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Figure 1: Wizzard of Evergreen Terrace: Fermat’s last theorem wrong
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Introduction

Even before | had begun my more detailed
investigations into higher arithmetic, one of
my first projects was to turn my attention to
the decreasing frequency of primes, to
which end | counted primes in several
chiliads. | soon recognized that behind all
of its fluctuations, this frequency is on
average inversely proportional to the
logarithm.

GaubB, letter to Encke, Dec. 1849

For an introduction, see Zagier [21]. Hardy and Wright [10] and Davenport [5], as well as
Apostol [2] are benchmarks for analytic number theory. Everything about the Riemann ¢ function
can be found in Titchmarsh [18, 19] and Edwards [7]. Other useful references include lvaniec
and Kowalski [12] and Borwein et al. [4].

Some parts here follow the nice and recommended lecture notes Forster [8] or Sander [17].

This lecture note covers a complete proof of the prime number theorem (Section 16), which
is based on a new, nice and short proof by Newman, cf. Newman [14], Zagier [22].

Please report mistakes, errors, violations of copyrights, improvements or necessary comple-
tions. Updated version of these lecture notes:
https://www.tu-chemnitz.de/mathematik/fima/public/NumberTheory.pdf

Conjecture (Frank Morgan’s math chat). Suppose that there is a nice probability function P(x)
that a large integer x is prime. As x increases by Ax = 1, the new potential divisor x is prime
with probability P(x) and divides future numbers with probability 1/x. Hence P gets multiplied
by (1 - P/x), so that AP = (1 — P/x)P — P = —P?/x, or roughly

P =-P?/x.
The general solution to this differential equation is

o I
~c+logx  logx’

P(x)



https://www.tu-chemnitz.de/mathematik/fima/public/NumberTheory.pdf

INTRODUCTION

Figure 1.1: Gauss’ 1849 conjecture in his letter to the astronomer Johann Franz Encke,
https://gauss.adw-goe.de/handle/gauss/199. Notably, all numbers n(-) are wrong in this letter:
m(500000) = 41538, e.g.
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2.1

Definitions

Before creation, God did just pure
mathematics. Then he thought it would be
a pleasant change to do some applied.

John Edensor Littlewood, 1885—-1977

N=1{1,2,3,...} the natural numbers

P={2,3,5,...} the prime numbers

Z={...,-2,-1,0,1,2,3...} the integers

Icm: least common multiple, lcm(6, 15) = 30; sometimes also [m, n] = lcm(m, n)
gcd: greatest common divisor, ged(6, 15) = 3. We shall also write (6, 15) = 3.

m L n: the numbers m and n are co-prime, i.e., (m,n) =1

f ~ g1 the functions f and g satisfy lim, % =1.

f=0(g): ifthereis M > 0 such that |f(x)| < M - g(x) for all x > xo.

ELEMENTARY PROPERTIES

In number theory, the fundamental theorem of arithmetic, also called the unique factorization
theorem or the unique-prime-factorization theorem, states that every integer greater than 1 ei-
ther is prime itself or is the product of prime numbers, and that this product is unique, up to the
order of the factors.

Theorem 2.1 (Euclidean division!). Given two integers a, b € Z with b # 0, there exist unique
integers q and r such that
a=bg+rand0<r<|b|.

Proof. Assume that b > 0. Let r > 0 be such that a = b g + r (for example ¢ =0, r = a). If r < b,
then we are done.

Otherwise, ¢, = q1 +1 and r, = r; — b (with ¢q; = ¢q, r; = r) satisfy a = bg, + r, and
0 < rp < r;. Repeating this process one gets eventually g = g, and r = r, suchthata =bg +r
and0 <r < b.

Ifb <0,thensetd’ .= -b>0anda =>b'q’+r withsome 0 <r < b’ =1|b|. Withg := —¢’ it
holds that a = b’q’ + r = bg + r and hence the result.

Uniqueness: suppose thata=bg+r=bqg’ +r' with0 < r, v’ < |b]. Adding 0 < r < |b| and
—|b| < —=r’ < 0gives —|b| <r—r" < |b|, thatis |r —r’| < |b|. Subtracting the two equations yields
b(q'—q)=r—r". If[r=r’| #0, then |b| < |r —r’|, a contradiction. Hence r = r’ and b(q¢’ — q) = 0.
As b # 0 it follows that ¢’ = ¢, proving uniqueness. O

Euclid, 300 bc




DEFINITIONS

Definition 2.2. If m and » are integers, and more generally, elements of an integral domain, it
is said that m divides n, m is a divisor of n, or n is a multiple of m, written as

m| n,

if there exists an integer k € Z such that m k = n.
Remark 2.3. The following hold true.

(i) m|0forallmeZ;

(i) 0Oln = n=0;
(iii) 1| nand -1 |nforallneZ;
(iv) if m | 1,then m = +1;
(v) transitivity: ifa | band b | ¢,thena|canda | bc;
(vi) ifa|band b | a,thena=5bora=-b;
(viiy ifa|banda|c,thena|b+canda|b-c.

Definition 2.4. A natural number n € N is compositeifn =k -¢fork, e Nandk > 1,¢ > 1.
A natural number n > 1 which is not composite is called prime.

Composite numbers are {4,6,8,9, 10, 12, 14, 15, 16, 18,20, 21,22,24, ...}, prime numbers are
P={2,3,5,7,11,13,17,19,23,29,31,37,39,41,43,47,51, ... }.

Remark 2.5. Note that a number n € N is either composite, prime or the unit, n = 1.

Definition 2.6. The greatest common divisor of the integers ay,...,a, is the largest natural
number that dives all 4;, i.e.,

ged(ay,...,ap) =max{m >1:m|ay,...,m|a,}.
We shall also write (a, b) = gcd(a, b).

Definition 2.7. The numbers a and b are coprime, relatively prime or mutually prime if (a, b) = 1.
We shall also write a L b.

Lemma 2.8 (Bézout’s identity2). For every a, b € Z there exist integers x and y € Z such that
ax+by=gecd(a,b); (2.1)
more generally, {ax+by: x,y € Z} ={z-d: z € Z}, where d = gcd(a, b).

Proof. Givena #0and b #0,a, b € Z,define § == {ax+by: x €Z, y € Zand ax + by > 0}. The
set is not empty, as a € S or —a € S (indeed, choose x = 1 and y = 0). By the well-ordering
principle, there is a minimum element d := min{d’: d’ € S} = as+ bt € S. We shall show that
d = gcd(a, b).

By Euclidean division we have that a = d g + r with 0 < r < d. It holds that

r=a-dgq=a-(as+bt)g=a(l-sq)—-b(tq),

2Etienne Bézout, 1730—1783, proved the statement for polynomials.
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2.1 ELEMENTARY PROPERTIES

and thus r € SU{0}. Asr < d = minS, it follows that r = 0, i.e., d | a; similarly, d | b and thus
d < ged(a, b).
Now let ¢ be any divisor of a and b, thatis, a = cu and b = ¢ v. Hence

d=as+bt=cus+cvt=c(us+vt),

that is ¢ | d and therefore ¢ < d, i.e., d > gcd(a, b). Hence the result. O
Corollary 2.9. There are integers xi, . . .,x, SO that
ged(ay,...,ay) =x1a1+ -+ +x,a,.

Corollary 2.10. /t holds that a and b are coprime,

(a,b)=1 & as+bt=1 (2.2)
for some s, t € Z.
Proof. It remains to verify “ &= ”: suppose that as+ bt = 1 and d is a divisor of a and b, i.e.,
a=udand b =vd. Then 1 = uds +vdt = d(us +vt), thatis, d | 1, thus d = 1 and consequently
(a,b) =1. O
Lemma 2.11 (Euclid’s lemma). Ifp € P is prime and a - p a product of integers, then

pl(a-b) = plaorp]|b.
Theorem 2.12 (Generalization of Euclid’s lemma). /f

n| (a-b)and(n,a)=1, thenn|b.

Proof. We have from (2.2) that rn+ sa = 1 for some r,s € Z. It follows that rnb +sab = b.
The first term is divisible by n. By assumption, n divides the second term as well, and hence

n|b. O

The extended Euclidean algorithm (Algorithm 1) computes the gecd of two numbers and the
coefficients in Bezout’s identity (2.1).

input :two integers a and b
output : gcd(a, b) and the coefficients of Bézout’s identity (2.1)

set (d,s,t,d’,s’,t") = (a,1,0,b,0,1); initialize
while 4’ # 0 do
setg=ddivd integer division
set (d,s,t,d’,s",t")=(d',s",t',d—q-d',s—q-s",t—q-t)
end
return (d, s, 1) it holds that d = gcd(a,b) =as+bt

Algorithm 1: Extended Euclidean algorithm

Table 2.1 displays the results of the Euclidean algorithm for ¢ = 2490 and » = 558: it holds
that 13 = 2490 — 58 % 558 = 6 = gcd(a, b).

Version: April 23, 2021
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DEFINITIONS

q d s t d s’ t’

2490 1 0 558 0 1 initialize
4 558 0 1 258 1 —4  2490/558 = 4 + 258/558
2 258 1 -4 42 =2 9 558/258 = 2 + 42/258
6 42 -2 9 6 13 -58 258/42 = 6 + 6/42
7 6 13 =58 0 -93 415 2/6=T+0

Table 2.1: Results of Algorithm 1 for a = 2490 and b = 558

FUNDAMENTAL THEOREM OF ARITHMETIC

The fundamental theorem of arithmetic, also called the unique factorization theorem or the
unique-prime-factorization theorem, states that every integer greater than 1 either is a prime
number itself or can be represented as the product of prime numbers and that, moreover, this
representation is unique, up to the order of factors.

Theorem 2.13 (Canonical representation of integers). Every integer n > 1 has the unique rep-
resentation

n=p"-...-pee, (2.3)
where py < py <---<poanda; =1,2,... (a; >0).
Proof. We need to show that every integer is prime or a product of primes. For the base case,
n =2 is prime. Assume the assertion is true for all numbers < n. If n is prime, there is nothing
more to prove. Otherwise, n is composite and there are integers sothatn =aband 1 <a < b < n.
By induction hypothesis, a = p;---p; and b = g1 ---qx, butthenn = p;---p; - q1---gx is a
product of primes.

Uniqueness: suppose that n is a product of primes which is not unique, i.e.,

n:plp,
=q1° qk-

Apparently, p; | n. By Euclid’s lemma (Lemma 2.11) we have that p, divides one of the ¢;s, g1,
say. But ¢, is prime, thus ¢, = p;. Now repeat the reasoning to

n/p1=p2---pjand
= qz ... qk’
so that ¢, = p», etc. O
Theorem 2.14 (Euclid’'s theorem). There exist infinity many primes.

Proof. Assume to the contrary that there are only finitely many primes, n, say, which are p; = 2,
p2 =3,..., pn- Consider the natural number

q=p1-p2----"Pn-

If ¢ + 1 is prime, then the initial list of primes was not complete.

If ¢ + 1 is not prime, then p | (¢ + 1) for some prime number p. But p | ¢, and hence, by
Remark 2.3 (iv), it follows that p | 1. But no prime number p satisfies p | 1 and hence g + 1 is
prime, but not in the list. O

rough draft: do not distribute



2.3

2.3 PROPERTIES OF PRIMES

Theorem 2.15. Let p; = 2, p» = 3, etc. be the primes in increasing order. It holds that
pn <62 forn > 3.

Proof. The assertion is true for n = 3. It follows from the proof of Theorem 2.14 that p,+; <
P pas thus pppy <2-3-62 -6 62" = 62", the result. o

PROPERTIES OF PRIMES

Definition 2.16 (Prime gap). The n-th prime gap is g, = pn+1 — pa- (l.€, pp =2+ Z;’z‘ll gi-)
There exist prime gaps of arbitrary length.

Theorem 2.17 (Prime gap). Forevery g € N there existn e N so thatalln+1,...,n+ g are not
prime, i.e., there isanm € N so that p,,11 = pm + &-

Proof. Definen := (g+1)!,thend | (n+d) foreveryde {2,...,g+1}. O
Remark 2.18. Alternatively, one may choose n :=1lem (1,2,3,...,¢ + 1) in the preceding proof.
Definition 2.19 (Prime gaps). Let p € P;
(i) if p+2 € P, then they are called twin primes;
(i) if p +4 € P, they are called cousin primes;
(iii) if p +6 € P, then they are called sexy primes.?
Note that every prime p e Pis either p =2, 0r p =4k + 1 0r p =4k + 3.
Theorem 2.20. There are infinity many primes of the form 4k + 3.

Proof. Observe that

(4k+1)-(4+1)=4(4kt+k+¢)+1and (2.4)
(4k+3)- (40 +3)=4(4kC+3k+30+2) + 1. (2.5)

By reductio ad absurdum, suppose that there are only finitely many primes in
P;={peP: p=4k+3forsome k e N} ={3,7,11,19,...} ={p1,...,ps}

Consider N := p7---pZ+2. By (2.5) and (2.4), N =4k +3 and thus 2 t N. Let qy,....q, = N be
the prime factors of N. As 2 t N, we have that g; = 4k; + 1 or ¢; = 4k; + 3. If all factors were of the
form g; = 4k; + 1, then N = 4k + 1 by (2.4), but N = 4k + 3. Hence there is some ¢; € P3 for some
i.Butg; | Nandg; | p?--- p? (these are all primes in P3), thus ¢; | (N — p?---p?),i.e., ¢; | 2and
this is a contradiction. O

The following theorem represents the beginning of rigorous analytic number theory.

Theorem 2.21 (Dirichlet’s theorem on arithmetic progressions, 1837). For any two positive co-
prime integers a, b there are infinity many primes of the forma +nb, n € N.

Proposition 2.22. The following hold true:

3because 6 = sex in Latin
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2.4

14 DEFINITIONS

(i) if2" —1€P, thenn € P;

(ii) if2" +1 € P, then n = 2% for some k € N.

Proof. Supposethatn ¢ P, thus n = j-£with 1 < j,¢ < n. Recall that x‘ —y¢ = (x—y)- X} ' yt=i-!
thus

’

-1
2 —1= () -1l = (2 - 1) Y2
i=0

and thus 2/ — 1 | 2" — 1. But 2" — 1 € P by assumption and so this contradicts the assertion (ii),
asl<j<n.

As for (i) suppose that n # 2%, then n = j - ¢, with ¢ being odd and ¢ > 1. As above,
. ) -1 ) N
2"+ 1= (21)[ - (-Df= (27 - (-1)) - Z(_l)f—t—l o
i=0

and hence 2/ +1 | 2"+1. The result follows by reductio ad absurdum, as 2" +1 € P by assumption
and2 < j <n. O

Definition 2.23 (Fermat* prime). The Fermat numbers are F, := 2>" + 1. F, is a Fermat prime,
if F,, is prime.

As of 2019, the only known Fermat primes are Fy = 3, F; = 5, F, = 17, F3 = 257 and
F, = 65537. The factors of Fg, ..., Fy; are known.

Theorem 2.24 (Gauss—Wantzels theorem). An n-sided regular polygon can be constructed with
compass and straightedge if and only if n is the product of a power of 2 and distinct Fermat
primes: in other words, if and only if n is of the formn = 2% p\ p, ... p», where k is a nonnegative
integer and the p; are distinct Fermat primes.

Definition 2.25 (Mersenne® prime). Mersenne primes are prime numbers of the form M, =
2" — 1.

Some Mersenne primes include M, =3, M3 =7, Ms = 31, M7; = 127, M3 = 8191. As of 2018,
51 Mersenne primes are known.

Proposition 2.26. I/t holds that

lem(a, b) * gcd(a,b) =a*b.

CHINESE REMAINDER THEOREM

Definition 2.27. For m # 0 we shall say

a=b modm

if m| (a-D>).

4Pierre de Fermat, 1607—-1665
5Pierre Wantzel, 1814—1848, French mathematician
sMarin Mersenne, 1588-1648, a French Minim friar
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2.4 CHINESE REMAINDER THEOREM 15
Remark 2.28. By Definition 2.2 we have that
a=b modmiffa=b+k-m
for some k € Z.
Proposition 2.29. [t holds that
(i) Reflexivity:a=a mod m foralla € Z;
(i) Symmetry:a=b mod m, thenb=a mod m foralla,b € Z;
(iii) Transitivity: a =b mod m and b = ¢ mod m, thena = ¢ mod m;
In what follows we assume thata = a’ mod m and b = b’ mod m.
(iv)axb=a"+b" mod m;
(v) ab=a’b’ mod m;
(Vi) ca=ca’ mod m forallc €Z;
(vii) (compatibility with exponentiation) a* = a’* mod m for all k € N;
(viii) p(a) = p(a’) mod m for all polynomials p(-) with integer coefficients.
Proposition 2.30. /f gcd(a,m) | ¢, then the problem ax = ¢ mod m has a solution (this is a

possible converse to (vi)).
Sc

Proof. From (2.1) we have that d := gcd(a, m) = as+mt and hence ¢ = a*; +mt 4. By assumption
we have that x = 37 is an integer and it follows that ¢ = ax +m -t 5, that is, ax = ¢ mod m. m

Remark 2.31. Suppose that 0 < a < p for a prime p. Then 1 = gcd(a, p) | 1 and hence the
problem ax = 1 mod p has a solution, irrespective of a. Algorithm 1 provides numbers with
l=as+pt thatisa™! =s mod p.

Theorem 2.32 (Chinese remainder theorem). Suppose that n,,...,n; are all pairwise coprime

and0 < a; < n; for everyi. Then there is exactly one integer withx >0 andx <ny-...-np = N
with
x=a; mod ny, (2.6)
x=ar mod ng. (2.7)

Proof. The numbers n; and N; := N/n; are coprime. Bézout’s identity provides integers M; and
m; such that M; N;+m;n; = 1. Setx = Z;‘:I ajM; N; mod N. Recallthat n; | N; wheneveri # ;.
Hence x = a; M; N; = a; (1 — m; n;) = a; —a; m; n; mod n; and thus x solves (2.6)—(2.7).
Suppose there were two solutions x and y of (2.6)—(2.7). Then n; | x — y and, as the n; are
all coprime, it follows that N | x — y. Hence x = y, as it is required that 0 < x,y < N. O

Theorem 2.33 (Lucas’s theorem?). For integers n, k and p prime it holds that
n\ _ £ n; d
) =) e
wheren = ng pC +ne_1 pt' +---+ng and k = ke p* +ke_1 pt~' +-- -+ ko are the base p expansions

with0 < n;, k < p.
7Edouard Lucas, 1842—1891, French mathematician
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DEFINITIONS

(p—k+1)

Proof. If pisprime and I < k < p an integer, then p divides the numerator of (£) = £-(-P=trl)

but not the denominator. Hence () =0 mod p. It follows that (1 +x)? = 1 +x” mod p.
Even more, p | (7) for every 0 < k < p'. Indeed, for p/ < k < p/*! it holds that

P :pi...(pi_p)...(pi_p2)...(pi_pj)...(pi_k_,.])
k 1-2---plecp2pioik ’

The power ofp in the denominator are 1424 - 4], the power of p in the numerator is i+1+2+- - -+j

andthus p | (4 ). It follows that (1 +x)P" =1+xP" mod p.
It follows that

i ('Z)xk = (1+x)" = ﬁ ((1 +x)f’i)mi

k=0 i=0

"z*(';:f) ixkﬁ( ) o

=0 i=

where in the final product, k; is the ith digit in the base p representation of k. The statement of
the theorem follows by comparing the coefficients in the polynomial above. O

Proposition 2.34. [t holds that
n is prime < (Z) =0 modnforallk=1,2,...,n—1.

Proof. If n = p is prime, then (}) = (;) =0 mod n by Lucas’ theorem, asn=1- p.
Suppose that n is composite and & | n is the smallest divisor. Then (Zj})/k is not an integer.
Hence (}) =n- ({7})/k # 0 mod n and thus the equivalence. m

PROBLEMS

Exercise 2.1. Verify the output =3 - 12+ 1 - 42 = 6 = ged(12,42) of Algorithm 1.
Exercise 2.2. Show that2™' =4,371=5,3"1=54"1=25"'=3and6' =6 mod 7.
Exercise 2.3. Show that the set {3k +2: k € Z} contains infinity many primes.
Exercise 2.4. Show that {6k +5: k € Z} contains infinity many primes.
Exercise 2.5. Ifa* — 1 is prime (k > 1), thena = 2.
Exercise 2.6. Ifa* + 1 is prime (a,b > 1), then a is even and k = 2" for some n > 1.
Exercise 2.7. Show that F,, = (F,_; — 1)*>+ 1 and

(i) Fp=Fo1+22""'Fy...Fy,

(ii) Fu=F; | =2(Fp = 1)%
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2.5 PROBLEMS

(III) F,=Fy---F,_1+2.

Exercise 2.8 (Goldbach’s theorem). No two Fermat numbers share a common integer factor
greater than 1. (Hint: use (iii) in the preceding exercise.)

Exercise 2.9. Solve this riddle, https.//www.spiegel.de/karriere/das-rotierende-fuenfeck-raetsel-
der-woche-a-1276765.html.

Version: April 23, 2021
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3.1

Elementary number theory

178212 4+ 184112 = 192212,
398712 + 436512 = 447212,

Fermat wrong

EULER’S TOTIENT FUNCTION

Definition 3.1 (Euler’s totient function'). Euler’s totient function is

p(n) =Y 1=|{me{l,....n}: (m,n)=1}. (3.1)
me{l,...,n}
(m,n)=1
See Table 3.1 for some explicit values.
Theorem 3.2 (¢ is multiplicative). It holds that
@(m-n) =@(m) - @(n) if (m,n) = 1.

Proof. Let A, .= {i e N:i <nand (i,n) = 1}. The Chinese remainder theorem (Theorem 2.32)
provides a bijection A, X A,, — A,..,. Hence the result. O

Theorem 3.3. For p prime it holds that

) 1
e(p*) = p* - p* 1=pk(1——)-

p

Proof. The numbers m < p* which satisfy gcd (p*,m) > 1 are precisely m = p, 2-p,..., p*~' - p,
in total p*~! numbers. Hence ¢(p*) = p¥ — p¥~1, the result. o
Theorem 3.4 (Euler’s product formula). /t holds that

1

o =n-[](1-7):
p
pln
in particular
e(p)=p-1 (3.2)

Proof. The fundamental theorem of arithmetic (Theorem 2.13) states that n = p|" ... pg°. Now

o=l Jevr=or (=gl -5)

i= i=1

1Eulersche Phi-Funktion, eulersche Funktion
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ELEMENTARY NUMBER THEORY

n c ¢ A u w Q A = B,
0 — — — — — — — — 0 1
1 1 1 1 1 1 0 0 1 0 _%
2 2 3 1 1 -1 1 1 -1 1 %
32 4 2 2 -1 1 1 -1 2 0
4 3 7 2 2 0 1 2 1 2 _%
5 2 6 4 4 -1 1 1 -1 3 0
6 4 12 2 2 1 2 2 1 3 %
7 2 8 6 6 -1 1 1 -1 4 0
8 4 15 4 2 0 1 3 -1 4 _%
9 3 13 6 6 0 1 2 1 4 0
10 4 18 4 4 1 2 2 1 4 65_6
11 2 12 10 10 -1 1 1 -1 5 0
12 6 28 4 2 0 2 3 1 5 2679310
13 2 14 12 12 -1 1 1 -1 6 0
14 4 24 6 6 1 2 2 1 6 %
15 4 24 8 4 1 2 2 1 6 0
16 5 31 8 4 0 1 4 1 6 _356%
17 2 18 16 16 -1 1 1 -1 7 0
18 6 39 6 6 o 2 3 -1 7 437537
19 2 20 18 18 -1 1 1 -1 8 0
20 6 42 8 4 0 2 3 1 8 _17343%11
21 4 32 12 6 1 2 2 1 8 0
22 4 36 10 10 1 2 2 1 8 85{‘3%
23 2 24 22 22 -1 1 1 -1 9 0
24 8 60 8 2 0 2 4 1 9 _ 236 23763% 091
25 3 31 20 20 0 1 2 1 9 0
26 4 42 12 12 1 2 2 1 9 8552 103
27 4 40 18 18 0 1 3 -1 9 0
28 6 56 12 6 0 2 3 -1 9 _23743;&31029
29 2 30 28 28 -1 1 1 -1 10 0
30 8 72 8 4 -1 3 3 -1 10 8615?213%;6005
31 2 32 30 30 -1 1 1 -1 11 0

Table 3.1: Arithmetic functions
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3.2

3.2 EULER’S THEOREM 21

Theorem 3.5 (Gauss). It holds that

Z o(d) =n.

d|n

H H 1 1 3 11 3 7 2 9 111 3 13 7 3 4 17 9 19 1
Proof. Consider the fractions ;. 15, 55 5+ 7- 75> 35> 5> 20 2> 20> 5> 20> 10> 3° 5> 20> 10> 20> 1+ 1€ frac-
tions with denominator n = 20 are precisely those with nominator coprime to 20, that is ¢(20) = 8
in total. There are ¢(10) = 4 fractions with denominator 10, and ¢(5) = 4 fractions with de-
nominator 5, ¢(4) = 2, ¢(2) = 1 and ¢(1) = 1. In total, there are n = 20 fractions, and thus

n=2d\n90(d)- o
EULER’S THEOREM

The multiplicative group of modulo n is (Z/nZ)* = {[a],: gcd(a,n) = 1}.
Proposition 3.6. It holds that |(Z/nZ)*| = ¢(n).

Proof. Suppose that n = p{" ---pg. By the Chinese remainder theorem (Theorem 2.32) we
have that
ZInZ =Z|p{"Zx - X Z/peL.
Similarly,
(Z/nZ)* = (Z/p{"Z)* % -+ % (Z/p2Z)* .

But ‘(Z/plf"Z)x =p% - p®~ ' = ¢(p) and thus the result. a)

Theorem 3.7 (Lagrange’s theorem). Let (G, ) be a finite group. The order (number of elements)
of every subgroup H of G divides the order of G.

Proof. For a € G define the (left) cosets aH := {ah: h € H}. For the functions

fab:aH — bH

x— ba'x

it holds that faj? = fp.o: the functions are invertible and bijective and thus the number of ele-
ments of aH and bH coincide for all a,b € G. It follows that the order of G is the order of H x
the number of distinct cosets. O

Theorem 3.8 (Euler). It holds that
a?™ =1 mod n iff ged(a,n) = 1. (3.3)

Proof. If (a,n) = 1itholds that {a,a?, ...a* =1 mod n} is a subgroup of (Z/nZ)*. By Lagrange’s
theorem we have that k | ¢(n), i.e., kM = ¢(n). It follows that

a?m = g*M = (ak)M =1 =1 modn
and thus the result. m]
Corollary 3.9. If p is prime and p { a, then
a?7'=1 mod p. (3.4)

Proof. Apply (3.3) with (3.2). O
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22 ELEMENTARY NUMBER THEORY

Corollary 3.10 (Fermat’s little theorem). If p is prime, then
aP =a mod p.

Proof. If p | a, then a = 0 mod p and the assertion is immediate; if p 1 a, then the assertion
follows from (3.4). O

Corollary 3.11 (Attributed to Euler). If p is an odd prime, it holds that

p-1

a? =«x1 mod p, (3.5)

provided that (a, p) = 1.

p-1

Proof. Indeed, it holds that (apz_l - 1) (apT_' + 1) =aP' —1=0mod p. Hence, p | a"= — 1 or

P a™ +1 and thus the result. O

Definition 3.12 (Legendre symbol). Let p be an odd prime and a an integer. The Legendre
symbol is

p-1

(ﬁ) =a 2 mod p and (g)e {-1,0,+1}.
p p

Definition 3.13 (Jacobi symbol). Let n be any integer and a an integer. The Jacobi symbol is
o))
P1 o Pw ’

Definition 3.14 (Multiplicative order). The multiplicative order of a € Z modulo n is the smallest
positive integer k = ord, (a) with

where n=p" - ... pg” asin (2.3).

a*=1 mod n.

Example 3.15. It holds that ord;(4) =3,as4' =4 mod 7, 4> =2 mod 7, but4® =64 =1 mod 7.
Definition 3.16 (Carmichael function). The function A(n), the smallest positive integer so that
a*™ =1 for all a with (a,n) = 1

(cf. (8.3) and Table 3.1), is called Carmichael function.?

Corollary 3.17 (Carmichael). Forn=p{"---pg define

A(n) = lcm ((pl - l)p?]_l, s (Po - 1)1’3‘”_1)

then a*™ =1 mod n.

Proof. By Euler’s theorem, a#(?;") =1 mod p{. Note, that ¢(p;™) | A(n) by definition. It follows
that a'™ =1 mod p{ for all i and thus a*” =1 mod n. o

Proposition 3.18. For all n and a it holds that

ord, (a) | A(n) and A(n) | ¢(n).

2Robert Daniel Carmichael, 1879—-1967, American mathematician
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3.4

3.3 FERMAT PRIMALITY TEST 23

Theorem 3.19 (Wilson’s theorems3). [t holds that
(n—=1)!'=-=1 mod n iffn is prime.

Proof. The statement is clear for n = 2, 3 and 4.
Suppose that n is composite, n = ab with a < b, thena | (n-1)!and b | (n — 1)! and thus
(n—=1)!'=0 modn. lfn=¢g*theng|1-2---g---2g---(n—1) and thus (n —1)! =0 mod n.
Suppose now that n =: p is prime. Note that (p—1)"! = p—1=~1 mod p (indeed, (p - 1)> =
p?-2p+1=1 mod p). Further, the product 2- - - (p — 2) has an even number of factors and for
eachr e {2,...,p—2}itholds that ! € {2,..., p — 2}. Thus Wilson’s theorem. O

FERMAT PRIMALITY TEST

By (3.5) we have that a?~! = 1 mod p if (a,p) = 1. Note as well that the equation a*~! = 1
mod n trivially holds true for a = 1 and it is also trivial fora =n -1 =-1 mod »n and n odd.

Definition 3.20 (Fermat pseudoprime). Suppose that a € {2,3,...,p-2}. If @' =1 mod n
when n is composite, then a is known as Fermat liar. In this case n is called a Fermat pseudo-
prime to base a.

Definition 3.21 (Carmichael number). A composite number  is a Carmichael number if "~ = 1
mod n for all integers a.

Example 3.22. The first Carmichael number was given by Carmichael in 1910. The first are
561 =3+ 11 %17, 1105 = 5% 13 % 17, 1729 = 7 % 13 % 19, 2465 = 5 % 17 % 29, 2821 = 7 * 13 * 31,
6601 =7 %23 %41, 8911 =7 % 19 % 67.

Theorem 3.23. There are infinitely many Camichael numbers.

Theorem 3.24 (Korselt’s criterion,* 1899). A positive composite integer n is a Carmichael num-
ber iff n is square—free and for all prime divisors p of n, itis true thatp — 1 | n— 1.

AKS PRIMALITY TEST

A starting point for the AKS primality test’ (Algorithm 2) is the following theorem.
Theorem 3.25 (AKS). [t holds that

nisprime & (x+a)"=x"+a modn
for all (a,n) = 1.

Proof. Proposition 2.34 together with Fermat’s little theorem. O

Remark 3.26 (Primes is P). The AKS algorithm was the first to determine whether any given
number is prime or composite within polynomial time.

3John Wilson, 1741—-1793, British mathematician

4Alwin Reinhold Korselt, 1864 (Mittelherwigsdorf)—1947 (Plauen)

5Also known as Agrawal-Kayal-Saxena primality test; published by Manindra Agrawal, Neeraj Kayal and Nitin Sax-
ena in 2002.
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input :anintegern
output :n is prime or n is composite
if n = a* for some a € N and k > 1 then
| return n is composite
end
find smalles r such that ord, (n) > log(n)>.
if 1 < (a,n) <n forsomea < rthen
| return n is composite
end
if a < n then
| return n is prime
end
fora =1 to¢(r) logn do
if(x+a)" #x" +a mod (x" — 1,n) then
| return n is composite
end
end

return n is prime
Algorithm 2: AKS primality test

PROBLEMS

Exercise 3.1. Show that the function w is additive (in the sense of Definition 9.2 below), while
Q is completely additive.

Exercise 3.2. Discuss additivity/ multiplicativity for the other arithmetic functions introduced in
this section.

Exercise 3.3. Show that ¥} _ t(k) = X}_, | #]| and X}_, o(k) = X5_ k [ %]

rough draft: do not distribute



Continued fractions

80435758 145817515° —
805387388120759743 +
12602 1232973356313 = 42.

The Hitchhiker's Guide to the Galaxy

For the standard theory see Wall [20] or Duverney [6]; for the relation to orthogonal polyno-
mials see Khrushchev [13].

4.1 GENERALIZED CONTINUED FRACTION

Definition 4.1 (Continued fraction). Different notations for the (generalized) continued fraction

a
rn = by + (4.1)
ar
bl +
b2+ P
b, + b—"
n
include
noa; ap|  a| n | a a a,
rn=bp+ K —=bp+—+—+---+ =by+ .
P T T by T Ty b " b1+ byt by
Theorem 4.2. For everyn > 0 we have thatr, = %, where
p-1=1, po = bo, Pn=bppn-1+anpna, (4 2)
qg-1 =0, q0=1, qn = bn‘]n—l +anqn-2. )
Proof. Observe first that 7y = by = % and ry = b+ g+ = ’%ﬁ‘“ = %. For n = 2 we obtain
_ a _ ba(bibo+ay)+arby _ p . \ .
rp =bgy+ b1+]Z—§ =2 l‘)zzm‘lzl 220 = q—; We continue by induction. It holds that
ai Pn
rnp = b() + P = q—/
-1
b] +... " P "
bn_] + r;
n+l
b
" bn+1

25



26 CONTINUED FRACTIONS

an+1

Replacing b,, in (4.1) by b, + 5 we obtain by the induction hypothesis that

n+l

, An+l
Pn = b, + b_ Pn-1t+tanpn-2 and
n+l

, an+]
qn = by + ——|qn-1 +anqn-2,
bn+1

which implies
bn+1P:, = bn+l (bnpnfl +anpn72) + An+1Pn-1 and
bn+1q:1 = bu41 (ann—l + anq;'z—2) + dn+19n-1,
and, again by the induction hypothesis,

bn+lp;l = bn+1pn + dn+1Pn-1 and

’
bn+1qn = bn+1q;1 + dn+19n-1-

Now set ppi1 = bprip), @and gue1 = bpi1q,, 1o get rpy = % O

Theorem 4.3 (Determinant formula). For every n > 1 it holds that

Pn-19n — Pnqn-1 = (-D"ajaz...a, and (4.3)

_1aiaz...ay .
rn=rno1 = (=)' ——"Lif guqn-1 # O;
n-14n

further it holds that

Pn-249n — Pnqn-2 = (_])”71a192 .o Qpo1 - by and
ajas...a, - b,

'n —Fpn-2= (_l)n
dn 4n-2

Proof. For n = 0, the statement reads 1 -1 — by - 0 = 1, which is the assertion. By induction
and (4.2),

Pn-19n — Pn4n-1 = pnfl(bnqnfl + anQrﬁZ) - (bnpnfl + anper)‘]n—l
=—ap (Pn-24n-1— Pn-1qn-2) -

Further we have that

Pn=2Gn = Pndn-2 = Pn-2 (bnqn-1+ anqn-2) = (bypn-1+anpn-2) Gn-2
= bn (pn—an—l - pn—lqn—Z)
= (—l)"_1a1a2 co.ap-1 bn

by (4.3).
The remaining assertions follow by dividing accordantly. O

Corollary 4.4. It holds that r,, = by — ZZZI(—I)"%-
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4.2 REGULAR CONTINUED FRACTION 27

4.2 REGULAR CONTINUED FRACTION

Remark 4.5 (Equivalence transformation). For any sequence c; with ¢; # 0 it holds that

ai ciay
rn =bo+ =bo+
ar cicaaz
b1+ cib +
as ca2c3as3
by + — coby +
ay Cc3C4qd4
b3 + c3by + ——
b4+... C4b4+...
n
1 _ ar _ _a - 1 — ai _
If we choose ¢; = a2 =3 = ok and generally ¢4 = ca We getthatr, = b0+i1:(1 b=
o1
b() + I<l b

4

Definition 4.6 (Regular continued fraction). The continued fraction with a; = 1 is called regular.
The convergents of a regular continued fraction are denoted Z—: =: [bo; b1,...,by].

bibot]  by(bibg+1)+by b3 (D2(bibo+1)+bo+(b1bo+1) otc
b, bybi+1 ? b3(bab1+1)+by ’ '

Remark 4.8. Note, that [bo; b1,...,bu-1,bs,1] = [bo; b1,...,bs_1,b, + 1] and the continued
fraction of a rational thus is not unique.

Remark 4.7. The first convergents are by,

Note that the denominators of a regular continued fracttion satisfy p,-1¢, — pngn-1 = £1
by (4.3) and thus they are relatively prime, gcd(¢,,gn-1) = 1, by Bézout’s identity (2.1) and
Corollary 2.10. By the same equality it follows that p,, and g,, are coprime as well, so r, = ;’—" is
free of common factors.

Lemma 4.9 (Reciprocals). It holds that [0; by, ...b,] = m

Consider a real number r. Let i := |r| be the integer part of r and f := r — i be the
fractional part of ». Then the continued fraction representation of r is [i; a1, az,...], where 1/f =
[ai;an,...] is the continued fraction representation of 1/f.

Example 4.10 (Euclid’s algorithm). Table 2.1 displays the extended Euclidean algorithm (Algo-
rithm 1) for a = 2490 and b = 558. The successive fractions of -’/ are

4,
sslous
2
P 2B aeis
2+3 13
4+ ] —415—@:4.4623...,

24~ 93 " 538
6+7

which are improved approximations of ;. The sequence of integer quotients is by = 4, by = 2,
b, =6 and b3 =7, cf. Table 2.1.

Remark 4.11. Euclid’'s algorithm (Algorithm 1) produces for ¢/b and for ma/mp» the same se-
quence ¢ of integer quotients (m € Z\{0}). For the reduced fraction «/» we have that sa +tb =
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CONTINUED FRACTIONS

gcd(a,b) = 1, the last coefficient b,.; in the continued fraction of a/» thus is b, = 1, i.e,
a/b = [b05 bla . -7bn—1»bn7 1]

Every infinite continued fraction is irrational, and every irrational number can be represented
in precisely one way as an infinite continued fraction.

Example 4.12. Applying the Euclidean algorithm to @« = 7 and b = 1 gives the successive

approximations 3, 2 =3.142..., 333 =3.14150... and 33 = 3.1415929.. ..

Theorem 4.13 (Legendre’s best approximation |). The convergents are best approximations,
ie., fora = lim, . Z—: it holds that

lga - pl <|gna—-pnl = q > qn,
where p € Z and q € N.

Proof. Assume, by contraposition, that

lga —pl <lgna—pn| and g < gn. (4.4)
The equations (p" p”“) (x) = (p) have integral solution (x) =+ (q"“ _p””) (p) € 72,
dn  4n+1) \Y q y —4n Pn q

as the determinant is p,,¢,u+1 — pn+1gn = 1 by (4.3).

> If y=0,thenx # 0and p = p,x and ¢ = ¢g,x. It follows that |ga — p| = |x| - |gn @ — pn| =
lgn @ — pn|, which contradicts the assumption (4.4).

> Ifx =0,theny # 0and g = g,,+1y, but from the assumption (4.4) we have that g < g, < gn+1-
So we conclude thatx #0and y # 0.

> Ifx <0andy <0, then 0 < g = g,x + gns1y, Which cannot hold true.

> Ifx>0andy >0, then g,x + gn1y = ¢ < gn < gn+1, Which cannot hold true.

Hence x and y have opposite signs. Recall from (4.3) that g, — p,, and gn+1@ — ppe1 have
opposite signs as well. We further have that

qa = p =x(qn@ = pp) +y (Gns1@ = Pns1)

where the products x (¢,a — p,) and y (gn+1@ — pns1) have the same sign by the above reason-
ing. It follows that

lga — pl = |x (qne = p)| + |y (qne1@ = prs1)l
> |x (Qna - Pn)|
> |gna = pnl,

again a contradiction to (4.4). It follows that g > ¢,,. O

Corollary 4.14 (Legendre’s best approximation Il). The convergents are best approximations,
i.e., with @ = lim,_,c % it holds that

Pn
n

o-Ll<

q

a— = q>qn. (4.5)
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4.3

4.4

4.3 ELEMENTARY PROPERTIES

Proof. Assume that ¢ < ¢,,. Then we may multiply with (4.5) to obtain |ga — p| < |g, @ — pal,
but the preceding theorem implies ¢ > ¢,,. This contradicts the assumption and hence the
assertion. o

Theorem 4.15. For a := lim,_,c ’;—: it holds that

1
< —.

< 2
qn 4n+1 qn

JZ£_<P_££
qn 4dn+2 dn

Further, for « irrational we have that% < % << @< < Iq’—; < Iq’—:.

Proof. The assertion follows from (4.3), as the convergents r, = %, rn+1 @nd r, oscillate
around a. o

ELEMENTARY PROPERTIES

Theorem 4.16 (Gauss’s continued fraction). Let fy, fi, f>,... be a sequence of functions so
that f;_1(z) - fi(z) = kizfis1(2), then

fi(z) _ 1
fo(z) kiz '
L

1+ kz;
l+1+3.Z..
PROBLEMS
(

Exercise 4.1 (Golden ratio). Show that ¢ = 23 =[1;1,1,1,...].

2

Exercise 4.2. Show thatV2 =[1;2,2,2,...].
Exercise 4.3. Show thatV5 = [2;4,4,4,...].

Version: April 23, 2021

29



30

CONTINUED FRACTIONS

rough draft: do not distribute



5.1

Bernoulli numbers and polynomials

1729 = 13 + 123 = 93 + 10°.

Taxicab
DEFINITIONS
Definition 5.1. Bernoulli numbers! By, k =0, 1, ..., are defined by
z 1
-1 1+Z+%+...
B
= k_’jzk (5.1)
k=0
—1—E+i—i+ i - a3 + 2 F.o.o.
B 2 12 720 30240 1209600 47900160
Bernoulli polynomials are
ze™™ _ - Bi(x) 1
ez—l_Z Koo (5-2)

k=0
Table 3.1 presents some explicit Bernoulli numbers and Table 5.1 below lists the first Bernoulli
polynomials.
Remark 5.2. It is evident by comparing (5.1) and (5.2) that

B = B;(0). (5.3)
Remark 5.3. Note that cothg = €2 = e 2 = < =122 = 2 _ 4 | is an odd function, thus
z z z z o Bu o
Zcoth = = Z=
2N T w12 ;)(Zk)!z
and it follows that
By =0 (5.4)
for k > 1 (note, however, that By = -1).

Proposition 5.4 (Explicit formula). Bernoulli polynomials (and thus Bernoulli numbers) are

given explicitly by
k n
1
Bi(x) =) mZ(—l)"(’;)(f +x)k. (5.5)
n=0 =0

1Jacob | Bernoulli, 1654—-1705
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5.2

BERNOULLI NUMBERS AND POLYNOMIALS

Proof. It holds that z = log (1 - (1 - ¢9)) = - 5,0 “=<2"" and thus

n+l

et o (1-e)" 1 ¢ p
— pZX 1 z(x+,)
ez —1 ¢ Z n+1 n+1§( )

n=0 n=l

=D e 0(_1)€(5)(€+x)k'

k=0~ n=0 =

The sum over # in the latter display terminates at k, as x — (£ +x)* is a polynomial of degree
and thus 37_,(-1)* (}) (¢+x)* = 0for n > k . The assertion follows by comparing coefficients. o

Remark 5.5 (Translation). We have that

ez(x+y) k

. K
Zez_1 Z(Z)’) ZBK(X) ¢ Z%Z( )Bg(x)yk —¢

=0 k=0 =0

so that
k

k

Butrs ) = 3 (¢ Bec s+
=0

by comparing with (5.2).

Remark 5.6 (Symmetry). Comparing the coefficients in the identity z% = —ze — 1 reveals

that
Bi(1-x) = (=1)*Bi(x). (5.6)
In particular we find that B, (1) = (=1)*B;.

Remark 5.7. Differentiating (5.2) with respect to x and comparing the coefficients at z* reveals
that
B (x) =k - Bx_1(x). (5.7)

SUMMATION AND MULTIPLICATION THEOREM

Theorem 5.8 (Faulhaber’s formula?). Forp =0,1,2,...,x e Randn € N (actually n € Z, if we

setyb_ =-y97)  wheneverb < a) it holds that
nZ_l(k+x)p _ Bp+1(n+x) - Bp+1(x)
s p+1 ’

Proof. Set S, (n) := Y12} (k +x)?, then the generating function is

00

RS

1 o (n+x)z Pz

-1 oo k )p n—
kZ::Z:: +Xx kz:e(kwc)z:ez_l_ez_l'

p=0 0
_ Zk—lBk(n +x) — B (x)
= k!
from which the assertion follows by comparing the coefficients (k = p + 1). O

2Johann Faulhaber, 1580—-1635
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5.3

5.3 FOURIER SERIES

Proposition 5.9 (Multiplication theorem). Form € N holds that

m—1 ¢
By (mx) = m*! Z By (x + —) .
=0 mn

Proof. Indeed, the result follows by comparing the coefficients in the identity

Xz

iB _mz_lze(“é)z _ et e =z—
k k! ez —1 ez —1 ¢3m — 1 eilm — 1’

=0 k=0 =0
O
FOURIER SERIES
In what follows we define the periodic function (with period 1)
Br(x) = Bx(x - [x]),  x€R. (5.8)

33

It follows from (5.4) and (5.6) that g is continuous for k > 2. Even more, by (5.7), Sx € C*~2(R).

Theorem 5.10. The Bernoulli polynomials are given, for k > 1, by the Fourier series?

27rmx ®  COS (27rnx — an)
By (x) = (27”)k ZZ: =2 k! Z — G *€ (0,1). (5.9)
ne n=

n#0

Proof. Consider the function x — 2¢=. lts Fourier coefficients, for n € Z, are

e<—

1 zx 1 x(z—2min) 1
/ 6—27rinx <e dx = z / gx(z—Zm'n) dx = 2 ¢ (
0 ez —1 ez —1Jp et =1 z-2min |, _,

b4 et -1 z

T ez—1z-2min z-2min

The Fourier series thus is

< e* 2rinx <
ZBk(x) _ez—l Ze 7z —2min

nez
. z 1

=1= 2rinx
HZ;EO ¢ 2nin 1 — 52

=1- Zmnx ( )
nZ#) Z 27in
-k 2ninx

z e

=1- Y

=1 k! K Z (2min)k
k=1 n#0

The result follows by comparing the coefficients. O

3Recall that sin (x + §) = cos x and cos (x + §) = —sin x.
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5.4

BERNOULLI NUMBERS AND POLYNOMIALS

Polynomial By (x) Fourier series B (x)

Bo(x) =1

Bi(x) =x -3 = 2.y, M2mx awiooth wave  (5.10)
o vovel  an bk

Bw=o-jeele =gy

By(x) =x* -2 +x7 - 5 =-48. 30, B

Bs() =x" = 3x* + 30 — & =-240. 5

Table 5.1: Bernoulli polynomials

UMBRAL CALCULUS

x

As a formal power series and interpreting BX as By we have e5* = 2 and thus e(B+"x = 2¢—
and also

nx _ 1

e(B+n)x_eBx :xe :x<60x+ex+.“+e(n—l)x),
e* —1

. . c+ k+1 _ pk+l

and by comparing the coefficients of X thus B2 -5~

+1

1 k+1 k+1 k+1
Ok+2k+~~~+(n—1)k=k+1(nk+1+( -; )Bln"+( -; )ank‘1+~~-+( Z )Bkn).

=Ok+1k+...+(n—l)k,i.e.,

rough draft: do not distribute



6.1

Gamma function

EQUIVALENT DEFINITIONS

Definition 6.1. Euler’s integral of the second kind, aka. Gamma function, is (the analytic exten-
sion) of

[(s) :=/ e ™ dx, R(s) > 0.
0

Remark 6.2. By integration by parts it holds that I'(s + 1) = s '(s), so the analytic extension to
C\{0,-1,-2,...} is apparent. The derivatives are

' (s) :/mxf—l (log x)* e~ dx, R(s) > 0. (6.1)
0

Proposition 6.3 (Gaul3’ definition of the I'-function). It holds that

I'(s) = i n!n® 012 62
(s)_nglgos(s+1)...(s+n)’ s¢{0,-1,-2,...}. .

Proof. Recall that (1 - £)" — ¢™ as n — oo for every x € C. Then

" X\" -1 . s—1 . -x .51
(1——) x*hdx = f(x)x* 7 dx —— e *x" dx
0 n 0 n—oo 0
for fu(x) = (1 - %)" - 1(0,n) by Lebesgue’s dominated convergence theorem. By integration by
parts we obtain
/"(1_)_6)"xs_1dx= (-2 =] +/"(1_z)"”x_sdx
0 n n S X=0+ 0+ n S

+
1 n n—1
:—-/ (1—)—6) x¥dx.
s 0 n

+

Repeating the argument n — 1 times gives

n

n x\n n—1 1 x\n2
1 _ s—1 dx - . (] _ s+1 dx
[ ( n) * n s(s+1) Jos n) *

)+
:(n—l)(n—Z)---l 1 /nxs+n—1dx
n1 s(s+1)---(s+n-1) Jp

n! nstn n!n®
_ﬁs(s+l)---(s+n) T s(s+1)---(s+n)

and thus the result. O

Corollary 6.4. It holds that




6.2

GAMMA FUNCTION

Proof. Note that (1 + %) (1 + %) . (1 + ﬁ) =2.3. ... =pn, so the result follows from (6.2).

Theorem 6.5 (Schidmilch formula, Weierstrass’ definition). It holds that

s/n

I'(s) =

s

where vy is the Euler—Mascheroni constant.!

Proof. Use that Z;Ll } —logn —— vy and thus exp (—ys + 2;;1 f) ~ n®. The result follows
with (6.3). O

Theorem 6.6. The Taylor series expansion is given by

10g1“(1+s):—7s+2$(—s)k, Is| < 1.
k=2

Proof. With (6.4) we get

log(s'F(S))=—75+Z(%_10g(1+%))
——7S+Z(‘+Z( D (S))
:—VS+kZ=;( 1>"12(5)

- yss Z(‘s)k@’ (6.5)
k=2 k

| =

the result. o

Corollary 6.7. It holds that T(s) = 1 —y+3 (72 + %) +0(s?) andT(s+1) = 1—ys+3 (y2 + ,,_) +
O (s?). The residues ats =-n (n=0,1,...) are given by

_ =D 1)”
[(s) = Gin ol +0(1). (6.6)
EULER’S REFLECTION FORMULA
Proposition 6.8. I/t holds that
nmcothrmx = _+Zx2+n2 x¢Z. (6.7)

1Lorenzo Mascheroni, 1750-1800
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6.2 EULER’S REFLECTION FORMULA 37

Proof. Consider the function r +— cosh(x7) for x > 0 on (-x, ). The function is even, thus the
Taylor series expansion is coshxt = 5 + ¥,,_; a, cos nt With

1 [~ 2 .
ap= — coshxtdt = — sinhxm
T J_ XU

and
1 T 1 V4 eint +e—int ext +e—xt
a, = — cosntcoshxrdr = — dr
) _x T J_x 2 2
1 e(in+x)t e(infx)t e(fin+x)t e(finfx)t n
=— |- + — + — + —
dr \ in+x in—x —in+x —in—x J|,__,
(_l)n X — X7 o™X _ oX7 X — X7 e~ _ X7
= ; + — + ; + ;
4 in+x in—x —in+x —in—x
(-H"  4x .
= ————sinhnx
2n n? +x2
and thus - - 5
sinhzx  sinhmx X Cos nt
coshxt = + Z(—l)"—. (6.8)
X n? +x2
n=1
The result follows for ¢ = x. O

Proposition 6.9 (Euler’s infinite product for the sine function). It holds that
sinnx:nxl—l(l _ﬁ) (6.9)
k=1

X)

Proof. Set f(x) = sinnmx thus ’}'((x) = mcotmx; set g(x) = mx [, (1 - ;—i) and it follows that

g'(x) 1 2x/k? 1 2x
g(x) x ; 1-x2/k2  x kz:; k2 - x2

and using (6.7) thus ’Z((:j)) = ];(()f)) It follows that 7(x) = cg(ix) for some constant ¢ € C. The

constant is clear by letting x — 0 in (6.9). O

Corollary 6.10 (Wallis’2 product for x). It holds that

=11 _4Kk? 22446688
2 - Ll —1 713355779
or equivalently,
g(zkk) - L (6.10)
ask — oo.
Proof. Choose x = % in (6.9) and observe that 1 — # = %%
The second formula follows from 51z (%) = 1234(2(52)1) .

2John Wallis, 1616-1703
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38 GAMMA FUNCTION

Proposition 6.11 (Reflection formula, functional equation). It holds that

I'(s)I'(1-s)=— .
sin(7rs)
Proof. We use (6.2) to see that
F(s)T(1—s) n!n® - nlnl=s
’ VS w) it U-9(-s+D)---(I-s+n)
_1 n!? . n
s (1-82)(22-52)...(n"2=52) l-s+n
1 1 n
T s2 s2 s2 .1— +
ew)(-x)(mn) T
T
_> .
simnms
as n — oo by (6.9) and thus the result. O

Corollary 6.12. It holds that T (%) - V7.

6.3 DUPLICATION FORMULA
Proposition 6.13 (Legendre duplication formula). It holds that
L(s)T (s + %) =272\ (2s);

more generally, form € {2,3,4, ...}, the multiplication theorem
m—1
k mel 1
I_l F(s+ —) =2r) T m27"™ T'(ms)
m
k=0
holds true.

Proof. Indeed, with (6.2) and (6.10),

1
1 n!n® . n!ln®t2
I(s) (S + §) s(14s)--(n+s)  (s+1)(L+s+1) - (n+s+1)
I'(2s) n—00 __emenr
2s(1425)---(2n+2s)
272 25(25+2) ... (25 +2n) (2s+1)...(2s+2n-1)
(") s(s+ D) (s+n)  (s+ s+ (s+n=-1) (s+n+1)
-2s
= 2 5 2n+12n . nn+l 21—23 T
V() § 4 o
and thus the result; the remaining statement follows similarly. O
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Euler—Maclaurin formula

By Riemann-Stieltjes integration it follows that >} _, f(k) = /OTf(x) d|x]. We thus have

;f(k)—/o f(x)dx:/o+ ) d(Lx] —x).

By integration by parts thus,

;ﬂk)— /O ) dx = /0 (x = L)) f(x) di,

or

C _r" f(n) - £(0) " 1\
;f(k)_/o f(x)dx+f+/0 (x—[xj—z)f(x)dx. (7.1)

Now recall from (5.8) the functions Bx(x) = Bx(x — |x]) and from (5.10) the function B (x),
thus

n—1
N (O R (N L
kz_;)f(k)_/o £(x) dx _ +/0 B1 (x) f(x) dx. (7.2)

Recall from (5.7) that gy (x) = 242 and from (5.3) that S (n) = ¢ (0) = By. Integrating by

parts thus gives

N " By (v "B (x)
;)f(k)= /0 F@) dx+ Bi(f(n) = £(0) + =+ (f(n) = £(0) - /O =P dx.

Repeating the procedure and noting that B; = 0,

n—1

— n B B n
1w = [T rwas S rm - 1)+ 2 (- rron+ [TEE O e
k=0
Repeating the procedure (in total p times) gives the Euler—Maclaurin! summation formula.

Theorem 7.1. Forp e N and f € CP([0,n]) it holds that

n-1

- p

_ [ Be |t~ D [T »
D= [T e RGNl S [apwsrwa
or

n P
_ [ B penyt _ED T )
= [ awac Ren g el - [Fawrwa

1Colin Maclaurin, 1698-1746, Scottish

39



7.1

7.2

EULER—MACLAURIN FORMULA

EULER—MASCHERONI CONSTANT

Example 7.2. The Euler—-Mascheroni constant is

—logn =0.5772156649 . ... (7.3)
Set f(x) := -, then, by (7.2),

n

1 _n—l n B ﬁ—l n ﬂl(x)
Z;—log(n+l)—kz_;f(k)—‘/o J(x) dx = - 2 _‘/0 (x+1)2dx.

=1

Letting n — oo gives the convergent integral y = § — [ B gy,

X

STIRLING FORMULA

Choose f(x) :=logx in (7.1), then

n n 1 n
logn!:Zbgk:/] log)cdx+§10gn+/1 @dx
k=2

and thus logn! — (n+ %) logn+n=1+[" B gy exists for n — co.
f nle” H n le?n n*n n Zr?
With b, = n,,’ﬁ and Corollary 6.10 we find that 1 « % = —(Z’)l;'f\% T = \/5(22—") - ‘/%7
and thus, asymptotically, n! ~ V2zn (£)".
A more thorough analysis (cf. Abramowitz and Stegun [1, 6.1.42]) gives the asymptotic ex-
pansion

n

1 B
1ogr(z)=(Z_E)logz—z+1ogx/ﬂ+z 2m

2m(2m — 1)z2m-1"

m=1

Alternative proof, following an idea of P, Billingsley. Let X; be independent Poisson variables with
parameter 1. The random variable X; + - - - + X,, follows a Poisson distribution with parameter n.
Set h(x) = max(0, x) (the ramp function), then

Eh M)z i e_nnkk—nzﬂ Z ( nk _nk*'l):dnnﬂ.
Ve S KoV Ve S (=D R vn n!

By the central limit theorem W converges in distribution to a random variable Z ~
Xz 7)(72
N(0,1) for which Eh(2) = ;" x&=dx = ~<—=| = 2= Thus the result o

Corollary 7.3. It holds that

2\ . (DF and [FH3) « K
k| = T(-z)kz*! k )" T(z+1)
as k — oo.
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7.2 STIRLING FORMULA 41

Proof. Indeed, with (6.3) we have that

—z—1
2\ [~zHk—1\ 1 ® (“])
N R R e e e

and thus the result. O
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EULER—MACLAURIN FORMULA
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8.1

Summability methods

SILVERMAN—TOEPLITZ THEOREM

Definition 8.1. We shall say that the summability method ¢ = (tik);’szo confines a regular
summability method if the following hold true for every convergent sequence with a; o

S1. Yo tik ar converges for every i =0, 1,... and
S2. Yootk ar — .
[—00

Theorem 8.2 (Silverman-Toeplitz). The matrix t = (t;;) with t;; € C confines a regular summa-
bility method if and only if it satisfies the following properties:

T1. Yo ltik]| €M < oo foralli=0,1,...,

T2. tigx — O forallk =0, 1,... and

1—00

T3. ZZO:O tix — 1.
i—o00

Proof. For a = (ax), € c (the Banach space of sequences with a limit) define #;(a) =
>k=otik ak, a linear functional on c. Recall that #; € ¢* is continuous with norm ||#;]| = Y- |tik|
(i.e., (t;x)x € ¢ for all i) which converges by S1 for every point a = (ax) € ¢. By the uniform
bounded principle (Banach—Steinhaus theorem) there is constant M such that sup; ||7;]| < M <
oo, hence T1.

Choose a = e € ¢, then t;; = t;(ex) — 0 by S2, hence T2. Finally choose a = (1,1,...) €

c with limit ay — a =1to get X ;_ tix ax —— 1 by S2, hence T3.

As for the converse observe thatfora = a - (1,1,...) + Y- (ax — @) - ex and hence ¢;(x) =
a - Y=o tik + Xk (ax — @) tix, Where Y _qt;ix —— 1 by T3. For the remaining term we have
1—00

[Dkeo (ak — @) tik] < X lak —a||tik] + M sup,., lax —a| by T2 and hence, for r large enough,
fi((ax)) — @, i.e., S2 and S1. O

Remark 8.3. For the summability methods below we investigate the sequences of partial sums

sk = X5_ga;. Note, that
Ztiksk = Zaj 'Zfik
k=0 k=j

J=0

and

(Tik = T; k1) Sk = Zaj - Tij,
k=0 =0

where T;j = Y- tic and t;; = Ti; = T; ju1-

43
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SUMMABILITY METHODS

8.2 CESARO SUMMATION

8.3

Consider the nth partial sum of the series s, := 3_ja; — s = X7y a,. Then

+1-0 +1-1 +1- +Sp4- -+
z ao+ = ap o g, = 20100 LN (8.1)
n+1 n+1 n n+1
o o o fk<i
the limit does not change and Theorem 8.2 applies with #;; = 0 olse The procedure may

be repeated, which gives rise for the following, more general method.
Definition 8.4. For a € C we shall call the limit
o (5)
J )
Z de = Z a;
J=0 N J Jj=0
the Cesaro mean.!

() _ n+l-=

("+1) — n+l

Note that, for @ = 1, J and thus (8.1).

Remark 8.5. The Cesaro limit of Grandi’s series is ¥ ;-o(-1)* = 3, cf. Figure 13.3.

EULER’S SERIES TRANSFORMATION

Theorem 8.6 (Euler transform). It holds that

2,7 ey T ZO (e (82

where y € C is a parameter.

Proof. We have that
S()s) -
Jl—] =y (8.3)
) \L+y

Indeed, for j = 0 the assertion follows from the usual geometric series. Differentiating (8.3)
reveals the claim for j < j + 1 after obvious rearrangements.

By rearranging the series (8.2) we find that
2 Ty (1+y>l+1 Z() e =2y an” Z(j)(lw)m =2

=0 i=j =0

thus the assertion. O

1Ernesto Cesaro, 1859—1906
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8.4

8.4 SUMMATION BY PARTS

SUMMATION BY PARTS

The rearrangement

n

D fel8knr = 86) = [fngnst = fongnl = ) (i = firr)-
k=m

k=m+1

is called summation by parts, or Abel? transformation. Repeating the procedure M times gives
the assertion of the following statement.

Proposition 8.7. ForM =0,1,... it holds that

n M-1 n-M

i i+1 M M
e 3 RGNS 0G0,
k=0 i=0 j=0

M-1 ) n-M ( (
_ i () A>+] M M) ~(M)
= 2D ARG+ ()M YT MG,
i=0 7=0
where
M M
D NEILa (T
k=0
and

(M)__” k—j+M—1
Gj —Z( M—1 8k

k=j
J .

~(M) . j—k+M-1

G = .

( ;)( M

Proposition 8.8 (Abel’s test). Suppose the sequence (by);, is of bounded variation (i.e.,
Y =0 |bje1 — bj| < 00) and X3 ax converges. Then ¥, axbi converges too.

Proof. Note first that by is uniformly bounded, as
k-1 )
|bi| = b0+ij+1 —b;| < |bol +Z|bj+1 ~bj|.
j=0 j=0
By summation by parts it holds that
N N N-1 N
ZakkabM Zak+z(bj+l_bj) Z ag. (84)
k=M k=M j=M k=j+1

For & > 0 find ny € N such that |%2,, ax| < & for every N, M > ny. It follows that

N N-1
> axbe| < lbumle+ D by = bjle < el lbol +2 3 by = byl
k=M j=M j=0
The assertion follows, as ¢ > 0 is arbitrary. O

2Niels Henrik Abel, 1802—1829, Norwegian

Version: April 23, 2021
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46 SUMMABILITY METHODS

Proposition 8.9 (Continuity). Suppose that

(i) 11 =br(r)| - 0 for all k € N (pointwise convergence) and

(i) Yx=0 16k (r) = br+1(r)| < C for some C < o andr < 1 (uniform bounded variation),

then
lim Z br(r)-ay = Zak,
S k=0
provided that the latter sum exists.
Proof. Let M € N be large enough so that |35, a¢| < & for all £ > M and ry < 1 large enough
such that |1 — by (r)| < m forall k=0,1,...,M—1and |l — by (r)| <2forall r € (ro,1).
Similarly to (8.4) it follows for r > ry that

) ) M-1 )
Zak_ axby(r) = ak(l_bk(r))+2ak(l_bk(r))
k=0 k=0 k=0 k=M
M-1 ) ) oo
= > a1 =bx()) + (1=by (1) D ax+ D (bj(r) = b (1) ). ar.
k=0 k=M j=M k=j+1
Hence
Zak - Zakbk(r) < M% +2e+¢ Z \bj(r) - bj+1(r)| <(3+0C)e
k=0 k=0 =M
and thus the assertion. O

8.4.1 Abel summation
Theorem 8.10. [/t holds that

provided that the latter sum exists.

Proof. Choose by (r) := r*, then by (r) = rk — 1 and Yo |6k (r) = bes1 (r)| = Spogrk —rFH =
1 for r € (0, 1). The assertion follows with Proposition 8.9. O

8.4.2 Lambert summation

Theorem 8.11 (Lambert> summation). It holds that

00

> krk
lim(1 -r) - .ap = 8.5
= gl—rk ax =) a. 8:5)

k=1

provided that the latter sum exists.

3Johann Heinrich Lambert, 1728-1777, Swiss polymath
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8.5

8.6

8.5 ABEL'S SUMMATION FORMULA

Proof. Choose by (r) = % By de LHbpital’s rule,
. o (1=-rkrk =k (1 - k2R
lim b =1 = =1.
rl?ll K(r) rl?ll 1 -rk rl{rl1 —krk-1

The assertion follows with Proposition 8.9 by monotonicity, as bx(r) > bryi(r) > 0 for r €
(0,1). O

ABEL'S SUMMATION FORMULA
Theorem 8.12 (Abel’s summation formula). For ¢: [1,0) — C differentiable it holds that

Y, and) =A@ 6~ [ Aw ¢ a, (©.6)

1<n<x
where A(x) = Y1 <, <. an IS the summatory function.

Proof. Choose ¢ € (0, 1). By Riemann-Stieltjes integration by parts we have that

X X

¢(u) dA(u) +/ A(u) dp(u) = ¢(u) A(u)l5zy_, = A(x) ¢(x)

l-¢ l-¢

and thus the result. O

Alternative proof. Note, that A(x) =0forx < 1 and A(u) = A(n) foru € [n,n+1), n € N. Thus,
for integer x,

D and(m) =) (A(n) = A(n = 1)(n)

1<n<x n=1
x-1 x—1
= " Am(n) + AX)¢(x) = A0)$(1) = > Am)g(n+1)
n=1 n=1
x—1
= A@)P(x) = D A (p(n+ 1) - p(n)
n=1
x-1 n+l
~ AW - Y A [ ¢
n=1 n
x-1 n+l
—A@e) - ). [ A G au
n=1Y"
= A - /1 A(u) ' (u) du,
Finally note that fo(J A(u)¢' (u)du = A(x)p(x) — A(Lx])#(Lx]) and thus the assertion. O

POISSON SUMMATION FORMULA
Definition 8.13. The Fourier transform of a function f: R — Cis
fk) = / ) f@)e ™ dr,  keR.

Version: April 23, 2021



48 SUMMABILITY METHODS

Theorem 8.14 (Poisson summation formula). It holds that

D fk) =) fk). (8.7)

keZ keZ

Proof. Set g(t) = X,z f(t + n) and note that g has period 1, i.e., g(t + 1) = g(¢). Its Fourier
series is g(1) = Y ez ck - €27 where

1
Ck = / e 27k o (1) dr
0

= /le‘z”"k’Zf(Hn) dt

0 nez

n+l )
Z/ e—27‘r1k(t—n) f(t) dr
n

nez

Z /n+1 o2kt f(r)dr

nez

— /ooe—Znikt f([) dr

o0

= f(k).

It follows that

Dfrk) =gty =) K =" 2K f(k)

keZ keZ keZ

and the assertion by choosing ¢ = 0. O

Example 8.15 (Jacobi* theta function). For x > 0 define the function

Bx) =y e =142 Y K (8.8)
keZ k=1
then
9) = —o (2 89
(x) = % (;) (8.9)

Proof. We have that

1

N2
) (r+) e %
o 2mikt 2ot Y =

00 —"ZJ (o) 1
/ —2mx e = /
e dr = e )
—00 \/)_C —c0 1 \/)_C
VZH 2nx

pdf of N(-, -1

i 2
where we have used that 27i k¢ + 2nx = "ZT” + X (t+ %) . Thus the Fourier transform of

(1) = e is f(k) = ‘/L;e’szﬂ. Applying the Poisson summation formula (8.7) reveals the
result. m]

4Carl Gustav Jacob Jacobi, 1804—1851
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8.7

8.8
8.9

8.7 BOREL SUMMATION

BOREL SUMMATION

Borel summation allows summing divergent series.

Definition 8.16. The Borel summation of the sequence (ax);, is
0 o] l 0 ,
Z ap ¥ = / Ba(tz)e ' dr = —/ Ba(t) e dt,
k=0 0 tJo
where Ba(r) = Y5, &tk
Proposition 8.17. If 3.3, axz* converges, then the sum coincides with its Borel summation.

Proof. Indeed, one may interchange the summation with integration and it holds that

)

m_k. -t 4k g
z ka / * dr
—4 )¥d

Z/ r ) dr

=/ "' Ba(tz)dt
0

and thus the assertion. O

Example 8.18. The sum a(z) := X5, (~2)*k! does not converge. But Ba(r) = i, (-n* = -
and the Borel summation is
°° dr
— -t
a(2) = _/0 “ Tvu

e 1
= e —drt
te—t-1/z 1/, zt

Il
)

ﬂmts,zﬁﬂpfﬁkzzgaﬁr(ag
Clearly, the series is not summable in the classical sense.

ABEL—PLANA FORMULA

MERTENS’ THEOREM

Theorem 8.19. Suppose that }.;2,a; =: A converges absolutely and ;> b; =: B converges,
then the Cauchy product 3. c; = A - B converges as well, where c = Z’{,f:o arbi_g.

Proof. Define the partial sums A, = " a;, B, = X' b; and C, = ¥ c;. Then C, =
Yico@n-iBi = Xi_yan—i(B; — B) + A, B by rearrangement.

Version: April 23, 2021



50 SUMMABILITY METHODS

There exists an integer N so that

B, - B| < ——=——=—— (8.10)
" 1+ Zkzo lak]
for all n > N. Further, there is M > 0 so that
lan| < & (8.11)
N (1 +SUP;eqo,1,... N-1} 1Bi — B|)
forall n > M. And there is L > 0 so that for all n > L also
E
A, - A| < . 8.12
[An = Al < g (8.12)
Now let n > max {M + N, L}. It follows that
n
(Cu~ ABl = | > ani(Bi = B) + (A, ~ A)B
=0
N-1 n
< Do lan—i|-1Bi=Bl+ ) lanil- 1B = Bl+|4, - Al - |B]
0 ~—— i=N —_—
=M <& by (8.12)
N ——
<g&/N by (8.11) <& by (8.10)
< 3e
and hence the assertion. O
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9.1

9.2

Multiplicative functions

Young men ought to be conceited, but they
oughtn’t to be imbecile.

G. H. Hardy, 1877-1947

ARITHMETIC FUNCTIONS

Definition 9.1. A function f: N — C is said to be arithmetic; the class of all arithmetic functions
is A.

Definition 9.2. An arithmetic function f: N — C is!

additive, if f(m-n) = f(m) + f(n) provided that (m,n) =1,
totally (completely) additive, if f(m - n) = f(m) + f(n) for all m, n € N.

An arithmetic function is

multiplikative, if f(m -n) = f(m) - f(n) provided that (m,n) =1,
totally (completely) multiplicative, if f(m - n) = f(m) - f(n) for all m, n € N.

The class of all multiplicative functions is M.

Remark 9.3. If f(-) is multiplicative, then f(1) = 1 or f(-) = 0. Further, if f1, ..., fi are multiplica-
tive then n — fi(n)--- fi(n) is multiplicative.

EXAMPLES OF ARITHMETIC FUNCTIONS

Definition 9.4. The big Omega function

Q(n) = ia[ = Z
i=1

pEP: p%in

ai A

counts the total number of prime factors in the canonical representation (2.3), n = p}" ... py*,
while the prime omega function
wn) =w= Z 1 (9.1)
peP: pln
counts the distinct number of prime factors of n.
The Liouville function? is (the second A in Table 3.1)

An) = (=1)%M (9.2)

Istreng additiv, dt.
2Joseph Liouville, 1809-1882, French
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52 MULTIPLICATIVE FUNCTIONS

Proposition 9.5. It holds that
(i) The function big Omega Q is completely additive,
(ii) Liouville’s A is completely multiplicative,
(iii) the prime omega function w is additive and
(iv) Euler’s totient function ¢ is multiplicative (cf. Theorem 3.2).
Definition 9.6. The number-of-divisors function
7(n) = Z 1 (9.3)
dln
(for the German Teiler = divisors) counts the number of divisors; often, oy =d =v = 7.
Definition 9.7. The sigma function, or sum-of-divisors function is
o(n) = Z d.
dln
Definition 9.8. More generally, the divisor function is
o(n) = Z d*. (9.4)
dn

Proposition 9.9. The divisor function o} are multiplicative, but not completely multiplicative.

DIRICHLET PRODUCT AND MOBIUS INVERSION

Recall the definition of arithmetic (Definition 9.1), additive and multiplicative (Definition 9.2) func-
tions.

Definition 9.10 (Dirichlet convolution). The Dirichlet? product of arithmetic functions f and g is
the arithmetic function f = g, where
(feg)m) = > fd)-g(d). (9.5)
d1<d2=n
The product is commutative and associative:
((fxg) xh)(n)=(f*(gxh)(n) = (f*g=*h)(n)= Z f(dy) g(d2) h(d3).
d1d2d3=n

Definition 9.11. Define the arithmetic functions

and

for n € N.
Remark 9.12. It holds that 6, = f = f =6, = f (6, is the neutral element with respect to the
Dirichlet product).
Definition 9.13 (Dirichlet inverse). The function f~! with f « f=! = ¢, is the Dirichlet inverse of
f with respect to .

3Johann Peter Gustav Lejeune Dirichlet, 18051859
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9.4 MOBIUS INVERSION 53

MOBIUS INVERSION

Definition 9.14 (Mdbius function). The Mdébius# function u: N — {-1,0, 1} (cf. Table 3.1) is

1 ifn=1,
u(n) =9 (=D ifn=p;---py with distinct primes p; < ... < px,
0 if n has a square (prime) factor.

Remark 9.15. The function n — |u(n)| is the indicator function for the square-free integers.
Proposition 9.16. The function u(-) is multiplicative (not totally multiplicative, though).

Theorem 9.17 (Dirichlet inverse of the Mdbius function). It holds that

Z”(d):{l ifn=1, ©.6)

o 0 else.
l.e., the Mébius function is the Dirichlet inverse of 1, 17! = u or
w1 =6p; (9.7)
Proof. Forn = p{"---pg’ > 1 (with w distinct prime factors) we have that

Zu(d) =Zu(d) =/~t(1)+zw: Z u(piy i) s

dln d|n, r=1 1<ij<...i, <w
d square-free

where the latter sum runs over all square-free divisors of n. For combinatorial reasons,

w

IWICEDY (‘:)(—n’ =(1-1“=0
d|n r=0

and thus the result. O

Example 9.18. The Dirichlet inverse of the arithmetic function a: n — - is o 1: n s A2,

ns

Proof. Indeed, %41, @ (4) @™ (d) = Taja (4) - 2 = £ Sy u(d) = s+ 1)(n) = or(m)
61(n) by (9.7). O

Definition 9.19. The sum function is

S(n) = ) f(d). (98)

din

Remark 9.20. We have that Sy = f*1 =1xf. (However, note that1-f = f-1 = f for the usual,
pointwise product.)

4August Ferdinand Mébius, 1790-1868
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Theorem 9.21 (Mdbius inversion formula; Dedekind®). Any arithmetic function f can be ex-
pressed in terms of its sum function Sy as

fy= )" u(d)-Ss(da) (9.9)
d1d2=n

for every integern > 1, where Sy is the sum function (9.8).

Proof. We have that f =6 * f = (u*1)* f = u* (L*f) = u =S¢, this is the result.
For a more explicit proof,

Syunss (2)= X (3) 5110 = S0 () 5 1

dln dln dln d|d
SICODINTCIEDIFICD Zﬂ(dﬁ),
diin dld|n diin dyjm V72

where m = n/d,, d, = d/d;. By (9.6), the second sum is non-zero when m = 1, i.e., n = d;, and
hence the whole expression equals f(n). O

Theorem 9.22. The set M of multiplicative functions is closed under the Dirichlet product, i.e.,
f =g e M whenever f,g € M.

Proof. For (a, b) = 1 note that
d; | aanddz | bh = (d],dz) =1

and
{d:d|a-b}={d,-dy:dy|aand d;, | b}.

Set i := f = g, then

h(a) h(b) = (f +g)(a) - (f+g)(b)= > f(di) g (i) 2 f(d”g(d%)

dila &
a b ab
= D, fW)f(d)g (d—) 8 (d—) = fldid) g (ﬁ)
dila, d>|b ! 2] d\adolb 1d2
ab
=) fld)g (7) = h(ab).
d|ab
Thus, & is also multiplicative so that f x g € M. O

THE SUM FUNCTION

Theorem 9.23. The function f(-) is multiplicative iff its sum-function Sy is multiplicative.

Proof. Assuming that f is multiplicative we have that Sy = f+1 is multiplicative by Theorem 9.22,
as 1 is multiplicative.

As for the converse it holds that f = u + S¢ by the M&bius inversion formula (9.9). Assum-
ing that S¢ is multiplicative, it follows again with Theorem 9.22 that f is multiplicative, as u is
multiplicative by Proposition 9.16. O

5Richard Dedekind, 1831-1916, German
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Corollary 9.24. The sum function of a multiplicative function f is given by

w

Sro=[T(1+£G0+ fED+-+ £(p).

i=1

If f is totally multiplicative, then it is sufficient to know the restriction f|p, as

Flpet — 1
S(”)_n -1

OTHER SUM FUNCTIONS

Corollary 9.25 (Corollary to Theorem 9.17; Mdbius). For a function f: [1,00) — C define the
summatory function

F =y f (%) (9.10)
=
then
F@) =Y u F () (9.11)
=

conversely, (9.11) implies (9.10).
Proof. For an arithmetic function @: N — C and f: [0, ) — C define the operation
X
(a0 ) = kz ath) f(3)-

keN

The following hold true:

() o (f+g)=aeft+aeg,
(i) (a+pB)ef=aef+pef,
(i) @ o (Be f)=(axp)e fand
(iv) 610 f=f.

(i) and (i) are clear. As for (iii),

(@eBe )@= a(Bef)(7)= Za(k)Zﬁ(f)f( )
k<x

k< <%

k qa(k)ﬁ(f)f(ﬁ)

<
=2 > ewBOs ()

n<x kf=n

= D@ Hf (2] = ((@xp) o ) ).

n<x

(iv) finally follows trivially from (61 @ f)(x) = Xx<, 61(k) f (%) = f ().
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MULTIPLICATIVE FUNCTIONS

Now note that F = 1 ¢f. Hence
peF=pe(lef)=(uxl)ef=0610f=f
by (10.3), which is (9.11). Finally
Lef=Te(ueF)=(L*u)e F=56eF=F,
which is (9.10).
Remark 9.26. Set f(x) := 1, then F(x) = |x]. It follows that

1= S [2]

k<x

For example (x = 5)

1=5u(1) +2u(2) + u(3) + u(4) + u(5) or
1 =6u(1) +3u(2) +2u(3) + u(4) + u(5) + u(6)

(x =6).

PROBLEMS

Exercise 9.1. Show the Lambert series for the Mébius function,

: :‘ 1=
n=1

or more generally,

n

Z“”xn = Z(“ *a)(n) 7 ixn'

n=1

Exercise 9.2. Show that

p(n)

provided that the sum exists (hint: Lambert summation 8.5).

an (a = p)(n)
ZF =§(S)';n—s-

n=1

Exercise 9.3. Show that

Exercise 9.4. Show that

n=1

Z:xn2 = ;/l(n) 1inxn,

where A is the Liouville function.
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10.1

Euler’s product formula

Lisez Euler, lisez Euler, c’est notre maitre a
tous.

Pierre-Simon Laplace, 1749-1827

EULER’S PRODUCT FORMULA

Definition 10.1. Riemann’s £-function is the analytic continuation of the Dirichlet series
(=31 (10.1)
n=1 n ’

which converges for R(s) > 1.

Proposition 10.2 (Euler’s product formula). It holds that

=[] % R(s) > 1. (10.2)

1
p prime s
Proof. The assertion follows with f(n) = 1 from the following, more general statement. O

Theorem 10.3. Suppose that f is multiplicative and Y-, f () converges absolutely for some

s € C, then
fn) _ £
bl [ DI
n=1 p prime k=

If f is totally multiplicative, then

Proof. Choose N large enough so that Y, . » <. SetPy = {p € P: p < N}, then

Hzf( Zf(ﬂ)

pePn k=0 prs nen,
pln=>pePn

and hence |¥2, L% ], 35, f}ﬁ{l Soon L8 < 3oy |2 < & from which the
assertion follows. O
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EULER’S PRODUCT FORMULA
Proposition 10.4 (Liouville function). It holds that

£(25) 1\! A(n)
o - (“E) "2 R

p prime n=1

where A(n) is the Liouville function, cf. (9.2).

I-osz
Proof. Indeed, f((;f) =[per 721 =

]k
= Tkeo )- m

HP€P(1+ ;),theﬂrst assertion. The remaining assertion

Remark 10.5. It follows from {(s) = £(2s) X [1ep (1 + = ) that every number is the product of
simple primes (square-free) x the square of a natural number.

Theorem 10.6. Let O, (n) be the number of kth-power free integers up to n, then

Qk(n) ~ (k)

asn — oo,

Square-free numbers, in particular, have for k = 2 the asymptotic density 2" ~ £ ~ 0.6079.

Sketch of the proof. For large n, a fraction 1 — zlk of numbers is not divisible by 2%, 1 — 3l,\ are
not divisible by 3%, etc. These ratios are multiplicative (cf. the Chinese remainder theorem,
Theorem 2.32) and we thus obtain the approximation

Qk(n) ~n- l_[ (1—]%)= a - =§(nk),

p prime HP prime 7°1°
Pk

the assertion. O

Theorem 10.7. [t holds that

Z—Z Zn— 7]n—" (10.3)
where c, = Y gjn @a - bunja = Xjg=n a; b
Proof. Indeed, ¥,_; % - 3, ﬁl\ Ynm=1 (n m),. The result follows by comparing terms. O
Proposition 10.8. I/t holds that
ﬁ - ; “,Ef), R(s) > 1. (10.4)
Proof. The proof is immediate by (10.3) and (9.6). O

Corollary 10.9 (Corollary to Proposition 10.4). It holds that

HONRSIMOIRSEE
{(ZS)_HZ:; ns _Y;ns'
n squaré—free
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10.1 EULER’S PRODUCT FORMULA

Corollary 10.10 (Landau?). It holds that

) KO _ o and 5 po) ogn _ . (105)
Proof. Consider (10.4) and its derivative for s — 1. O
Phroposition 10.11. The number of divisors of n (including 1 and n) is 7(n) = ¥4, 1. It holds
that
6=, LA R
Proof. The proof is immediate by (10.3). O

Proposition 10.12. It holds that

{s-1) e
£(s) _; po RO>1L

where ¢(-) is Euler’s totient function (3.1).

Proof. The proof is immediate by (10.3), as

CIN W ONRICEDIW R

n=1 din n=1

by Gauss’ theorem, Theorem 3.5. O

Proposition 10.13. The following hold true (cf. Titchmarsh [19]):

>

‘V(‘YA)‘Z = Y= w where w is the number of different prime factors, cf. (9.1);

n

2(s) (s —a) = Y,-; 22 where o, is the divisor function, cf. (9.4);

ns

<0 _ 5 ) here t is the number of divisors, cf. (9.3);
o) = Yn=1 ——, Where 7 is the number of divisors, cf. (9.3),
L@t _ T(n)?.
Z(25) - Zn:l ns s

(¢(s) - 1)" =3, 1 “where fi(n) is the number of representations of n as a product of

ns

k factors, each greater than unity when n > 1, the order of the factors being essential;

2—§1W =D % where f(n) is the number of representations of n as a product of factors
greater than unity, representations with factors in a different order being considered as
distinct, and f(1) = 1.

Definition 10.14. The von Mangoldt? function is

. _ k . .
A(n) = logp ifn=p*(pprime, k integer), (10.6)
0 else.

!Edmund Landau, 1877-1938, German
2Hans Carl Friedrich von Mangoldt, 1854—1925, German

Version: April 23, 2021

59



60 EULER’S PRODUCT FORMULA

Proposition 10.15. We have that

logn = Z A(d) and A(n) = — Z u(d) logd.

d|n dln
Proof. Use Mdbius inversion formula (9.9). O

Proposition 10.16. /t holds that

log £(s) = S

— n logn

Proof. From (10.2) we deduce that

log{(s) =— Z log(l‘_) pZ i

p prime

Now note that ﬁfg”;ﬁ = ¢ forn = p* and 0 else, thus the result. O

Theorem 10.17. For *R(s) > 1 it holds that

g'(s) A(n)
_ - 10.7
o) =2 w (10.7)
log p log p log p
= 5 = 5 + T’ (108)
p;mep -1 p;me p p;mep (p*=1)

the latter sum converges for R (s) > %

Proof. From (1 0.2) we deduce that log {(s) = — X, cp log (1 - —) Differentiating with respect to

=1
og ~Zpep loger : the second identity is immediate.

s thus ‘;((SS)) Zpep

p
Convergence foIIows from the integral test for convergence or the inequality

Z log p < log2 +Z logn < log2 +/ log x dr < oo,
P oD 2D Aww-) P2 -D L ¥E-D

peP
O
Definition 10.18. The prime zeta function is
P(s) _i+i+i+ = 1 (10.9)
Zs 3Y SS - pY
p prime
Theorem 10.19. For R (s) > 1 it holds that
logZ(s) = %P(m) (10.10)

~
Il
—_

and conversely,

1 o ulk
P(s) = Z ——kzz;'ugc)log{(ks).

i
p prime P
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10.2

10.2 PROBLEMS

Proof. From Euler’s product (10.2) it follows that

log{(s)=~- Y log - = L (10.11)
- P ¢ pts
p prime p prime ¢=1
1 1 1
= - - = —P({s)
; ¢ p;ne p€ =1 ¢
Hence,
p(k) _ N M) P(Lks) _ P(ns) _ x~ P(ns) _
D logllks) = Y mm =y Y p == ) = S (k) = P(s),
k=1 k, =1 n=1 kt=n n=1 kt=n
g
61(n) by (9.6)
the result. O
Proposition 10.20. Fork > 1 and R(s) > 1 it holds that |P(ks)| < 5.
Proof. Indeed,
1 1 " dx © dx 1
P < P(R)= Y — <Y — < / —:/ w1
p;ne pk n=2 n* n=2 vn-1 xk 1 x* k=1
O

PROBLEMS

Exercise 10.1. Verify the properties in Proposition 10.13.
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11.1

11.2

Dirichlet Series

If n — f(n) is multiplicative, then so is n — % for every s € C.
Definition 11.1. The Dirichlet series associated with an arithmetic function a is
Dal(s) = a—".

ns
n=1

PROPERTIES

Lemma 11.2. /fa; +--- + a, is bounded, then Da(s) is holomorphic in {s: R(s) > 0}.
Theorem 11.3. It holds that

an by (a*b)(n)
2w Nw Tl e

n=1 n=1
where *’ is the Dirichlet convolution (9.5), ¢, = X 4jn @abnja = X j.g=n abk-
Proof. See (10.3). O

Theorem 11.4. It holds that <—-ar = 3,1 b where by = Y g, 1t (%) ag

Proof. It holds that 3,,,_; % Zm Vbm =y S with ¢, = S g da S puga 1A bajaar- O

n=1

ABSCISSA OF CONVERGENCE

Theorem 11.5 (Cf. Hardy and Riesz [9, Theorem 2]). Suppose that }. | =& converges and
< Z. Then the Dirichlet series Da(s) = 3. converges uniformly on

n 1 n"
G :={seC: arg(s —s9) <V}
and Da(s) is holomorphic on {s: R(s) > R(so)}.

Proof. The series converges at so, hence, for & > 0, there is M > 0 so that Ly <., 3| < &
forall r > M. Set o := R(s) and oy = R(so) and ¢(n) = n‘fo then with Abel’s summation
formula (8.6),

Z o Z o 1 Z . d
= . = u
s nso  ps—so n vo Ns S0 M S‘(] us—s0+1

M <n<N n M <n<N M <n<N M <n<u

As oy < o it follows that
N
a e s—5
Z n_z < Yoo +/ & _uS—sO+01 du
M <n<N M
1 - 1 1 -
=& +|S sol - <e 1+2|S sol .
No-90  gy—0o \N9-9  MT=0%0 lo- — ool
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64 DIRICHLET SERIES

Define the angle sine = 12=%01  Assuming that s € G it holds that 2 —a < 9, thus lo=oo]

[s—so] [s=sol

. _ o ; [s=so| 1
sina = cos (§ —a) > cos ¥, i.e., ool < wsd- It follows that
a 2
—Z <e& (1 + 0)
M<en " cos
uniformly in G and hence the assertion. O

Theorem 11.6 (Uniqueness). Suppose that F(s) i= 3, 2% and G(s) = X, ’;—" converge for
s =so9 and F(o) = G(o) for all & € R sufficiently large. Then a,, = b,, for alln € N.

Proof. Convergence is uniformly on [R(sg) + 1, o), thus

. . 1
Jim Fle) = Z“" Jim e = A
n=

The same argument applied to G gives that a; = b;.
Consider next the functions F,(s) := 25 (F(s) —a1) = X, =2 dn (3 and G, (s) = 2% (G(s) — by).

n

As a; = b, it holds that F, = G,. As above we find that a, = b, and the assertion follows by
repeating the arguments successively. O

Theorem 11.7 (Abscissa of convergence). Let

. log iZnN:] anl
09 = limsup ——
H—00 log N

then the Dirichlet series Da(s) = X, 7= converges for all s € C with R(s) > o and diverges
for all R (s) < oy.

PROBLEMS

Exercise 11.1. Show that }, -, ;’—" converges for all s € C, if |a| < 1, but diverges for all s € C if
la| > 1.
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Mellin transform

Definition 12.1. The Mellin® transform of a function f: (0, ) — C is the function Mf: C — C,
where

MS(s) = /Ooox“_lf(x)dx, s € C.

Example 12.2. Bateman [3, pp. 303] provides a comprehensive list of Mellin transforms. Ta-
ble 12.1 provides few examples.

12.1 INVERSION

Proposition 12.3 (Inversion of the Mellin transform). It holds that

c+ioco

MF(x) = %/ F(s)x™Sds = f(x), (12.1)

>—[00

where F(s) = Mf(s) = f0°° f(x) x*~! dx and c is within the strip of analyticity, c € {s € C: a < R(s) < b}.

Proof. We shall derive the result from Fourier transforms.
With ¢ fixed, define h(x) = x¢ - f(x) so that 0 is in the strip of analyticity of the function A.
Note first that

Mh(=it) = ‘/Omx_”_l h(x)dx = /we_ity h(e¥)dy = F(hoexp)(2),

y
Xee oo

where

F(g)(1) = / 1 g(y) dy

00

is the usual Fourier transform. Employing the inverse Fourier transform gives

oo +100
h(e¥) = i‘/ e Mh(—it)dt = L e™*Y Mh(s) ds. (12.3)
2m J_o te—sfi 27 J_joo
'Hjelmar Mellin, 1854—1933, Finnish
2The function
0 ifx<O
H(x) =11 ifx=0, (12.2)
1 ifx>1

is the Heaviside step function.
3aka. Cahen—Mellin integral
4Hermite polynomials

65



MELLIN TRANSFORM

function Mellin transform remark

f MSf(s) = [ x5 f(x) dx

s [T F(sxtds F(s) cf. (12.1)
6(x—>b) b~

x*H(b —x) 2 Z‘:

xH(x - b) - Lemma 12.8
x4 f (ax?) ;—aa_%Mf (&l)

e—bx 3 F(S)

e 1€ ¥ f, (logx) «/E( i)"e” - Hy, (i s)

sin ax F(i‘j) sin Z& Example 12.15
cos ax Féf) cos %

e~ sin ax F( )sm(v arcta?/za)

e~X oS ax F( )cos(sarctasn/za)

2¢(x2) £(s) = S(‘ DGR £ (s) cf. (13.20)
Yo L (-0 Fs) - 6(-s) cf. (12.6)
Dirichlet series

D=1 Ane I'(s)-Da(s) Theorem 12.9
Zn=t anf (%) Da(-s) - Mf(-s) cf. (12.5)
Derivatives

fM ) (=) s Mf (s =)

(x&) reo (=1)"s" M (s)

Convolutions

x [TBF (2 e0E Mf(s+a) Mg(s+a+p) of. (12.8)

X 7P Fxy) g () Mf(s +a)  Mg(B~s—a) of. (12.9)
f(x)gx) = fctmo Mf(z)- Mg(s—2z)dz Proposition 12.13

Table 12.1: Mellin transforms
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12.2 PERRON’S FORMULA

Now note that Mh(s) = Mf(s + c) and after replacing y « logx in (12.3) thus

PO =x¢ - hx) = / " S Mh(s) ds

- 2mi ico
l +ioco
=5/ X6 MF(s+e)ds
—100
1 c+ioco
S<—i—c % ) x 5. Mf(s) dSa
the assertion. O

PERRON’S FORMULA

Theorem 12.4 (Perron’s formula, see also Proposition 12.6 belows). Suppose that Da(s) =
Yu=1 5% converges uniformly on {s: R(s) > c — &} for some & > 0 and ¢ > 0. Then it holds that

c+ioco

A*(x) = Z*a":QLm'/.

n<x Tt

Z)a(s)x— ds forall (sicl) x € R, (12.4)
S
where

. 1 Snex @n + 3ax ifx is an integer
ap = — a, + a =
Z "o (Z n Z ") {Zn<x an else

is the summatory function.

Remark 12.5. Notice that Perron’s formula allows computing ., <. an, even if Da does not
converge at s = 0.

Proof. By Abel’s summation formula (8.6) it follows that

z)a(s)zz_’ffl—jzfo %dA(x):s/O ‘:S(fl)dxzs.MA(—s).

From Mellin inversion (12.1) we deduce that

c+ioco

1 .
Alx) = — MA(s)x™% ds
2mi c—ico
c+ioco _
= L Da(=s) xS ds
270 Je—ico -
1 c+ioco s
= — Dals) - ol ds,
270 Je—ico s
the assertion. O
Proposition 12.6 (Discrete convolution). It holds that
L n 1 c+ioco
Dan-f (;) - %/  Da(s) Mf(s)x* ds. (12.5)

n=1

50skar Perron, 1880-1975, German mathematician
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MELLIN TRANSFORM

Remark 12.7. The preceding result generalizes Perron’s formula. Indeed, choose f(x) = H(x—
1), then Mf(s) = % (cf. Table 12.1) and this gives Perron’s formula (12.4).

Proof. We have that

o)

x5! Zan . f(;) dx
n=1

(=]

(R (2)] -

n=1

By inverting the formula with (12.1) we obtain

n 1 c+ioco N
;an -f ()_c) =5 /C_iDO Da(—s) Mf(—s)x*ds
= L o Da(s) Mf(s)x*ds,

2mi c—ico

the result. o

However, the latter identity is only almost everywhere and A(x) is not continuous at integers.
To verify Perron’s formula rigorously (i.e., for all x € R) we shall employ the following auxiliary
lemma.

Lemma 12.8. Letc >0,y > 0andT > 0. Further, set

| cHT s 0 ify<o,

I1(y,T) = —/ Y ds and H(y) =412 ify=0,
2ri Jeoir S .

1 ify>0

(Heaviside step function, cf. (12.2)). It holds that

. 1 .
yCm]n(l,m) Ify¢l,
C

|1(y»T)—H(y—1)|<{ .
ify=1

T
(cf. Table 12.1 withb =1 and a = 0).

Proof. Fory =1,
1 (7 dr 1 [T c—it 17
,(1,T):_/ _:_/ Ld,:_/ 4
2 Jop c+it 2n Jop 2 +12 7Jo c2+12
1 [Tle g 1 [~ 1 1~ 1 11 [ 1
=—/ dtz—/ dt——/ dt=———/ dr
T Jo 1+12 T Jo 1+12 Vs T/cl+t2 2 T/cl+t2

(recall that arctan’ z = ;5) and hence |I(1,T) - 3| < £ A g==%.
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12.3 RAMANUJAN’S MASTER THEOREM 69

t/\ /\t
c+iT r+iT —r+iT c+iT
0 c T, -r 0 C,
c—iT r—il —r—il c—iT
(a) Contour for y < 1 (b) Contour for y > 1

Figure 12.1: Contours

fO<y<1,then0= / ’T ds for the contour according Figure 12.1a and hence

r—iT r+iT r+iT ys
165.7) = ( / - )—ds
r c+iT s
/oo iT /w+[T y_st
e 27i \J. c+iT s
1 o r —iT oo r+iT
[ [T
~ 2ni e r—iT . r+iT

and thus |7(y,T)| < 25= /L_°° dr < TTM and thus the result.

For y > 1, the function s — T has a pole with residue 1 at s = 0. For the integral along the
contour in Figure 12.1b thus,

—r+iT —r—iT cr—iT
R I
2mi c+iT —r+iT —r—iT s

This integral can be treated as above and thus the result. O

Proof of Perron’s formula (Theorem 12.4). It holds that

n<x n=1
:ian%/cHT (f)xﬁzL C“""(ia_z)x—sds,
p— i Je—r \n/ s 2mi ; nt) s
the assertion O

12.3 RAMANUJAN’S MASTER THEOREM

Theorem 12.9. Let Da(s) = 3,1 7+ and fu(x) := X, a,e™™, then
['(s) - Da(s) = Mfa(s),
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70

MELLIN TRANSFORM

cf. Table 12.1.
Proof. Indeed,

MuS: an.‘/ooxs—l—llxdx
fa@ =Y an- [l

n=1

(o]
a 1 -
= =. x5 le™ dx
ns 0

n=1

= Da(s) - I'(s),
the assertion. O

Perron’s formula® describes the inverse Mellin transform applied to a Dirichlet series.

Theorem 12.10 (Ramanujan’s master theorem?). Suppose that ¢ is entire and |¢(s)T'(s)| <

in{s: 3(s) < c,|s| = R} for increasing R. Then the Mellin transform of RHS
k
=3 20
is .
ME) = [ 0 de =) - 6. (12.6)

The identity is often employed as formal identity.

Proof. The Gamma function s — I'(s) has poles at s € {—k: k =0,1,2,...} and the residues at

s = —k are given by I'(s) = k(,(sllk) +O0(1), cf. (6.6). By Cauchy’s residue theorem, applied to the

contour Figure 12.1b displays,

Lo gy = S EDE Lk ¢(k) ok
ari | TE)9(=n™ds = kz(]) (s Z T (=0F = ().
and the assertion follows by Mellin inversion (12.1). O

CONVOLUTIONS

Definition 12.11 (Multiplicative convolution). The convolution of two functions f,g: (0,00) — C

is
(f*g)(x)=/ f(f)g(y)d—y~
0 y y

Proposition 12.12 (Convolution). It holds that

M(f *g)=Mf-Mg; (12.7)
and further (cf. Table 12.1),
M (x“/ooyﬁf (f)g(y)d_y) (s) = Mf(s+a)  Mg(s+a+p), (12.8)
0 Y y
Ml [T 702 0= M0 Msip =5 (12,9

60skar Perron, 1880—1975, German
7Srinivasa Ramanujan, 1887—-1920, Indian
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12.4 CONVOLUTIONS

Proof. With Fubini,

a DQ,B x d_y) _ ® sra-l ﬁl()
M(x /0 yf(y)g(y)y () /Ox /Oy fyg(y)dydx

— ‘/O y,8+s+a/—1g(y) dy A /0 xs+a—1f(x) dx

XXy

=Mf(s+a) Mg(B+s+a)

and thus (12.8) and (12.7). Further,
a © B d_y) — . s+a—1 ® B-1
M(x [ s E] @ = [t [ et avas
— . s+a—1 dx - . B-s—a—1 d
/ x f(x) A y g(y)dy

x—*/y Jo

=Mf(s+a) Mg(B-a-s)
and thus (12.9).

Proposition 12.13. We have that
1 c+ioo
M(f )8 =5~ [ M) Mg(s-2)dz.

Proof. Recall from Table 12.1 that M~'1(-) = 6(- - 1), thus

1 c+ico Cc+ioo

— Mf(z) - Mg(S—Z)dZ—— / 7 f(x) dxe - / s=lg(y) dydz

2mi ico 270 J e—ico

:/0 /0 2,1,/;% fu )dxg(y)ys ldy

M11(3/x)

/0 / f( )dxys 'e(y)dy

. /0 5 (y = 1) gy ™ dy > () d

— [ et ar
=M(f-2)(s)
and thus the assertion.
Example 12.14. Let ¢(k) =1, then f(x) = e and M f(s) = '(s).
Example 12.15. Let ¢(k) := —a¥ sin & = so that

@ (k) s .
f(x)=;)7 Z( (2n+1)' X2 = ginax.

It follows that M (sin ax)(s) = ) sin $Z 5 (cf. Talbe 12.1).

(t‘
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72 MELLIN TRANSFORM

(a) Godfrey Harold Hardy, 1877—1947 (b) Srinivasa Ramanujan, 1887-1920: the man
who knew infinity

Figure 12.2: | remember once going to see him (Ramanujan) when he was lying ill at Putney.
| had ridden in taxi-cab No. 1729, and remarked that the number seemed to be rather a dull
one, and that | hoped it was not an unfavourable omen. ‘No’, he replied, ‘it is a very interesting
numbers; it is the smallest number expressible as the sum of two [positive] cubes in two different
ways.

Example 12.16. Let ¢(k) := o* cos &% so that

2n

flx) = Z (— )k = Z( n" o )‘(—x)2” = cosax

and thus M(cos ax)(s) = F(Y) cos .
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https://www.youtube.com/watch?v=oXGm9Vlfx4w

13.1

Riemann zeta function

Mathematicians have tried in vain to this
day to discover some order in the
sequence of prime numbers, and we have
reason to believe that it is a mystery into
which the human mind will never penetrate.

Leonhard Euler, 1707—1783

Riemann! (cf. Riemann [15]) was the first to consider the function ¢ on the complex plane.

e loghn

Remark 13.1 (Derivatives). The derivatives of the zeta function are (%) (s) = (-1)* T2, 252,
k>1.

Proposition 13.2 (Explicit values). Forn=1,2,... it holds that

_ (_1\n-1 an 2n
£(2n) = (-1) —2(2n)!(27r) .

Proof. Choose x = 0 in the Fourier series (5.9) and note that B, is continuous for k > 2 with
Bk (0) = Bg. O

Example 13.3 (Basel problem). In particular we find the relations

1 n? 1 a 1 7©
Nyl il A 13.1
(Q)=) 5= W=D G50 {O=> %=5us (13.1)
k=1 k=1 k=1
etc.
Note that |-L| = - for s = o +it so that (10.1) converges indeed for R(s) > 1. The following

provides an extension to R(s) > 0.

RELATED DIRICHLET SERIES

Lemma 13.4. /It holds that

1 (-t
() = 755 ; — R©)>0. (13.2)

Remark 13.5. Note, that the abscissa of convergence (cf. Theorem 11.7) of the series },,_; (‘il):_l

is o9 = 0, although (1 —2!7%) £(s) = ¥, (_il)s"_] does not have a singularity at R (s) = sg. This is
a notable difference to power series.

1Bernhard Riemann, 1826—1866, German
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Proof. Indeed,?

RIEMANN ZETA FUNCTION

(s) = 2 ()—1+1+1+1+1+1+1+1+
n(s) = (1o ) <ls 2 T3 T T T T T
2 2 2 2
2S 4s 6S 8s
1 1 1 1 1
=l-—=+——-—+—=-—=+_=F
25 33 43 SS 6S 73
and thus the result. O
Proposition 13.6. I/t holds that
- n—s
£(5) = — ; ((n+ 3~ ) (13.3)
the series converges for R(s) > 0.
Proof. Indeed,
n n—s n—1 n—s n—-1-n+s
- "= — = =(s—-1
Zl ((n+ 3~ ) Z Z Zl - (s = DZ(s),
hence the identity. As for convergence recall that (1 +x)* = 3};- 0( )x k. Thus
" _n—s_l n1+l_s—n+s
(n+1)s ns ns n
=i n—n> ns(s+l)+0 1 -n+s
ns n 2n? n?
_ s(s+1) +O( 1 )
ps+l ns+2
and thus the result. O

Remark 13.7. The series converges for s = 110 ), (ﬁ -

¢ has a pole at s = 1 with residue 1, i.e.,

1
{(s) = —= +O(1).
s—1
Proposition 13.8. The series

2n+3+s

n—

n

) =3 (—ﬁ + %) = 1 so that

2n—-1-3s

{(s) =

1 wnn+1)

converges for R(s) > —1.

2The function 7 is also known as Dirichlet eta function.

(n+1)5+2 B

ns+2
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13.2 REPRESENTATIONS AS INTEGRAL

Proof. As above,

Zn(n+1) (2n+3+s 2n—1-3s

2 2
i 2 (n+1)s+ ns+

_ (mn=Dn 2(n-1)+3+s nn+1) 2n—-1-s
_Z ’ nx+2 - 2 ’ nx+2

2
=3 S 0

2ns+2

after simplifications. Convergence can be established as above, it holds that

nn+1) (2n+3+s 2n—-1-3s 1 (s+3 3
2 ((n+1)s+2_ ns+2 ):2n5+2( 3 )-'-O(n5 )

and thus the assertion.

Remark 13.9. Note that?

< ( 2n+3 2n—1 151 1 1
= —— —_ 1 = —— —_—— = ——,
{0 2n:1(”n+1 (n+ D=2 ) ZZ(n n+1) 2

13.2 REPRESENTATIONS AS INTEGRAL

Proposition 13.10 (Mellin transform). It holds that

oo s—1
Z(S)F(s)=/0 ef_]dx (R(s) > 1).

Proof. Apply Theorem 12.9 with f(x) = 3,,_; e = -

eX—1"

Theorem 13.11. It holds that
£(s) =s/ L e R > 1
1 u

s+1

(13.4)

(13.5)

Proof. Choose a, = 1 so that A(x) = |x] and ¢(x) = <. Then apply Abel’s summation for-

xS

mula (8.6).
Theorem 13.12. It holds that

L(s) = —s/wfrac (;) 571 ds, 0<R(s) <1
0

where frac(x) := x — | x] is the fractional part of the number x € R.

Proof. From (13.5) we infer that

l(s) = s/o1 {iJ wdu, R(s) > 1.

sle, 1+1+1+---=—1cf Figure 13.3

Version: April 23, 2021
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76 RIEMANN ZETA FUNCTION

s—1

1
It holds that ' Lus~"du = [ us~2du = %] ( _, = w1 for R(s) > 1 and thus

s Y1y
g(s)—s_1=s/0 (M—;)u Vdu. (13.6)

Now note that /™ Lus~'du = [ us2du = &

(1
- [
1

u

= ——L for R(s) < 1 and thus

1 |
——) u‘v_ldu+s/ ~u ! du.
u 1 u
1
u

s—1 S
& d _
)u =

and thus the result. O

Remark 13.13. The equation (13.6) holds for R (s) > 0 and thus proves that ¢ has a single pole
ats=1.

Definition 13.14 (Mertens function). The Mertens# function is the summatory function of the
Mébius function,

M(x) = Z u(n). (13.7)
Theorem 13.15. [t holds that
1 [ M)
m =s Sy du, R(s) > 1.

Proof. In Abel's summation formula (8.6) choose a,, := u(n) so that A(x) = M(x) and ¢(x) = xi
then the result derives from (10.4). O

Theorem 13.16 (Riemann, cf. Edwards [7]). /It holds that (recall that (-x)* = exp (s - log(—x)),
which is not defined for x € Ry)

(_x)s—l
eX —1

2sin(ws) T'(s) £(s) = ijg dx, (13.8)
H

where H is the Hankel® contour.

Remark 13.17. The Hankel contour (aka. keyhole contour, cf. Figure 13.1) is a path in the
complex plane which extends from [+co, §], around the origin counter clockwise and back to
[+o0, 6], where 6 is an arbitrarily small positive number.

_)s—1 5 00 _+\S
&dx:_(/ +/ +/ )M (13.9)
a e’ -1 +oo Jixi=s Js ) (e =1Dx
although, strictly speaking, the path of integration must be taken to be slightly above the real
axis as it descends from +co to 0 and slightly below the real axis as it goes from 0 back to +co.

Proof. We have that

4Franz Mertens, 1840—1927
5Hermann Hankel, 1839—1873, German mathematician
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13.3 GLOBALLY CONVERGENT SERIES

\

YA

AW
N

Figure 13.1: Hankel contour

77

0.101

0.05-

S T T,
-14 12 ~—"8

) —4 -

(a) reals (b) negative reals

Figure 13.2: £ on the real line
Now note that

(=x)*dx _ 2N (0F
/|x|:5 (ex—l)x_/m:gx R P

k=0

2n
5
= gL it (s 1)*B dt — 0
A Z( ) k 5—0

for s > 1 by (5.1). The remaining terms in the integral (13.9) are

lim/ exp(slogx = im) 4 / exp(slogxﬂﬂ)dx:(eins_e_ms)/"" S
0

-0 J oo (eX —1)x (e* = 1x

eX —1

With (13.4) we thus have §,, (07 4y = —2isin(xs)[(s)¢(s) and thus the assertion. o

e*—1

13.3 GLOBALLY CONVERGENT SERIES

Theorem 13.18. [t holds that

l(s) = ; Z:: ()(k+1)s s eC,
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78 RIEMANN ZETA FUNCTION

oo dae ey /-maﬁ? L trrtnmt- mMMnﬂ P

Lot v Confbe Lo pevies |t Lt 212 ¢ 5 42 c . Zed-C e i3 Copm

- MBend F;{f:M [ = [ft2r2r 8+ &0

©AC = 4 AP fke
e =J = -2 + 14 4 &cC E(aii-!-ﬁ'—-_‘é-
ol F
e & i )
Figure 13.3: Ramanujan’s proof of £(-1) =1+2+3+--- = —1—12 in his letter to Hardy

the series converges for all s € C.

Proof. Apply Euler transform (cf. (8.2)) to (13.2). O
Theorem 13.19 (Cf. Hasse [11]). It holds that
_ (=D* |
tls) = 1Zn+1 ( )(k+1)s 1’ (13.10)

the series converges for all s € C.

Proof. Note first that - = ﬁ fom e *1s=14r and
& (n) (=DF 1 /m N k[ —(k+1) 51
- 7 -1 57 de
;)(k)(k+1)s () Jo ;)( k)
= %/ (1 —e_t)ne_’ts_ldt.
s) Jo

n+l

Finally, as log(1 —x) = - X,

n+1 ’

1 < (n) (=D 1 o (-
Zn+1;)(k)(k+l)s_l"(s)/o ;3 ponaat

n=0

e 5l dr

:F(s) o l—e

1 R &
= —dt
F(s) / -1

—m{(s+l)r(s+l)

by (13.4) and thus the result. O

Corollary 13.20 (Explicit values, cf. Remark 13.9). It holds that £(0) = —% and

_ Bn+l _
(my=——=,  n=123....
: ; ; By (1 et
Proof. By comparing (5.5) and (13.10) it follows with (5.6) that £(-n) = —#f) = —%. O
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13.4 POWER SERIES EXPANSIONS 79

Alternative proof. The assertion follows as well from the residue theorem with (5.1) and (13.8).
O

Remark 13.21 (Cf. Figure 13.3). This result is often statedas 1 + 1+ 1 +--- = £(0) = —% or
14243+ =4(-1) =1

Corollary 13.22. It holds (cf. Remark 5.3 and Figure 13.2) that
L(s) =0, s=-2,-4,-6,...

These are called the trivial zeros of the Riemann zeta function.

POWER SERIES EXPANSIONS
Define the function £, (s) = 5255 — % and recall from (13.3) that ¢(s) = L3 fa(s). The
series converges for R(s) > 0. From Taylor we obtain that

(s=1)7°

()= — S f+ - nm+ E L gy s
s ln:] 2

_ Zn=l fn(l) ’ s—1 ”
= s—1 +;fn(1)+T;fn(l)+

Now note, for k > 1, that

=1k 8 (5) = _klogkj1 n_(n-s) }ogk n  nlogk (n+‘ 1)
ns n (n+1)s
and
EDRRSDM) _doghn 1 (n =1
= - 1 1)-—1 . 13.11
k+1 n krll\n+1 8 (n+1) n 5" (13.11)

Definition 13.23. The numbers

m k k+1
log"n log™ m (13.12)

=1
Ve = a0 n K+
n=1

are Stieltjes constants.¢

Remark 13.24. The constant v = y = 0.577215... is Euler’s constant or Euler—Mascheroni
constant, cf. (7.3). The following constants are y; = —0.072815..., y, = -0.009690. . ., etc.

k+1 m

Remark 13.25. Note in (13.12) that [ @ dn = %

Theorem (Global Laurent series expansion). It holds that

o Nk
g’(s)zsil+;)( 1]3!7’<(s—1)’< (13.13)

1
=—+7—71(s—1)+2(s—1)2¢...,
s—1 2

for every s € C\{0}, where y, are Stieltjes constants. ¢ has a simple pole at s = 1 with residue
Resi (&) = 1.

sThomas Jean Stieltjes, 1856—1894, Dutch
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80 RIEMANN ZETA FUNCTION

Proof. Note first that

anu Zn(n+l)

It follows with (13.11) that

Gloghn m log"t(m+1) X (DR (1)

= lim

Yk = lim

m—oo n _m+l k+1 m—oo 4 k+1

n=1 n=

as the sum is telescoping.
Note further that

m+1

m k+1
- 1 4+ — _1 k+1
m+1(0gm m) o8

logh m

1
=—m+llogk+1m+0(

and thus the assertion.

13.5 EULER’S THEOREM

m+O(

i

k+1
log"*! (m + 1) = log"*' m = o (logm +log (1 + —)) —log"*' m
m+1 m

logk m
m

)—>0
m m—oo

Corollary 13.26 (Euler’'s theorem). The series of reciprocal primes diverges,

p prime

Remark 13.27 (Euler’s informal proof). We provide Euler’s informal proof first. Note, that

log; Z log(l—ll))

pnme p prime
- (1+L+L+...)
p prime p sz 3p3
= l 1 > Ll i
P prime 2 p prim p p prime p3

1 1 1
_A+§B+§C+ZD+...

=A+K

for some K < 1. By letting x — 1inlog - = ¥, = we find that 3,,_; 1
A= Zp prlme = log log co.

Proof. From (10.10) and Proposition 10.20 we deduce that

1 11
1 DI E D
o) Pl Hkk-1

p prime

= log co. It follows that
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13.6 THE FUNCTIONAL EQUATION 81

From Taylor series expansion (13.13) we have for s ~ 1 and R(s) > 1 that

P(s)= > I%~log§(s)~log (13.14)

- s—1
p prime
and thus the result. O

Remark 13.28. Note the contrast: it holds that

Z 1 o 1
ps gs—l

p prime

()
{0

by (13.14), but, as

1
s—=17

p prime

by (10.8).

Theorem 13.29 (Mertens’ second theorem). It holds that

1 1
Z — ~ loglogx+y+z Mlog{(k) +0 (—)
)4 = k log x

P<x

=~

The Meissel-Mertens constant is M = y + >, % logl(k) = y+ Xpeplog (1 - %) +
0.21649....

1
p

See Theorem 16.10 below for a proof based on the prime number theorem (PNT, Theo-
rem 16.4 below).

Remark 13.30. We have that loglog 10'°°% ~ 10.04 and the age of the universe is ~ 4.3 x 107
seconds.

THE FUNCTIONAL EQUATION

Riemann’s functional equation for the Z-function is a reflection formula relating £ (s) with £(1 —).

Theorem 13.31 (Functional equation). It holds that
£(s) = 2(20)* L sin % r(1-s)(1—s).

Further, with Riemann’s &-function

_s(s=1) s
£(s) = = T(5) 4(s) (13.15)
we have that
§(s) =&(1—s). (13.16)

Remark 13.32. Riemann actually considered the function 2(z) := & (% + iz).
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82 RIEMANN ZETA FUNCTION

Figure 13.4: Riemann, 1859

Proof. Recall from (8.8) the definition of the Jacobi theta function ¢ and define

WU(x) = %x ¥ (x) + x> 0" (x) = Z (2 (k%rx)2 - 3k27rx) eKimx (13.17)
k=1

(see Figure 13.5a for the graph; cf. Riemann’s note, Figure 13.4). As Jacobi’s theta function, the
function ¢ satisfies the functional equation (cf. (8.9))

1 1
Y(x) = ﬁ"’(;); (13.18)

indeed, we have from (13.17) that
v e o il (e 4
W) = Vx - () = Vi (x ()
and with (8.9) thus

-l

e (et )
i) o o)
& s (o ()01
- G () ()

1 1
oY)
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13.6 THE FUNCTIONAL EQUATION

e., (13.18).
It holds that

/Omx%—ll/,(x)dx=z‘/oox%‘1 (2 (kznx)z—Skzﬂ'x) e K mx gy
Z/ xE % 2x —3x) e~ dx

=“53(( ?) (3 +1))
-3 3 (5+1)-33)

Z(s) s(s— 1) (S)

5/2 5

7))

Hence (cf. Table 12.1)

£(s) = m) S(S / x50y (x) dx (13.19)

R CRENTIN

= / =332y (x) dx

x<—l/x

:/wﬁ‘lab(x) dx;
0

comparing with (13.19) reveals that ¢ is symmetric and thus the functional equation (13.16).
However, convergence remains to be discussed. To this end observe that (13.17) implies
that ) (x) — 0as x — oo forevery k =0, 1, ... and further, ¥ (x) — 0 as x — 0 by (13.18). It

Iw

follows that (13.18) holds for all s € C, the integral converges globally. O
Remark 13.33 (Fourier transform). With (13.19) we have that
£(s) = / Iy )de= [ x5 29 (67) dx (13.20)
0 0

— /oo e (s=1/2) . 26)(/21,0(6‘2)6) dx

1

(oY) s — =
=/ COS(
where x - 2 "y (e¥) is symmetric.

Remark 13.34 (Representations of coszx). The Fourier transform of the following representa-
tions derives from (6.8):

sinzt  sinat 2t
costx = - Z(—l)k—
nt n L k2 +¢2

x) .2e? lﬁ(eb‘) dx,

cos kx (-mr<x<m

. tx
nlgl;lo HZn (ﬁ) (a” x)

B B X (2x)7 w(t—j) Hj =2 )
—T,(cosx)—cos7+tz 7 cos > j—l

J=1
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0.8
0.6
0.4

0.2

0.5 1.0 1.5 20

(a) Graph of 2y/(x?), see (13.17) (b) Riemann-Siegel function, Z () = + )g (% + it)‘

Figure 13.5: Function plots

H, is the Hermite polynomial and 7; the generalized Chebyshev polynomial.

Remark 13.35 (Riemann—Siegel theta function, Z-function). To investigate the function ¢ on the
critical line {s € C: R(s) = 1} it is convenient to define 6(z) := argl"(%;”) IOg” (the principal
branch of the function &) and

ri2)
SRR O e |
it

(i)

Note, that Z(r) € R and ’g (% + it)| = +Z(t) for t € R. Figure 13.5b displays the graph of Z.

Proposition 13.36 (Explicit values). It holds that’(0) = —5 log 2rand ' (-2n) = D"t @2m)!

22n+l 72n

We give a further proof of the functional equation.

Second proof of Theorem 13.31. Recall from (13.5) that £(s) = sfloo % dx, thus

00 4 _ _1
“S)=511 : /l&dx (R(s) > -1)

2 xs+1
00 4 _ _1
=_s/0 e Ll <R <0),

x5+l

Now recall the sawtooth wave from (5.10) so that
sm 27rnx
£(s) = Z
_ _Z (2n7r)S/ s1n)1cdx
mid o n o x5t

= 220 ¢(1 = 9)(~T(=s)sin ”7

and thus the result. We have used here fo s=lsinxdx = I'(s) sin Z*, see Example 12.15 and
Table 12.1. O
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13.8

13.7 RIEMANN HYPOTHESIS (RH) 85

RIEMANN HYPOTHESIS (RH)

The first non-trivial, or 'non-obvious’ zeros of the Riemann zeta are (cf. Figure 13.5b)

p1=12+i-14.134725141734693790 .. .,
p2 =12+41-21.022039638 771554993 ...,
1/2+7-25.010857580 145688763 ... and
1/2+1-30.424 876 125859513210 .. ..

p3
P4 -

The following formulation of the Riemann hypothesis (RH) quotes the second millennium
problem, http://www.claymath.org/millennium-problems:

The prime number theorem determines the average distribution of the primes. The
Riemann hypothesis tells us about the deviation from the average. Formulated in
Riemann’s 1859 paper, it asserts that all the 'non-obvious’ zeros of the zeta function
are complex numbers with real part 1/2.

HADAMARD PRODUCT

Hadamards’ product follows from Weierstrass® product theorem.
Theorem 13.37. /f holds that
e(log(Zn)flfg)s

N B
g(s): 2(S— l)F(—1+%) l:[(l—;)ep,

where the product is over the non-trivial zeros p of { and the y again is the Euler—Mascheroni
constant.

Corollary 13.38. It holds that

o) y 11T+ L
(o) BT 2r<s/z+1>+;(s—p+p)’

where the sum is among all nontrivial zeros p of the Riemann zeta function.

w-A1-2)
P

Theorem 13.40 (Li’s criterion). It holds that
d z n
@« log ¢ (Z—_l) = ;/lnHZ ,
d

where 4, = iy & (s og ()], = 2, 1- (1- 1)
The Riemann hypothesis is true iff 1,, > 0 foralln = 1,2, . ..

7Jacques Hadamard, 1865—1963, French
8Karl Weierstraf3, 1815-1897, German

Theorem 13.39. [t holds that
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Proof. Suppose that f(s) = 1, (1 - %) and define ¢(z) = f (%) We have that
B B (1-2)p+z
log ¢(z) = Zlog(l—( —l)p) %‘JIOg—(l—z)p

1= z
_Zlog b —Zlog(l—z(l—%))—log(l—z)

so that

d . ) ¢ ) . 1n+l
e () 55 Sy 2 )

Nownotethat(1—-}<1|ff|p—1|<|p||fm <L
On the other hand,
1 dn

e (S"_l logf(s))

s=1

1 1

2
)
“2.1 ;)k'(n—kw(p—l)k
2
o)

1
(n—1)! ds

the assertion.

PROBLEMS

Exercise 13.1. Verify the identity (13.17).
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14.1

14.2

Further results and auxiliary relations

OCCURRENCE OF COPRIMES

Theorem 14.1. The probability of two numbers being coprime is % ~ 60.8%; more precisely:
let
copr(x) = {(m,n) e NxN: m,n < x andm andn are coprime}.

Then
|copr(x)| 6

lim —.
X—00 xz 7{2

Proof. Define
Ap(x) = {(m,n) e N?: m,n < x and ged(m,n) = k}

and A(x) := g <A (x), the union of disjoint sets. Note that, for x and & fixed, the map

copr(%) — Ar(x)
(m,n) — (k-m,k - n)

is a bijection. Therefore, [x]* = ¥, |Ax(x)] = Sy, |copr (£)| and by Corollary 9.25 thus

lcopr (x)] = Ty (k) [ 7]
Now note that () - [ £]* < 2. Hence

fcopr (01 = 3 (k) (5)

k<x

1
<2y 7 < 2x(1 +logx)

k<x

or

321+10gx.

|copr (x)] (k)
x2 - Z k

. (14.1)

X

k<x

With (10.4) and (13.1) we find that £, 242 = 77 = & The result follows by letting x — oo

in (14.1). O

EXPONENTIAL INTEGRAL

Definition 14.2. The exponential integral is

z et
Ei(z) = p.v./ " de,

(o)

where p.v. denotes the Cauchy principal value.
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88 FURTHER RESULTS AND AUXILIARY RELATIONS

Proposition 14.3. It holds that

K
k-k!

Ei(z) = y+logz+z (14.2)
k=1

Proof. By integration by parts, (6.5) and (6.1),
0o _—t o) [e5)
log8+/ ertz(l—e*‘e)logs+/ e*’logtdt-—g elogtdt =T'(1) = —y.
& & L 0

It follows that

€ ! z ol _ © z k-1
Ei(Z)e——/ —dt—logs+1ogz+/ dt——>y+logz+Z/ —dr
e—0 J_o 1 e e — 0 k!
and thus the result. O

14.3 LOGARITHMIC INTEGRAL FUNCTION
Definition 14.4. The logarithmic integral is

* o
li(x) = p.v./ —dt,
o logt

for x > 1 being the Cauchy principal value.

logk K4

Proposition 14.5. It holds thatliz = Ei(logz) =y +loglogz + X3, 75
Asymptotic expansion. The logarithmic integral has the asymptotic series expansion

1 2 k!
li(y) = — (1+ P )+0(—,f1 ) (14.3)
log x logx  log”x logk x logk*! x

as x — oo. To see this asymptotic expansion replace x « ¢, then

eY 1 0 o=yt
li (e”) =/ —dr = ey/ dr.
0 IOg[ teey(-1) 0 1—-1¢

By Taylor series expansion we have l—lt =l+t+--+1" 1y {—ft thus

n 00 o g—yl tn
li(e?) =e” Z/ le™t dr + ey/ dr
0 0 1—-1¢

00 ,=yign
1-t

where R,(y) = €’ [
y « logx again.
More generally and by a similar reasoning it can be shown that

X 1 -1 !
/ @ x (1+ k +(k+2)k+m+(k+€ ) ¢ )+O( r ) 144
> loghr  loghx logx  log”x 4 log’ x logh+t*! x

as x — oo,

dt = O(1/y"™!) as y — . The expansion follows by replacing
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14.4

14.4 ANALYTIC EXTENSIONS 89

Remark 14.6. Differentiate (14.4) with respect to x to see the identity.
Remark 14.7. Compare with (14.3) and Gaul3’ letter (Figure 1.1, second page) the extension

+...

x x x ( 1 1
= = + +—
logx —1 log x (1 _ 1og];x) log x logx  log?x

ANALYTIC EXTENSIONS

The following is from Zagier [22].

Theorem 14.8 (Analytic theorem, Newman [14]). Let f(¢) (t = 0) be bounded and locally inte-
grable function and suppose that the function g(z) = fooo f(H)e ?tdr (R(z) > 0) extends holo-

morphically to R(z) = 0. Then fO°° f(¢) dr exists and equals g(0).

Proof. ForT > 0 set gr(z) = fOT f(t)e =" dr. The function g7 is holomorphic for all z € C. To
prove the theorem we have to show that limy_,., g7 (0) = g(0).

Let R > 0 be large and C the boundary of the region {z € C: |z| < R, R(z) = -6}, where
6 > 0 is small enough (depending on R) so that g is holomorphic in and on C. By Cauchy’s
theorem,

2
£0) -0 = 50 § (60 -er @) 1455 Lo (14.5)

(i) Note thatforz e C*:={z€C: |z|] = R and R(z) > 0},

00| zt| e T R(z)
< B/ e\ dt=B
T R(2)

+%=%+%:mm thus

R2 7
2
1
EZT (1+Z—2)—
R-) z

Consequently, on C*, the integrand in (14.5) is bounded by i,—lj.

lg(z) —gr (2)| = VT f(r)e ¥ dt

and further (1 + ;—22) % =

INE

TR(z) 29‘(2)_

<
e R2

(i) Now consider z € C~ :=={z € C: |z|] = R and R(z) < 0}.

(a) The function gr is an entire function (i.e., analytic everywhere) and the contour C~ in
the integral (14.5) thus may be changed to z € C, R(z) < 0 and |z| = R. It holds that

T t BT
< B/ e *tdt=B
—oo ] [R(2)]

T
o7 (2)] = ‘ /O F(ry e dr

so that the integrand in (14.5) thus again is bounded by %.

(b) The remaining integrand in (14.5) is the function g(z)e?” (1 + fe—zz) % which decreases

uniformly on the remaining contour (z € C~, R(z) = —4§), as T increases. The total
length of the contour is 27 R, thus it follows that |g(0) — g7 (0)| < *BL for T sufficiently
large. The assertion follows, as R > 0 is arbitrary.
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15.1

Prime counting functions

10% + 112 + 122 = 132 + 142,

Mental Arithmetic. In the Public School of
S. Rachinsky

RIEMANN PRIME COUNTING FUNCTIONS AND THEIR RELATION

Definition 15.1 (Prime-counting function). The prime-counting function is

m(x) = Z 1.

P=x,
p prime

The Riemann prime-counting function is

7 (% 1
=3 =T (15.1)
k=1 pkéx’
p prime
Different notation in frequent use is also J =II.
Note that 7(2) = 1, n(4) =2, J(4) =21 and
n(pn) =n (15.2)

for the nth prime p,, (n € N). We also have that p.(,) = p, if p is prime.

Remark 15.2. As n(x) = 0 for x < 2 it is sufficient in (15.1) to consider only x"* > 2 and to sum

logy (x) 7 (x")
n=1 n :

upton < ng+2) =log,(x),i.e., J(x) = %

100 - 100 -

80 80

ool — i) — litn)
— 11(n) — Jin)
40l n_ 40 n
log(n) log(n)
20 200

1(;0 2(;0 3(;0 4[‘)0 560 160 2(;0 3(;0 4(‘)0 5(‘)0
Figure 15.1: Prime counting functions = and J
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PRIME COUNTING FUNCTIONS

Theorem 15.3. [t holds that ")
n
n(x) = Z #TJ (xl/”) .
n=1
Proof. Indeed, with (15.1),

) (d) v 1
(;:11 ﬂd—llf (x'/d1) — c;::l Hdll Z d_zﬂ_ (xl/dldz)

dr=1

=Y () Y wta
n=1

d1d2=n

n(x),

where we have employed (9.6) (the Dirichlet inverse of the Mébius function).

Theorem 15.4 (Mellin transforms). It holds that

log_((s)zs‘/oooLx)dx

x(x$—1)
[
) x
and (recall the zeta prime function P(s) = 3., prime 5= from (10.9))
P =s [T a
o X%

Proof. By Riemann—Stieltjes integration by parts

1
logl(s) = —Zlog (1 - E)
P

=—/mlog (1—%) dm(x)
1 X

1

© ST
= / (x) —=— dx
1

1-L

x5

© 1
= SA 7T()C)x(xs—_1) dx
a slightly more explicit derivation is
1
1 =- 1-—
og£(s) ;mg( ps)
== > (r(n) = x(n 1)) log (1 - ni)
n=2
1 1
= —;n(n) (log (1 - n_s) —log (1 - —(n " 1)5))
n+l s
= nzzzﬂ'(n) ‘/n m dx

3 “ nw(x)
- [ T

(15.3)
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15.2

15.2 CHEBYSHEV PRIME COUNTING FUNCTIONS AND THEIR RELATION
Further
_ [T )
logZ(s) = s‘/o oD dx
_ s/ n(x) 1 dr
0 xs+l 1 —x—%
® ﬂ-(x) s —sk
= s‘/o ey X ;x dx
= SZ/ —ﬂ(x)x_Sk dx
rer U
ey (xl/k) R v
x<_:x‘/k 9;£ o x 5. %x dx
[
b X
and thus the result.
The Mellin transformation of P (cf. (10.9)) is immediate from
* 1 © 1 © 1
P(s) =/ —dn(x) = —/ n(x)d— = s/ 7(x) dx.
1 xs | xS 1 xs+l
a
Proposition 15.5. [t holds that (cf. (10.6))
_\ A
J(x) —r;logn. (15.4)
Proof. Indeed, J(x) = %y < § = p < ik = Sz Toum- O
CHEBYSHEV PRIME COUNTING FUNCTIONS AND THEIR RELATION
Definition 15.6. The first Chebyshev! function is
t(x)
H(x) = Zlog p= Z log px = log(x#), (15.5)
pppgri)rcﬁe k=t
where
x# = p
p prime

is the primorial.
The second Chebyshev function is the summatory function of the von Mangoldt function
(cf. (10.6)),

Y(x) = )" A(n) = ) log p; (15.6)
BN -
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PRIME COUNTING FUNCTIONS

500 [
20600 40600 80600 80600 100600
400 -
-100 -
300 -
— X00
200 — o)
-300 -
100 -
-400 -
160 260 360 460 560 =500
(a) Plot of & (b) Plot of #(x) — x
Figure 15.2: Chebyshev function ¢
500 -
400 (-
300
200 -
100

I I I I I
100 200 300 400 500

(a) Plot of ¥ (b) Plot of ¢ (x) — x

Figure 15.3: Chebyshev function ¢
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15.2 CHEBYSHEV PRIME COUNTING FUNCTIONS AND THEIR RELATION

Remark 15.7. Note that we expect that 9(x) ~ [/ logpd( A @dt) Jo 12:2 dt =

Proposition 15.8. It holds that?

v =Y H%J log p

pppsri)rcﬁe
and ’ ’ ’
= 2 3 ce e = m
tﬁ(x)—ﬂ(x)+19(x )+19(x )+ mZIﬁ(x )
and conversely,

Hx) = Z w(m)y (xl/rn) ‘
m=1
Proof. Indeed,
> uldn) v (x'/"‘) = > uld) Y o (xl/dldz)
di=1 di=1 dy=1
-3 o) 3w
n=1

d1d2=n
=9 (x),

where we have employed (9.6) (the Dirichlet inverse of the Mébius function; cf. Theorem 15.3).

Proposition 15.9 (Mellin transforms). It holds that (recall the definition of the zeta prime func-

tion (10.9))

d log p “ 9(x)
- aP(s) = Z P = s/1 ) dx
p prime

and further (cf. Theorem 10.17) we have

——10g§’() &) ZM:S m@dx
n=2

(s ns oot

and (cf. Proposition 10.16)

log£(5) = 3"
n=2

slogn’
Proof. We have that

log p * dg(x) * 9(x)
_P() )Z ps =[ TZS[ xs+1dx

p prime

From (10.2) (see also (10.17)) we deduce that

1 1
() d 1) prlogy logp
RO IOg(l‘E)“ 2, T e o

pk s
p prime p prime ps p prime k=1 n=1

!Pafnuty Chebyshev, 1821-1894, Russian

*Note that {22 = log,, x.
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PRIME COUNTING FUNCTIONS

and thus the first identity.
The second identity follows from Abel’s summation formula (8.6),

I6) A 71 I RE10
_W_,,Zf . _/1 xsde;CA(k)—s e
=
v

as the Chebyshev function y is the summatory function of A by (15.6). O

RELATION OF PRIME COUNTING FUNCTIONS

The extremely ingenious proof of the following proposition is due to Chebyshev.

Proposition 15.10 (Chebyshev). It holds that
PH(x) < x -log4 (< 1.39-x) (15.9)
for all x > 0.

Proof. Employing the primorial (15.5) the statement is equivalent to F,, := n# =[], ¢, < 4" for
all n € N which we shall verify by induction.
The statement is true forn = 0, 1, 2 and 3.
If nis even, then F,, = F,_; < 4" < 4", as desired.
If n is odd, then n = 2k + 1. By induction hypothesis [1, <., < 4**'.
(2k+1) (2k+1)

Clearly, for every prime p with k +2 < p < 2k + 1, one has that p | % .
and hence

2k +1 2k +1
k k+1

p_( ) (1+1)2’<+1 4k,
k+1<p<2k+1

It follows that
F, = Fopy1 = H p- H b < 4R+ gk g2kl g
p<k+l k+1<p<2k+1

the assertion. O

Theorem 15.11 (Relations of the prime counting functions). The prime counting functions are
related as follows:

() m(x) =20 4 (¥ 9 g, - 90 +O(

logx 2 ulog’u Togx

) and

(ii) 9 (x) = m(x)logx — [;* = 2 4y = 7(x) logx + O (logx)

(iii) J(x) = 462 + [* LU dy and

log x ulogu

(iv) y(x) = J(x)logx — f* L4 du.

| i s ori
Proof. Set a, = {Oogn IeIZ: prime, and ¢(x) := . With Abel's summation formula (8.6)
(A(x) = Tpexan = 9(x)) it follows that 7(x) = X, cxan $(n) = foos + [° uif;) du, thus (i), as
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15.3 RELATION OF PRIME COUNTING FUNCTIONS

desired. As for the order of convergence recall from (15.9) that 215 < 1°g4 , with (14.4) we

log”u
conclude that /" 119(“2) du=0 (log"zx).

1 ifnis prime,

Applying Abel summation (8.6) again (with a,, = { e., A(x) = n(x) and

0 else

¢(x) = logx) gives 9(x) = X<y an ¢(n) = 1(x) logx — [[* 24 du, thus (ii). From (15.9) we have
that 9(x) = O(x) so we conclude from (i) that x(x) = (lo’g‘x). Consequently, ;" 4 dr <
2x 102.4 du ~ @ with (14 4), thus the order of convergence in (ii).

As for (iii) define a, = A(n), then A(x) = ¢ (x) by (15.6). Set ¢(x) = logx With (15.4) we
obtain that J(x) = 3.« an ¢(n) = ;@f;x) > % du

For (iv), applying Abel summation (8.6) (with a, = fia, i.e., A(x) = J(x) and ¢(x) = logx)
gives ¥ (x) = X<, an ¢(n) = J(x) logx — [ L8 gy, the result. o

Corollary 15.12. The following are equivalent:
(i) 7(x) ~ s
(ii) 9(x) ~x forx — oo (cf. Remark 15.7),

(iif) J(x) ~ logx forx — oo and
(iv) ¥(x) ~ x forx — oo.

Proof. We have from Theorem 15.11 that (i) < (ii) and (iii) <= (iv). It remains to verify
that (i) = (iv).
With (15.7) we have that

1
Y(x) = Z {%J logp < Z logx = (x) logx
p=x p<x

and further, for every ¢ > 0,

¥ (x) = #(x)

> Z logp

xl—s<psx

> Z logx!=®

xl-e<p<x

= (ﬂ(x) - (x]"g)) - (1 —¢)logx.
>(1-¢) (n(x) —xl_‘s) log x.

The equivalence (i) & (iv) thus is immediate. O
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16.1

The prime number theorem

Fundamental for the prime number theorem (PNT) is that £(s) # 0 for R(s) = 1.

ZETA FUNCTION ON R() =1
Theorem 16.1. Foro > 1 andt € R we have that

|£(0) ¢(o +it)* (o +2i1)| > 1. (16.1)
Proof. Recall that |e?| = ¢*(2). From Euler’s product formula (10.2) we deduce

exp(— 2 m(“#))

p prime

2 5]

p prime ¢=1

= eXP( Z i Cosgl;lgg—p)) .

(o +in)] =

R

= exp

p prime ¢=1
For any ¢ € R the trigonometric identity
3+4cosp+cos2¢=2-(l+cosp)> >0

holds true. It follows that

0

Z Z3+4cos(€tlogp)+cos(2€t10gp) 51
gpt’a -7

|§(a’)3 l(o+ it)4 l(o+ 2it)| = exp(

p prime £=1
the result. a
The following theorem is in essence due to Hadamard, its original proof has about 25 pages.

Theorem 16.2. The Riemann ¢ function does not vanish for R(s) > 1, i.e., {(s) # 0 whenever
R(s) = 1.

Proof. Euler’s product formula (10.2) converges for R(s) > 1 and hence ¢(s) # 0 for R(s) > 1.
It remains to show that Z(s) # 0 whenever R(s) = 1.
We have that ¢ (o) ~ =1 from (13.13). Suppose that £(1+if) = 0, then £ (o +if) ~ c(o- — 1)k
3
foroc ~ 1,k > 1andc # 0. From (16.1) it follows that (ﬁ) o = 1D)* (o +2it) 2 1, thus
L(o +2ir) ~ (J_l‘w This is a contradiction, as ¢ does not have a pole at 1 + 2it, its only pole
isats=1. O
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100 THE PRIME NUMBER THEOREM

YL,

Ueber die Anzahl der Primzahlen unter einer
gegebenen Grosse.

(Monatsberichte der Berliner Akademie, November 1859.)

Meinen Dank fiir die Auszeichnung, welche mir die Akademie
durch die Aufnahme unter ihre Correspondenten hat zu Theil werden
lassen, glaube ich am besten dadurch zu erkennen zu geben, dass ich
von der hierdurch erhaltenen Erlaubniss baldigst Gebrauch mache
durch Mittheilung einer Untersuchung iiber die Haufigkeit der Prim-
zahlen; ein Gegenstand, welcher durch das Interesse, welches Gauss
und Dirichlet demselben lingere Zeit geschenkt haben, einer solchen
Mittheilung vielleicht nicht ganz unwerth erscheint.

Bei dieser Untersuchung diente mir als Ausgangspunkt die von
Euler gemachte Bemerkung, dass das Product

; 1 1
M— 5

= v
ps

wenn fiir p alle Primzahlen, fiir » alle ganzen Zahlen gesetzt werden.
Die Function der complexen Veriinderlichen s, welche durch diese
beiden Ausdriicke, so lange sie convergiren, dargestellt wird, bezeichne
ich durch £(s). Beide convergiren nur, so lange der reelle Theil von
s grosser als 1 ist; es lisst sich indess leicht ein immer giiltig blei-
bender Ausdruck der Function finden. Durch Anwendung der Gleichung

g II(s — 1
J e gt g =TE=1
0

ns

erhilt man zunichst

n@~ug@=jfgg?.
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Figure 16.1: Riemann, 1859
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The following proof is based on Newman [14], cf. also Zagier [22].

/°° ﬁ(x)z—x dx
1 X

is a convergent integral, i.e., the limit /IT ”(;‘% dx exists, asT — oo.

Theorem 16.3. The improper integral

Proof. Recall from Euler’s product formula (or (15.8)) that

, log p © 9(x) < 9(x) ~X 4 s
—P'(s) = Z s =s/1 S A= o 7

p prime

Recall from (10.8) (Theorem 10.17) that

') d _d 1
— _—glog{(s)—ds Z log(l pS)

£(s) p prime
_ Z logp _ Z logp | Z log p
ppfimeps_l p prime P pprimeps(px_l)
and thus
177(s) 1 1 log p P’ (s) 1
_E{(s)_s—l__p;:lneps(ps—l):_ s s—1

lytic for R (s) >1
analytic for % (s)> analytic for R (s)>1/2

-[ e
1 X!
By Theorem 16.2, ¢(s) # 0 for R(s) > 1 and so — P (‘) 1] extends to an analytic function in
R(s) > 1,i.e,

g(g) = -2ExD 1 /lm D) —x g - /Om (9 (e')e™ = 1) e dr

7+ 1 z x3+2
f@)

extends to an analytic function for R (z) > 0. By Chebyshev’s theorem (see (15.9)), the integrand
fis bounded, as -1 < @ —1 < 0.39. It follows from Theorem 14.8 that the improper integral
g(0) = fow f()yde = /1°° '9(;‘3_)‘ dx exists. o

THE PRIME NUMBER THEOREM

Theorem 16.4 (Prime number theorem, PNT; Hadamard and de la Vallée Poussin,' 1896). It
holds that
m(x) ~

logx

asx — oo,

1Charles Jean de la Vallée Poussin, 1866—1962, Belgian
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Proof. In view of Corollary 15.12 it is enough to verify that 9(x) ~ x. To this end recall from
Theorem 16.3 that flm ﬂ(;‘% dx converges.

Assume, by contraposition, that #(x) = x, then there are 2 > 1 and u < 1 so that 9(x) > Ax
or ¥(x) < ux for arbitrary large x > 0.

In the first case, as ¢ is nondecreasing, ¥(z) > ¥(x) > Ax for ¢ > x,

Ax Ax A
o(t) -t - -
/ @) dt>/ Ax tdt = / udt>0,
. 12 Y 12 text J 12

and in the second, #(r) < 9(x) < ux for ¢t < x, thus

*9(1) -t X ux—t V-t
/ ()2 dtS/ = dt:/ E @ <o.
ux 1 px 1 w1

As x is arbitrary large, it follows that the integral flm ’”;‘# dx does not converge. This contradicts
Theorem 16.3. O

Remark 16.5. The Riemann Hypothesis (see page 85) is equivalent to #(x) = x + O (x%”) for
every € > 0.

Corollary 16.6. For every ¢ > 0 there is an ny € N so that there is a prime p with
n<p<(l+ée)n for alln > nyg.

Proof. By the prime number theorem,

(1+&)x

m((l+e&)x log ((1
lim r((A+e) lim Jog ((1+2)x) = (1+¢) lim — 2%
x—c0  7(x) x—00 @ x— logx +log(1 + &)

logx = l+e. (16.2)

Therefore, there is ng so that 7 ((1 + €)x) > n(x) for all x > ny and hence there is p € P between
xand (1+e&)x. O

CONSEQUENCES OF THE PRIME NUMBER THEOREM

Lemma 16.7. Let (a,), . and (by), o, are sequences with lim,,_,« a, = lim, . b, = co and

n(an) ~ 7 (bn),

ne

then also
a, ~ b,

asn — oo,

Proof. We show first that lim sup,,_,., 7 < 1.
Suppose this were false. Then there is ¢ > 0 and ny with ny — o such that a,, > (1 +€)b,, .

Then ( )
. T\ Qny .
lim su > lim su
n—)oop ﬂ'(bnk) n—)oop ﬂ'(bnk)

by (16.2), which is a contradiction to the assertion.
By exchanging the roles of a, and b, it follows that limsup,, _,, Z_Z < 1 and thus lim, .« Z—" =
1. O
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Corollary 16.8. Let p,, denote the nth prime (cf. (15.2)), then it holds that

pn ~nlogn (16.3)
asn — oo,
Proof. By the prime number theorem
nlogn nlogn n
1 ~ = = ~ = n)-
7(nlogn) log(nlogn) logn +loglogn 1_,.'(’19& n=7(pn)
ogn
The assertion follows from the preceding lemma. O

Corollary 16.9 (Erdds2). It holds that
Pn+l1
—_— 1.

pn n—oo

Proof. Indeed, by (16.3), £zt . () ostur]) 1. o

nlogn N—o0

Theorem 16.10 (See Theorem 13.29 above). It holds that

1
Z — ~ loglogx.
p

P<X
More generally,
Z 1 ~10g10gx+M+0($),
P<X
where M =y + Y1 @ log £ (k) =0.261497212... is the Meissel’~Mertens constant.

00 1

Remark 16.11. Euler actually writes > i

= loglog co.

Proof. We have from Theorem 15.11 that x(n) = + O( ';n>. Hence

_n_
logn log

1 S w(n) —n(n—-1)
x—1

= 7(n) n(n)
=2 " 2

n=1 n=

w51 _x)

X nn+1)

n=1

RGN SL 0N

=loglogx + O(1),

2Paul Erdés, 1913—1996, Hungarian
3Ernst Meissel, 1826—1895, German astronomer
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104 THE PRIME NUMBER THEOREM

where we have used that —— = (loglogx)’ and —— = ( 1 ) . O

xlog x xlog? x “logx

Remark 16.12. Mertens actually proved the statement without employing the prime number
theorem.
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17.1

17.2

Riemann’s approach by employing the zeta function

This section repeats Riemann’s path. Here we proceed formally and care about convergence
later.

MERTENS’ FUNCTION
Assume that f(p) = 0, then the series expansion is

Y
75 =0+ 705 =)+ CZP 70y + 05 - ),

or, assuming that p is a simple zero (i.e., f’(p) # 0),

1 1 I (p)

= - _ !
f(s)  fp)(s—p) 2f'(p)? +0(s-p),

the residue at s = p is ﬁ
Recall from (10.4) that {5 = X, £ and from (13.7) that M(x) = ¥, u(n). Assuming

that all all zeros are simple it follows from Perron’s formula (12.4) that

C+1oo 1 .XS

o * B 1 xP x~2n
M) =), “(”)‘/_m YT X e T oy

n<x ¢ p: L (p)=0 n=1

where the sum is along all zeros p of the /-function on the critical strip.

CHEBYSHEV SUMMATORY FUNCTION ¢

Theorem 17.1 (Riemann-von Mangoldt explicit formula). For any x > 1 it holds that

_xp

¥ (x) =x —log 21 — Z = (17.1)
p:{(p)=0 p
_ xf 1 o
=x—log2nm — Z ——Elog(l—x ) (17.2)

p:L(p)=0
nontrivial

Proof. The summatory function is y*(x) = Y7 .. A(n), cf. (15.6). Recall from (10.7) the Dirichlet

series %SS)) == Yn=l A,(lf) and the residue is Res (iéj;s = p) = 1. With Perron’s formula (12.4)
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thus
v = ) A
_i c+ioco _{’(S) x_vd
T2 Jesieo \ L(5) ) s
_ O X
_\x/—/ £(0) ; -2n 4 p
pole ~——
s=0 rivial zeros nontrivial zeros
a 1 - xP
_x—log27r—§10g(1—x )— 4 F
and hence the assertion. O
17.3 RIEMANN PRIME COUNTING FUNCTION
Theorem 17.2. Forx > 1it holds that
J*(x) = Li(x) - Z li(x?) (17.3)
p: L (p)=0
=1li(x) - Z li(xp)—10g2+/m+.
o =0 x Ht?—1)logt
nontrivial

Proof. Recall that we have
r@=Y e Y e [
pkzs:x k r; logn o logt

and thus, with (17.1),

7 ) =/" lﬁl*’(t) dt
0 ogt

_/X I_Zptp_l_ﬁdt
~Jo logt

0 dr
= li(x) = Y li(x?) - 10g2+/ . —
; « t(t2=1)logt

d ey = £ et
Indeed, 3 li(#°) = fogt7) = Togr* O

17.4 PRIME COUNTING FUNCTION &
Remark 17.3. We note that li(x”) = Ei(p logx).
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Theorem 17.4. Forx > 1 it holds that

7(x) = R(x) — Z R(x°)

p: L (p)=0
1 1
=R(x) - Z R(x*) - oex + — arctan IL
p: £ (p)=0 CEX 7 0BX
nontrivial
where
u(n) . ) logk x
R(x) = —li(x")=1 17.4
) ; , ) +Zk‘k§(k+1) (17.4)

is Riemann’s R-function. The latter series is know as Gram! series.

Proof. Recall from (15.3) that 7*(x) = >x_; @J* (x‘/k) and with (17.3) thus

T
= Py 4=
7 (x) = Z 1=R(x) - ZR(X ) + actan logx’
k<x
O
Proof of the Gram series (17.4), Riemann’s R-function. With (14.2) and (10.5) it holds that
_ u(n) (x) u(n) 10gx
)= Zl —=li Z
:Z,u(n) logn+loglogx+z log*x
& on k k! nk
u(n) p(n)logn logh x < p(n)
:(y+loglogx)Z‘f . —Z} . Z K Z el
n= n= =
(n) _ (n) _ ()1 __4g(s) _ G2t
Now note that },_; £+ = ((S), thus 3, £~ =0and -3, ©“2280 = —5r = —(< 11+) )
1+0(s - 1) and thus ,,,_; “72%" — _1 and the result (cf. also Exercise 9.2).
For the rest see Riesel and Gohl [16]. O

1Jargen Pedersen Gram, Danish actuary and mathematician
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Further results

18.1 RESULTS

Theorem 18.1 (Dusart’s theorem, 1999). It holds that (see Gaul3’ letter, Figure 1.1)

X X

logx — 1 <) < logx — 1.1

for x > 60184.

Theorem 18.2 (Rosser’s theorem?). It holds that
pn > nlogn (nz1).
The statement has been improved as follows:

Theorem 18.3. It holds that
logn +loglogn —1 < Pn logn +loglogn
n

and

10g10gn—2_logzlogn—6loglogn+ll+0( 1 )

Pn
— =logn+loglogn—1+
n s B8 logn 2log’n

log® n

Theorem 18.4 (Voronin’s universality theorem?2). LetU be a compact subset of the strip {z € C: 12 < Rz < 1}
such that the complement of U is connected. Let f: U — C be continuous and holomorphic in

the interior of U which does not have any zeros in U. Then, for every & > 0, there exists y > 0

so that

(s +iy) - f(s)l <&

foralls € U.

Theorem 18.5 (Erd6s—Kac3). The number of distinct primes of a random number is normally
distributed. More precisely, for any a < b,

b 2
e 2y

{nSxa<M<b}

Jloglogn

1
X

_)1
V27Ta

asx — oo,

1John Barkley Rosser, 1907-1989, US logician
2Sergei Michailowitsch Woronin, 1946—1997, Russian
3Mark Kac, 1914-1984, Polish
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Billingsley’s proof. Let X,, be independent Bernoulli variables with P(X, = 1) = :
Yp<y Xp, then pu, = ES, = Zpsy% = loglogy + O(1) and o-y2 =varSy = X< 1_1 -
loglogy +O(1) by Theorem 16.10. The central limit theorem implies SV(;—y”y — N(0,1) as y — oo.

. 1 ifp|n
Fixyandlet1,(n) = [p |n] = eée (the Iverson bracket) s0 that wy (1) = 3. pey | =
2p<y 1p(n). We compare the moments of wy,(n) with those of Sy, i.e.,
1 k k k k k 1 . .
T 2 =)t =B, ) <3 (5] (u= (; > enm! -5} .
The last term is
1 1x 1
I HER
Pls--sPj <Y n<x Pls--sPj Sy
Li=lem(pr....p
j
EC)
X
k k
This error bound implies that 1 3, _ (%ﬁf"’) ~E (S’(T;"’) ~EZz* asy — o, where Z ~
N(0,1). If we choose y := x"¢leex then w(n) — wy(n) < logloglogx and thus the result. O

OPEN PROBLEMS

Conjecture 18.6 (Goldbach’s* conjecture). Every even integer greater than 2 can be expressed
as the sum of two primes.

Conjecture 18.7 (Twin prime conjecture). There exist infinity many twin primes (cf. Defini-
tion 2.19).

Problem 18.8 (Landau’s 4th problem). Are there infinitely many primes of the form n? + 1?

4Christian Goldbach, 1690—1764, German mathematician
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