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CHAPTER 21

THE CPT THEOREM

FRANK ARNTZENIUS

1. INTRODUCTION

Tue CPT theorem says that any (restricted) Lorentz invariant quantum field theory
must also be invariant under the combined operation of charge conjugation C, parity
P, and time reversal T, even though none of those individual invariances need hold.
The CPT theorem is prima facie a perplexing theorem. Why would the combination
of two space-time transformations plus a charge reversing transformation have to be
a symmetry of any relativistic quantum field theory? What does charge conjugation
have to do with space-time symmetries? Is there an analogous theorem for classical
relativistic field theories? What, if anything does the CPT theorem tell us about space-
time structure? I will try to answer these questions. The basic idea of my answer is that
what standardly is called the CPT transformation really amounts to a PT transforma-
tion, that is, a pure space-time transformation.

In section 2, I will briefly clarify the notion PT invariance, and briefly explain why
one might be interested in such an invariance. In section 3, I examine the PT invariance
of classical tensor field theories, and suggest that this transformation includes charge
conjugation. I then discuss the same with respect to quantum tensor field theories.
After that I briefly discuss classical and quantum spinor field theories. I end with some
tentative conclusions.

2. HOW DO QUANTITIES TRANSFORM
UNDER PT?

Suppose we describe a world (or part of a world) using some set of coordinates
{x, 7,2, t}. A passive PT transformation is what happens to this description when
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we describe the same world but instead use coordinates {x’, y’, Z/, '} where x’ = —x,

y'=—y, 7 =—zt' = —t. An active PT transformation is the following: keep using
the same coordinates, but change the world in such a way that the description of the
world in these coordinates changes exactly as it does in the corresponding passive
PT transformation.! Suppose now that we have a theory which is stated in terms of
coordinate dependent descriptions of the world, that is, a theory which says that only
certain coordinate dependent descriptions describe physically possible worlds, that
is, are solutions. Such a theory is said to be PT invariant iff PT turns solutions into
solutions and non-solutions into non-solutions.? Why might one be interested in PT
invariance or non-invariance of theories?

Failure of PT invariance tells us something about the structure of space-time: it tells
us that space-time either has objective spatial handedness or has an objective tempo-
ral orientation, or both. Why? Well, suppose we start with a coordinate dependent
description of a world which some theory allows. And suppose that after we do a
passive coordinate transformation the theory says that the new (coordinate dependent)
description of this world is no longer allowed. This seems odd: it’s the same world
after all, just described using one set of coordinates rather than another. How could
the one be allowed by our theory and the other not? Indeed, this does not make much
sense unless one supposes that the theory, as stated in coordinate dependent form, was
true in the original coordinates but not in the new coordinates. And that means that,
according to the theory, there is some objective difference between the {x, v, z, t} coor-

_ dinates and the {x/, ¥, 2, t'} coordinates, that is, the {x, ¥, 2z, t} coordinates do not
stand in the same relation to the objective structure of the world as the {x',y,2,t}
coordinates. ‘

In the case of PT this could be because space-time has an objective temporal orien-
tation, or an objective spatial handedness, or both. Note that failure of PT invariance
does not indicate that space-time has a space-time handedness structure, for space-
time handedness is invariant under PT.3

Itis in fact more interesting to consider what one should infer ifa theory is invariant
under PT, but fails to be invariant both under P and under T, since it appears that
our world is such.* What this, prima facie, would suggest is that space-time has a
space-time handedness structure, while having neither a spatial handedness nor a

! Note that there are therefore many distinct PT transformations, one corresponding to each
distinct inertial coordinate system. I will assume a flat space-time throughout this chapter, and am not
here going to address how to talk about PT in General Relativity. For more on that issue see
Malament 2004 and Arntzenius and Greaves 2007.

? If the theory is probabilistic, then the theory is PT invariant if its probabilities are invariant
under PT.

* Space-time handedness is the 4-dimensional analogue of spatial handedness: when one mirrors a
single coordinate of a 4-tuple of coordinates, one flips the space-time handedness of the coordinate
system. So, if one mirrors all 4 coordinates, as one does in PT, one ends up in a coordinate system of
the same handedness as the original coordinate system.

* That is to say, the world is PT-invariant on my understanding of what a PT-transformation
amounts to, which, in standard terminology means that the world is CPT-invariant.
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temporal orientation, since space-time handedness is the minimal natural structure
which explains the symmetry properties in question.

So that is why we should be interested, but how do we go about investigating PT
invariance; in particular, how do we know how the quantities occurring in our theories
transform under PT? Well, though we often give our theories in coordinate dependent
form, nature itself, of course, is coordinate independent. We can use (n-tuples of)
numbers to denote locations in space-time, and we can use (m-tuples of ) numbers to
indicate the magnitudes and directions of various quantities in space-time, but nature
itself does not come equipped with numbers. How our numerical representation of 2
quantity should transform under a change of coordinates depends on the structure of
the quantity, and on the way in which we have designed our coordinate representation.
Let me illustrate this for a very simple case.

Suppose a vector V at a point p in a three-dimensional Euclidean space is a coor-
dinate independent quantity which has a magnitude and picks out a direction. We
can put Cartesian coordinates {x, y, z} on the Euclidean space, and then use these
coordinates to numerically indicate the direction and magnitude of V. To be precise-
the coordinates on the Euclidean space naturally induce corresponding coordinates on
the space of tangent vectors at p. It follows from the vector nature of V that when we,
say, switch to coordinates {x', ', 2’} where x’ = —x, ' = —y, Z = —z, then the three
numbers representing V will each flip their sign. My point here is simply that one is
not free to choose how one’s numerical representation of quantities transforms under
certain transformations. In particular, one cannot make a theory invariant under
some transformation simply by judiciously choosing how the quantities occurring in
the theory transform. For how a quantity transforms is determined by the coordinate
independent nature of the quantity in question (together with the way in which
we manufacture coordinate representations of it).

3. PTINCLASSICAL

Let’s start with a simple case, namely, the classical real Klein Gordon field. The classical
real Klein Gordon field is a real scalar field whose field values are invariant under the
restricted Lorentz transformations.® (The restricted Lorentz transformations are the
ones that are continuously connected to the identityy. They include spatial rotations
and Lorentz boosts. They include neither P nor T nor PT.) We can then impose a law
of evolution on our Klein Gordon field, namely the Klein Gordon equation: (o%9,, +
m?)g = 0, and check whether this law of evolution is invariant under the restricted
Lorentz transformations. It is.

5 For the sake of simplicity I am assuming that there are objective, path independent, facts as to
whether the values of the real Klein Gordon field at two different locations in space-time are the same.
That is to say, I am here ignoring the idea that the Klein Gordon field configurations correspond to
sections on a fibre bundle with a connection on it.
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How about PT invariance? Well, we first need to know how the Klein Gordon
Fiel

follows that the Klein Gordon equatio

issue as to whether this is the only possible way in which a scalar field could transform
under PT. In the meantime let us turn to another field: the classical electromagnetic

Maxwell’s equations for the free electromagnetic field, written in terms of the four-
potential A* : [JA* — 3 *(9,A%) = 0. In order to see whether this equation is invariant
under PT, we need to know how the four-potential A* transforms when we move it
from location (t,r) to location (=t,—p), or, equivalently, how it transforms when we
switch from co-ordinates (t,r) to co-ordinates (t',r) where ' = —tand ¢ = —r. This
depends on what kind of co-ordinate independent quantity we take the four-potential
to be. Let’s make the simplest assumption, namely that it is the same kind of quantity as
3% (tr), namely a tangent vector in a four-dimensional space-time.’ Now, we know
how 3"¢ (t,r) transforms under active PT. For the scalar field @ just gets moved to its
new location, and this means that its derivatives flip sign. So d%¢(t, r) transforms to
—dtp(—t, —1) . Assuming that AM(t, r) is the same kind of quantity, it follows that
A*(t, r) transforms to —A¥(—t, —r) under active PT.

It is important to note that this is not the standard view of how AM(t, r) transforms
under PT. On the standard view A"(t, r) transforms to A*(—t, —r) under PT. (For
a more extensive discussion of why the standard view says this, and why I find it
an unattractive view, see Arntzenius and Greaves 2
controversial, and since it will turn out to be cruci
two additional justifications for the cla
under PT.

The ordinary, ‘real’, Lorentz transformations form a group of transformations that
nts. (The full group of Lorentz transformations

007.) Since this assumption is
al in what follows, let me give
m that A*(t, r) transforms to —A¥(—t, —r)

can reach via a continuous path from Parity. And there is another split, namely the
split between the Lorentz transformations that include Time Reversal and the ones
that do not. So the Lorentz group has at |

east four disconnected components. In fact it
has exactly four disconnected components.

~

¢ Again, for simplicity, I am ignoring the idea that A* is a connection on a fibre bundle.
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The Lorentz transformations of four-vectors can be represented as 4x4 matri-
ces L with real entries acting on ‘columns’ of four real numbers representing
the four-vectors, where these matrices have the property that they preserve the
Minkowski inner product between the ‘columns’. The demand that each L preserves
the Minkowski inner product amounts to the demand that L™GL = G, where L™ is
the transpose of L, and G is the matrix whose diagonal entries equal 1, —1, -1, —1,
and whose off-diagonal entries equal 0. Now, while it is natural to suppose that the
matrix LT representing PT (in some inertial frame of reference) should be the matrix
whose diagonal entries each equal -1 and whose off-diagonal entries are 0, this is not
the only possible representation of the real Lorentz group. Another possible one, for
example, is one in which PT is represented as the identity matrix (though this is not a
“faithful’ representation).” However, let us now turn to the complex Lorentz group.

One can introduce the complex Lorentz group abstractly as the so-called ‘complex-
ification’ of the real Lorentz group. But it is easier to think of the complex Lorentz
group in terms of its representation by means of 4x4 matrices with complex eniries
which preserve the Minkowski inner product, that is, the set of 4x4 complex matrices
L such that L™*GL = G. What is important for our purposes is that within the complex
Lorentz group PT is connected to the Identity. Here is why. The following is a one
parameter subset of the complex Lorentz matrices. where the parameter is 1:

coshit 0 0 sinh it
0 cost —sint 0
0 sint cost 0
sinhit O 0 cosh it

For t=0 we find that L, is the Identity. Continuously increasing t to t = 7t we arrive
at minus the Identity, which is the representation of PT. So A¥(t, r) transforms to
—A¥(—t, —r) if it transforms as an element of the standard (four-dimensional) repre-
sentation of the complex Lorentz group.®

Note that this argument similarly establishes that a scalar field (which is invariant
under the restricted Lorentz transformations) must be invariant under PT. Note also
that this argument does not tell us how A*(t,r) transforms under P or T separately; for
in the complex Lorentz group P and T are not connected to the Identity. There can be
so-called “pseudo-scalar’ fields, ‘pseudo-vector’ fields, and ‘pseudo-tensor’ fields, which
flip sign under P and under T.

Another argument for the claim that A*(t,r) must transform to —A¥(—t, —1) under
PT, and that a scalar field must be invariant under PT, can be given if one makes
the assumption that the only types of quantities that can occur in our theories must
be (restricted) Lorentz invariant tensor quantities. Let me start on this argument by

7 A “faithful’ representation of a group (by matrices) is one whereby each distinct element of the
group gets represented by a distinct matrix.

8 T am not sure whether it must do so in every non-trivial 4-dimensional representation of the
complex Lorentz group.
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indicating how one can manufacture ‘pseudo-tensors’, tensors whose sign flips under
P and under T, using tensors that are invariant under the restricted Lorentz transfor-
mations. Consider the totally anti-symmetric Levi-Civita tensor eapcp. It is invariant
under restricted Lorentz transformations. It can be taken to represent an objective
space-time orientation (space-time handedness). One can also use it to manufacture a
pseudo-scalar field from four distinct vector-fields. Suppose that vector fields VA WE,
XC, and Y? each flip their time component under time reversal T. Let’s take it that
space-time orientation is a geometric, invariant, object represented by €apcp. Then the
pseudo-scalar Zppcpeapcp VAWBXCYD will transform to — Zppcpeapcp VAWBXCYD
under T. So in this manner one can manufacture pseudo-scalars whose signs flip under
P and T. However, one cannot in this manner manufacture pseudo-scalars whose
signs flip under PT.® So A¥(tr) transforms to —A¥*(—t, —r) under PT. It follows that
Maxwell’s equations for the free electromagnetic field are invariant under PT.

Let’s do one more example: a complex Klein Gordon field ¢ interacting with the
electromagnetic field. For ease of presentation let me represent the electromagnetic
field using both the four-potential A* and the Maxwell-Faraday tensor F*V, The
following Lagrangian then gives a dynamics for the interacting fields:

L= o™ — mch*go — 1/4(F*YF,,) + ezAp,A“cp*(p — ie(p" 3" e — qoa”qo*)Ap,

Is this theory invariant under PT? Well, suppose that under PT the four-potential
AM(tr) transforms to ~A¥(—t, —r). The Maxwell-Faraday tensor and the four-
potential are related via the following equation: Fuy = 9,A, — 3,A,,. It follows that
the Maxwell-Faraday tensor is invariant under PT. The complex scalar field is invariant
under PT, so 9*¢ flips sign under PT. All of this taken together implies that each of
the five terms of the Lagrangian is separately invariant under PT. So the Lagrangian is
invariant under PT. So our dynamics is invariant under PT.,

It should be obvious from this last example that the PT-invariance of my sample the-
ories is not a coincidence. If one’s theory derives its dynamics from a local Lagrangijan,
where this Lagrangian is a Lorentz-scalar built (by contractions and summations) from
tensors, each of which transform as indicated under PT, then this Lagrangian, and
hence one’s dynamics, will be invariant under PT,

In fact, J. S. Bell has proved a general classical PT theorem along these lines (see
Bell 1955). Here is a statement of Bell’s PT theorem. Let us suppose that the equations
of a theory can be stated in the following form: Fi(p, A®, ... , 0%, 0MAR =
0, where ¢, A®,...are fields which transform as tensors under the restricted real
Lorentz transformations (the ones that are connected to the identity), that the "o,
dMA¥, ... are finite order derivatives of the tensor fields, and the F! are finite polyno-

mials in these terms. Then the €quations are invariant under PT, when the representa-
tion of PT in some frame is

that are invariant under the restricted Lorentz transformations,
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-1 0 0 O
0 -1 0 0
0 0 -1 0
0 0 0 -1

Lpr =

At this point one might very well ask: but what does all of this have to do with charge
conjugation? Well, notice that under the above PT transformation all four-vectors flip.
In particular therefore, any charge-current four vector, such as ie(¢*3"¢p — @d*¢*) in
the case of the complex Klein Gordon field, will ‘flip over’ under PT. So any charge
density, which is the first component of a charge-current four-vector, will flip sign
under PT. So the PT transformation, when properly conceived, has as a consequence
that the PT-transformed fields behave as if they have opposite charge. Indeed it is my
contention that what standardly is called the CPT transformation should really have
been called the PT transformation. This also provides an answer as to how it can be that
what is allegedly a combination of two geometrical transformations (PT) and 2 non-
geometrical transformation (C) has to be a symmetry of any quantum field theory. The
answer I am suggesting is that what is standardly called the CPT transformation really
is a geometric transformation, namely the PT transformation, and that invariance
under PT, and lack of invariance under each of P and T, corresponds to the fact that
our space-time has space-time handedness structure, but neither a spatial handedness
nor a temporal orientation.

Note also that one can include classical particles (rather than just fields) in our
considerations, by making the assumption that the four-velocities V* of particles flip
over under PT. We can then, for example, consider an interaction between a charged
particle and the electromagnetic field which is governed by the following Lagrangian:

L= —1/4(3,A, — 3yA,)(@"AY — 3VA¥) — qV,A*

It is clear that this Lagrangian is invariant under our PT transformation. Moreover,
note that if we switch the sign of q and switch the sign of the four-velocity V*, while
keeping A" invariant, then the Lagrangian is invariant. That is to say: flipping over the
four-velocity of a particle is equivalent to flipping the sign of the charge q. So, again,
PT, when properly conceived, includes charge conjugation. (For a more extensive
discussion of the classical charged particle case, see Arntzenius and Greaves 2007.)

4. PT IN QUANTUM TENSOR FIELD THEORIES

The basic idea of this section is very simple. In quantum field theory particle states
correspond to ‘positive frequency’ solutions of the corresponding classical field theory,
while anti-particle states correspond to ‘negative frequency’ solutions. Since PT turns
positive frequency solutions into negative frequency solutions, PT in quantum field
theory turns particles into anti-particles. Now for some details.
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Let’s start with the classical free complex Klein Gordon equation: (33, + m?)p =
0. This equation has plane wave solutions: o = exp(ik,x*), where k,k* = m?%
Any solution ¢(x) is a unique superposition of these plane wave solutions: ¢(x) =
J (k) exp(ik, x*)dk . Relative to a given direction of time, we will call plane wave P
with positive k° a ‘positive frequency’ plane wave, and a plane wave ¢, with negative k°
a ‘negative frequency’ plane wave. More generally any solution that is a superposition
only of positive frequency plane waves will be called a positive frequency solution,
and any solution that is a superposition only of negative frequency plane waves will
be called a negative frequency solution. The particle Hilbert space M of the quantized
Klein Gordon field, and the operators on it, can be constructed from the positive fre-
quency solutions to the classical Klein Gordon equation, and the anti-particle Hilbert
space H can be constructed from the negative frequency solutions to the classical Klein
Gordon equation. Here is how. (In this section I am largely following Geroch 1971. The
errors are all mine.)

Start by assuming that there is a 1-1 correspondence between single particle Hilbert
space states |¢ > and positive frequency solutions ¢(x) to the classical Klein-Gordon
equation. The superposition of two Hilbert space states is the Hilbert space state
corresponding to the addition of the two corresponding positive frequency solutions,
that is |¢; > +|g, > corresponds to positive frequency solution ¢, (x) + ,(x). Scalar
multiplication of a particle Hilbert space state corresponds to scalar multiplication
of the corresponding positive frequency solution: ¢l > corresponds to cp(x). The
inner product between two particle Hilbert space states is defined as (lpy >, l@, >) =
J fi(K)£(k)dk. This defines the particle Hilbert space.

The single anti-particle Hilbert space is constructed in analogous fashion, now using
the negative frequency solutions, except that multiplication of an anti-particle state
by a complex number ¢ corresponds to multiplication of the corresponding classical
solution with the complex conjugate number of that number: c*. That is, if |p >
corresponds to ¢(x) then c|p > corresponds to c*¢(x). The inner product between
two anti-particle Hilbert space states is defined as (1 >, lg, >) = [ £ (k)f,(k)dk. This
defines the anti-particle Hilbert space.

Since it is important for what follows let me explain why multiplication by a com-
plex number c of the anti-particle Hilbert space states corresponds to multiplication
by c* of the corresponding negative frequency solution. Associated with a constant
time-like vector field r* on Minkowski space-time is an energy operator E, where
E acts on solutions of the complex Klein Gordon equation in the following way:
Eo(x) = —ir*V,¢(x). Here multiplication by i means multiplication of the Hilbert
space state |¢ >, not (pointwise) multiplication of the (complex) classical field ¢(x).
Now, suppose that multiplication of a Hilbert space state did correspond to (pointwise)
multiplication of the corresponding solution ¢(x), both for negative frequency solu-
tions and positive frequency solutions. Then the expectation value of E for ¢(x) would
be: [ rPk,f(k)f*(k)dk. This is positive for any k which points in the same direction
of time as r and negative for any k which points in the opposite direction of time
from r. That is to say, anti-particles and particles would then have opposite signs
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of energy. This would be a disaster. In the first place, it is experimentally known
that particles and anti-particles have the same sign of energy: they can annihilate
and thereby produce energy (particles with non-zero energy), rather than that their
total energy is 0. Moreover, in an interacting theory, one would beget radical insta-
bility: decays into deeper and deeper negative energy states would be allowed, which
would release unlimited amounts of positive energy. This is no good: we need the
energies of particles and anti-particles to have the same sign (though it is perfectly
all right if what sign that is, is a matter of convention.) So we choose the Hilbert
space structure of the anti-particle state-space such that cje > corresponds to c*¢(x)
for negative frequency solutions (x). For then the expectation value of E equals
fM L Pl fl)f* (k)dk — fM_ Pk, f(k)f* (k)dk, where M+ is the positive mass shell, and
M-— is the negative mass shell, that is, the first integration is over momenta that point
in the same direction of time as r, and the second integration is over momenta that
point in the opposite direction of time as r. This has as a consequence that the energies
of particles and anti-particles have the same sign.

Let me clarify and emphasize one more point. At the beginning of this section I
arbitrarily picked some direction of time, and called plane wave solutions ‘positive
frequency solutions’ if their wave-vector pointed in that direction of time. Later on I
associated particles with positive frequency solutions and anti-particles with negative
frequency solutions. And then I said that multiplication ofa Hilbert space particle state
by a complex number ¢ corresponded to multiplication of the corresponding positive
frequency solution by ¢, while in the anti-particle case it corresponded to multiplica-
tion of the corresponding negative frequency solution by ™. None of this implies that
space-time has a temporal orientation. All I have made of this is that there is a fact of
the matter as to whether two time-like vectors point in the same direction of time, or
in opposite directions of time. Which direction of time gets called the future, which the
past, which solutions get dubbed positive frequency, which negative frequency, which
Hilbert space state multiplication corresponds to multiplication of the corresponding
solution by ¢ and which corresponds to multiplication by c*: all of that can be taken
to be a matter of convention. But that the two directions, the two frequency types, and
the two particle types are not identical: that is not a matter convention. Let me now
continue with the construction of the full particle and anti-particle Hilbert spaces. (So
far we only have the single particle and single anti-particle Hilbert space.)

Given the single particle Hilbert space H we can build the corresponding Fock space
F=CoH*®H*adH)® . Here C is the space of complex numbers and
the H®, HP etc. are simply copies of H. The brackets around the indices indicates
the restriction to symmetrical states in the tensor product Hilbert spaces. A typical
element of this Fock space is | >= (X, Ix >%, Ix >aB__..). Here y is a complex
number, representing the amplitude of the vacuum state, |x >* is an element of H%,
that is, a one-particle state, [x >*P is an element of H'* ® ‘HP), that is a two-particle
state, etc. .. Similarly, given the single anti-particle Hilbert space { we can build the
corresponding Fock space F = C & HHYHHP @ . (Note the underlining of
the symbols associated with the anti-particle Hilbert spaces.)




642 FRANK ARNTZENIUS

We can then define the particle momentum creation operators Cy and C_jwhich,
when operating on the vacuum, create a particle in momentum eigenstate |k >,
| —k > respectively, that is, create a particle, and the corresponding anti-particle,
respectively. Similarly one can define particle momentum annihilation operators
Ay, and A_y which when acting on momentum eigenstate [k >, | -k > respectively,
produce the vacuum. Then one can define a Klein Gordon field operator g(x) =
J Acexp(—ik,x*) + C_ exp(ik,,x*))dk, and its adjoint ¢*(x) = [ Crexp(ik,x*) +
A_x exp(—iky,x*))dk. One can then show that these field operators, ¢(x) and ¢*(x),
satisfy the same equation that the corresponding classical fields, ¢(x) and ¢*(x), satisfy,
namely the complex Klein Gordon equation. (One has to be a bit careful. Strictly speak-
ing the way I defined the field operators makes no sense: I should have smeared them
out with test functions.) Now let us turn to PT. How do quantum states |¢ > transform
under PT? Let’s start with the single particle states. Well, under PT the corresponding
classical solution o(x) should transform to #(PTx). If we choose our coordinate system
X so that PT consists of mirroring in the origin of that coordinate system, then a
classical solution ¢(x) transforms to #(—x) under this PT transformation. Given that
multiplication in the anti-particle Hilbert space by ¢ corresponds to multiplication of
the corresponding solution by c*, this is an anti-linear transformation on the Hilbert
space.

How do the field operators transform? Well, a particle state [k > transforms to
the corresponding anti-particle state | —k > (give a suitable choice of phases for
the momentum states), and vice versa. So C transforms to C_x and vice versa, and
Ay transforms to A_i and vice versa, This, together with the fact that the trans-
formation is anti-unitary means that the field operators ¢(x) = f Ay exp(—ik,x*) +
C_xexp(ik,x*))dk transform to JA exp(ik, x*) + G exp(—ik,x*))dk = o (—x).
So ¢(x) transforms to ¢ (—x) under PT. Similarly ¢*(x) transforms to @(-x) under PT,
But this is exactly how the standard view has it that the Klein-Gordon field operators
transform under CPT! So I have argued that what standardly is called a CPT transfor-
mation in quantum field theory should really have been called a PT transformation.
So standard proofs of the CPT theorem amount to proofs that relativistic quantum
field theories must be invariant under what T have argued to be the PT transformation.
(I should point out that such proofs can not be exactly the same as in the classical
case. In the first place, as we have just seen, quantum fields get Hermitian conjugated
under PT. Moreover, the fields are now Operator fields, so we cannot re-order them
as we please. Luckily, and somewhat mysteriously, these two effects manage to cancel

each other, so that any quantum tensor Lagrangian must be invariant under the PT
transformation.10)

0 Hereisa very brief sketch of how such a proof goes. Other than the Hermitian conjugation and
order worries, the PT transformation is the same as the classical one. Assuming that the Lagrangian is
Hermitian, this means that corresponding to any non-Hermitian term in the Lagrangian there is the
Hermitian conjugate term. The ordering problem is solved by specifying that the Lagrangian must be
normal ordered (all creation operators in front of annihilation operators). Now consider an interaction
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5 PTIN SPINOR FIELD THEORIES

Let me start by considering classical non-integer spin fields. I will here restrict atten-
tion to Dirac spinor fields. Does including Dirac spinor fields affect the argument for
the PT invariance of classical local Lagrangian theories? In order to find that out we
need to know how Dirac spinor fields transform under PT. In order to find that out
we need to quickly review some spinor theory. (For more detail see, e.g. Wald 1984,
Chapter 13, or Bogolubov, Logunov, and Todorov 1975, Chapter 7.)

Let W be a two-dimensional vector space over the complex numbers. The elements
ZA of W are ‘two-component spinors’, or spinors for short. Given a choice of two
basis vectors we can represent each spinor by a ‘column’ consisting of two complex
numbers. The dual space WP is the space of all linear maps from elements of W to
complex numbers. I will call the elements 11, of WP “‘dual spinors’. We will assume that
W comes equipped with an inner product: a bilinear map ¢ap from pairs of spmors to
the complex numbers. (€ap thus maps elements of W to elements of WP and vice
versa). Next let us define the group of all SL(2,C) transformations on W to be the
linear maps L from W into itself which have unit determinant. (The determinant of L
is defined as det(L) = € ABé:CDLéLg.) Given a choice of basis vectors, one can represent
each such transformation by a 2x2 complex matrix with unit determinant.

One can then show that the group of SL(2,C) transformations has the same structure
as the group of ‘restricted’ Lorentz transformations. (The ‘restricted’ Lorentz trans-
formations are the ones that are connected to the identity.) To be precise: one can
show that there exists a two-to-one mapping h from the elements L of SL(2,C) to the
elements A of the restricted Lorentz group such thatif h(L;) = 4; and h(L,) = 4, then
h(LyLy) = Az A;. It will be helpful to have an explicit representation. Here is how one
can do that. Pick a Lorentzian frame of reference. Given such a frame of reference each
4-vector V has four components Vo, Vi, V2, V3. We can then use these components to
define the following associated Hermitian matrix:

term such as the following:
WH = g (x)8" g, (%) :4: 3% o (), (%)
(Here : .... : denotes normal ordering.) Under PT this will transform to:
—20,(—%)8% @ (—%): — 3% g, (—X); (—):
Given the commutation relations between scalar fields we can re-order this as:
— 104 g (—X)py(—X) i — 1 9E ()9 oy (—0):

And that is just equal to —W* (—x). More generally, the commutation relations for integer spin fields
combine with the Hermitian conjugation and normal ordering so as to always produce invariance
under PT for relativistic tensor quantum field theories.
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s BV V=iV
T\ Vi+ivy V-

Now, we can use any SL(2,C) matrix L to transform M to a new Hermitian matrix
M’ = LML", where L* is the complex conjugate transpose of L. The four-vector V’
associated with the transformed Hermitian matrix M’ will then be a Lorentz trans-
formation of the original four-vector V. Thus we have associated a unique Lorentz
transformation with each SL(2,C) matrix. Note that any SL(2,C) matrix L will induce
the same transformation as —L. Indeed, it turns out that for every possible restricted
Lorentz transformation there exist exactly two associated SL(2,C) matrices. Note,
however, that there is no SL(2,C) matrix associated with PT. For PT should map V,,
V1, V3, V3 into —Vy, —V;, —V,, —V3, but there is no SL(2,C) matrix L such that
LML* = —M.

In order to have a faithful representation of the full Lorentz group, we need to
consider four-component spinors. (The full Lorentz group is the group of all trans-
formations that preserves the Minkowski metric. It includes P, T and PT.) Let me
start by defining the complex conjugate dual spinor space W* to be the space of
all anti-linear maps from W to the complex numbers. Next let me define the com-
plex conjugate spinor space W* to be the space of all linear maps from W*P to the
complex numbers. I will denote elements of W* as x*, that is, with a raised primed
index, and call them conjugate spinors. I will denote elements of W*P as ,,, that
is, with a lowered primed index, and call them conjugate dual spinors. There is a
natural anti-linear 1-1 correspondence between spinors £* and conjugate spinors
S generated by the demand that p.A,(E,A) = EA'(uA,) for all p,,. It follows that if
under a restricted Lorentz transformation £* transforms to L&A then & transforms
to L*EX. (L* is the SL(2,C) matrix whose entries are the complex conjugates of L’s
entries.)

Dirac spinors are ordered pairs of spinors and complex conjugate dual spinors.
Since we know how spinors and complex conjugate spinors transform under restricted
Lorentz transformations, we know how Dirac spinors transform under restricted
Lorentz transformations. (We can use €43 to transform conjugate spinors into con-
jugate dual spinors and vice versa.) But how about PT? In order to see how to do
that let me introduce a relation between Dirac spinors and complex four-vectors
V. Given a basis in spinor space, and the associated basis in conjugate dual spinor
space, one can define a map from pairs of spinors and conjugate dual spinors to
2x2 complex matrices: MB = £,puP’. (Here M® denotes the components of matrix
M, &, denotes the components of spinor £, and 1# denotes the components of the
complex conjugate dual spinor L) There is also a natural correspondence between
such matrices M¥ and the four components of a complex four-vector V (in some frame
of reference), given by the following prescription: 2V = M} + M2, 2V; = M2 + ML,
2V, = —i(M} — M}), 2V; = M} — M2. Now, suppose we take an SL(2,C) matrix L and
transform spinor E,A to LE,A, and we transform , to eL*(e)_lp.A,. (Here * denotes

compi
four-w
accord
one ca
and it
and =
that a
twe &
Ident:
the a=
-V.5
is thes

free

P’I!E ﬁ
PL.G




THE CPT THEOREM 645

complex conjugation of the matrix entries of L.) One can show that then the complex
four-vector V that is associated with the Dirac spinor < &, , > will transform
according to the restricted Lorentz transformation that corresponds to L. Moreover,
one can generate all the complex Lorentz transformations on V by transforming A
and p, with two independent SL(2,C) matrices, that is, by transforming A to Lt
and [ to €L3(e) !, Finally, by looking at the complex Lorentz transformations
that correspond to the rotations in complex space, one finds that there are exactly
two pairs of SL(2,C) matrices that correspond to PT, namely the pair (Identity, -
Identity) and the pair (-Identity, Identity). Obviously, both of these pairs transform
the associated matrix M to -M, and hence transform the associated four-vector V to
—V. So now we know, up to a sign, how Dirac spinors transform under PT. And this
is the standard view as to how Dirac spinors transform under CPT!

How about PT invariance? Let’s consider an example: the Dirac equation for the
free Dirac spinor field. The Dirac equation, written in terms of spinors and complex
conjugate dual spinors corresponds to the following pair of equations (see e.g. Peskin
and Schroeder 1995. page 44):

(1) —mér +i(@+oe V)i =0
(2) (dg+oe V)EA —mp,, =0

(Here o is the vector consisting of the three Pauli matrices, / is the spatial derivative
operator, and e denotes the spatial inner product.) These equations are invariant under
PT, since all the derivatives change sign under PT, and either p,, or £ flips sign under
PT. Good!

Can we more generally argue that any local Lagrangian that contains ordinary ten-
sor fields as well as tensor fields constructed from Dirac spinor fields must be invariant
under PT? No, we cannot. The problem is that one can construct four-vectors from
Dirac spinors that are invariant under PT, rather than that they flip over under PT.
(That is to say, one can construct ‘PT-pseudo-vectors’ from spinors, which are types of
quantities which Bell excludes by fiat.) For instance, consider the ‘probability current’
j* = Py, y*b, where  denotes a Dirac four-spinor, ™ its complex conjugate trans-
pose and the y* denote Dirac’s ‘gamma matrices’. This probability current transforms
like a four-vector under all restricted Lorentz transformations, but is invariant under
PT. (Note e.g. that j° just equals \p™\p which is positive definite.) So, by using some
four-vectors that are invariant under PT and some that are not, one can construct
Lagrangians that are not invariant under PT.

Miraculously, this problem goes away when one goes to spinor quantum field theo-
ries: the anti-commutation relations between spinor quantum fields produce an extra
sign flip under PT which makes it impossible to construct PT pseudo-tensors from
quantum spinor fields. As yet I find it completely mysterious as to why this happens.
But the fact remains that quantum spinor field theories must be invariant under what
I have called the PT-transformation.
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6. TENTATIVE CONCLUSIONS

........

............

Whether a particle has positive or negative charge is determined by the temporal
direction in which the four-momentum of a particle points. What is standardly called
the CPT-theorem should be called the PT-theorem. It holds for classical and quantum
tensor field theories, fails for classical spinor field theories, but holds for quantum
spinor fields. The fact that it holds for quantum field theories suggests that space-time
has neither a temporal orientation nor a spatial handedness.
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