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Abstract

The existence conditions of the zeta function of a pseudodi�erential operator and the de�nition of determinant thereby
obtained are reviewed, as well as the concept of multiplicative anomaly associated with the determinant and its calculation
by means of the Wodzicki residue. Exponentially fast convergent formulas – valid in the whole of the complex plane
and yielding the pole positions and residua – that extend the ones by Chowla and Selberg for the Epstein zeta function
(quadratic form) and by Barnes (a�ne form) are then given. After briey recalling the zeta function regularization
procedure in quantum �eld theory, some applications of these expressions in physics are described. c© 2000 Elsevier
Science B.V. All rights reserved.
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1. Introduction

The regularization and renormalization procedures are essential issues of contemporary physics –
without which it would simply not exist, at least in the form we know it. Among the di�erent
methods, zeta function regularization – which is obtained by analytical continuation in the complex
plane of the zeta function of the relevant physical operator in each case – may be the most attrac-
tive of all. Use of this method yields, for instance, the vacuum energy corresponding to a quantum
physical system (with constraints of any kind, in principle). Assuming the corresponding Hamilto-
nian operator, H , has a spectral decomposition of the form (think, as simplest case, in a quantum
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harmonic oscillator): {�i; ’i}i∈I , I being some set of indices (which can be discrete, continuous,
mixed, multiple, etc.), then the quantum vacuum energy is obtained as follows [21]:

∑
i∈I

(’i; H’i) = trH =
∑
i∈I

�i =
∑
i∈I

�−s
i

∣∣∣∣∣
s=−1

= �H (−1); (1)

where �H is the zeta function corresponding to the operator H . Note that the formal sum over
the eigenvalues is usually ill de�ned, and that the last step involves analytic continuation, inherent
with the de�nition of the zeta function itself. These mathematically simple-looking relations involve
very deep physical concepts (no wonder that understanding them took several decades in the recent
history of quantum �eld theory, QFT). The zeta function method is unchallenged at the one-loop
level, where it is rigorously de�ned and where many calculations of QFT reduce basically (from a
mathematical point of view) to the computation of determinants of elliptic pseudodi�erential operators
(	DOs) [32]. It is thus not surprising that the preferred de�nition of determinant for such operators
is obtained through the corresponding zeta function (see the next section).
When one comes to speci�c calculations, the zeta function regularization method relies on the

existence of simple formulas for obtaining the analytical continuation above. They consist of the
reection formula of the corresponding zeta function in each case, together with some other fun-
damental expressions, as the Jacobi theta function identity, Poisson’s resummation formula and the
famous Chowla–Selberg formula. However, some of these formulae are restricted to very speci�c
zeta functions, and it often turned out that for some physically important cases the corresponding
formulas did not exist in the literature. This has required a painful process (it has taken over a
decade already) of generalization of previous results and derivation of new expressions of this sort.
Here we will provide some of them, obtained recently and not to be found in the new books [21,14].
It has also been realized, during the last couple of years, that the calculation of e�ective actions

through the corresponding determinants is not free from dangers – that were overlooked till very
recently by the physics community – stemming from the existence of a multiplicative anomaly, e.g.,
the fact that the determinant of a product of operators is not equal, in general, to the product of the
determinants. The di�erence proves to be physically relevant, since only in some particular cases can
it be simply absorbed into the renormalized constants. This issue will be described in detail in the
next sections, with several examples and physical applications. Besides guiding the reader through
the relevant bibliography of published books and papers on these subjects, we will obtain in what
follows a number of new results.

2. The zeta function of a 	DO and its associated determinant

2.1. The zeta function

Let A be a positive-de�nite elliptic 	DO of positive order m ∈ R, acting on the space of smooth
sections of E, an n-dimensional vector bundle over M , a closed n-dimensional manifold. The zeta
function �A is de�ned as

�A(s) = tr A−s =
∑
j

�−s
j ; Re s¿

n
m

≡ s0; (2)
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where s0 = dimM=ord A is called the abscissa of convergence of �A(s). Under these conditions, it
can be proved that �A(s) has a meromorphic continuation to the whole complex plane C (regular at
s = 0), provided that the principal symbol of A (that is am(x; �)) admits a spectral cut: L� = {� ∈
C; Arg � = �; �1¡�¡�2}; SpecA ∩ L� = ∅ (Agmon–Nirenberg condition). The de�nition of �A(s)
depends on the position of the cut L�. The only possible singularities of �A(s) are simple poles at
sk = (n− k)=m; k = 0; 1; 2; : : : ; n− 1; n+ 1; : : : . Kontsevich and Vishik [30] have managed to extend
this de�nition to the case when m ∈ C (no spectral cut exists).

2.2. The zeta determinant

Let A be a 	DO operator with a spectral decomposition: {’i; �i}i∈I , where I is some set of indices.
The de�nition of determinant starts by trying to make sense of the product

∏
i∈I �i, which can be

easily transformed into a “sum”: ln
∏

i∈I �i =
∑

i∈I ln �i. From the de�nition of the zeta function
of A: �A(s) =

∑
i∈I �

−s
i , by taking the derivative at s = 0: �′A(0) = −∑i∈I ln �i, we arrive at the

following de�nition of determinant of A [33–35]: det� A=exp[− �′A(0)]. An older de�nition (due to
Weierstrass) is obtained by subtracting in the series above (when it is such) the leading behavior
of �i as a function of i, as i → ∞, until the series ∑i∈I ln �i is made to converge. A shortcoming
here is – for physical applications – that these additional terms turn out to be nonlocal and, thus,
are non admissible in any physical renormalization procedure.
In algebraic QFT, in order to write down an action in operator language one needs a functional

that replaces integration. For the Yang–Mills theory this is the Dixmier trace, which is the unique
extension of the usual trace to the ideal L(1;∞) of the compact operators T such that the partial
sums of its spectrum diverge logarithmically as the number of terms in the sum: �N (T ) ≡∑N−1

j=0 �j=
O(logN ); �0¿�1¿ · · · . The de�nition of the Dixmier trace of T is Dtr T=limN→∞[1=(logN )]�N (T ),
provided that the Cesaro means M (�)(N ) of the sequence in N are convergent as N → ∞ (recall
that M (f)(�) = (1=ln �)

∫ �
1 f(u)du=u). Then, the Hardy–Littlewood theorem can be stated in a way

that connects the Dixmier trace with the residue of the zeta function of the operator T−1 at s = 1
(see [8]): Dtr T = lims→1+(s− 1)�T−1 (s).
The Wodzicki (or noncommutative) residue [38] is the only extension of the Dixmier trace to the

	DOs which are not in L(1;∞). It is the only trace one can de�ne in the algebra of 	DOs (up to
a multiplicative constant), its de�nition being: res A = 2Ress=0 tr(A�−s), with � the Laplacian. It
satis�es the trace condition: res(AB)=res(BA). A very important property is that it can be expressed
as an integral (local form) resA=

∫
S∗M tr a−n(x; �) d� with S∗M ⊂T ∗M the co-sphere bundle on M

(some authors put a coe�cient in front of the integral: Adler–Manin residue).
If dimM = n = −ord A (M compact Riemann, A elliptic, n ∈ N) it coincides with the Dixmier

trace, and one has Ress=1 �A(s) = (1=n)resA−1. The Wodzicki residue continues to make sense for
	DOs of arbitrary order and, even if the symbols aj(x; �); j ¡m, are not invariant under coordinate
choice, their integral is, and de�nes a trace. All residua at poles of the zeta function of a 	DO can
be easily obtained from the Wodzciki residue [15].

2.3. The multiplicative anomaly and its implications

Given A; B and AB 	DOs, even if �A; �B and �AB exist, it turns out that, in general,
det�(AB) 6= det� A det� B. The multiplicative (or noncommutative, or determinant) anomaly is
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de�ned as

�(A; B) = ln
[
det�(AB)
det� A det� B

]
=−�′AB(0) + �′A(0) + �′B(0): (3)

Wodzicki’s formula for the multiplicative anomaly reads [38,28]:

�(A; B) =
res{[ln �(A; B)]2}

2 ord A ord B(ord A+ ord B)
; �(A; B) : =Aord BB−ord A: (4)

At the level of quantum mechanics (QM), where it was originally introduced by Feynman, the
path-integral approach is just an alternative formulation of the theory. In QFT it is much more than
this, being in many occassions the actual formulation of QFT [32]. In short, consider the Gaussian
functional integration∫

[d�]exp
{
−
∫
dDx[�†(x)( )�(x) + · · · ]

}
→ det( )± (5)

and assume that the operator matrix has the following simple structure (being each Ai an operator
on its own):(

A1 A2
A3 A4

)
→
(
A

B

)
; (6)

where the last expression is the result of diagonalizing the operator matrix. A question now arises.
What is the determinant of the operator matrix: det(AB) or det A · det B? This has been very much
on discussion during the last months [26,9,18,19]. There is agreement in that: (i) In a situation
where a superselection rule exists, AB has no sense (much less its determinant), and then the answer
must be det A · det B. (ii) If the diagonal form is obtained after a change of basis (diagonalization
process), then the quantity that is preserved by such transformations is the value of det(AB) and
not the product of the individual determinants (there are counterexamples supporting this viewpoint
[17,31,6]).

3. On the explicit calculation of �A and det� A

A fundamental property shared by zeta functions is the existence of a reection formula. For the
Riemann zeta function: �(s=2)�(s) = �s−1=2�(1 − s=2)�(1 − s). For a generic zeta function, Z(s), it
has the form: Z(!− s) = F(!; s)Z(s), and allows for its analytic continuation in a very easy way –
what is, as advanced above, the whole story of the zeta function regularization procedure (or at least
the main part of it). But the analytically continued expression thus obtained is just another series,
which has again a slow convergence behavior, of power series type [3] (actually the same that the
original series had, in its own domain of validity). Some years ago, Chowla and Selberg found
a formula, for the Epstein zeta function in the two-dimensional case [7], that yields exponentially
quick convergence, and not only in the reected domain. They were very proud of that formula –
as one can appreciate by reading the original paper, where actually no hint about its derivation was
given [7]. In Ref. [11], I generalized this expression to inhomogeneous zeta functions (very important
for physical applications), but staying always in two dimensions, for this was commonly believed
to be an unsurmountable restriction of the original formula (see, for instance, Ref. [27]). Recently,
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I have obtained an extension to an arbitrary number of dimensions [16], both in the homogeneous
(quadratic form) and nonhomogeneous (quadratic plus a�ne form) cases.
In short, for the following zeta functions (that correspond to the general quadratic – plus a�ne

– case and to the general a�ne case, in any number of dimensions, d) explicit formulas of the
CS type have been obtained [16]: �1(s) =

∑
n∈Zd [Q(n) + A(n)]−s and �2(s) =

∑
n∈Nd A(n)−s, where

Q is a nonnegative quadratic form and A a general a�ne one, in d dimensions (giving rise to
Epstein and Barnes zeta functions, respectively). Moreover, some expressions for the much more
di�cult cases when the summation ranges are interchanged, that is: �3(s) =

∑
n∈Nd [Q(n) + A(n)]−s

and �4(s) =
∑

n∈Zd A(n)−s, have also been constructed [16]. For lack of space, we cannot give all
the details of these derivations here.

3.1. Quadratic (plus a�ne) form

3.1.1. Extended Epstein zeta function in p dimensions
The starting point is Poisson’s resummation formula in p dimensions, which arises from the

distribution identity
∑

n∈Zp �(x−n)=∑m∈Zp ei2�m·x. (We shall indistinctly write m ·x ≡ mTx in what
follows.) Applying this identity to the function f(x) = exp(− 1

2x
TAx + bTx), with A an invertible

p× p matrix, and integrating over x ∈ Rp, we get

∑
n∈Zp

exp
(
−1
2
nTAn + bTn

)
=
(2�)p=2

√
det A

∑
m∈Zp

exp
[
1
2
(b+ 2�im)TA−1(b+ 2�im)

]
:

Consider now the following zeta function (R s¿p=2):

�A;c; q(s) =
∑
n∈Zp

′
[
1
2
(n + c)TA(n + c) + q

]−s

≡
∑
n∈Zp

′[Q(n + c) + q]−s

(the prime on the summatories will always mean that the point n = 0 is to be excluded from the
sum). The aim is to obtain a formula that gives (the analytic continuation of) this multidimensional
zeta function in terms of an exponentially convergent multiseries and which is valid in the whole
complex plane, exhibiting the singularities (simple poles) of the meromorphic continuation – with
the corresponding residua – explicitly. The only condition on the matrix A is that it corresponds to
a (nonnegative) quadratic form, which we call Q. The vector c is arbitrary, while q will (for the
moment) be a positive constant. Use of the Poisson resummation formula yields

�A;c; q(s) =
(2�)p=2qp=2−s

√
det A

�(s− p=2)
�(s)

+
2s=2+p=4+2�sq−s=2+p=4

√
det A�(s)

×
∑
m∈Zp

1=2

′cos(2�m · c)(mTA−1m)s=2−p=4Kp=2−s(2�
√
2qmTA−1m); (7)

where K� is the modi�ed Bessel function of the second kind and the subindex 1
2 in Z

p
1=2 means that

only half of the vectors m ∈ Zp intervene in the sum. That is, if we take an m ∈ Zp we must
then exclude −m (as the simple criterion one can, for instance, select those vectors in Zp \ {0}
whose �rst nonzero component is positive). Eq. (7) ful�lls all the requirements demanded before. It
is worth noting how the only pole of this inhomogeneous Epstein zeta function appears explicitly at
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s = p=2, where it belongs. Its residue is given by Ress=p=2 �A;c; q(s) = (2�)p=2=(
√
det A�(p=2)). With

a little of care, it is relatively simple to obtain the limit of expression (7) as q → 0.
When q = 0 there is no way to use the Poisson formula on all p indices of n. However, one

can still use it on some of the p indices n only, say on just one of them, n1. Poisson’s formula
on one index reduces to the celebrated Jacobi identity for the �3 function, that can be written as∑∞

n=−∞ e
−(n+z)2t =

√
(�=t)[1 +

∑∞
n=1 e

−�2n2=t cos(2�nz)]. Here z and t are arbitrary complex numbers,
z; t ∈ C, with the only restriction that R t ¿ 0. Applying this last formula to the �rst component,
n1, we obtain the following recurrent formula (for the sake of simplicity we set c= 0, but the result
can be easily generalized to c 6= 0):

�A;0; q(s) = �a;0; q(s) +
√�

a
�(s− 1

2 )
�(s)

��p−1 ;0; q(s− 1
2 ) +

4�s

as=2+1=4�(s)

∑
n2∈Zp−1

′

×
∞∑

n1=1

cos
(�n1

a
bTn2

)
ns−1=2
1 (nT2�p−1n2 + q)1=4−s=2Ks−1=2

(
2�n1√

a

√
nT2�p−1n2 + q

)
: (8)

This is a recurrent formula in p, the number of dimensions, the �rst term of the recurrence being
[14]

�a;0; q(s) = 2
∞∑
n=1

(an2 + q)−s = q−s +
√�

a
�(s− 1

2 )
�(s)

q1=2−s

+
4�s

�(s)
a−1=4−s=2q1=4−s=2

∞∑
n=1

ns−1=2Ks−1=2

(
2�n

√
q
a

)
: (9)

To take in these expressions the limit q → 0 is immediate:

�A;0;0(s) = 2a−s�(2s) +
√�

a
�(s− 1

2 )
�(s)

��p−1 ;0;0(s− 1
2 ) +

4�s

as=2+1=4�(s)

∑
n2∈Zp−1

′

×
∞∑

n1=1

cos
(�n1

a
bTn2

)
ns−1=2
1 (nT2�p−1n2)1=4−s=2Ks−1=2

(
2�n1√

a

√
nT2�p−1n2

)
: (10)

In the above formulas, A is a p×p symmetric matrix A=(aij)i; j=1;2; :::;p=AT, Ap−1 the (p−1)×(p−1)
reduced matrix Ap−1 = (aij)i; j=2; :::;p, a the component a= a11, b the p− 1 vector b=(a21; : : : ; ap1)T =
(a12; : : : ; a1p)T, and �p−1 is the following (p− 1)× (p− 1) matrix: �p−1 = Ap−1 − (1=4a)b⊗ b.
It turns out that the limit as q → 0 of Eq. (7) is again the recurrent formula (10). More precisely,

what is obtained in the limit is the reected formula, which one gets after using the Epstein zeta
function reection �(s)Z(s;A)=[�2s−p=2=

√
det A]�(p=2−s)Z(p=2−s;A−1); Z(s;A) being the Epstein

zeta function [24,25]. This result is easy to understand after some thinking. Summing up, we have
thus checked that Eq. (7) is valid for any q¿0, since it contains in a hidden way, for q = 0, the
recurrent expression (10).
The formulas here can be considered as generalizations of the Chowla–Selberg formula. All share

the same properties that are so much appreciated by number theoretists as pertaining to the CS for-
mula. In a way, these expressions can be viewed as improved reection formulas for zeta functions;
they are in fact much better than those in several aspects: while a reection formula connects one
region of the complex plane with a complementary region (with some intersection) by analytical
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continuation, the CS formula and the formulas above are valid on the whole complex plane, exhibit-
ing the poles of the zeta function and the corresponding residua explicitly. Even more important,
while a reection formula is intended to replace the initial expression of the zeta function – a power
series whose convergence can be extremely slow – by another power series with the same type of
convergence, it turns out that the expressions here obtained give the meromorphic extension of the
zeta function, on the whole complex s-plane, in terms of an exponentially decreasing power series
(as was the case with the CS formula, that one being its most precious property). Actually, expo-
nential convergence strictly holds under the condition that q¿0. However, the formulas themselves
are valid for q¡ 0 or even complex. What is not guaranteed for general q ∈ C is the exponential
convergence of the series. Those analytical continuations in q must be dealt with speci�cally. The
physical example of a �eld theory with a chemical potential falls clearly into this class.

3.1.2. Generalized Epstein zeta function in two dimensions
For completeness, let us write down the corresponding series when p = 2 explicitly. They are,

with q¿ 0,

�E(s; a; b; c; q) =−q−s +
2�q1−s

(s− 1)√�
+

4
�(s)


(q

a

)1=4( �√
qa

)s

×
∞∑
n=1

ns−1=2Ks−1=2

(
2�n

√
q
a

)
+
√

q
a

(
2�
√

a
q�

)s ∞∑
n=1

ns−1Ks−1

(
4�n

√
aq
�

)

+

√
2
a
(2�)s

∞∑
n=1

ns−1=2 cos(�nb=a)
∑
d|n

d1−2s
(
�+

4aq
d2

)1=4−s=2

× Ks−1=2


�n

a

√
�+

4aq
d2




 ; (11)

where �= 4ac − b2¿ 0, and, with q= 0, the CS formula [7]

�E(s; a; b; c; 0) = 2�(2s) a−s +
22s

√
� as−1

�(s)�s−1=2 �(s− 1
2 )�(2s− 1)

+
2s+5=2�s

�(s)�s=2−1=4√a

∞∑
n=1

ns−1=2�1−2s(n) cos(�nb=a)Ks−1=2

(�n
a

√
�
)
; (12)

where �s(n) ≡∑
d|n d

s, sum over the s-powers of the divisors of n. We observe that the r.h.s. of (11)
and (12) exhibit a simple pole at s = 1, with a common residue: Ress=1 �E(s; a; b; c; q) = 2�=

√
� =

Ress=1 �E(s; a; b; c; 0).

3.1.3. Truncated Epstein zeta function in two dimensions
The most involved case in the family of Epstein-like zeta functions corresponds to having to

deal with a truncated range. This comes about when one imposes boundary conditions of the usual
Dirichlet or Neumann type [21,14]. Jacobi’s theta function identity and Poisson’s summation formula
are then useless and no expression in terms of a convergent series for the analytical continuation
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to values of R s below the abscissa of convergence can be obtained. The method must use then
the zeta function regularization theorem [10,22,12] and the best one gets is an asymptotic series.
The issue of extending the CS formula, or the most general expression we have obtained before, to
this situation is not an easy one (see, however, Ref. [16]). This problem has seldom (if ever) been
properly addressed in the literature.
As an example, let us consider the following series in one dimension: �G(s; a; c; q) ≡∑∞

n=−∞ [a(n+
c)2 + q]−s; R s¿ 1

2 . Associated with this zeta functions, but considerably more di�cult to treat, is
the truncated series, with indices running from 0 to ∞

�Gt (s; a; c; q) ≡
∞∑
n=0

[a(n+ c)2 + q]−s; R s¿ 1
2 : (13)

In this case the Jacobi identity is of no use. The way to proceed is employing speci�c techniques of
analytic continuation of zeta functions [21,4]. There is no place to describe them here in detail. The
usual method involves three steps [10,22,12]. The �rst step is easy: to write the initial series as a
Mellin transform

∑∞
n=0 [a(n+c)2+q]−s=(1=�(s))

∑∞
n=0

∫∞
0 dt ts−1exp{−[a(n+c)2+q]t}. The second,

to expand in power series part of the exponential, leaving a converging factor:
∑∞

n=0 [a(n + c)2 +
q]−s=(1=�(s))

∑∞
n=0

∫∞
0 dt

∑∞
m=0((−a)m=m!)(n+c)2mts+m−1e−qt . The third, and most di�cult, step is

to interchange the order of the two summations – with the aim to obtain a series of zeta functions –
which means transforming the second series into an integral along a path on the complex plane, that
has to be closed into a circuit (the sum over poles inside reproduces the original series), with a part
of it being sent to in�nity. Usually, after interchanging the �rst series and the integral, there is a
contribution of this part of the circuit at in�nity, what provides in the end an additional contribution
to the trivial commutation (given by the zeta function regularization theorem). More important, what
one obtains in general through this process is not a convergent series of zeta functions, but an
asymptotic series [21,14]. That is, in our example,

∞∑
n=0

[a(n+ c)2 + q]−s ∼
∞∑
m=0

(−a)m�(m+ s)
m!�(s)qm+s

�H (−2m; c) + additional terms:

Being more precise, as an outcome of the whole process we obtain the following result for the
analytic continuation of the zeta function [13, p. 6100]:

�Gt (s; a; c; q)∼
(
1
2
− c

)
q−s +

q−s

�(s)

∞∑
m=1

(−1)m�(m+ s)
m!

(
q
a

)−m

�H (−2m; c)

+
√�

a
�(s− 1

2 )
2�(s)

q1=2−s+
2� s

�(s)
a−1=4−s=2q1=4−s=2

∞∑
n=1

ns−1=2 cos(2�nc)Ks−1=2(2�n
√

q=a):

(14)

(Note that this expression reduces to Eq. (9) in the limit c → 0.) The �rst series on the r.h.s. is
asymptotic [10,22,12,13, p. 3308]. Observe, on the other hand, the singularity structure of this zeta
function. Apart from the pole at s= 1

2 , there is a whole sequence of poles at the negative real axis,
for s=− 1

2 ;− 3
2 ; : : : ; with residua: Ress=1=2−j �Gt (s; a; c; q) = (2j − 1)!! qj=j! 2j

√
a; j = 0; 1; 2; : : : . The

generalization of this to p dimensions can be found in Ref. [16].
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3.2. A�ne form

3.2.1. Barnes and related zeta functions in two dimensions
Consider the Barnes zeta function in two dimensions [1,2]

�B(s; a|r) =
∞∑

n1 ; n2=0

(a+ r1n1 + r2n2)−s; R s¿ 2; r1; r2¿ 0; (15)

and the related zeta function

�(s; a|r) =
∞∑

n1 ; n2∈Z

′(a+ r1n1 + r2n2)−s; (16)

where the prime means that the term with n1=n2=0 is absent from the sum (actually, we could have
de�ned the Barnes zeta function in this way too, in order to allow for the particular case a=0, but
that would not be the usual de�nition). The two functions are related, in fact: �(s; a|r)= �B(s; a|r)+
�B(s; a| − r)+ �B(s; a|(r1;−r2))+ �B(s; a|(−r1; r2))−∑2

i=1 [r
−s
i �H (s; a=ri)+ (−ri)−s�H (s;−a=ri)], being

�H the Hurwitz zeta function. Recall Hermite’s formula for the Hurwitz zeta function

�H (s; a) =
a1−s

s− 1 +
a−s

2
+ 2

∫ ∞

0
dy
(a2 + y2)−s=2 sin[s arctan(y=a)]

e2�y − 1 :

This expression exhibits the singularity structure of �H (s; a) explicitly, the integral being an analytic
function of s; ∀s ∈ C (it is uniformly convergent for |s|6R, for any R¿ 0). If we expand �H (s; a)
around s=0, we obtain, at s=0, the formula �B(0; a|r)=(r1=2r2)B2(a=r1)+ 1

2(
1
2 − (a=r1))+(r2=12r1).

Taking the derivative with respect to s, at s= 0, we obtain

�′B(0; a|r) =−�B(0; a|r) log r2 +
(
1− log r1

r2

)
r1
2r2

B2(a=r1)− r1
r2
�′H (−1; a=r1)

+
(

a
2r1

− 1
4

)
log

r1
r2
+
1
2
log�(a=r1)− 1

4
log (2�)

− r2
12r1

[log(r1=r2) +  (a=r1)] + R(a|r); (17)

where

R(a|r)




=
2r1
r2

∞∑
n=0

(n+ a=r1)

[ ∫ ∞

0

arctan x dx
exp[2�(r1=r2)x(n+ a=r1)]− 1

− 1
24

(
a
r2
+

r1
r2
n
)−2 ]

;

∼ 1
�

∞∑
k=1

(−1)k(2k)! �(2k + 2)
(

r2
2�r1

)2k+1
�H (2k + 1; a=r1):

These are the two possible expressions for the remainder term R(a|r). The �rst is valid for r26r16a.
It is very quickly convergent in this region and, therefore, appropriate for numerical calculations.
The second is an explicit asymptotic series for r2�2�a.
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For the other two-dimensional zeta function considered at the beginning:

�′(0; a|r) =
4∑

�=1

�′B(0; a|r�) +
2∑

i=1

[(
1
2
− a

ri

)
log ri +

(
1
2
+

a
ri

)
log(−ri)

−log�
(
a
ri

)
− log�

(
a
−ri

)
+ log(2�)

]
; (18)

where r1 = (r1; r2); r2 = (r1;−r2); r3 = (−r1; r2); r4 = (−r1;−r2). Note that this evaluation involves
an analytic continuation on the values of r1 and r2 – which are strictly positive in the case of the
Barnes zeta function – to negative and, in general, complex values r1; r2 ∈ C. In this way, we
elude the apparently unsurmountable problems that a direct interpretation of the sum in Eq. (16)
poses, even for positive r1; r2 ∈ R. In particular, for r1 = r2 it develops an in�nite number of zero
and constant modes, for an in�nite number of constants, what renders a direct interpretation of the
series extremely problematic. Naive analytical continuation followed by a natural transportation of
the negative signs of the indices ni to the parameters ri, yields

�′(0; a|r) =−log
[
�
(

a
r2

)
�
(

a
−r2

)]
+

a�i
r2

− log a
r2

± i�
2
+ log 2�: (19)

Note that the breaking of the initial symmetry under interchange of r1 and r2 has �nally resulted in
the disappearance of one of the two parameters from the end result. The fact that the �nal formula
actually preserves the modular invariance of the inital one, under the parameter change on the other
variable, here r2, is however remarkable,

a → a+ kr2; k ∈ Z;

since it transforms as

�′(0; a|r)→ �′(0; a|r) + 2�k;
so that the modular symmetry of a with respect to r2 is preserved. The r1 dependence has disappeared
completely, the reason for this being the following. The formula for the Barnes zeta function for
positive r1 and r2 obtained in the preceding section cannot be analytically continued to both r1 and
r2 negative in this naive way, because, for any value of s (and a; r1; r2 �xed), once we break
the symmetry and do the analytical continuation say in r2, then the analytical continuation in r1 is
restricted to the only possibility of n1 being zero. In fact, in other words, when we try to pull out
of the r1 real axis, for any value of n1 6= 0 we encounter a pole of the initial zeta function, taking
n2 big enough. Now, it is immediate to see that one can interprete the �nal formula (19) as the
true analytical continuation for the restriction n1 = 0. In principle, there is a way to perform a true
analytic continuation in the two variables taking into account the contribution of the poles when
crossing the axis (a whole series of them appear). This issue is under investigation and we cannot
yet give a �nal result.

3.2.2. Barnes and related zeta functions in d dimensions
Using once more Hermite’s formula, we obtain the following recurrence for the Barnes zeta

function in d dimensions:

�(d)B (s; a|r) =
∞∑
nd=0

(a+ rd · nd)−s; R s¿d (20)
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in terms of the corresponding ones in d− 1 dimensions

�(d)B (s; a|r) =
r−1d

s− 1�
(d−1)
B (s− 1; a|rd−1) + 12�

(d−1)
B (s; a|rd−1)

+ r−1d

∞∑
nd−1=0

(a+ rd−1 · nd−1)1−s
∫ ∞

0
dx
(1 + x2)−s=2 sin(s arctan x)

e2�r
−1
d (a+rd−1·nd−1)x − 1

: (21)

Proceeding as before, we take the derivative at s= 0, with the result

�(d)
′

B (0; a|r) =−r−1d �(d−1)B (−1; a|rd−1)− r−1d �(d−1)
′

B (−1; a|rd−1) + 12�
(d−1)′
B (0; a|rd−1)

+
1
2�

[d=2−1]∑
k=0

(−1)k
(

rd
2�

)2k+1
(2k)! �(2k + 2) FP[�(d−1)B (2k + 1; a|rd−1)] + Rd(0; a|r);

(22)

where FP[ ] means the �nite part of, and for the remainder term we get the two di�erent expressions:

Rd(0; a|r)




= r−1d

∞∑
nd−1=0

(a+ rd−1 · nd−1)
[ ∫ ∞

0
dx

arctan x

e2�r
−1
d (a+rd−1·nd−1)x − 1

−
[d=2−1]∑
k=0

(−1)k
(

rd
2�

)2k+2
(2k)! (a+ rd−1 · nd−1)−2(k+1)

]
;

∼ 1
2�

∞∑
k=[d=2]

(−1)k
(

rd
2�

)2k+1
(2k)! �(2k + 2)�(d−1)B (2k + 1; a|rd−1):

In order to obtain �(d)
′

B (0; a|r) we need two derivatives of the d− 1 zeta function, namely �(d−1)
′

B (0;
a|rd−1) and �(d−1)

′
B (−1; a|rd−1). The derivative at s = −1 can be calculated in the same way, just

by performing �rst the expansion of the Barnes zeta function around s = −1. For the case d = 2
(needed in order to initiate the recurrence), the result is the following:

�(2)
′

B (−1; a|r) =−r1 log r1 �(2)B (−1; a|r) + r1

[
− r1
4r2

�H (−2; a=r1)− r1
2r2

�′H (−2; a=r1)

+
1
2
�′H (−1; a=r1)

r2
12r1

�H (0; a=r1)− r2
12r1

�′H (0; a=r1)
]
+ R1(−1; a|r);

the remainder R1(−1; a|r) being given by the asymptotic expansion

R1(−1; a|r) ∼ r1
�

∞∑
k=1

(−1)k(2k − 1)!�(2k + 2)
(

r2
2�r1

)2k+1
�H (2k; a=r1);

or by the corresponding expression as the di�erence of an integral and the term k=0 of the series (as
above). This allows for the calculation of any derivative of the Barnes zeta function in d dimensions
recursively (with an accurate numerical determination of the remainder).
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4. Examples

4.1. Dirac-like operator in one dimension

Consider the square root of the harmonic oscillator obtained by Delbourgo. This example has
potentially some interesting physical applications, for it is well known that a fermion in an external
constant electromagnetic �eld has a similar spectrum (Landau spectrum). Exactly in the same way
as when going from the Klein–Gordon to the Dirac equation and at the same price of doubling
the number of components (e.g., introducing spin), Delbourgo has constructed a model for which
there exists a square root of its Hamiltonian, which is very close to the one for the harmonic
oscillator. The main di�erence lies in the introduction of the parity operator, Q. Whereas creation
and destruction operators for the harmonic oscillator, a±=P±iX , are nonhermitian, the combinations
D± = P ± iQX are hermitian and H± ≡ (D±)2 = P2 + X 2 ∓ Q = 2Hosc ∓ Q. Note that Q commutes
with Hosc. Doubling the components (�i are Pauli matrices): P=−i�1(@=@x); X =�1x; Q=�2, while
D± =−i�1(@=@x)± �3x. They have for eigenfunctions and eigenvalues,

 ±
n (x) =

−ie−x2=2√
2n+1 (n− 1)!√�


−i[Hn−1(x)± Hn(x)=

√
2n]

[Hn−1(x)∓ Hn(x)=
√
2n]


 ;

�n =±
√
2n; n¿1;  0(x) =

e−x2=2√
2
√
�

(
1
i

)
; �0 = 0

(23)

with Hn(x) Hermite polynomials. Let us call now D ≡ D+.
The two operators for the calculation of the anomaly will be D and DV = D + V , V being a

real, constant potential with ‖V‖¡√
2, that goes multiplied with the identity matrix in the two

(spinorial) dimensions (implicit here). Notice that D and DV are hermitian, commuting operators.
The zeta function is �D(s) =

∑
i �

−s
i =

∑∞
n=1 [1 + (−1)−s](

√
2n)−s = [1 + (−1)−s]2−s=2�R(s=2); �R(s)

being the Riemann zeta function, which has a simple pole at s = 1. The manifold is not compact,
but we get

a(D;DV ) =
V 2

2
− ln V; (24)

in accordance with Wodzicki’s formula. The logarithmic term is due to the presence of a zero
mode. We have here the �rst and the most simple example of appearance of a nontrivial anomaly
for operators of degree one in a space of dimension one (spinorial, however).

4.2. Harmonic oscillator in d dimensions

Let us consider the harmonic oscillator in d dimensions, with angular frequencies (!1; : : : ; !d).
The eigenvalues read � �n = �n · �! + b; �n ≡ (n1; : : : ; nd); �! ≡ (!1; : : : ; !d); b = 1

2

∑d
k=1 !k , and the

related zeta function is the Barnes one, �d(s; b| �!), whose poles are to be found at the points s = k
(k =d; d− 1; : : : ; 1). Their corresponding residua can be expressed in terms of generalized Bernoulli
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polynomials B(d)d−k(b| �!), de�ned by
tde−at∏d

i=1(1− e−bit)
=

1∏d
i=1 bi

∞∑
n=0

B(d)n (a|bi)
(−t)n

n!
:

The residua of the Barnes zeta function are

Res �d(k; b| �!) = (−1)d+k

(k − 1)!(d− k)!
∏d

j=1!j

B(d)d−k(b| �!); k = d; d− 1; : : : :

Now, being V is a constant potential, we obtain

a(H;HV ) =
(−1)d
2
∏d

j=1!j

[d=2]∑
k=1

[+  (d− 2k)]B(d)2k (b| �!)
(2k)! (d− 2k)! V 2k : (25)

Here the generalized Bernoulli polynomials of odd order vanish. In spite of the manifold being
noncompact, we con�rm again the validity of the Wodzicki formula. On the other hand, the remaining
generalized Bernoulli polynomials are never zero, in fact,

B(d)0 (b| �!) = 1; B(d)2 (b| �!) =− 1
12

d∑
i=1

!2
i ;

B(d)4 (b| �!) =
1
24

[
7
10

d∑
i=1

!4
i +

∑
i¡j

!2
i !

2
j

]
;

B(d)6 (b| �!) =− 5
96


31
70

d∑
i=1

!6
i +

7
10

∑
i 6=j

!4
i !

2
j +

∑
i¡j¡k

!2
i !

2
j!

2
k


 ; : : : : (26)

So, the anomaly does not vanish for d odd or d = 2, whatever the frequencies !i be, only even
powers of the potential V appear.

4.3. Bosonic model at �nite T with chemical potential

The physical implications of the issue for self-interacting theories at zero and �nite tempera-
ture, eventually with a chemical potential, have been investigated recently. For lack of space, the
reader is addressed again to the relevant Refs. [17,31,6,23]. Here we only sketch one example:
the noninteracting bosonic model at �nite temperature with a nonvanishing chemical potential. The
partition function for a free charged �eld in Rd, described by two real components �i with Eu-
clidean action: S =

∫
dxd[�i(−�d + m2)�i], where �2 = �k�k is O(2) invariant, may be written as

[11] ln Z�(�)=− 1
2 ln det‖Aik=M 2‖=− 1

2 ln det((L+=M
2)(L−=M 2)); where L±= L�+(

√
LN ± e�)2, with

L�=−@2� (of discrete spectrum !2
n=(4�2n2=�2)) and LN=−�N+m2. But another possible factorization

is K± = LN + (
√
L� ± ie�)2. Here we have L+L− =K+K− and, in both cases, we deal with a couple

of 	DOs, L+ and L− being also formally self-adjoint. The partition function, chosen a factorization,
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say L+L−, is

ln Z�(L+; L−) =−1
2
ln det

∥∥∥∥ Lik

M 2

∥∥∥∥
=−1

2
ln det

(
L+
M 2

L−
M 2

)

=
1
2
�′L+(0) +

1
2
�′L−(0) +

lnM 2

2
[�L+(0) + �L−(0)]−

1
2
ad(L+; L−);

and similarly for K+K−. One can see the crucial role of the multiplicative anomaly: as, in the
factorization, di�erent operators may enter, the multiplicative anomaly is necessary in order to have
the same regularized partition function in both cases, namely ln Z�(L+; L−) = ln Z�(K+; K−), which
is an obvious physical requirement (the existence of the anomaly is obvious since det K+ det K− 6=
det L+ det L−). For the �rst factorization, we get

�L±(s) =
�
2
√
�
�(s− 1

2 )
�(s)

�(√LN±e�)2(s− 1
2 )− 2s

∑
i

ln(1− e−�(
√

�i±e�)) + O(s2):

For d odd, taking the derivative with respect to s and the limit s → 0, the two factorizations give

ln Z�;�(L+; L−) =
�VNmd

(4�)d=2�
(
−d
2

)
+ S(�; �)− 1

2
ad(L+; L−);

ln Z�;�(K+; K−) =
�VNmd

(4�)d=2�
(
−d
2

)
+ S(�; �)− 1

2
ad(K+; K−):

It should be noted that one gets ln Z�;�(L+; L−) = ln Z�;�(K+; K−) and thus the standard textbook
result as soon as one is able to prove that the two multiplicative anomalies are vanishing for d odd,
which indeed happens.
For d even, the situation is di�erent because, within the �rst factorization, the vacuum sector

depends explicitly on the chemical potential �. For d= 2 the two factorizations give

ln Z�;�(L+; L−) =
�V1m2

4�

(
ln

m2

M 2
− 1

)
+ S(�; �) +

V1�
2� e2�2 − 1

2
a2(L+; L−);

ln Z�;�(K+; K−) =
�V1m2

4�

(
ln

m2

M 2
− 1

)
+ S(�; �)− 1

2
a2(K+; K−);

respectively, while for d= 4 one has

ln Z�;�(L+; L−) =
�V3
32�2m

4

(
ln

m2

M 2
− 3=2

)
+

�V3
8�2

(
e4�4

3
− e2�2m2

)

+ S(�; �)− 1
2
a4(L+; L−);

ln Z�;�(K+; K−) =
�V3
32�2m

4

(
ln

m2

M 2
− 3=2

)
+ S(�; �)− 1

2
a4(K+; K−):
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In general, for d even: ln Z�;�(L+; L−) = −�VNEV (m;M) + �VNEd(m; �) + S(�; �) − 1
2ad(L+; L−);

and ln Z�;�(K+; K−)=−�VNEV (m;M)+S(�; �)− 1
2ad(K+; K−); where EV (m;M) is the naive vacuum

energy density, d=2Q and Ed(m; �)=
∑Q

r=1 cQ;r(e�)2rmd−2r ; what reects the presence of the anomaly
terms. Here the cQ;r are computable coe�cients, given by:

cQ;r =
�(2r − 1)

�(2r + 1)�N=2

21−N

�(r − 1
2 )
(−1)Q−r

(Q − r)!
:

In the cases d= 2; 4 and 6 one obtains

E2(m; �) =
e2�2

2� ; E4(m; �) =−e2�2

8�2

(
m2 − e2�2

3

)
;

E6(m; �) =− e2�2

16�3

(
−1
4
m4 +

e2�2m2

6
− 2e4�4

45

)
:

(27)

It could be argued that the presence of a multiplicative anomaly is strictly linked with the
zeta-function regularization employed and, thus, that it might be an artifact of it. But it has been
proved in [17,31,6] that the multiplicative anomaly is present indeed in a large class of regularizations
of functional determinants appearing in the one-loop e�ective action.

4.4. Other physical applications

4.4.1. Calculation of the trace anomaly
In a paper by Bousso and Hawking [5], where the trace anomaly of a dilaton coupled scalar

in two dimensions is calculated, the zeta function method is employed for obtaining the one-loop
e�ective action, W , which is given by the well-known expression W = 1

2[�A(0)ln �
2 + �′A(0)]: In

conformal �eld theory and in a Euclidean background manifold of toroidal topology, the eigenvalues
of A are found perturbatively (see [5]), what leads one to consider the following zeta function:
�A(s)=

∑∞
k; l=−∞(�kl)−s; with the eigenvalues �kl being given by �kl=k2+l2+(�2=2)+(�2=2(4l2−1));

where � is a perturbation parameter. It can be shown that the integral of the trace anomaly is given by
the value of the zeta function at s=0. One barely needs to follow the several pages long discussion
in [5], leading to the calculation of this value, in order to appreciate the power of the formulae of
the preceding section. In fact, to begin with, no mass term needs to be introduced to arrive at the
result and no limit mass → 0 needs to be taken later. Using binomial expansion (the same as in
Ref. [5]), one gets

�(s) =
∞∑

k;l=−∞

(
k2 + l2 +

�2

2

)−s

− �2s
2

∞∑
k;l=−∞

(
k2 + l2 +

�2

2

)−1−s

(4l2 − 1)−1:

From Eq. (11) above, the �rst zeta function gives, at s= 0, exactly: −��2=2. And this is the whole
result (which coincides with the one obtained in [5]), since the second term has no pole at s = 0
and provides no contribution.

4.4.2. Calculation of the Casimir energy density
Another direct application is the calculation of the Casimir energy density corresponding to a

massive scalar �eld on a general, d-dimensional toroidal manifold (see [29]). In the spacetime
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M=R×�, with �=[0; 1]d= ∼, which is topologically equivalent to the d torus, the Casimir energy
density for a massive scalar �eld is given directly by Eq. (7) at s=− 1

2 , with q= m2 (mass of the
�eld), b=0, and A being the matrix of the metric g on �, the general d-torus: EC

M;m=�g;0;m2 (s=− 1
2 ).

The components of g are, in fact, the coe�cients of the di�erent terms of the Laplacian, which is
the relevant operator in the Klein–Gordon �eld equation. The massless case is also obtained, with
the same speci�cations, from the corresponding formula Eq. (10). In both cases no extra calculation
needs to be done, and the physical results follow from a mere identi�cation of the components of
the matrix A with those of the metric tensor of the manifold in question [24]. Very much related
with this application but more involved and ambitious is the calculation of vacuum energy densities
corresponding to spherical con�gurations and the bag model (see [4,36,37] and references therein).

4.4.3. Calculation of the e�ective action
A third application consists in calculating the determinant of a di�erential operator, say the Lapla-

cian on a general p-dimensional torus. A very important problem related with this issue is that of
the multiplicative anomaly discussed before [23,20]. To this end the derivative of the zeta function
at s= 0 has to be obtained. From Eq. (7), we get

�′A;c; q(0) =
4(2q)p=4

√
det A

′∑
m∈Zp

1=2

cos(2�m · c)
(mTA−1m)p=4

Kp=2(2�
√
2qmTA−1m)

+




(2�)p=2�(−p=2)qp=2

√
det A

; p odd;

(−1)k(2�)kqk

k!
√
det A

[	(k + 1) + − ln q]; p= 2k even;

and, from here, det A= exp− �′A(0). For p= 2, we have explicitly

det A(a; b; c; q) = e2�(q−ln q)=
√

�(1− e−2�
√

q=a)exp


−4

∞∑
n=1

1
n

[√
a
q
K1

(
4�n

√
aq
�

)

+ cos(�nb=a)
∑
d|n

d exp


−�n

a

√
�+

4aq
d2






 :

In the homogeneous case (CS formula) we obtain for the determinant

det A(a; b; c) =
1
a
exp

[
−4�′(0)− �

√
�

6a
− 4

∞∑
n=1

�1(n)
n
cos(�nb=a)e−�n

√
�=a

]
;

or, in terms of the Teichm�uller coe�cients, �1 and �2, of the metric tensor (for the metric, A,
corresponding to the general torus in two dimensions):

det A(�1; �2) =
�2

4�2|�|2 exp
[
−4�′(0)− ��2

3|�|2 − 4
∞∑
n=1

�1(n)
n
cos
(
2�n�1
|�|2

)
e−�n�2=|�|

2

]
:
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