e theory has long played a role i
physical literature and elsewhere.? But only since nrﬂ E_Emﬁ.._.___.”_

1 [{FH = = = =
mo_ﬁmuw.wuwm.mm ma—_m_..:_uﬁ_wum.” indicates that ideal funetions, such as Dirac's
e .vu n.E its derivatives, may be interpreted by mass distributions
o H.Hcs.hw u En.a. mS.uwcnnmEBSn in points, or along lines or on surf acon,
_..Em Hows nwmw the term Em& ?boumonm: seems much more indicative of the
hedrgl Bbﬁrannpm””wmva _m.m it is used in connection with differential equations
Slicot ax tha vali ot analysis generally. This role is indeed that of functionn
o _o e of real numbers is that of ordinary numbers. 3
which 1 example, attention might be called to a paper by 8. I.. Sobolev |1]
ong preceded the present flurry of literature. :
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of Laurent Schwartz’s comprehensive book on distributions,
the topic been treated systematically in & multitude of monographs,”
some of which go far in the direction of refinement.” 'The present
appendix concentrates on the elementary core of the theory as far
as it is relevant for our study of linear differential equations. We
omit a detailed discussion of the much-treated applications to the
theory of Fourier transformations. (See, however, §4, 4.)

2. Ideal Elements. “Distributions” are most appropriately in-
troduced as ideal elements in function spaces. It is one of the very
basic procedures of mathematics to extend a given set or “space” S
of mathematical objects by additional new ideal elements’” not
defined as entities in the original set S, and not defined descriptively
but defined merely by relationships such that in the extended set S
the original rules for basic operations are preserved. The purpose of
the extension always is to remove restrictions prevailing in the original
set S.

Thus, in projective geometry ideal “points at infinity” are defined
by sets of parallel lines. In other cases, the ideal elements are in-
troduced by completion of the original set S by “strong’’ limit processes
with a suitable norm: For example, the real numbers are defined by*
convergent sequences of rational numbers 7, for which the norm
| 7 — 7w | converges to zero if n and m tend to infinity. Lebesgue-
integrable and also square-integrable functions similarly can be
defined by sequences of continuous functions f.(z) for which in the

respective z-domains the integrals .\ | fa — fm | dz and .\. | fa—Ta |* dee

converge to zero.—Functions in Hilbert spaces are ideal elements
represented by sequences of suitably smooth furctions f, for which
underlying positive quadratic forms Q(f» — fm) converge to zero.

In these examples, the extended spaces S are complete, that is,

t See L. Schwartz [1].

2 See, e.g., I. M. Gelfand and G. E. Shilov [1].

Also, a recent short book by Lighthill should be mentioned especially for
its emphasis on Fourier analysis. Lighthill’s book partly follows a publication
by G. Temple. SeeM.J. Lighthill [2] and G. Temple [1], and further literature
quoted in these publications.

3 See, e.g., a series of papers by L. Ehrenpreis [1].

1 Often the desire for descriptive definitions of ideal elements has led to
logical twists such as the assertion: “‘A real number is a Dedekind cut in the
set of rational numbers.” It seems that little is gained by attempts to avoid

the need for defining ideal objects by relationships instead of substantive
descriptions.



