Interior Error Estimates of the Ritz Method for Pseudo-Differential Equations

Klaus BRAUN

Institut für Angewandte Mathematik, Albert-Ludwigs-Universität, Hermann-Herder-Str. 10, 7800 Freiburg i.Br. FRG

Reprinted from the Japan Journal of Applied Mathematics Vol. 3, No. 1, pp. 59-72, June 1986

Interior Error Estimates of the Ritz Method for Pseudo-Differential Equations

Klaus Braun

Institut für Angewandte Mathematik, Albert-Ludwigs-Universität, Hermann-Herder-Str. 10, 7800 Freiburg i.Br. FRG

Received April 25, 1985 Revised October 31, 1985

The Ritz method for strong elliptic pseudo-differential equations is discussed. 'Optimal' local error estimates are derived if the underlying 'approximation-spaces' are finite elements. The analysis covers simultaneously pseudo-differential operators of positive and negative order. In case of positive order an additional regularity assumption for the 'approximation-spaces' is needed.

Key words: pseudo-differential equations, Ritz method, interior estimates, superapproximability

0. Introduction

Let the linear equation

$$(0.1) Au = f$$

be given in a Hilbert-space H with inner product (\cdot, \cdot) and norm $\|\cdot\|$. The operator A is assumed to have the properties

i) A positive, i.e.
$$(Au, u) > 0$$
 for $u \neq 0$,

ii) A symmetric, i.e
$$(Au, v) = (u, Av)$$

for $u, v \in D(A)$. Then

(0.3)
$$a(u, v) := (Au, \dot{v})$$

defines an inner product in D(A). The corresponding norm will be denoted by

$$|||u||| := a(u, u)^{1/2}.$$

In order to apply the Ritz method we need a closed 'approximation-space'

$$(0.5) S = S_h \subseteq H_A := \overline{D(A)}^{||| \cdot |||}.$$

The domain of definition of $a(\cdot, \cdot)$ can be extended to $H_A \times H_A$. The Ritz approxi-

mation $u_h := R_h u \in S_h$ is defined by

(0.6)
$$a(u_h, \chi) = (f, \chi)$$
 for all $\chi \in S_h$.

Because of

(0.7)
$$a(u, v) = (f, v) \quad \text{for all} \quad v \in D(A)$$

primarily and hence also for $v \in H_A$ we get the defining relation

(0.8)
$$a(u-u_h, \chi) = 0$$
 for all $\chi \in S_h$.

This shows:

The error $u-u_h$ is orthogonal to S_h with respect to the inner product $a(\cdot, \cdot)$. Therefore the Ritz method is best approximating in the norm of H_A , i.e.

(0.9)
$$||| u - u_h ||| = \inf_{\chi \in S_h} ||| u - \chi |||.$$

In order to analyze the error $u - u_h$ further properties of the operator A resp. the space H_A are needed.

We will give two illustrations. Regarding the notations we refer to Gilbarg-Trudinger [6].

Example 1. $H = L_2(\Omega)$ with $\Omega \subseteq \mathbb{R}^N$ a bounded domain and the boundary $\partial \Omega$ sufficiently smooth.

(0.10)
$$Au := -\Delta u \text{ and } D(A) = \dot{W}_{2}^{2}(\Omega) := \dot{W}_{2}^{1}(\Omega) \cap W_{2}^{2}(\Omega)$$
.

We introduce a Hilbert-scale in the following way: Let $\{v_i, \lambda_i\}$ be the orthonormal set of eigen-pairs of A, i.e.

$$-\Delta v_i = \lambda_i v_i \quad \text{in } \Omega$$

$$v_i = 0 \quad \text{on } \partial \Omega.$$

The Hilbert-spaces $\{H_{\beta} | \beta \in \mathbb{R}\}$ are spanned by the functions with a finite β -norm defined by

(0.12)
$$||z||_{\theta}^2 := \sum \lambda_i^{\theta} z_i^2$$
 with $z_i := (z, v_i)$.

We have the inclusions

$$D(A) \subseteq H_A = H_1 = \mathring{W}_2^1(\Omega) \subseteq L_2(\Omega) .$$

Example 2. $H = L_2^{\sharp}(\Gamma)$ with $\Gamma = S^1(\mathbb{R}^2)$, i.e. Γ is the boundary of the unit sphere. Then H is the space of L_2 -integrable periodic functions in \mathbb{R} .

(0.14)
$$(Au)(x) := \oint k(x-y)u(y)dy \text{ and } D(A) = H$$

with

$$(0.15) k(y) := -\ln\left|2\sin\frac{y}{2}\right|.$$

With the help of the Fourier coefficients v_v of a 2π -periodic function v defined by

$$(0.16) v_v := \frac{1}{2\pi} \oint v(x)e^{-ivx} dx$$

we may introduce for real β the norms

(0.17)
$$||v||_{\beta}^{2} := \sum_{-\infty}^{\infty} |v|^{2\beta} |v_{v}|^{2}.$$

The Hilbert-spaces $H_{\beta} = H_{\beta}(\Gamma)$ are defined similar to the above. The Fourier coefficients of the convolution Au (0.14) are

(0.18)
$$(Au)_{v} = k_{v} \cdot u_{v} = \frac{1}{2|v|} \cdot u_{v} .$$

This time we have (see Hsiao-Wendland [8])

(0.19)
$$D(A) \subseteq H_A = H_{-1/2}(\Gamma) .$$

The meaning of local convergence will be demonstrated in case of Example 1. We use isoparametric finite elements

$$(0.20) S_h \subseteq \mathring{W}_2^1(\Omega)$$

which are piecewise polynomials of degree less than t (see Zlamal [20]). The index $h \in (0, 1]$ is a measure of the underlying subdivision. In Nitsche-Schatz [14] it is shown:

Let $u \in \dot{W}_{2}^{2}(\Omega)$ be the solution of (0.10) with the additional regularity $u \in W_{2}^{\tau}(\Omega_{2})$ for $\tau \leq t$ and some subdomain $\Omega_{2} \subseteq \Omega$. In a proper subdomain $\Omega_{1} \in \Omega_{2}$ the error estimate

(0.21)
$$\|u-u_h\|_{W_2^s(\Omega_1)} \le ch^{\tau-\kappa} \{ \|u\|_{W_2^s(\Omega)} + \|u\|_{W_2^s(\Omega_2)} \}$$
 for $\kappa = 0, 1$ holds true.

In order to get this 'optimal' local convergence a special super-approximability property of finite elements is used. In addition certain global shift properties of the operator $-\Delta$ are needed.

The construction of an operator-algebra consisting of integral and differential operators leads to the concept of pseudo-differential operators. The counterpart of (0.2) resp. (0.4) regarding the application of the Ritz method is Gårding's inequality for strong elliptic pseudo-differential operators (see Schatz [16]). For such equations the Ritz method is almost best approximating with respect to the corresponding 'energy-norm'. The Examples 1 and 2 are model problems with strong elliptic pseudo-differential operators of order 2α and the 'energy-norm' $\|\cdot\|_{\alpha}$ with $\alpha=1$ resp. $\alpha=-1/2$.

In the present paper we will derive the 'optimal' local convergence of the Ritz method for strong elliptic pseudo-differential operators. We emphasize that our treatment covers simultaneously operators of positive and negative order.

We will use the local shift properties of elliptic pseudo-differential operators P (see Treves [18] p. 42):

Let w be the solution of an elliptic pseudo-differential equation Pw=f. If f is in $C^{\infty}(\Omega')$ for some open domain Ω' then also $w \in C^{\infty}(\Omega')$.

1. Global Error Estimates

Let $\{H_{\beta} \mid \beta \in \mathbb{R}\}$ be a Hilbert-scale with the special assumption: For $\beta = m \in N_0$ (the set of all nonnegative integers) the spaces

$$(1.1) H_m \subseteq W_2^m(\Omega)$$

are subspaces of the Sobolev-space $W_2^m(\Omega)$ with

(1.2)
$$\Omega = \Sigma$$
 or $\Omega = \partial \Sigma$

and Σ being a bounded domain with boundary $\partial \Sigma$ sufficiently smooth.

 $(\cdot, \cdot)_{\beta}$, $\|\cdot\|_{\beta}$ will denote the inner product respectively the norm in H_{β} . In case of $\beta = 0$ we skip the subscript.

We assume that the operator A (0.1) has the following properties:

- 1) There is an $\alpha \in \mathbb{R}$ such that
 - i) The mapping $A: H_{\beta+2\alpha} \to H_{\beta}$ is an isomorphism for $\beta \in \mathbb{R}$, i.e.

$$c^{-1} \|u\|_{\beta+2\alpha} \le \|Au\|_{\beta} \le c \|u\|_{\beta+2\alpha}$$

with some constant c.

ii) A is positive definite in H_{α} , i.e.

$$(1.3) (u, Au) \ge c \|u\|_{\alpha}^2$$

with $\underline{c} > 0$.

2) A is self-adjoint in $H = H_0$, i.e.

$$(Au, v) = (u, Av)$$

for $u, v \in D(A)$.

By

$$(1.4) a(u, v) = (Au, v) \text{for } u, v \in D(A)$$

an inner product is defined.

LEMMA 1.1. There is a constant c (depending on β) such that

(1.5)
$$c^{-1} \|u\|_{\beta} \leq \sup_{\substack{v \in H_{\beta^*} \\ v \neq 0}} \frac{a(u, v)}{\|v\|_{\beta^*}} \leq c \|u\|_{\beta} \quad \text{for} \quad u \in H_{\beta}$$

with $\beta^* := 2\alpha - \beta$.

REMARK 1.2. In the following we will denote with c numerical constants which may differ at different places.

Proof. The right part of the inequality (1.5) is a direct consequence of Schwarz' inequality and (1.3i).

By the standard inequality in Hilbert-scales we have

(1.6)
$$\|u\|_{\beta} \le c \sup_{\substack{w \in H_{0}^{-\beta} \\ w \ne 0}} \frac{(u, w)}{\|w\|_{-\beta}}.$$

In order to show the left inequality we define for $w \in H_{-\beta}$ an auxiliary function v by Av = w. On the one hand it is (u, w) = a(u, v) and on the other hand

$$||v||_{\beta^*} \le c||Av||_{\beta^*-2\alpha} = c||w||_{-\beta}.$$

Since we will consider only 'approximation-spaces' which are contained in $L_2 = H$ we impose the following regularity in order to apply the Ritz method:

(1.8)
$$S_h \subseteq H_a \quad \text{with} \quad a := \max\{0, \alpha\}.$$

In our analysis we will need the regularity

(1.9)
$$S_h \subseteq H_s \quad \text{with} \quad s := \begin{cases} 2a, & 2a \in N_0 \\ [2a] + 1, & 2a \notin N_0 \end{cases}$$

which is an additional assumption only in case of $\alpha > 0$. For any linear bounded operator $B: H_{\gamma} \to H_{\beta}$ we introduce the norm

(1.10)
$$||B||_{\beta \cdot \gamma} := \sup_{\substack{u \in H_1 \\ u \neq 0'}} \frac{||Bu||_{\beta}}{||u||_{\gamma}}.$$

THEOREM 1.3. The Ritz operator $R_h: H_{\gamma} \rightarrow S_h \subseteq H_{\beta}$ defined by (0.6) admits for $\beta, \gamma \in [s^*, s]$ with $s^* := 2\alpha - s$ the estimate

$$(1.11) c^{-1} \|R_h\|_{\beta,\gamma} \le \|R_h\|_{\gamma^*,\beta^*} \le c \|R_h\|_{\beta,\gamma}.$$

Proof. Because of $(\beta^*)^* = \beta$ and $(\gamma^*)^* = \gamma$ it is sufficient to show one of the inequalities. Using (0.8) and (1.5) we get

(1.12)
$$\|R_{h}\|_{\beta \cdot \gamma} = \sup_{\substack{u \in H_{\gamma} \\ u \neq 0}} \frac{\|R_{h}u\|_{\beta}}{\|u\|_{\gamma}} \le c \sup_{\substack{u \in H_{\gamma} \\ u \neq 0}} \sup_{\substack{v \in H_{\beta^{*}} \\ v \neq 0}} \frac{a(R_{h}u, v)}{\|v\|_{\beta^{*}}}$$

$$\le c \sup_{\substack{v \in H_{\beta^{*}} \\ v \neq 0}} \sup_{\substack{u \in H_{\gamma} \\ u \neq 0}} \frac{a(u, R_{h}v)}{\|u\|_{\gamma} \|v\|_{\beta^{*}}} \le c \sup_{\substack{v \in H_{\beta^{*}} \\ v \neq 0}} \frac{\|R_{h}v\|_{\gamma^{*}}}{\|v\|_{\beta^{*}}}$$

$$= c \|R_{h}\|_{\gamma^{*} \cdot \beta^{*}}.$$

By

(1.13)
$$N_{\beta}(\psi) := \sup_{\chi \in S_h} \frac{a(\psi, \chi)}{\|\chi\|_{\beta^*}} \quad \text{for} \quad \psi \in S_h$$

a norm is defined in S_h . For S_h finite dimensional this new norm is equivalent to the β -norm. Obviously we have

$$(1.14) N_{\beta}(\psi) \leq c \|\psi\|_{\beta}.$$

We introduce κ_h by

(1.15)
$$\kappa_h := \sup\{\|\psi\|_{\beta} \mid \psi \in S_h, \ N_{\beta}(\psi) = 1\}$$

and show

THEOREM 1.4. The following assertions are equivalent:

i)
$$||R_h||_{\beta \cdot \beta} \leq c$$
,

(1.16) i)
$$||R_h||_{\beta \cdot \beta} \le c$$
,
ii) $\tau_h := \kappa_h^{-1} \ge \underline{\tau} > 0$ (with $\underline{\tau}$ independent of h),

iii)
$$\inf_{\psi \in S_h} \sup_{\chi \in S_h} \frac{a(\psi, \chi)}{\|\chi\|_{\beta^*} \|\psi\|_{\beta}} \ge \underline{\tau} > 0 \quad \text{for each } \beta \in [s^*, s].$$

REMARK 1.5. Theorem 1.4 may be considered as a generalization of the Polskii condition (see Polskii [15]). We notice that (1.16i) holds if and only if the Ritz method is almost best approximating in the β -norm (see Alexits [1]). With respect to (1.16iii) we refer to Aziz-Kellog [3].

Proof. (0.8) and Theorem 1.3 give for $\psi \in S_h$

(1.17)
$$\|\psi\|_{\beta} \leq c \sup_{\substack{v \in H_{\beta^*} \\ v \neq 0}} \frac{a(\psi, v)}{\|v\|_{\beta^*}} = c \sup_{\substack{v \in H_{\beta^*} \\ v \neq 0}} \frac{a(\psi, R_h v)}{\|v\|_{\beta^*}}$$

$$= c \sup_{\substack{v \in H_{\beta^*} \\ R_h v \neq 0}} \frac{a(\psi, R_h v)}{\|R_h v\|_{\beta^*}} \cdot \frac{\|R_h v\|_{\beta^*}}{\|v\|_{\beta^*}}$$

$$\leq c N_{\beta}(\psi) \|R_h\|_{\beta^* \cdot \beta^*}$$

which shows

On the other hand we find with (0.8) for $u_h = R_h u \in S_h$

(1.19)
$$||u_h||_{\beta} \leq \kappa_h N_{\beta}(u_h)$$

$$= \kappa_h \sup_{\chi \in S_h} \frac{a(u, \chi)}{\|\chi\|_{\beta^*}}$$

$$\leq c\kappa_h ||u||_{\beta}$$

and therefore

$$||R_h||_{\beta \cdot \beta} \leq c\kappa_h.$$

Thus the equivalence of (1.16i) and (1.16ii) is shown. The equivalence of (1.16ii) and (1.16iii) is obvious.

We will use certain approximation properties of the spaces S_h :

DEFINITION 1.6. We use the notation $S_h = S_h^{k+t}$ with k < t if the following statements hold true:

i)
$$S_h \subseteq H_k$$
,

(1.21) ii)
$$\inf_{\chi \in S_h} \|v - \chi\|_k \le ch^{t-k} \|v\|_t$$
 for $v \in H_t$,

iii)
$$\|\chi\|_k \le ch^{-(k-k')} \|\chi\|_{k'}$$
 for $\chi \in S_h$ for $k' < k$.

REMARK 1.7. In the one dimensional case the trigonometric polynomials of degree n share these properties with $h=n^{-1}$ for any (k, t).

REMARK 1.8. If S_h is spanned by piecewise polynomial functions subject to regular subdivision of Ω then the conditions of Definition 1.6 hold true if the elements of S_h are global in C^{k-1} and the degree of the polynomials is at least t-1.

The Bramble-Scott-Lemma (see [5]) gives

LEMMA 1.9. Let $\underline{\beta}$, $\overline{\beta}$ be fixed with $\underline{\beta} < \overline{\beta} \le k$. To any $v \in H_{\tau}$ with $\overline{\beta} \le \tau \le t$ there exists a $\chi \in S_h^{k+t}$ with

simultaneously for $\beta \in [\beta, \overline{\beta}]$.

With the help of the logarithmic convexity of the norms in a Hilbert-scale the inverse properties

(1.23)
$$\|\chi\|_{\beta} \le ch^{-(\beta-\beta')} \|\chi\|_{\beta'} \quad \text{for } \chi \in S_h$$

are valid for any pair (β', β) with $\beta' \le \beta \le k$ and $\beta' \le k'$. The standard error estimates in our setting are —see the assumptions (1.3)—

THEOREM 1.10. Let $u_h \in S_h^{k+t} \subseteq H_s$ be the Ritz approximation on a function $u \in H$, with $\beta \le \tau \le t$. Then the error estimate

$$||u - u_h||_{\beta} \le ch^{\tau - \beta} ||u||_{\tau}$$

holds for $\beta \in [t^*, k]$ with $t^* = 2\alpha - t$.

REMARK 1.11. Up to now our only assumptions on S_h are the approximation properties of Definition 1.6. As a consequence the error estimate (1.24) is valid for conforming finite element methods, boundary finite element methods, spectral and

pseudo-spectral finite element methods.

2. Local Error Estimates

In addition to (1.3) we assume that the following properties are valid:

- i) Let $\Omega' \subseteq \Omega$ and $Av \in C^{\infty}(\Omega') = \bigcap_{\beta \in \mathbf{R}} H_{\beta}(\Omega')$, then $v \in C^{\infty}(\Omega')$.
- ii) Let ρ and σ be cut-off functions, i.e. $\rho, \sigma \in C_0^{\infty}(\Omega)$, with $\operatorname{supp}(\rho) \cap \operatorname{supp}(\sigma) = \emptyset$. To any pair $\beta, m \in \mathbb{R}$ there is a constant c with

iii) The operator $A_2 := \omega A - A\omega$ with $\omega \in C^{\infty}(\Omega)$ is of order $2\alpha - 1$, i.e.

$$||A_2v||_{\beta} \le c||v||_{\beta+2\alpha-1}$$

for any $\beta \in \mathbb{R}$.

The following local approximation properties of the spaces $S_h = S_h^{k-t}(\Omega)$ are typical for finite elements with κ -regular subdivision (see Nitsche-Schatz [13] and the literature cited):

E.1 [LOCAL APPROXIMABILITY]. Let $v \in H_{\tau}(\Omega)$ with $\tau \leq t$ be fixed and let $\Omega_1 := \sup p(v) \in \Omega$ be contained properly in Ω . There exists a second domain Ω' with $\Omega_1 \in \Omega' \subseteq \Omega$ and $h_0 > 0$ depending on $\operatorname{dist}(\Omega_1, \Omega')$ such that for $h \leq h_0$ there exists a $\chi \in S_h$ with

- i) $supp(\chi) \subseteq \Omega'$,
- (2.2) ii) $\operatorname{dist}(\Omega_1, \operatorname{supp}(\chi)) \leq ch$,
 - iii) $\|v \chi\|_{\lambda \cdot \Omega'} \le ch^{\tau \lambda} \|v\|_{\tau \cdot \Omega_1}$ for integer λ with $0 \le \lambda \le k$ and $\lambda < \tau$.

The constant c is independent of v and h.

E.2 [SUPER-APPROXIMABILITY]. Let $\omega \in C^{\infty}(\Omega)$ be fixed such that the inclusions $\Omega_1 := \operatorname{supp}(\omega) \in \Omega' \subseteq \Omega$ hold. There is an $h_0 > 0$ (depending on $\operatorname{dist}(\Omega_1, \Omega')$) such that for $h \leq h_0$ the function $\omega \varphi$ with $\varphi \in S_h$ arbitrary can be approximated by a function $\chi \in S_h$ such that

(2.3) i)
$$\sup_{\alpha} (\chi) \subseteq \Omega',$$

ii) $\|\omega \varphi - \chi\|_{\lambda \cdot \Omega} \le ch^{k+1-\lambda} \|\varphi\|_{k \cdot \Omega'}$ for $0 \le \lambda \le k$.

The constant c will depend only on ω and its derivatives up to order k as well as on the distance $dist(\Omega_1, \Omega')$.

A consequence of E.1 is (see Nitsche-Schatz [13]):

LEMMA 2.1. Let $v \in H_{\tau}(\Omega_2)$ with $\tau \leq t$ and $\Omega_1 \in \Omega_2 \subseteq \Omega$ be given. There exists a $\chi \in S_h$ such that

#

(2.4) i) $\sup_{\|v-\chi\|_{\lambda \cap \Omega_1} \le ch^{\tau-\lambda} \|v\|_{\tau \cap \Omega_2}} for \ 0 \le \lambda \le k \ and \ \lambda < \tau.$

The super-approximability (2.3) is restricted to integer λ . For 'negative' norms we will show

LEMMA 2.2. Let ω , Ω_1 , Ω , and h_0 be as in E.2. Further let P_h be the orthogonal projection of H onto S_h . Then for $\varphi \in S_h$ arbitrary the estimate

$$\|\omega\varphi - P_h(\omega\varphi)\|_{-1} \le ch\|\varphi\|_{-1}$$

holds true for real l with $0 \le l \le t$ and c independent of φ and h.

Proof. Because of the characterization

and the fact that P_h is the orthogonal projection we get with $\chi \in S_h$ arbitrary

(2.7)
$$\|\omega\varphi - P_h(\omega\varphi)\|_{-l} = \sup_{\substack{v \in H_1 \\ v \neq 0}} \frac{(\omega\varphi - P_h(\omega\varphi), v - \chi)}{\|v\|_l}.$$

We choose $\chi \in S_h$ corresponding to the approximation properties (1.21ii) of the spaces S_h and get with (2.3) and (1.23)

$$\|\omega\varphi - P_{h}(\omega\varphi)\|_{-l} \leq ch^{l}\|\omega\varphi - P_{h}(\omega\varphi)\|_{0}$$

$$\leq ch^{l+1}\|\varphi\|_{0}$$

$$\leq ch\|\varphi\|_{-l}.$$

In the proof of Lemma 2.4 below we will apply Lemma 2.2 in case of $\alpha < 0$ with $l=2 \mid \alpha \mid$. In case of $\alpha > 0$ we consider for simplicity only α with $\alpha \in N$. In order to do this the superscripts k and t characterizing the spaces $S_h = S_h^{k \cdot t}(\Omega)$ are subject to

(2.9)
$$0 \le k = 2\alpha < t \quad \text{for } \alpha > 0$$
$$0 = k < 2 |\alpha| \le t \quad \text{for } \alpha < 0.$$

The main result of our paper is

THEOREM 2.3. Let u be the solution of (0.1) and assume the regularity $u \in H_a(\Omega) \cap H_\tau(\Omega_2)$ with $a < \tau \le t$ and $\Omega_2 \subseteq \Omega$. Further let Ω_1 be a second domain with $\Omega_1 \in \Omega_2$ and h_0 chosen properly. The error $E := u - u_h$ between u and the Ritz approximation u_h (0.6) admits for $h \le h_0$ the local estimate $(t^* = 2\alpha - t)$

$$(2.10) ||E||_{0 \cdot \Omega_1} \le c \left\{ h^{\mathsf{t}}(||u||_{\mathsf{t} \cdot \Omega_2} + ||u||_{a \cdot \Omega}) + ||E||_{t^*} + h^{t-a} \inf_{\chi \in S_h} ||u - \chi||_a \right\}.$$

In proving the theorem the essential step is

th th

al ie

h

)

e

a

68 K. Braun

LEMMA 2.4. Let u, τ, Ω_1 etc. be as in Theorem 2.3 and let Ω'_2 be chosen such that $\Omega_1 \in \Omega'_2 \in \Omega_2$. Then

$$(2.11) ||E||_{0 \cdot \Omega_{1}} \leq c \left\{ h^{\tau} ||u||_{\tau \cdot \Omega_{2}} + ||E||_{t^{*}} + h^{t-a} \inf_{\chi \in S_{h}} ||u - \chi||_{a} \right\} + ch ||E||_{0 \cdot \Omega_{2}'}.$$

Before proving the lemma we show that Theorem 2.3 is a consequence: Let additional domains be chosen such that

$$(2.12) \Omega_1 \in \Omega_2' =: \Omega_1'' \in \cdots \in \Omega_{[\tau]+1}'' := \Omega_2,$$

then we apply Lemma 2.4 successively with Ω_1 , Ω_2' replaced by Ω_i'' , Ω_{i+1}'' , which finally gives the inequality stated in Theorem 2.3 (since $||E||_{0 \cdot \Omega_2} \le ||E||_{0 \cdot \Omega} \le c||u||_{0 \cdot \Omega} \le c||u||_{a \cdot \Omega}$).

In order to prove Lemma 2.4 we consider similarly additional domains $\Omega_i^{\prime\prime}$ as above in the following way

$$(2.13) \Omega_1 =: \Omega_1^{\prime\prime} \in \cdots \in \Omega_9^{\prime\prime} := \Omega_2^{\prime}.$$

Let $\omega_i \in C_0^{\infty}(\Omega)$ ($1 \le i \le 8$) be cut-off functions with respect to $\Omega_i^{\prime\prime}$ and $\Omega_{i+1}^{\prime\prime}$ such that

i)
$$\omega_i \equiv 1$$
 in $\Omega_i^{"}$,

(2.14) ii) supp
$$(\omega_i) \in \Omega_{i+1}^{"}$$
,

iii) $0 \le \omega_i \le 1$,

and put

$$\hat{\omega}_i := 1 - \omega_i .$$

With the help of an appropriate approximation $\Psi \in S_h$ on u we use the splitting

(2.16)
$$E = (u - \Psi) - (u_h - \Psi)$$
$$= : \theta - \Phi.$$

Because of Lemma 2.1 we may choose Ψ such that

With the help of ω_1 we may estimate

(2.18)
$$||E||_{0 \cdot \Omega_1}^2 \le ||E||_{\omega_1}^2 := (\omega_1 E, E) .$$

Let the auxiliary function w be defined by

$$(2.19) Aw = \omega_1 E \in H.$$

Because of (1.3i) and (2.1i) we have the regularity

$$(2.20) w \in H_{2n}(\Omega) \cap C^{\infty}(\Omega - \Omega_2^{\prime\prime}).$$

We denote by $w_h := R_h w \in S_h$ the Ritz approximation on w. For the error

$$(2.21) e:=w-w_h$$

we have the defining relation

ch

h

IS

Analogue to (2.16) we use the splitting

(2.23)
$$e = (w - \psi) - (w_h - \psi) \quad \text{with} \quad \psi \in S_h$$
$$= : \varepsilon - \varphi .$$

The choice of ψ is crucial. According to the representation $w = \omega_2 w + \hat{\omega}_2 w$ we use $\psi = \psi_2 + \hat{\psi}_2 \in S_h$ with ψ_2 , $\hat{\psi}_2$ defined by

- i) $\psi_2 \in S_h$ is an approximation on $\omega_2 w$ with supp $(\psi_2) \subseteq \Omega_4''$ according to the local approximability E.1,
 - ii) $\hat{\psi}_2 \in S_h$ is an approximation on $\hat{\omega}_2 w \in C^{\infty}(\Omega)$ according to Lemma 2.1.

For-see (2.23)-

(2.25)
$$\varepsilon = (w_2 w - \psi_2) + (\hat{\omega}_2 w - \hat{\psi}_2)$$
$$= : \varepsilon_2 + \hat{\varepsilon}_2$$

we get—see (2.19), (2.20)—

i)
$$\sup(\varepsilon_2) \subseteq \Omega_4''$$
, $\|\varepsilon_2\|_{2\alpha} \le c \|E\|_{\omega_1}$,

(2.26)

ii)
$$\|\hat{\varepsilon}_2\|_a \leq ch^{t-a} \|E\|_{\omega_1}$$
.

Now we turn to the

Proof of Lemma 2.4. Because of (0.8) we get from (2.19) with any $\chi \in S_h$

$$(2.27) ||E||_{0 \cdot \Omega_{1}}^{2} \leq ||E||_{\omega_{1}}^{2} = (AE, w) = (AE, w - \chi).$$

The special choice $\chi := \psi \in S_h$ —see (2.23)—leads to

$$||E||_{\omega_1}^2 = (E, A\varepsilon)$$

which we split as follows

(2.29)
$$||E||_{\omega_1}^2 = (E, \hat{\omega}_5 A \varepsilon) + (E, \omega_5 A \varepsilon)$$
$$=: T_1 + T_2.$$

Using Theorem 1.10, (2.1ii), (2.26), and the fact that ω_1 and $\hat{\omega}_{i+1}$ have disjoined supports we come to the following sequence of inequalities for the first term T_1 on the right hand side in (2.29)

$$|T_{1}| = |(E, \hat{\omega}_{5}A\omega_{4}\varepsilon) + (E, \hat{\omega}_{5}A\hat{\omega}_{4}\varepsilon)|$$

$$\leq c\{||E||_{t^{*}} ||\hat{\omega}_{5}A\omega_{4}\varepsilon||_{-t^{*}} + ||\hat{\omega}_{5}E||_{a} ||A\hat{\omega}_{4}\hat{\varepsilon}_{2}||_{-a}\}$$

$$\leq c\{||E||_{t^{*}} ||\varepsilon||_{2\alpha} + ||\hat{\omega}_{5}E||_{a} ||\hat{\omega}_{4}\hat{\varepsilon}_{2}||_{-a+2\alpha}\}$$
(2.30)

$$\leq c \{ \|E\|_{t^*} \|w\|_{2\alpha} + \|E\|_a \|\hat{\varepsilon}_2\|_a \}$$

$$\leq c \|E\|_{\omega_1} \left\{ \|E\|_{t^*} + h^{t-a} \inf_{\chi \in S_h} \|u - \chi\|_a \right\}.$$

In order to estimate the second term T_2 we use the identity

(2.31)
$$T_2 = (\omega_5 E, A \varepsilon)$$

$$= (\omega_5 E, A \varepsilon) + (E, \omega_5 A \varphi)$$

$$= (\omega_5 \theta, A \varepsilon) - (\omega_5 \Phi, A \varepsilon) + (E, (\omega_5 A - A \omega_5) \varphi) + (E, A \omega_5 \varphi).$$

Because of the defining relations for E and e we can rewrite T_2 with $\xi, \eta \in S_h$ arbitrary

(2.32)
$$T_2 = (\omega_5 \theta, Ae) - (\omega_5 \phi - \xi, Ae) + (E, A_2 \phi) + (AE, \omega_5 \phi - \eta).$$

Here A_2 is defined by $A_2 := \omega_5 A - A\omega_5$. We choose $\xi \in S_h$ such that the super-approximability property (2.3) with ω , φ replaced by ω_5 , Φ is fulfilled. With the help of (2.16), (2.17), and Theorem 1.10 we find the bound needed for the first two terms in (2.32)

$$(2.33) |(\omega_5 \theta, Ae) - (\omega_5 \Phi - \xi, Ae)| \le ||Ae||_0 \{ ||\theta||_{\omega_5} + ||\omega_5 \Phi - \xi||_0 \}$$

$$\le c ||E||_{\omega_1} \{ h^{\tau} ||u||_{\tau \cdot \Omega_2} + h ||E||_{0 \cdot \Omega_2'} \}.$$

The third term in (2.32) can be estimated with the help of (2.1ii) and (2.1iii)

$$|(E, A_{2}\varphi)| = |(E, \omega_{6}A_{2}\varphi) + (E, \hat{\omega}_{6}A_{2}\varphi)|$$

$$= |(E, \omega_{6}A_{2}\varphi) - (E, \hat{\omega}_{6}A\omega_{5}\varphi)|$$

$$\leq ||E||_{\omega_{6}}||A_{2}\varphi||_{0} + ||E||_{t^{*}}||\hat{\omega}_{6}A\omega_{5}\varphi||_{-t^{*}}$$

$$\leq c\{||E||_{\omega_{6}}||\varphi||_{2\alpha-1} + ||E||_{t^{*}}||\varphi||_{2\alpha}\}$$

$$\leq c||w||_{2\alpha}\{h||E||_{\omega_{6}} + ||E||_{t^{*}}\}$$

$$\leq c||E||_{\omega_{1}}\{h||E||_{0 \cdot \Omega'_{2}} + ||E||_{t^{*}}\}.$$

In order to estimate the fourth term in (2.32) we choose

$$(2.35) \eta := P_h(\omega_5 \varphi) .$$

Since the L_2 -projection has 'optimal' local convergence (see Nitsche-Schatz [13]) we get

(2.36)
$$\|\hat{\omega}_{7}(\omega_{5}\varphi - \eta)\|_{a} \leq ch^{t-a}\|E\|_{\infty}.$$

Using (1.3i), (2.3) resp. (2.5), (2.36), and Theorem 1.10 we come to the final sequence of inequalities

#

$$|(AE, \omega_{5}\varphi - \eta)|$$

$$= |(E, A(\omega_{5}\varphi - \eta))|$$

$$= |(E, \omega_{8}A(\omega_{5}\varphi - \eta)) + (E, \hat{\omega}_{8}A\omega_{7}(\omega_{5}\varphi - \eta)) + (E, \hat{\omega}_{8}A\hat{\omega}_{7}(\omega_{5}\varphi - \eta))|$$

$$\leq ||E||_{\omega_{8}}||A(\omega_{5}\varphi - \eta)||_{0} + ||E||_{t^{*}}||\hat{\omega}_{8}A\omega_{7}(\omega_{5}\varphi - \eta)||_{-t^{*}} + ||E||_{a}||A\hat{\omega}_{7}\eta||_{-a}$$

$$\leq c\{||E||_{\omega_{8}}||\omega_{5}\varphi - \eta||_{2\alpha} + ||E||_{t^{*}}||\omega_{5}\varphi - \eta||_{2\alpha} + ||E||_{a}||\hat{\omega}_{7}\eta||_{a}\}$$

$$\leq c\{(||E||_{\omega_{8}} + ||E||_{t^{*}})h||\varphi||_{2\alpha} + h^{t-a}||E||_{a}||E||_{\omega_{1}}\}$$

$$\leq c||E||_{\omega_{1}}\left\{h||E||_{0 \cdot \Omega'_{2}} + ||E||_{t^{*}} + h^{t-a}\inf_{\chi \in S_{h}}||u - \chi||_{a}\right\}.$$

This completes the proof of Lemma 2.4.

We will use Example 2 to give an illustration of Theorem 2.3: Because of $\alpha = -\frac{1}{2}$ and therefore $a = \max\{0, \alpha\} = 0$ condition (2.9) for the superscripts k and t characterizing the spaces S_h^{k+t} leads to

$$(2.38) 0 = k < t.$$

For a (uniform) κ -regular subdivision $\gamma = \gamma_h$ of the interval $I := (-\pi, \pi)$ we consider piecewise linear, periodic splines

$$(2.39) S_h := S_v^{0.2}(I) \subseteq L_2^{\sharp}(I) .$$

Let $u \in H_{\sigma}^{\sharp}(I) \cap H_{\tau}(I_2)$ with $I_2 \subseteq I$ and $0 \le \sigma < \tau \le 2$ be the periodic solution of (0.14). Then the third and fourth term on the right hand side in (2.10) give $(t^* = 2\alpha - t = -3)$

$$||E||_{t^*} \le ch^{\sigma+3} ||u||_{\sigma}$$

(2.40) resp.

$$h^{t-a} \inf_{\chi \in S_h} \|u - \chi\|_a \le h^2 \|u\|_0$$
.

Therefore we only need the global regularity assumption $(\sigma = 0)$ $u \in L_2^{\sharp}(I)$ in order to get the 'optimal' local error estimate

$$(2.41) ||u - u_h||_{0 \cdot I_1} \le ch^{\tau} \{||u||_{\tau \cdot I_2} + ||u||_{0 \cdot I}\}$$

for $I_1 \in I_2$.

References

- [1] G. Alexits, Einige Beiträge zur Approximationstheorie. Acta Sci. Math., 16 (1965), 212-224.
- [2] J. P. Aubin, Approximation des espaces de distributions et des opérateurs différentiels. Bull. Soc. Math. France, Suppl. 12 (1967).
- [3] A. K. Aziz and R. B. Kellog, Finite element analysis of scattering problem. Math. Comp., 37 (1981), 261–272.
- [4] I. Babuska, Error bounds for finite element method. Numer. Math., 16 (1971), 322-333.

72 K. Braun

- [5] J. H. Bramble and R. Scott, Simultaneous approximation in scales of Banach spaces. Math. Comp., 32 (1978), 947-954.
- [6] D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order. Springer-Verlag, Berlin-Heidelberg-New York, 1977.
- [7] H. P. Helfrich, Simultaneous approximation in negative norms of arbitrary order. RAIRO Anal. Numér., 15 (1981), 231-235.
- [8] G. C. Hsiao and W. L. Wendland, A finite element method for some integral equations of the first kind. J. Math. Anal. Appl., 58 (1977), 449–481.
- [9] J. J. Kohn and L. Nirenberg, An algebra of pseudo-differential operators. Comm. Pure Appl. Math., 18 (1965), 269–305.
- [10] S. G. Krein and I. Petunin, Scales of Banach spaces. Russian Math. Surveys, 21 (1966), 85-159.
- [11] J. Nitsche, Ein Kriterium für die Quasi-Optimalität des Ritz'schen Verfahrens. Numer. Math., 11 (1968), 346-348.
- [12] J. Nitsche, Zur Konvergenz von N\u00e4herungsverfahren bez\u00fcglich verschiedener Normen. Numer. Math., 15 (1970), 224-228.
- [13] J. Nitsche and A. H. Schatz, On local approximation properties of L₂-projections on spline subspaces. Applicable Anal., 2 (1972), 161-168.
- [14] J. Nitsche and A. H. Schatz, Interior estimates for Ritz-Galerkin methods. Math. Comp., 28 (1974), 937–958.
- [15] N. I. Polskii, On a general scheme of application of approximation methods. Dokl. Akad. Nauk, 111 (1956), 1181-1184.
- [16] A. Schatz, An observation concerning Ritz-Galerkin methods with indefinite bilinear forms. Math. Comp., 28 (1974), 959-962.
- [17] E. Stephan and W. L. Wendland, Remarks to Galerkin and least squares methods with finite elements for general elliptic problems. Manuscripta Geodaetica, 1 (1976), 93–123.
- [18] F. Treves, Introduction to Pseudodifferential and Fourier Integral Operators I, II. Plenum Press, New York-London, 1980.
- [19] G. Vainikko, On the question of convergence of Galerkin's method. Tartu Riikl. Ül. Toimetised, 177 (1965), 148-152.
- [20] M. Zlamal, Curved elements in the finite element method. Part I: SIAM J. Numer. Anal., 10 (1973), 229-240, Part II: SIAM J. Numer. Anal., 11 (1974), 347-362.