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Abstract--We find the asymptotics of the zeros of the degenerate hypergeometric function (the 
Kummer function) r c; z) and indicate a method for numbering all of its zeros consistent with 
the asymptotics. This is done for the whole class of parameters a and c such that the set of zeros 
is infinite. As a corollary, we obtain the class of sine-type functions with unfamiliar asymptotics of 
their zeros. Also we prove a number of nonasymptotic properties of the zeros of the function O. 
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1. I N T R O D U C T I O N  

We consider the degenerate hgpergeometric function (the Kummer function) 

a(a+ 1 ) - . - ( a + s -  a) z s 
i F l ( a ' c ; z ) = O ( a ' c ; z ) : = l + E  c ( c + l ) : - : ~ s  1) s ! '  c ~ - Z +  (1) 

s = l  

(see, for example, [1]-[3]), as a function of the variable z for fixed values of the parameters a, c 6 C. If 
a E - Z + ,  then the series (1) terminates, i.e., �9 is a polynomial. Therefore, we assume the condition 
a ~ - Z +  equivalent to the assumption that �9 is an integer transcendental  function. 

The class of entire functions ( 1 ) is quite wide; under the appropriate values of the parameters a and c, 
many well-known special functions are expressed in terms of the function ( 1 ) (for example, the modified 
Bessel function for c = 2a; see [3]) or coincide with it (for example, O(1, e; z) = F(c)EI(Z, c), where 
Ep(z, #) is a function of Mit tag-Lefl ler  type; see [4]). 

In the present paper, we solve the problem of finding the asymptotics of the zeros of the function 
O(a, c; z) and of number ing  all of its zeros consistently with the asymptotics.  The solution of this 
problem has been given in a few special cases, such as the ones cited above (see, respectively, [5] 
and [6], [7]). However, apparently, this problem has not been investigated for the whole class of 
admissible parameters a and c such that the set of zeros of the function ( 1 ) is infinite. 

As a corollary, we obtain the class of sine-type functions with (apparently) new asymptotics of zeros. 

Besides, we prove a theorem on the nonasymptotic  properties of the zeros of the function ( 1 ), namely, 
on their distribution in the right or left half-planes as well as in the horizontal strips 

( 2 n -  1):r < [Imz[ < 2:rn, n E N 

(both for real parameters a and c from prescribed sets). 
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230 SEDLETSKII 

2. MAIN RESULT 
Suppose that the sequence Z = (zn) c C has the asymptotics 

Zn = ~(n) + o(1), n ---+ +oo, (2) 

where p(n) ---+ c~. The numbering of the sequence Z is said to be consistent with the asymptotics (2) 
via the index set T if there exists a bijection T ~-+ Z preserving this asymptotics. 

Theorem I. Suppose that a, c E C and a, c, c - a ~ - Z + .  Then 

1 ) all the zeros zn of the function O(a, c; z) are simple and they satisfy the asymptotic formula 

( F(a) r r ) ( c - 2 a )  
Zn = 2rein + (c - 2a) log 2rrln I + log P(c - a) + i 2  (c - 2) 1 + 27 in  } 

(3) 
2 a ( a - c ) - c  ( ~ )  

+ 2rein + 0 , n---+ 4-00; 

2) the numbering of all the zeros of the function ~(a, c; z) is consistent with the asymptotic 
expansion (3) via the index set T = Z \ {0}. 

Proof.  1 ) Since the function w = r c; z) is a solution of the equation [3, Chap. 7, Sec. 9] 

z w "  + ( c  - z ) w '  - a w  = 0 

for all z E C, the absence of multiple zeros of the function is proved in the same way as for the Bessel 
function [3, Chap. 7, See. 6], i.e., by the uniqueness of the solution of the Cauchy problem. To avoid 
repetitions, we omit the details. 

To obtain formula (3), we start from the well-known asymptotic expansion (see [1 ], [2]) 

r (c)  (_z)_a  ( 1 
O(a, c; z) - V(c - a) 

"+- ~--(~F(c) z a _ C  e z ( 1 +  

- r r  < arg z _< 7r, 

For brevity, we adopt the notation 

F(a) 
"Y - r ( e  - a) ' 

a ( l + a - C ) z  + O ( z - ~ 2 ) )  

( 1 - a ) ( e - - a ) z  + O ( ~ 2 ) )  ' 

- r r  < a rg ( - z )  _< ~, 

A = 2a(a - c) - e. 

Z ----+ OC~ 

(4) 

(5) 

If a, e - a r - Z + ,  then 7 is meaningful and 3' # 0. Since 

(1 a ( a - e + l )  ( z ~ ) )  / ( ( l - a ) ( e - a )  ( ~ ) )  A ( ~ )  + O  1 +  + O  = 1 + - - + O  , 
z z z 

formula (4) yields the following equation for sufficiently large (in absolute value) zeros zn of the function 
�9 (z) = c; z): 

(6) za-C(--z)ae z = - - 7 ( 1 + - - A + o ( - j ) )  

This implies that such zeros are located on the set 

argz m = o k  Izl / '  Izl _> to. 

If 0 < arg z < rr (respectively, - r r  < arg z < 0), then, by condition (5), we have - r r  < a rg ( -z )  < 0 
(respectively, 0 < a rg ( - z )  < rr). Therefore, 

( - - Z )  a = zae mirra, Im z <> 0. (7) 
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ASYMPTOTICS OF THE ZEROS OF THE HYPERGEOMETRIC FUNCTIONS 231 

Taking this into account and setting - 1  = e :Fi~, respectively, in the cases Im z <> 0, we can write Eq. (6) 
in the form 

e z+(2a-c)l~ = 7e :Fib(I-a) 1 + -- + O �9 (8) 
z 

This implies that, for sufficiently large Inl, 

z n + ( 2 a - c ) l o g z n = 2 7 r i n T i T r ( 1 - a ) + l o g T + - - + O  . 
Zn 

Twice iterating this formula, we obtain (3). The assertion 1 ) it is proved. 

2) Step 1. Assuming ro > 0 to be sufficiently large and denoting K(ro)  = (z : Izl > to), we introduce 
the sets 

P+ = (z :  Iza-C(-z)%Z I > 2171) n K(ro),  

( 1) 
P_ = z :  Iza-c(-z)aezl  < ~l,TI n K ( r o ) ,  

(1 ) 
P = z :  ~ 171 < IZa-C(--z)aeZl <-- 2171 n K(ro), 

which are, respectively, the right and left curvilinear half-planes and the union of two curvilinear half- 
strips located in the upper and lower half-planes. Obviously, 

c \ (z :  Izl < To) = P+ u P_ u P. 
We need convenient estimates for IO(z) l on these sets. To obtain them, we pass to the function 

r ( a )  (_z )a~(a  ' c; z). �9 ~(z)-  r(c) 

It follows from (4) that 

Ol(Z) = z a - C ( - z ) a e Z ( l + O ( 1 ) ) + 7 ( 1  + 0 ( 1 ) ) ,  z --~ o~. (9) 

On the sets P+, P_, the estimates IO1 (z) l can be obtained immediately from (9), the triangle inequality, 
and the definitions of these sets. Indeed, for a sufficiently large ro from (9), we obtain the inequalities 

3 IOl(z)l < ~ Iza-C(-z)aeZl + 2171, (10) 

3 5 
Iol(z)l >_ ~ Iz~ -~ 171, (11) 

5 3 
I~l(z)l - - ~  Iz~ + ~ 171. (12) 

Hence if z E P+, then inequalities (10), ( 1 1 ) imply the estimates 

1 5 
Iz~ < IOl(z)l < ~ Iza-~(-z)%Zl,  z e P+, (13) 

but if z E P - ,  then inequalities (10), (12) imply the estimates 

1 
g 17[ -< I'I'l(Z)l _ 171, z r P_.  (14) 

If z E P,  then (10) yields the upper bound 

IOl(z)l _< 5171, ~ E P. (15) 

However, we cannot obtain a lower bound as easily as on the sets P+, P_, because the set P contains 
the zeros of the function (I) 1 (Z). Therefore, we use the mapping 

w = z + ( 2 a -  c) logz.  (16) 
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It follows from (7) that 

R e w  = Re(z  + (2a - c ) l o g z )  = log Iza-C(-z)aezl  m ~ I m a ,  

respectively, for Im z <> 0; therefore, for sufficiently large [ Im w[, the images of the components  of the 
set P will coincide with the half-strips 

i 
log~lTl=l=TrIma_< IRew[ <log2l~/l=l=TrIma, I m w < > 0 ,  I h n w l  >vo .  (17) 

By (9), the image ~b(w) of the function Ox(z) under the mapping  (16) is of the form 

~(w)=ewemi~a(l+o(1))+7(l+o(1)) ,  Im w---~ o~, I m w  <> 0. 

Obviously, in the half-strips (17), but outside the circles of fixed radius ~ centered at at the zeros of 
the function fJ(w) (i.e., at the points wn = 27tin + log'y T i~-(1 - a) + o(1), n ~ -I-cx~) the following 
estimate holds: 

I~(w)l _> C(5) > 0. 

Since 5 can be taken arbitrarily small, this implies the existence of a sequence rk T +o c  such that 

I~(z)l  > Co > 0, z c P, Izl = rk. (18) 

Now, on the basis of ( 13)-(15) and (18), we can write the resulting estimates for the function r 

I~(z)l • ~%R~(a-c) z = x + i y  =re w E P+, (19) 

I~(z)l • 7"--Rea, Z E g - ,  (20) 

IO(z)l •  z E P, r = rk T +oo.  (21) 

Step 2. It follows from the definition of the set P+ that, on its boundary, we have 

x ~ l o g r  for R e ( 2 a - c ) r  and x = O ( 1 )  for R e ( 2 a - c ) = 0  

(for r > ro), whence  

cosO= x 0 ( [~_2)  (22) - - =  ~ T -'-+ O O .  

r 

Hence cos 0 ~ 0, r ~ cx~ and 0 --. -1-7r/2, r ~ e~, respectively, for Im z <> 0. Denote by r exp(i0 +) the 
points of intersection of the boundary of the set P+ with the circle Iz[ = r > to, 0 + <> 0. Then, for 0 = 0 +, 
we have relation (22) and, applying the reduction formulas cos 0 + = sin(Tr/2 T 0+), we find 

2 + O , r --+ cx~. (23) 

Step 3. The concluding step in the proof is based on Jensen ' s  formula 

for n(t) d t= 1 f_r t ~ log IO(rei~ dO, (24) 
71" 

where n(t) is the number  of zeros of the function O(z) = r c; z) in the disk Izl < t. We write 

: io/ f log IO(rei~ dO J1 + J2 + J3. (25) 
71" q- ~- 

By estimates (19) and relations (23), we have 

f0 + 0 + Re(a c) log r) dO + O(1) J1 = (r cos 

= r(sin 0 + - sin 0 - )  + (0 + - 0 - )  Re(a - c ) l o g r  + O(1) 

=2r+~rRe(a -c ) logr+O(1) ,  r--+ec. 
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To estimate J2, J3, we use estimates (20), (21), and formula (23). We obtain 

(L L), J 2 + J 3  = + -Realogr+O(1))dO 
+ 

= ( T r + O ( ~ f ) ) ( - R e a l o g r + O ( 1 ) ) = - T r R e a l o g r + O ( 1 ) ,  

where r = rk is the sequence from estimate (21). Subst i tut ing the obtained estimates for Jk into 
formula (25) and then the resulting relation into (24), we obtain the following asymptotics: 

j~o r n(t) dt r Re c log - r + O ( 1 ) ,  r = rk ~ + c e .  ( 2 6 )  
t 7r 2 

On the other hand, we can estimate the left-hand side of (26) using formula (3). By (3), there exists an 
integer ra such that if Z is the sequence of all zeros of the function (/,(z), then 

= = Z--  --oo Z = Z+ [.J Z _ ,  Z+ ,,(z +]+~176 ,n=rn, Z _  ( n ) n = - l ,  Z +  N Z_ = ~ ,  (27) 

and relation (3) will hold for z~ as n ~ +cx~. Thus,  the number ing(27)  is consistent with the asymptotic 
expansion (3) and it remains to prove that rn = 1. 

It follows from (3) that  

= ( o ( ( R e z n ~ 2 ~ = l l m z n l + O ( 1 ) ,  n-+• Iz~l= ( ( Imzn)  2 +(Rezn)2) 1/2 IImzn[ 1 q- \ \ I m z n /  ] ]  

Combining this with formula (3), we obtain 

Iz [ = 27rlnl • I r a ( c -  2a) log  Inl + 7r 1 

4- (Im(c - 2a) log 2rr + arg 7) + o(1), n ---+ -l-oo. (28) 

= (An),~=m is of the form Let us use the following lemma [7]: if the positive sequence A +o~ 

An=aln+a21ogn+a3+o(1), a l > 0 ,  a2, aaE]R, n---++oo, 
and A(t) is the number  of points An on (0, t), then, as r --+ oo, 

fo (~ a a a 2  ) r A ( t )  d t _  r a2 log 2 r +  m - - - + - - l o g a l  l o g r + o ( l o g r ) .  
t al  2al al  al 

We apply this lemma to the sequences 
parameters appearing in (28): 

al = 27r, a2 = & Im(c -- 2a), 

(29) 

IZ+l (Iz  = ])n---m and IZ-I-- (Iz--nl) =l with the following 

(30) 
Re c ) 

aa=  1  :(Im(c-2a)log2 +argg'). 

In other words, relation (29) is first written for A = IZ+l and then for A = IZ l; moreover, in the latter 
case, we must  set m = 1 because of the number ing  (27). After that, we add the resulting relations term- 
by-term. On the r ight-hand side, the terms corresponding to the summands  in (30) with different signs 
cancel out and we obtain 

- +  l - m - - -  l o g r + o ( l o g r ) ,  r - -+cx~ .  
t r 2 

Comparing this with formula (26), we see that  m = 1. Theorem 1 is proved. [] 

R e m a r k  I. The choice of the value of logg` (9' = F(a)/F(c - a)) in formula (3) is not important. 

Indeed, the substi tution of one value of log 9" by another one will only induce the renumbering of the 
sequence of zeros via the same index set, after which the asymptotic expansion (3) is  preserved. 
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Remark  2. The assumptions of Theorem 1 concerning a and c specify the whole set of parameters for 
which the function ( 1 ) has infinitely many zeros. 

Indeed, by Kummer ' s  formula (see [3]), we have 

e-ZO(a,c;z) = O ( c -  a , c , - z )  (31) 

and if a - c r Z+, then the r ight-hand side is a polynomial, which follows from Definition ( 1 ). 

3. S INE-TYPE F U N C T I O N S  AND THEIR G E N E R A L I Z A T I O N S  

Denote by S~, a E ~,  the class of entire functions of exponential type for which the following estimate 
holds: 

IF(z)[ • Iz I -~C IImzl, I Imz l  _> h -- h(F) > 0. (32) 

The class So consists of so-called sine-type functions introduced in calculus by Levin [8]. The 
classes S~ and, in particular, the class So play an important role in nonharmonic analysis (see [9]). 

The function 

/ /  F(z) = e izt da(t), var a(t) < +oc,  (33) 
7 r  

is a sine-type function if and only if a(t) has jumps at two points -t-Tr [9]; in this case the zeros zn of the 
function F(z) satisfy the condition 

Z n = n + 0(1) ,  n --* 4-0o. (34) 

A number  of papers dealt with sine-type functions which were not Fourier-St iel t jes  transforms i.e., not 
expressible as (33) (for more on this, see [9]); in all these cases, the zeros of the functions in question 
also satisfied condition (34). 

It is well known [9] that  an entire function of the form 

/ /  F(z) = eiZt k(t) dt 
7r (71. 2 _ t 2 ) l _ a  , 0 < R e a  < 1, vark( t )  < +e~, k(-t-~- T 0) ~ 0, (35) 

belongs to the class SRea and its zeros are also of the form (34). 
It turns out that, under certain conditions on a and c, the function 

F(z)  = e-i~ZO(a, c; 27riz) (36) 

belongs to the class SRea and possesses  a number  of additional properties. The following statement  is 
valid. 

Theorem 2 .  

Then 

Suppose that a, c c C and a, c, c - a ~ - Z + ,  where 

R e c  = 2 R e a .  (37) 

1 ) the function (36) belongs to the class SRea; 

2) The following asymptotics for the zeros zn of the function (36) is valid: 

z .  = n + \ 2~ log 2~lnl - ~ log V(c - a) + 1 + -2~n- ] 

 a/c c 
- -  47r2 n + O , n ---+ •  

(38) 

3) the numbering of all the zeros of the function (36) is consistent with the asymptotic 
expansion (38) via the index set T = Z \ {0}; 
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4) if, besides, 

c r 2a, (39) 

then, for Re a = 0, the [unction (36) is not  a Four ier -S t ie l t ]es  t ransform,  and  whenever  
0 < R e a  < 1 it cannot  be expressed in the form (35). 

Proof.  First, it follows from formula (4) that the function (36) is of exponential type. Second, this 
formula, together with condition (37), shows that the following estimates hold: 

IO(z)l ~ ]zl -Rea,  Rez  _< -h;  IO(z)l ~ Izl-Reae Rez, a e z  __ h > 0, 

if h is sufficiently large. Hence, the function (36) satisfies estimate (32) with a = Re a, i.e., the 
function (36) belongs to the class SRea, and hence assertion 1 ) is proved. 

Assertions 2) and 3) immediately follow from Theorem 1, where we must now put 27riz~ on the left- 
hand side of (3). 

Finally, if condition (39) holds, then formula (38), which implies z~ - n ~-, Clog  In], n ~ +oo, 
C r 0, is incompatible with condition (34), which is necessary for representing the function F(z)  in 
the form (33) for Re a = 0 and in the form (35) for0 < Rea  < 1. Assertion 4) is also valid. Theorem 2 is 
proved. [] 

Theorem 2 gives (apparently, for the first time) examples of sine-type function whose zeros possess 
asymptotics not obeying formula (34). 

4. NONASYMPTOTIC P R O P E P T I E S  OF ZEROS 

T h e o r e m  3. 1) S u p p o s e  that  l < a < c < a + l and c 7 ~ 2 if  a = l. Then all the zeros of  the 
funct ion ( 1 ) lie in the ha l f -p lane  

Rez  < -(v/-a - -  1 + V/1 - (c - a)) 2. (40) 

2) S u p p o s e  that  0 < a <_ 1, c >_ 1 + a; moreover, c r 2 if a = 1. 
funct ion ( 1 ) lie in the ha l f -p lane  

Re z > (v/c - a - 1 + lv/]-Za- a) 2. 

Then all the zeros  o f  the 

3) Suppose  that  0 < a <_ 1, a < c < 1 + a; moreover, c r 2 if  a = 1. Then all  the zeros  o f  the 
funct ion ( 1 ) lie in the hor i zon ta l  s tr ips  

( 2 n -  1)7r < [Imz] < 27rn, n E N. (41) 

Proof .  The following formula holds: 

F(c) 
fo 1 e z t t a - l ( 1  --  t )  c - a - 1  dt, Rea,  Re(c - a) > 0 (42) O(a, c; z) = r ( c  - a)F(a) 

(see [ 1 ]-[3]), which allows us to apply Pblya's theorem [ 10] and the author's theorem [ 11 ] on the zeros 
of the Laplace transform 

/o F(z)  = eZtf( t )  dr, f E LI(0, 1). (43) 

Suppose that the function f ( t )  ~ C is positive and differentiable in (0, 1) and 

f ' ( t )  > - h ,  0 < t < 1. 
f ( t )  - 

Then, by P61ya's theorem [10], all the zeros of the function (43) lie in the half-plane Rez  < h. Hence, in 
view of formula (42), we must find the minimum of the function f ' ( t ) / f ( t )  on (0, 1), where 

f ( t ) - - - - t ~ ( 1 - t )  ~, c ~ = a - l > - l ,  / 3 = c - a - 1  > - 1 .  (44) 
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We have excluded the case a = /3  = 0 in which, by (42), all the zeros of the function ~(z)  are located on 
the boundary of the half-plane (40). We have 

if( t)  a - (a + /3 ) t  _ (45) 
f ( t )  t(1 - t) 

For the function (45) to be bounded below on (0, 1), it is necessary that the numerator  be nonnegative 
for t = 0, 1; this imposes the condition/3 < 0 < a. Thus (see (44)), we consider the values 

- 1  < /3  _< 0 _ oL. (46) 

If a + /3  = 0 (i.e., c = 2), then a > 0 and the min imum value of the function (45) on (0,1) is 
equal to 4a  = 4(a - 1). By Pblya's theorem, all the zeros of the function ~(z)  lie in the half-plane 
Re z < 4(1 - a), which coincides with (40) for c = 2. If o~ = 0 (i.e., a = 1) and/3 < 0, then the minimum 
value of the function (45) on [0, 1) is equal to -/3. By P61ya's theorem, all the zeros of the function ~(z)  
lie in the half-plane Re z < fl, which, for a = 1, coincides with (40). Suppose that  c~ + /3  :~ 0, a > 0. 
Then 

( i f ( t ) ' ~  _ a /3 (47) 
f ( t )  ] t 2 (1 - 0 2.  

The middle part of this formula vanishes at the points 

, /a ,/-a 
t l -  vc , t l -  , / a _  9 .  

It is obvious that  t l r  (0, 1], t2 _> 1 and the minimum value of the function (45) on (0, 1] is attained at 
the point tl.  Subst i tu t ing this value into the r ight-hand side of (45), we obtain 

f'(t---~) > (v/-a + V ~ ) 2  , 0 < t < l .  
f ( t )  

Combining this result with Pblya's theorem, we obtain assertion 1 ). Here we mus t  take into account the 
fact that condition (46) passes into the condition 1 < a < c < a 4- 1. 

Assertion 2) follows from assertion 1 ) and formula (31). 
To prove assertion 3), we use the following result [11]: if the function f ( t )  -~ C is positive and 

logarithmically convex in (0, 1), then all the zeros of the function (43) lie in the strips (41). Besides, 
it remains to find the set of parameters a, /3 > - 1 ,  for which the function (44) is logarithmically convex 
in (0, 1), i.e., the function log f ( t )  is convex in (0, 1). Since (log f ( t ) )"  is the r ight-hand side of (47), the 
function log f ( t )  is convex in (0, 1) only for values of a, /3 > - 1  such that 

a(1 - 0 2 + /3 t  2 < 0 (48) 

for t E (0, 1) and, by continuity, also for t E [0, 1]. Subst i tu t ing the values t = 0, 1 into inequality (48), 
we obtain the necessary condition a , /3  _< 0. Obviously, it is also sufficient for (48) to hold. It remains to 
recall the relation (44) between the pairs of parameters a , /3  and a, b. Assertion 3) is proved. The proof 
of Theorem 3 is complete. [] 

In connection with Theorem 3, note the papers of Tsvetkov [12], [13] on the zeros of the Whittaker 
function 

Mk,m( Z) = e-Z/2 zm+ l/2~2 ( 1 + m - k, l + 2 r e ; z ) .  (49) 

On the basis of formula (49), we shall now restate some of the results from [12], [13] for the func- 
tion �9 (a, c; z). 

If 0 < c < 2a (respectively, c > max(0,  2a)), it follows that  the function ( l ) has no complex zeros in 
the half-plane Re z > c -  2a (respectively, Re z < c - 2a)[12]. 

If 1 < c < 2a (respectively, c > m a x ( l ,  2a)), then the function ( 1 ) has complex zeros only in the half- 
plane R e z  < c -  2a (respectively, R e z  > c -  2a) [13]. 
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We see that the result from [12] includes a wider set of parameters a and c as compared to Theorem 3. 
On the other hand, Theorem 3 indicates the half-plane of zeros more exactly. Indeed, if the inequalities 
1 < a < c < a + l h o l d ,  then 

-(V/-a - 1 -I- v / l -  ( c -  a)) 2 < c -  2a; 

therefore, the half-plane (40) from Theorem 3 is a proper subset of the half-plane R e z  < c -  2a 
appearing in [12] [131. 
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