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Abstract

This is an exposition on Hurwitz quaternions. We first introduce
Hurwitz quaternions and show the existence of (one-sided) division algo-
rithm. Using the language of Hurwitz quaternions, we prove Lagrange’s
Theorem of Four Squares. After that we move on to establish the the-
ory of factorization of Hurwitz quaternions. More precisely we give a
detailed explanation on the “unique factorization of Hurwitz quater-
nions” proposed by Conway and Smith, namely any non-unit Hurwitz
quaternion can be factored uniquely, up to a series of unit-migrations,
meta-commutations, and re-combinations.
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1 Introduction

The investigations done in this note started from reading a proof circulated on
the internet regarding Lagrange’s Theorem of Four Squares using the “unique
factorization” of Hurwitz quaternions. Of course, we know by simple example
that there is no uniqueness in the usual sense of factorization. When we did
closer investigation on the factorization, we developed some skills, which, albeit
elementary, serve to clarify the structure of factorization. Many of these were
done before reading Hurwitz’s original paper ([3]) and Conway and Smith ([1]).
To our knowledge, Hurwitz’s presentation of quaternions already contained
very detailed analysis of the structure of the factorizations. As far as we know,
the concept of “unique factorization of Hurwitz quaternions” was first proposed
by Conway and Smith in [1]. This reference contains a chapter describing
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the division algorithm of Hurwitz quaternions and introducing the concepts
of unit-migration, meta-commutation, and recombination. Even though most
arguments there are clear, some of the remarks are only sketched. Accordingly,
we feel that supplying the details is not a bad idea, at least pedagogically. For
the purpose of this note which is meant to be as self-contained as possible,
there are a few goals we want to achieve. First of all, we will give a proof
of Lagrange’s Theorem of Four Squares, based on the existence of division
algorithm for Hurwitz quaternions. From this, we are led to the factorization
of Hurwitz quaternions. We will supply details for the “unique factorization
of Hurwitz quaternions” as in the layout given by Conway and Smith.

2 Preliminary Notes

Definition 2.1 Let H(R) be the quaternions over the reals. For q = a + bi +
cj+dk ∈ H(R), we define the conjugate q̄ by q̄ = a−bi−cj−dk. Furthermore,
we define norm and trace by the following formulas:

Nm(q) = qq̄ = a2 + b2 + c2 + d2 Tr(a) = q + q̄ = 2a.

We write H(Z) for the subring of H(R) consisting of quaternions with integer
components.

More precisely, H(R) is a ring consisting of elements q of the form q = a+ bi+
cj + dk, where a, b, c, d ∈ R. Addition is componentwise. For multiplication,
we prescribe R to be the center of H(R), and the multiplication of the basis
elements follows the rules: i2 = j2 = k2 = −1 and ij = −ji = k (and hence
jk = −kj = i, etc.) It can be checked easily that the rule of multiplication is
associative.

It is easy to check that

q1q2 = q̄2q̄1

and it follows that

Nm(q1q2) = Nm(q1) · Nm(q2).

Definition 2.2 The set of Hurwitz quaternions A is a subset of quaternions
over half integers, defined as

A =

{
a + bi + cj + dk

2
| a ≡ b ≡ c ≡ d (mod 2)

}
.

We say that q is a unit in A if q is invertible in A, i.e. ∃q′ ∈ A such that
qq′ = q′q = 1.



Factorization of Hurwitz Quaternions 2145

To see that A is a subring of H(R), it suffices to see that it consists of two cosets
under addition, namely A = H(Z) � (H(Z) + 1+i+j+k

2
). Since A is obviously a

(two-sided) H(Z)-module, it is an A-module because 1+i+j+k
2

· q ∈ A, for any

q ∈ A: For example, if q ∈ A \ H(Z), we may write q = q0 + 1−i−j−k
2

, where

q0 ∈ H(Z). Then 1+i+j+k
2

· q = 1+i+j+k
2

· q0 + 1 ∈ A.

One verifies directly that Nm(q) ∈ Z≥0, and Tr(q) ∈ Z for any q ∈ A. And
furthermore, q ∈ A is a unit if and only if Nm(q) = 1. It follows that there are
precisely 24 units in A :

±1,±i,±j,±k,
±1 ± i ± j ± k

2
.

Proposition 2.3 Considered as left-module (resp. right-module), the ring A
has division algorithm with respect to the norm Nm: For any nonzero a, b ∈ A,
there exist q and r in A such that

a = qb + r, where Nm(r) < Nm(b)

(resp. a = bq + r, where Nm(r) < Nm(b)).

Proof. Since we will be concerned with left module (or left ideals), we prove
the case for left module. The proof for right module is similar.

Given a, b ∈ A, consider ab−1; approximate ab−1 by q ∈ H(Z) so that each
component of ab−1 − q has absolute value less than or equal to 1

2
. Letting

r′ = ab−1 − q, we have Nm(r′) ≤ 1
4

+ 1
4

+ 1
4

+ 1
4

= 1.

Case 1. If Nm(r′) < 1, then multiplying the above equation from the right
by b, we have a = qb + r, where r = r′b satisfies Nm(r) = Nm(r′)Nm(b) <
Nm(b). So we are done in this case.

Case 2. If Nm(r′) = 1, then each of the components of r′ has absolute
value 1

2
, therefore r′ is one of the 16 units with denominator 2. By definition

of A, q′ = q + r′ ∈ A. Hence ab−1 = q + r′ = q′ ⇒ a = q′b + 0. Clearly
Nm(0) = 0 < Nm(b), so we are done in this case as well.

�

Corollary 2.4 Every left ideal I of A is of the form Aa for some a ∈ I.
Similarly every right ideal is of the form aA.

Proof. If I = {0}, a = 0. So we may assume I �= {0}. In the latter case, pick
0 �= a ∈ I such that a has least positive norm Nm(a). It is easy to check by the
division algorithm that I = Aa. The case of right ideal follows by symmetry.

�
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3 Lagrange’s Theorem of Four Squares

Lagrange’s Theorem of Four Squares states that any positive integer is a sum
of the squares of four integers. This was first proven by Lagrange, based on
Euler’s work on sum of two squares (see comments in [5]). After reading
Lagrange’s paper, Euler gave a much shorter proof which applied equally well
to other related results (loc. cit.). It is remarkable that Euler discovered
his famous identity showing that the product of two four squares sum is a
four squares sum, before the discovery of quaternions. Even though Euler’s
original proof is not exactly the one which is widely circulated nowadays (see
for example the version presented in [5]), it is fair to attribute most of the credit
to Euler (even the present version using quaternions), since it bears so much
overlap with Euler’s original proof. It appears to us: combining the division
algorithm of Hurwitz quaternions (Proposition 2.3), and Lemma 3.1 shown
below, the proof of Lagrange’s Theorem is nothing but an interesting exercise
in algebra. Due to this, perhaps, Hurwitz never mentioned that he proved
Lagrange’s Theorem of Four Squares in his paper ([4]). (But he did mention
Lemma 3.4 below, which certainly implies the theorem of four squares.)

Lemma 3.1 Let p be a prime number. Then there exist u, v ∈ Z such that the
congruence relation 1 + u2 + v2 ≡ 0 (mod p) is satisfied. In other words, there
exists q ∈ H(Z) ⊂ A such that p � q (i.e. p does not divide some component of
q), but p|Nm(q).

Proof. This can be proved by the Pigeonhole Principle as follows.
The case of p = 2 being trivial, we may assume that p is odd. It can

be checked easily that the following numbers are representatives of distinct
residue classes mod p:

02, 12, · · · ,
(

p − 1

2

)2

,

from which we derive two lists of residue classes, each of which has p+1
2

distinct
residue classes:

List A : 1 + 02, 1 + 12, · · · , 1 +

(
p − 1

2

)2

and

List B : 02,−12, · · · ,−
(

p − 1

2

)2

.

The two lists comprise a total of p + 1 residue classes. Since there are only p
distinct residue classes, by the Pigeonhole Principle, two of the p + 1 residue
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classes must coincide. Since the classes either in A or in B are distinct, there-
fore a class in A equals a class in B, i.e. there exist 0 ≤ u, v ≤ p−1

2
such

that
1 + u2 ≡ − v2 (mod p),

which means
1 + u2 + v2 ≡ 0 (mod p).

In terms of quaternions, this says there exists q = 1 + ui + vj such that p � q
but p|Nm(q) = 1 + u2 + v2.

�

To prove the Theorem of Four Squares, observe that if integers m > 0, n > 0
are sum of fours squares then mn is sum of four squares: m = Nm(q1), n =
Nm(q2) ⇒ mn = Nm(q1q2), where q1, q2 ∈ H(Z). Therefore, it suffices to prove
that every prime is a sum of four squares. The case p = 2 being trivial, we
will work on an odd prime p and first show that p = Nm(q) for some Hurwitz
quaternion. Then we will show that this q can be chosen so that q ∈ H(Z),
which would conclude the proof.

Proposition 3.2 Let p be an odd prime. Then p is a sum of four squares.

Let p be an odd prime number and q = 1 + ui + vj ∈ H(Z) such that p|Nm(q)
as in Lemma 3.1.

Claim. Ap � Ap + Aq � A.
Proof of Claim. First we show the first containment is proper: If q ∈ Ap, we
see that 2q ∈ H(Z)p and hence p|2, which is a contradiction.

Now to show that the second containment is proper, it suffices to show that
1 /∈ Ap +Aq: Suppose it were, write kp + lq = 1, where k, l ∈ A. Taking norm
on both sides of lq = 1 − kp, we see that

(lq)(lq) = (1 − kp)(1 − k̄p) ⇒ lqq̄l̄ = 1 − Tr(k)p + Nm(k)p2,

i.e.,
Nm(l)Nm(q) = 1 − Tr(k)p + Nm(k)p2,

which implies
0 ≡ 1 (mod p),

a contradiction. Therefore we have proved the Claim.

By Corollary 2.4, Ap+Aq = Ab for some b ∈ A with Nm(b) �= 1. Furthermore,
since Ap � Ab, we have p = mb, where Nm(m) �= 1. Therefore, p is reducible,
and p = Nm(m) (since p2 = Nm(mb) = Nm(m)Nm(b)).
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If the above m ∈ H(Z), then p = Nm(m) will be a sum of four squares of
integers. Therefore to conclude the proof of the theorem, it suffices to consider
the case where m ∈ A \ H(Z). We prove in the next lemma that we can get
m′ = δm ∈ H(Z) for some unit δ ∈ A. Then the theorem would be proven.

�

Lemma 3.3 For any element m ∈ A \ H(Z), we can find δ ∈ A of the form
±1±i±j±k

2
such that δm ∈ H(Z).

Proof. Given m = a+bi+cj+dk
2

∈ A \ H(Z), we have by definition that a ≡ b ≡
c ≡ d ≡ 1 (mod 2). Since a, b, c, d are all odd, we may write further

a = 4a1 + ε1, b = 4b1 + ε2, c = 4c1 + ε3, d = 4d4 + ε4

such that εi = ±1 for 1 ≤ i ≤ 4. Then

m = 2(a1 + b1i + c1j + d1k) +
ε1 + ε2i + ε3j + ε4k

2
.

Letting δ1 := ε1+ε2i+ε3j+ε4k
2

, and δ = δ̄1, it is easy to check that δm ∈ H(Z).

�

Lemma 3.4 Let h ∈ A be a nonzero element which is not a unit. Then h ∈ A
is irreducible ⇔ Nm(h) = p for some prime number p.

Proof. The implication “⇐” is clear.

For the other implication, assume that h is irreducible. Since h is not a
unit, we have Nm(h) �= 1. Let p be any prime factor of Nm(h).

Following the same line of argument as in Proposition 3.2, we have

Ap � Ap + Ah � A,

where the first containment is proper by the fact that h /∈ Ap otherwise h
would be reducible.

Then we have Ap + Ah = Ak for some non-unit k ∈ A, hence we have
h = ak for some a which must be a unit. Therefore p ∈ Ak = Ah which
implies p = bh for some b, and it is easy to see that Nm(h) = p.

�
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4 Unique Factorization of Hurwitz Quaternions

Motivation. We aim to show “unique factorization” for Hurwitz quaternions.
But it can be checked that

5 = (1 + 2i)(1 − 2i) = (1 + 2j)(1 − 2j)

are manifestly two different factorizations. How do we justify the uniqueness?
We will define an equivalence called “recombination”. To justify the uniqueness
of factorization, just note that we identify two factorizations if one can be
obtained from the other by recombination.
Given a Hurwitz quaternion, we will establish its factorization. If q = mq′,
where q, q′ ∈ A and m ∈ Z,m > 1, then by the above example, at least there
are many different ways to factor q, since there are many ways to factor m. To
avoid such a situation, we will deal with primitive quaternions first, as defined
below:

Definition 4.1 A Hurwitz quaternion q is primitive if q cannot be written as
mq′ for some m ∈ Z,m > 1 and some q′ ∈ A. If q = mq′ for some q′ ∈ A,
then we will write m|q.

Lemma 4.2 Assume Nm(P ) = p is a rational prime. If p | QPB and p � QP ,
then p | PB.

We give two proofs. (cf. Lemma 3 of [2])
First proof: Consider Ap + AQP = Aα. Clearly Nm(α) = 1, p or p2 (because
p = qα for some q ∈ A⇒ Nm(α)|Nm(p) = p2).

We rule out the following two cases:
• Nm(α) = p2 ⇒ p = εα (ε a unit) ⇒ p | QP, a contradiction.
• Nm(α) = 1 ⇒ ∃ x, y such that xp + yQP = 1 ⇒ yQP = 1 − xp, a

contradiction again when taking norms mod p.
Therefore Nm(α) = p and there exist x, y such that xp+yQP = α. Substituting
PP for p into this formula gives

(xP + yQ)P = α,

which shows that (xP + yQ) := ε is a unit, hence we may write

xp + yQP = εP

⇒ xpB + yQPB = εPB

⇒ p | εPB,

hence p | PB.
�
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Second proof: Consider PA+ BA = αA.
Observe first that Nm(α) | Nm(P̄ ) = p (because P̄ = αq for some q ∈ A).
Therefore Nm(α) = 1 or p.
Claim: α �= 1 (or any unit).
If α = 1, then there exist x, y ∈ A such that

Px + By = 1

⇒ QP (Px + By) = QP

⇒ p | QP, a contradiction.

Hence α = Pε for some unit ε and B = Pβ for some β ∈ A. Therefore we
have p | PPβ = PB.

�

Lemma 4.3 Let m > 0 be an integer, and A, B ∈ A be two Hurwitz quater-
nions. If m|AB and (m, Nm(A)) = 1, then m|B.

Proof. It is easy to see the following implication from the assumptions:

(ĀA, m) = 1 ⇒ ∃r, s ∈ Z such that rĀA + sm = 1

⇒ rĀAB + smB = B

⇒ m|B, since m|AB and m is in the center of A.

Note. By similar argument, we also have the following result:

m | AB, (m, Nm(B)) = 1 ⇒ m |A.

Corollary 4.4 (p, p′) = 1, p | B, and p′ | B ⇒ pp′ | B.

Proof. Let B = pQ. We have p′ | pQ. It suffices to show that p′ | Q, but this
is clear by the lemma.

�

Corollary 4.5 α, β primitive and (Nm(α), Nm(β)) = 1 ⇒ αβ is primitive.

Proof. If not, there exists p such that p | αβ. By assumption, p cannot divide
Nm(α) and Nm(β) at the same time.

Now p � Nm(α) ⇒ p | β. And p � Nm(β) ⇒ p | α. This is a contradiction.
�

Lemma 4.6 Let M1, M2, M
′
1, M

′
2 ∈ A. Assume that M1M2 = M ′

1M
′
2, where

Nm(Mi) = Nm(M ′
i) �= 1, i = 1, 2, and (Nm(M1), Nm(M2)) = 1. Then there

exists a unit ε ∈ A such that εM2 = M ′
2, i.e.

M1M2 = (M1ε
−1)(εM2) = M ′

1M
′
2,

where M1ε
−1 = M ′

1, and εM2 = M ′
2.
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Proof. Let m = Nm(M2) = M2M2. Then by assumption, (m, Nm(M ′
1)) = 1.

Now M1M2 = M ′
1M

′
2 ⇒ M1M2M 2 = M ′

1M
′
2M 2. Therefore m|M ′

1M
′
2M 2.

Since (m, Nm(M ′
1)) = 1, Lemma 4.3 implies m|M ′

2M 2, i.e. M ′
2M 2 = εm,

where ε must be a unit by norm consideration.
Therefore M ′

2M 2 = εm = εM2M 2 ⇒ M ′
2 = εM2, and as a result M1ε

−1 =
M ′

1.
�

Definition 4.7 If Q = P1P2 · · ·Pn is a factorization into irreducible elements,
then Q = P ′

1 · · ·P ′
n is obviously another factorization into irreducible elements,

with P ′
n = εn−1Pn, P ′

n−1 = εn−2Pn−1ε
−1
n−1, · · · , P ′

2 = ε1P2ε
−1
2 , and P ′

1 = P1ε
−1
1 ,

where εi’s are units. Following Conway and Smith, we call these two factor-
izations are differed by unit-migration.

Theorem 4.8 Let Q be a primitive element of A. Let p1 · · ·pn be a fixed prime
factorization of Nm(Q), i.e. we choose a particular model for factoring Nm(Q),
where the order of pi’s matters. Then Q can be factored as Q = P1 · · ·Pn, such
that Nm(Pi) = pi, which is unique up to unit-migration.

Proof. First of all, we need to show such factorization exists, i.e. ∃P1, · · · , Pn

such that Q = P1 · · ·Pn, where Nm(Pi) = pi for each i. We prove this by
induction, the case n = 1 being trivial.

Assume the result is true for n − 1, n ≥ 2.
Let Nm(Q) = p1 · · ·pn. Then pn|Nm(Q). As in the first proof of Lemma

4.2, the left ideal AQ+Apn = AP is principal. By exactly the same argument,
we see that Nm(P ) = pn. Consequently Pn := P is a right factor of Q,
i.e. Q = Q′Pn, where Q′ is necessarily primitive, which has a factorization
Q′ = P1 · · ·Pn−1 by the induction hypothesis. Therefore Q has a factorization
Q = P1 · · ·Pn satisfying Nm(Pi) = pi.

To prove the unit-migration, we first remark that the case of n = 1 is
trivial. For n = 2, assume the factorization Q = P1P2 = P ′

1P
′
2. Then we

have P1P2P2 = P ′
1P

′
2P2, hence p2|P ′

1P
′
2P2 ⇒ p2|P ′

2P2 (by Lemma 4.2 and the
primitiveness of Q). Therefore we have P ′

2P2 = εp2 = εP2P2, hence P ′
2 = εP2

and P ′
1 = P1ε

−1, where ε is a unit.
By induction, assume n ≥ 3 and the case of n − 1 has been proved. If

Q = P1 · · ·Pn = P ′
1 · · ·P ′

n such that Q is primitive and Nm(Pi) = Nm(P ′
i ) = pi

for each i, then
P1 · · ·PnP̄n = P ′

1 · · ·P ′
nP̄n

⇒ pn|P ′
1 · · ·P ′

nP̄n = (P ′
1 · · ·P ′

n−1)P
′
nP̄n

⇒ pn|P ′
nP̄n, by Lemma 4.2 , since pn � Q = (P ′

1 · · ·P ′
n−1)P

′
n by the primitiveness of Q

⇒ P ′
nP n = ηpn = ηPnP n for some η ∈ A
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⇒ P ′
n = ηPn and η is a unit

Letting εn−1 := η, we have proved that P ′
n = εn−1Pn.

Now P1 · · ·Pn = P ′
1 · · ·P ′

n = P ′
1 · · ·P ′

n−1εn−1Pn ⇒ P1 · · ·Pn−1 = P ′
1 · · ·P ′

n−1εn−1.
Hence by induction hypothesis, there exist units ε1, · · · , εn−2 such that

P ′
1 = P1ε

−1
1 , P ′

2 = ε1P2ε
−1
2 , · · · , P ′

n−1εn−1 = εn−2Pn−1.

Therefore we have shown the existence of units ε1, · · · , εn−1 such that

P ′
1 = P1ε

−1
1 , P ′

2 = ε1P2ε
−1
2 , · · · , P ′

n−1 = εn−2Pn−1ε
−1
n−1 and P ′

n = εn−1Pn,

which is the desired result for the case of n.

�

Corollary 4.9 Assume PQ satisfies Nm(PQ) = pq, where p and q are distinct
primes, Nm(P ) = p and Nm(Q) = q. Then modeled on qp, PQ can be factored
as Q′P ′ with Nm(Q′) = q, and Nm(P ′) = p, unique up to unit-migration.

Proof. By Corollary 4.5, PQ is primitive. Hence we can apply Theorem 4.8
under the model qp to conclude.

�

Definition 4.10 Following Conway and Smith, we call this above situation
“meta-commutation”.

Question. Let p | Q and Q = P1P2 · · ·Pn be any factorization. Does it
necessarily imply that there exists an adjacent pair Pi−1, Pi such that p|Pi−1Pi,
i.e. Pi = P i−1ε for some unit ε and 2 ≤ i ≤ n? For convenience let’s call such
situation a fusion.
This answer is No, as shown by the following

Example. Let QPP ′ (where P ′ = P ) be a factorization modeled on qp2. We
know by meta-commutation that QP can be factored as P ′′Q′ modeled on pq.
Clearly the factorization P ′′Q′P ′ (which is modeled on pqp) does not allow
fusion.

Definition 4.11 A quaternion Q ∈ A is said to be p-pure if Nm(Q) = pn for
some integer n ≥ 1 and some prime number p.

Proposition 4.12 If Q is p-pure, Nm(Q) = pn for some n ≥ 2, and p|Q =
P1P2 · · ·Pn, where P1P2 · · ·Pn is a factorization, then there exists a fusion, i.e.
p|Pi−1Pi for some 2 ≤ i ≤ n.
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Proof. This is a direct consequence of Lemma 4.2. More precisely, if p|Pn−1Pn,
we are done. If p � Pn−1Pn, let i be the smallest index such that p � Pi · · ·Pn

(clearly i ≥ 2). Then we have p|Pi−1Pi · · ·Pn, and p � Pi · · ·Pn which implies
p|Pi−1Pi by Lemma 4.2.

�

Lemma 4.13 Let Q = M1M2 · · ·Mr = M ′
1M

′
2 · · ·M ′

r, where Nm(Mi) = Nm(M ′
i)

for i = 1, · · · , r. Assume further that the prime factors of Nm(Mi) are mutu-
ally co-prime, namely (Nm(Mi),

∏
j �=i Nm(Mj)) = 1 for each i. Then there

exist units ε1, · · · , εr−1 such that

M ′
r = εr−1Mr, M

′
r−1 = εr−2Mr−1ε

−1
r−1, · · · , M ′

1 = M1ε
−1
1 .

Proof. This follows easily from Lemma 4.6 by induction.
�

To derive a useful corollary from Lemma 4.13, we make the following definition
and observation.

Definition 4.14 Let Q ∈ A be a nonunit. Let Nm(Q) = pk1
1 · · · pkr

r , where
p1 < · · · < pr and ki ≥ 1 for i = 1, · · · , r. We will call this the standard model
for Q.

Observation. For every factorization of Q modeled on the standard model,
we can associate a factorization in blocks, i.e. Q = M1M2 · · ·Mr, where each
Mi is a pi-pure quaternion of norm pki

i , i = 1, · · · , r. This is clear, since given
any factorization of Q modeled on the standard model, we can simply multiply
all the factors of norm pi and call the result Mi.

Corollary 4.15 Any two factorizations in blocks associated with the corre-
sponding factorizations of Q ∈ A modeled on the standard model are related
by a unit-migration described in Lemma 4.13. Consequently, given two factor-
izations of Q modeled on the standard model, one can exert a unit-migration
such that the associated factorizations in blocks agree.

Definition 4.16 Let p be a prime number. Then p = P1P1 for some irre-
ducible P1 ∈ A. If P2 ∈ A satisfies Nm(P2) = p, then P1P1 = P2P2. More
generally, given Nm(P1) = Nm(P2) = p, we say that P1P1ε → P2P2ε is a
process of re-combination, where we intentionally allow the appearance of a
unit ε.

Lemma 4.17 Let Q be p-pure, Q = P1P2 · · ·Pn and p|Q. Then after a series
of re-combinations and unit-migrations, one arrives at the case when p|P1P2.
If n > 2, by one more unit-migration if necessary, one may assume that p =
P1P2.
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Proof. We prove this by induction, the case n = 2 being trivial.
Assume the case n − 1 (n ≥ 3) is true, and prove for the case n.
If Q = (P1 · · ·Pn−1)Pn, we may assume that p � P1 · · ·Pn−1, otherwise the

result is clear by induction hypothesis.
Now if p � P1 · · ·Pn−1, then we have p|Pn−1Pn (say Pn−1Pn = εp ⇒

ε−1Pn−1Pn = p = PnPn) by Lemma 4.2. But then

Q = (P1 · · ·Pn−2)(Pn−1Pn) = P1 · · ·Pn−2ε · ε−1Pn−1Pn

(underlined factors denote new factors after a unit-migration)

= P1 · · ·P ′
n−2(PnPn) (renaming Pn−2ε by P ′

n−2 and ε−1Pn−1 by Pn)

= P1 · · ·P ′
n−2(P

′
n−2P

′
n−2) (by recombination PnPn → P ′

n−2P
′
n−2)

Since p|P1 · · ·P ′
n−2P

′
n−2, we have reduced to the case n − 1, therefore by

induction hypothesis, we are done.
For the last statement, assume n > 2, Q = P1P2P3 · · ·Pn and we already

have p|P1P2. Then P1P2 = pε for some unit ε. Now we can write Q =
P1P2P3 · · ·Pn = P1(P2ε

−1)(εP3) · · ·Pn. Therefore by this latter unit-migration,
we have achieved the result p = P1(P2ε

−1).
�

Now that we have introduced the notions of unit-migration, meta-commutation
and recombination, we are ready to state the following

Theorem 4.18 Let q ∈ A be a non-unit Hurwitz quaternion and q = q1 · · · qn =
q′1 · · · q′n be two factorizations into irreducible factors. Then q1 · · · qn and q′1 · · · q′n
are related by a series of unit-migrations, meta-commutations, and re-combinations,
i.e. one is obtained from the other by applying a series of the above operations.

Proof. First we exhibit the following diagram, where Φ (the two Φ’s are in
general distinct, but we use the same letter for simplicity) means a series of
steps consisting of meta-commutations leading to the the standard models
q

(1)
1 · · · q(1)

n and q
(2)
1 · · · q(2)

n , where the prime factors are ordered.

q1 · · · qn

? � q′1 · · · q′n

q
(1)
1 · · · q(1)

n

Φ

�
Ψ � q

(2)
1 · · · q(2)

n

Φ

�
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We need to specify the process of Ψ: It consists of two stages. First by
the Corollary 4.15, there exists a unit-migration such that the two associated
factorizations of q in blocks (of factors whose norms are of the form pni

i , where
the rational primes pi and pj are distinct if i �= j) coincide. Therefore as the
second stage of Ψ it remains to show that any two factorizations of a p-pure
quaternion are related by the two series of processes, namely unit-migrations
and recombinations, which we will do in the following proposition. Observe
that all the processes are invertible, hence the first factorization reaches the
second one by composing Φ, Ψ and Φ−1.

Proposition 4.19 Let Q be a p-pure quaternion of norm Nm(Q) = pn, n ≥ 1.
Then any two factorizations of Q are related by a series of unit-migrations and
recombinations.

Proof. If Q is primitive, then by Theorem 4.8, any two factorizations are related
by unit-migration. We will prove the general case by induction on n. The case
n = 1 is trivial. For n = 2, the result is clear if Q is primitive, therefore we
let Q = P1P2 = P ′

1P
′
2, and p|Q. Clearly we have Q = pε for some unit ε, so we

may write P1P2 = pε = P1P1ε (resp. P ′
1P

′
2 = pε = P ′

1P
′
1ε), therefore P2 = P1ε

(resp. P ′
2 = P ′

1ε) and P1P2 = P1P1ε = P ′
1P

′
1ε = P ′

1P
′
2 is a recombination

(see Definition 4.16). Assume n > 2 and the case of smaller n has been
established. Let p|Q (otherwise the result is clear by Theorem 4.8)), and
Q = P1P2 · · ·Pn = P ′

1P
′
2 · · ·P ′

n be two factorizations. Following the diagram
as in the proof of Theorem 4.18 and using Lemma 4.17, let Φ (under the same
name) be two series of recombinations and unit-migrations bringing each of the
two factorizations to a form such that P1P2 = p = P ′

1P
′
2. The remaining factors

P3 · · ·Pn = P ′
3 · · ·P ′

n are related by a series Ψ1 of recombinations and unit-
migrations by the induction hypothesis. But it is clear that P1P2 = P ′

1P
′
2 = p

(call this Ψ2) is a recombination. By composing Φ, Ψ1, Ψ2 and Φ−1, the
original two factorizations P1P2 · · ·Pn and P ′

1P
′
2 · · ·P ′

n are related by a series
of recombinations and unit-migrations.

�
With the above proposition, the proof of Theorem 4.18 is complete.

To conclude, let’s illustrate Theorem 4.18 by the following

Example. Consider the two factorizations (A) and (B) of 9 − 3i − 15j:(−1 + i + 3j − k

2

)
· (2 + i) ·

(−1 + 3i + j + k

2

)
· (2 + i + j + k) (A)

and

(1 + i + j) · (1 − i − j) ·
(−3 + i − 3j + k

2

)
·
(

1 − i + 5j + k

2

)
(B).
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Starting from (A), we describe a process to reach (B).

Step 1. Meta-commutation of the middle two factors:(−1 + i + 3j − k

2

)
· (2 + i) ·

(−1 + 3i + j + k

2

)
· (2 + i + j + k)

=

(−1 + i + 3j − k

2

)
·
(−1 + i − j − 3k

2

)
· (j − 2k) · (2 + i + j + k).

Step 2. Unit-migration with ε1 = 1, ε2 = −i, and ε3 = 1−i+j+k
2

:(−1 + i + 3j − k

2

)
ε−1
1 ·ε1

(−1 + i − j − 3k

2

)
ε−1
2 ·ε2(j−2k)ε−1

3 ·ε3(2+i+j+k)

=

(−1 + i + 3j − k

2

)
·
(−1 − i − 3j + k

2

)
·
(−3 + i − 3j + k

2

)
·
(

1 − i + 5j + k

2

)

Step 3. Recombination
(−1+i+3j−k

2

) · (−1−i−3j+k
2

)
= (1 + i + j)(1 − i − j) = 3:(−1 + i + 3j − k

2

)
·
(−1 − i − 3j + k

2

)
·
(−3 + i − 3j + k

2

)
·
(

1 − i + 5j + k

2

)

= (1 + i + j) · (1 − i − j) ·
(−3 + i − 3j + k

2

)
·
(

1 − i + 5j + k

2

)
.
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