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The Ritz method for strong elliptic pseudo-differential equations is discussed. ‘Optimal’ local
error estimates are derived if the underlying ‘approximation-spaces’ are finite elements. The
analysis covers simultaneously pseudo-differential operators of positive and negative order. In

case of positive order an additional regularity assumption for the ‘approximation-spaces’ is
needed.
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0. Introduction
Let the linear equation
(0.1) Au=f

be given in a Hilbert-space H with inner product (-, +) and norm
is assumed to have the properties

. The operator 4

i) A positive, i.e. (Au, u)>0 for u#0,
(0.2)

ii) A symmetric, i.e (Au, v)=(u, Av)
for u, ve D(A). Then
(0.3) a(u, v):=(Au, v)
defines an inner product in D(A4). The corresponding norm will be denoted by
(0.4) el =au, w'? .
In order to apply the Ritz method we need a closed ‘approximation-space’
(0.5) S=S,cH,:=D(4)""N

The domain of definition of a(-, ) can be extended to H,x H,. The Ritz approxi-
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mation u,:=R,ue S, is defined by

(0.6) a(u, )=(f.y) forall yeS,.
Because of
(0.7) a(u, v)=(f, v) for all veD(A)

primarily and hence also for ve H, we get the defining relation
(0.8) a(u—u,, y)=0 forall xeS§,.

This shows:
The error u—u, is orthogonal to S, with respect to the inner
product a(-, -). Therefore the Ritz method is best approximat-
ing in the norm of H, i.e.

(0.9) 1 —wy, [l = inf [[lu— x|l

XESy

In order to analyze the error u —u, further properties of the operator 4 resp. the space
H , are needed.

We will give two illustrations. Regarding the notations we refer to Gilbarg-
Trudinger [6].

Example 1. H=L,(Q) with Q< R" a bounded domain and the boundary éQ
sufficiently smooth.

(0.10) Au:=—Au and D(A)=WiQ):=WYQ)n WXQ).

We introduce a Hilbert-scale in the following way: Let {v,, 4;} be the orthonormal set
of eigen-pairs of A4, i.e.
—Av; =41, in Q
(0.11)
;=0 on &Q.

The Hilbert-spaces {H,|fe R} are spanned by the functions with a finite f-norm
defined by

(0.12) hzllg:=) Afz? with z,:=(z,v).
We have the inclusions
©.13) D(A)S H, =H,=WiQ) < Ly(Q).
Example 2. H=L3(I') with I'=S'(R?), i.e. I' is the boundary of the unit
sphere. Then H is the space of L,-integrable periodic functions in R.
(0.14) (Au)(x):= 3€k(x——y)a(y)dy and D(A)=H

with
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s I
2sin 3

(0.15) k(y):=—In

With the help of the Fourier coefficients v, of a 2n-periodic function v defined by
1 —ivx

(0.16) L.,.—Eff;v{x}e dx

we may introduce for real f the norms

(0.17) loilg:= 2 1vI* v, 12,

The Hilbert-spaces H;=HyI") are defined similar to the above. The Fourier
coefficients of the convolution Au (0.14) are

1
(0.18) {Au}‘.—k\.'u\:z V] u,.
This time we have (see Hsiao-Wendland [8])
(0.19) DAY= H,=H_,,(I.

The meaning of local convergence will be demonstrated in case of Example 1. We use
isoparametric finite elements

(0.20) S, WiQ)

which are piecewise polynomials of degree less than ¢ (see Zlamal [20]). The index
he(0, 1] is a measure of the underlying subdivision. In Nitsche-Schatz [14] it is
shown: '

Let ue W4(Q) be the solution of (0.10) with the additional

regularity ue W3(Q,) for 1<t and some subdomain Q, <. In

a proper subdomain Q, € €, the error estimate

0.21) 11— uy |l wy < ch™ “{||ull wya + [ull wyan)
for k=0, 1 holds true.

In order to get this ‘optimal’ local convergence a special super-approximability
property of finite elements is used. In addition certain global shift properties of the
operator — A are needed.

The construction of an operator-algebra consisting of integral and differential
operators leads to the concept of pseudo-differential operators. The counterpart of
(0.2) resp. (0.4) regarding the application of the Ritz method is Géarding’s inequali-
ty for strong elliptic pseudo-differential operators (see Schatz [16]). For such equa-
tions the Ritz method is almost best approximating with respect to the correspond-
ing ‘energy-norm’. The Examples 1 and 2 are model problems with strong elliptic
pseudo-differential operators of order 2« and the ‘energy-norm’ |-|, with a=1
resp. o= —1/2.
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In the present paper we will derive the ‘optimal’ local convergence of the Ritz
method for strong elliptic pseudo-differential operators. We emphasize that our
treatment covers simultaneously operators of positive and negative order.

We will use the local shift properties of elliptic pseudo-differential operators P
(see Treves [18] p. 42);

Let w be the solution of an elliptic pseudo-differential equation
Pw=f If fis in C*(Q") for some open domain Q' then also
we C*(Q).

1. Global Error Estimates

Let {Hy|BeR} be a Hilbert-scale with the special assumption:
For f=me N, (the set of all nonnegative integers) the spaces

(1.1) H, = W™Q)
are subspaces of the Sobolev-space W(Q) with
(1.2) Q=2 or Q=0X

and X being a bounded domain with boundary ¢ sufficiently
smooth.
(5 *)gs ||+ | s will denote the inner product respectively the norm in H,. In case of f=0
we skip the subscript.
We assume that the operator 4 (0.1) has the following properties:
1) There is an e R such that
i) The mapping A4: Hy . ,,—Hy is an isomorphism for feR, i.e.

C_l”“”gﬂaﬁ”A“”gﬁ‘f”mfﬁua

with some constant c.
i) A is positive definite in H,, i.e.

(1.3) (u, Aw)=cllu|?

with ¢>0.
2) A is self-adjoint in H=H,, i.e.

(Au, v)=(u, Av)

for u, ve D(A).
By

(1.4) a(u, v)=(Au, v) for wu,veD(A)
an inner product is defined.

LEMMA L.1.  There is a constant c (depending on B) such that
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= alu, v)

(1.5) ¢ uly= sup —
veHgs |

r#£0

<clul, for ueH,

e
with f* =20 —f.

REMARK 1.2. In the following we will denote with ¢ numerical constants
which may differ at different places.

Proof. The right part of the inequality (1.5) is a direct consequence of Schwarz’
inequality and (1.31).
By the standard inequality in Hilbert-scales we have

(1.6) lulg=e sup Jf::—n“'l :

e =k
In order to show the left inequality we define for we H_g an auxiliary function v by
Av=w. On the one hand it is (¥, w)=a(u, v) and on the other hand

(L7 ol g <cllAV||go_zo=cliw| - . %

Since we will consider only ‘approximation-spaces’ which are contained in
L,=H we impose the following regularity in order to apply the Ritz method:

(1.8) S,eH, with a:=max{0, «} .
In our analysis we will need the regularity
L9 S cH ith 2a, 2ae N,
) o —
(1.9) n=fs o WIS = 0a141, 20N,

which is an additional assumption only in case of x>0. For any linear bounded
operator B: H — H; we introduce the norm

B
(1.10) 1Blp.,:=sup 124le
'LE‘#HO? “ﬂ"?

THEOREM 1.3.  The Ritz operator R,: H,—S,< H, defined by (0.6) admits for
B, yels*, s] with s* . =20 —5 the estimate

(L.11) T IRy < U Ryllyo. pe <l Ryllg., -

Proof. Because of (f*)*=f and (y*)*=y it is sufficient to show one of the
inequalities. Using (0.8) and (1.5) we get

. .
| Ryell 5 a(Ru, v)

IRullg.,=sup ———=<csup sup —————
weH, U], uws H, ve Hye ”1?;“;. ||i'.! ||

uzl ::#(f v#=0 *

alu, R,v {9
(1.12) <c sup su L—-",—JE 1Rl
b‘f:éa* 11”0-,- llull, floligs L‘ffg" 0]l gs

=C“Rhi|}‘*'ﬂ‘“ ﬁ
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By

(1.13) N )= sup 100

for weS§,
xeSn 1120 ge

a norm is defined in S,. For S, finite dimensional this new norm is equivalent to the
f-norm. Obviously we have

(1.14) Ny =clilly -

We introduce x, by

(1.15) i =sup{[¥lls | Y €S, Nyh)=1}
and show

THEOREM 1.4. The following assertions are equivalent :

) IRllg.p=c,
(1.16) i) t,:=x,'>1>0 (with T independent of h) ,
51 Bl oups 2D ol Jipendifielsl
WeSy XE Sy “ Zuﬂ" | lllllj |ﬂ

REMARK 1.5. Theorem 1.4 may be considered as a generalization of the
Polskii condition (see Polskii [15]). We notice that (1.16i) holds if and only if the Ritz
method is almost best approximating in the f-norm (see Alexits [1]). With respect to
(1.16iii) we refer to Aziz-Kellog [3].

Proof. (0.8) and Theorem 1.3 give for e S,
a(y, v) aly, Ryv)
———=csup ————

[Wlg=<c sup —
lo=e S0P ol — P ol
vED &0
(1.17) a(y, Ryp)  [[Ryvll 4
=¢ sup ”R b‘.| i |"t‘|l
et TRl el

<Ny Ryl s g
which shows
(1.18) KhSC“Rh“,B--_s*ScHRkHﬁ-ﬂ-
On the other hand we find with (0.8) for u,=R,ucS,

Nyl g = 1, N gluy)

(1.19) i sip el
2€8n “lem

<ci,lully

and therefore
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(1.20) IR, 5. <CKy -

Thus the equivalence of (1.16i) and (1.16ii) is shown. The equivalence of (1.16ii)
and (1.16iii) is obvious. t

We will use certain approximation properties of the spaces Sy

DEFINITION 1.6. We use the notation S,=S;‘ with k<t if the following
statements hold true:

i) S,cH,,
(1.21) i) inf fo—ylc<ch'"*|v|, for veH,,
XE 8K
i) alech™* ol for yeS,
for k' <k.

REMARK 1.7. In the one dimensional case the trigonometric polynomials of
degree n share these properties with h=n"" for any (k, 7).

REMARK 1.8. If S, is spanned by piecewise polynomial functions subject to
regular subdivision of Q then the conditions of Definition 1.6 hold true if the elements
of S, are global in C*~! and the degree of the polynomials is at least 1—1.

The Bramble-Scott-Lemma (see [S]) gives

LEMMA 19. Let B, f be fixed with B<f<k. To any ve H, with B<t<t there
exists a yeS}y'* with

(1.22) lo—xllp<ch ~#|lv|,
simultaneously for felp, Bl.

With the help of the logarithmic convexity of the norms in a Hilbert-scale the
inverse properties

(1.23) lxllp<ch™ Byl for yeS,

are valid for any pair (', ) with B’ <f <k and p’<k’. The standard error estimates
in our setting are —see the assumptions (1.3)—

THEOREM 1.10. Let u,eSk''cH, be the Ritz approximation on a function
ue H_ with f<t<t. Then the error estimate

(1.24) e — wy )| g < ch* =P lull,
holds for pelr*, k] with 1*=2a—1.

REMARK 1.11. Up to now our only assumptions on S, are the approximation
properties of Definition 1.6. As a consequence the error estimate (1.24) is valid for
conforming finite element methods, boundary finite element methods, spectral and
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pseudo-spectral finite element methods.

2. Local Error Estimates

In addition to (1.3) we assume that the following properties are valid:

i) Let @=Qand Ave C*(Q)= ) Hy(Q'), then ve C*(Q).
feR
i) Let p and ¢ be cut-off functions, ie p,oeCP(Q), with

supp(p) N supp(s) = . To any pair 5, me R there is a constant ¢ with
(2.1) lpAov|gm=cllv], for veH,.
iii) The operator 4,:=wA—Aw with we C*(Q) is of order 2a—1, i.e.

“sznn 55E1”|Ig+za— 1
for any feR.

The following local approximation properties of the spaces S,=S%'(Q) are typical
for finite elements with x-regular subdivision (see Nitsche-Schatz [13] and the
literature cited):

E.1 [LOCAL APPROXIMABILITY]. Let ve H(Q) with 1<t be fixed and let Q, : =
supp(v)€ Q be contained properly in Q. There exists a second domain Q' with
Q, € Q' = Q and hy >0 depending on dist(Q,, Q') such that for h<h,, there existsa y€ S,
with

i) supp()<=Q,
(2.2) i) dist(Q,, supp(x)) <ch,
iii) ||U_X”;.vﬂ'ﬁ‘:ht-anv”pm
Jor integer A with 0</.<k and i<+,

The constant c is independent of v and h.

E.2 [SUPER-APPROXIMABILITY]. Let weC*(Q) be fixed such that the in-
clusions Q,:=supp(w)€ Q'=Q hold. There is an hy>0 (depending on dist(Q,, 2))
such that for h<hy the function we with @eS, arbitrary can be approximated by a
Sunction y e S, such that

2.3) 1) supp(x)=Q’,
' i) |lop—xl;.o<ch** ' Yol for 0<i<k.

The constant ¢ will depend only on o and its derivatives up to order k as well as on the
distance dist(Q,, Q).

A consequence of E.1 is (see Nitsche-Schatz [13]):

LEMMA 2.1. Let ve H(Q,) with 1<t and Q, € Q,<=Q be given. There exists a
¥ €S, such that
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i) supp(x)<S€,,

2. o .
@4 i) lv—xlso <ch *v||,.q, for 0<i<kand i<r.

The super-approximability (2.3) is restricted to integer 4. For ‘negative’ norms
we will show

LEMMA 2.2. Let w, Q,, Q, and hy be as in E.2. Further let P, be the orthogonal
projection of H onto S,. Then for @€ S, arbitrary the estimate

2.5) log—Plwe)l - <chl o] -,
holds true for real I with 0<I<t and c independent of ¢ and h.

Proof. Because of the characterization

il {(D _P{fﬂ },U
(2.6) o= Piapil st L O
o= lell;

and the fact that P, is the orthogonal projection we get with y € S, arbitrary

—P e
27 lwe —Pwe)| - =sup (g Filop), v—p
2Ely llvll

We choose y € S, corresponding to the approximation properties (1.21ii) of the spaces
S, and get with (2.3) and (1.23)

(2.8) |we— P (0@)| - < ch'|wp—Plwe)lo
<ch' ol
<ch|ol -, . #

In the proof of Lemma 2.4 below we will apply Lemma 2.2 in case of « <0 with
[=2|a|. In case of «>0 we consider for simplicity only o with ce N. In order to do
this the superscripts k and ¢ characterizing the spaces S, =S} '(Q) are subject to

O<k=2a<t for a>0
(2.9)
O0=k<2|u|<t for «<0.

The main result of our paper is

THEOREM 2.3. Let u be the solution of (0.1) and assume the regularity
ue H(Q) N H(Q,) with a<t<t and Q,<Q. Further let Q, be a second domain with
Q,€Q, and h, chosen properly. The error E:=u—u, between u and the Ritz
approximation u, (0.6) admits for h<h, the local estimate (t* =20 —1)

(2.10) 1Elo-0,=c {h'(llullr- o, Ul o)+ | Elln+h"" ian llu—~ xilu} .
XEdp

In proving the theorem the essential step is
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LEMMA 2.4. Let u, 1, Q etc. be as in Theorem 2.3 and let Q be chosen such
that Q, € Q,€ Q,. Then

XESh

(2.11) IEllo.0,<c {h“ilt«filpn2 + | Ello+h""" inf Jju— ):Ila}%f*‘1 1ENo- o -

Before proving the lemma we show that Theorem 2.3 is a consequence:
Let additional domains be chosen such that

(2.12) D, e =:Q € 2y o T

then we apply Lemma 2.4 successively with Q,, Q; replaced by Q! Q{%,, which
finally gives the inequality stated in Theorem 2.3 (since [El,.q,<|Ello.o<
cllullo.e=cllully. 0)-

In order to prove Lemma 2.4 we consider similarly additional domains Q" as
above in the following way

(2.13) Q=:Q7€ - €Qy:=Q,.

Let w;e CF(Q) (1 <i<8) be cut-off functions with respect to Q" and Q}’,, such that

i) m=1inQ/,
(2.14) i) supp(m)€ Q%,,
) O0=sw;<l,
and put
(2.15) Di=1—w;.

With the help of an appropriate approximation ¥ €S, on # we use the splitting
E=u—%)—(u,— V)
(2.16)
=:0-0.
Because of Lemma 2.1 we may choose ¥ such that
@.17) 16ll0. 5 <chellull.q,
With the help of @, we may estimate
(2.18) |EI3. o, <IEI13, : = (e E, E).
Let the auxiliary function w be defined by
(2.19) Aw=w,EcH .
Because of (1.3i) and (2.1i) we have the regularity
(2.20) we H, (Q)n C=(QR—-Q75).
We denote by w,:= R,we S, the Ritz approximation on w. For the error

(2.21) =Wy,
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we have the defining relation
(2.22) (Ae, 1)=0 forall yeS,.
Analogue to (2.16) we use the splitting

e=(w—y)—(w,—¥)  with YeS,
(2.23)
=E—Q.

The choice of y is crucial. According to the representation w =, w + &, w we use | =
W, + W, €S, with y,, ¥, defined by

i) y,eS, is an approximation on w,w with supp(y,) <= Q2 according to
(2.24) the local approximability E.1,
i) ,€S, is an approximation on @,we C*(Q) according to Lemma 2.1.

For—see (2.23)—

e=(wyw— 1) +(Dw— )
(2.25)
=18 +8&

we get—see (2.19), (2.20)—

i) Supp(ﬁz)gg:fs |i82”2§_sc|§£‘”w|’
(2.26)
i) [&ll,<ch | Ell,,-

Now we turn to the
Proof of Lemma 2.4. Because of (0.8) we get from (2.19) with any x €S,
@27 IEV3. o, <IEI3, =(AE, w)=(4E, w—7) .
The special choice y: =y &S, —see (2.23)—leads to
(2.28) |ElI2, =(E, 4¢)

which we split as follows

| El2, =(E, dsAe)+(E, wsAe)
(2.29)
=:T,+T,.

Using Theorem 1.10, (2.1ii), (2.26), and the fact that w; and @;,, have disjoined

supports we come to the following sequence of inequalities for the first term 7, on the
right hand side in (2.29)

| Ty 1= (E, dsAme)+(E, dsAd,8)]
< IE)l | s Awrgs] - w+ | BsEll, | Adas | - o}

(2.30) : ; ;i
S Elw lelzat [ DsEll, | @absll - o 20
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SC{IElp Wl 26+ I Ell, 18511}

<c|E|,, {HEII;« - ot (Ll insf flu— xlig} :
XESH

In order to estimate the second term T, we use the identity
(2.31) T, =(wsE, Ae)
=(wsE, Ae)+(E, wsAp)
=(ws0, de)— (w5 P, Ae)+(E, (w54 — Aws) ) +(E, Aws) .
Because of the defining relations for E and e we can rewrite 7, with &, ne S, arbitrary
(2.32) T, =(ws0, Ae) —(wsP — ¢, Ae)+(E, A,¢) +(AE, w50 —n) .

Here 4, is defined by 4,:=w;4—Aws. We choose ¢eS, such that the super-
approximability property (2.3) with w, ¢ replaced by ws, @ is fulfilled. With the help
of (2.16), (2.17), and Theorem 1.10 we find the bound needed for the first two terms in
(2.32)

(233) (w50, de)— (s —¢&, Ae)| <[ Aello{l10]lo, + 5B — &}
<cl|Ello, {Fllull;. g, + Al Ello. 03} -
The third term in (2.32) can be estimated with the help of (2.1ii) and (2.1iii)
[(E, 4;0) | =|(E, ws4;0) +(E, DsA4,0)|
=|(E, ws4,0) —(E, dsAwsp)|
S| Ellog 1 420llo+ | El v | ds A5 ]| -
S Ellogl @llaa-1 + 1 El 1 @l 20}
Sl Wllza{All Ellyg + [ Ell s}
<c||Ell,,{AIEllo. o5+ | Ell} -

(2.34)

In order to estimate the fourth term in (2.32) we choose
(2.35) n:=Pylwsp).

Since the L,-projection has ‘optimal’ local convergence (see Nitsche-Schatz [13]) we
get

(2.36) ldr(ws@—n)l < ch' ™| El,, .

Using (1.3i), (2.3) resp. (2.5), (2.36), and Theorem 1.10 we come to the final sequence
of inequalities
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(AE, osp—n)|
=|(E, Alwsp—n)|
=[(E, wgA(wsp =)+ (E, dgAw(wsp —n))+(E, Dy Ad;(wsp—n)) |
S Bl g 14(@s@ =1)llo + | Ell || g Ary(05 0 — )| - o+ || E]l, | Ay —,

(2.37) i
S{l|Ellog |05 @ —=11ll25 + | Ell o |05 @ = 1l] 35+ | Ell 1 | D7)}
< c{( Ell o + | Ell Al @1l 20+ H | E|| | Ell,}
<c|E],, {hllEIIo.gﬁ IEf+A"* inf Iiu—xliﬂ}‘
XES,
This completes the proof of Lemma 2.4, %

We will use Example 2 to give an illustration of Theorem 2.3: Because of x= — 3
and therefore @ =max{0, «} =0 condition (2.9) for the superscripts k& and ¢ charac-
terizing the spaces S} ! leads to

(2.38) O=k<t.

For a (uniform) k-regular subdivision 7=7, of the interval I':=(—n, n) we consider
piecewise linear, periodic splines

(2.39) S,: =82 Lil).

Let ue H(I)n H(l,) with =7 and 0<o<1<2 be the periodic solution of (0.14).
Then the third and fourth term on the right hand side in (2.10) give (1* =2q — 1= — 3)
| Ef < ch” 2 ful,

(2.40) resp.

R = inf u— x|, <h?|ufl, .
XES,

Therefore we only need the global regularity assumption (¢=0) ue Li(]) in order to

get the “optimal’ local error estimate

(2.41) ”“"“kiio-;.Echr{”““:-h‘FH“Ho-f}

for I, € 1.
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