
GOLDBACH’S PROBLEMS

ALEX RICE

Abstract. These are notes from the UGA Analysis and Arithmetic Combinatorics Learning Sem-
inar from Fall 2009, organized by John Doyle, Neil Lyall, and Alex Rice.

In these notes, we introduce Vinogradov’s Three Primes Theorem, the solution to the ternary
Goldbach Problem and an application of the Hardy-Littlewood Circle Method. We first state the
result in its most accessible, least quantitative form, and then introduce the more quantitative
version, encapsulated by an asymptotic formula for the three-fold convolution of the von Mangoldt
function. Next, we begin the meat of the circle method by defining the major arcs, and giving
an estimate on their complement, conditioned on a powerful analog of the Weyl Inequality due to
Vinogradov himself. We then give an estimate on the major arcs that provides the main term in
the asymptotic formula and proves the result, provided we take Vinogradov’s minor arc estimate
and a theorem of Siegel and Walfisz on faith.

Secondly, we utilize many of the same lemmas and estimates from the proof of Vinogradov’s
Theorem to obtain a partial result of the more well-known binary Goldbach Conjecture.

1. Vinogradov’s Three Primes Theorem

Theorem 1 (Vinogradov, 1937). Every sufficiently large odd integer can be written as the sum of
three primes.

This phrasing of the result is perhaps the most satisfying, but in truth, the full result is far more
quantitative, and gives an order of growth for the number of representations of an odd integer as
the sum of three primes. We begin with the definition of the quantity in question, and a discussion
of intuition for its approximate size.

Definition. Let P denote the primes. For N ∈ N, we define

r(N) = #{(p1, p2, p3) ∈ P3
N : p1 + p2 + p3 = N},

where PN = P ∩ [1, N ].

How big would we expect r(N) to be? We know from the prime number theorem that |PN | ∼
N

logN , so |P3
N | ∼

N3

log3N
. Of course, for (p1, p2, p3) ∈ P3

N , we have that p1 + p2 + p3 ∈ {1, 2, . . . , 3N},
so if we assume that these sums are more or less ”uniformly distributed” (quite the assumption),

then we would expect r(N) ∼ N3

log3N
· 1
3N ∼

N2

log3N
. In fact, we will show that there exist C > 0 and

N0 ∈ N such that r(N) ≥ C N2

log3N
for all N ≥ N0. We begin our attack, much like in our discussion

of Waring’s problem, by using orthogonality and phrasing the question more analytically.
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Definition. For f : N→ C, we define f∗ : N→ C by

f∗(N) =
∑

k1+k2+k3=N

f(k1)f(k2)f(k3) =

∫ 1

0
(f̂N (α))3e2πiNαdα,

where f̂N (α) =
N∑
k=1

f(k)e−2πikα.

The first equality defines the notation, while the second equality follows from the orthogonality
relation ∫ 1

0
e2πikαdα =

{
1 if k = 0

0 else
.

We notice that f∗ is non-negative real-valued as long as f is, and we also see that 1∗P(N) = r(N),
but it will be beneficial for us to utilize slightly modified functions in place of 1P .

Definition. We define g,Λ: N→ [0,∞) by

g(n) =

{
log p, if n = p ∈ P
0, else

,Λ(n) =

{
log p, if n = pk, p ∈ P, k ∈ N
0, else

.

Λ is known as the “von Mangoldt function”, and will ultimately be the function of concern. We
see that

g∗(N) =
∑

p1+p2+p3=N

log(p1) log(p2) log(p3) ≤ r(N) log3N,

so it would suffice for us to show that there exist C > 0 and N0 ∈ N such that g∗(N) ≥ CN2 for
all N ≥ N0. The following lemma shows that we can actually replace g with Λ.

Lemma 1. There exists a constant C such that |Λ∗(N)− g∗(N)| ≤ CN
3
2 logN for all N ∈ N.

Proof.

|Λ∗(N)− g∗(N)|/6 ≤
∑

p
k1
1 +p

k2
2 +p

k3
3 =N

k1≥2

log p1 log p2 log p3

≤ logN
∑

p1
√
N,p2≤N

(logp1 N logp2 N)(log p1 log p2)

=
∑

p1
√
N,p2≤N

log3N ≤ CN
3
2 logN by the prime number theorem.

�

Our attention will now be focused on the von Mangoldt function, and since we’re done comparing
these convolutions, we will use the notation R(N) = Λ∗(N). The full result is encapsulated in the
following asympotic formula for R(N), the derivation of which will be our ultimate goal.
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Theorem 2 (Vinogradov, Quantitative Restatement). For any fixed A > 0,

R(N) =
S(N)

2
N2 +O(

N2

logAN
),

where

S(N) =
∏
p|N

(1− 1

(p− 1)2
)
∏
p-N

(1 +
1

(p− 1)3
).

We see that S(N) = 0 for N even, but if we could show that S(N) is bounded uniformly above
and below by positive constants for all odd N , then this formula would indeed yield a stronger
result than previously stated. This turns out to be pretty easy.

Lemma 2.
1

2
<

1

ζ(2)
≤ S(N) ≤ 2

2− ζ(3)
< 3 for all N odd.

Proof. The outermost inequalities were inserted for aesthetic purposes only, and follow from the

fact that ζ(2) = π2

6 < 2, and ζ(3) ≈ 1.2, so we turn our attention to the middle.

For N odd,

1

S(N)
≤
∏
p≥3

(
1

1− 1
(p−1)2

) ≤
∏
P

(
1

1− 1
p2

) = ζ(2),

and for all N ,

1

S(N)
≥
∏
P

(
1

1 + 1
(p−1)3

) =
1

2
·
∏
p≥3

(
1

1 + 1
(p−1)3

) ≥ 1

2
·
∏
P

1

1 + 1
p3

=
1

2

∞∑
k=1

(−1)
∑

P ordp(k)

k3
≥ 1

2
(1−

∞∑
k=2

1

k3
) =

2− ζ(3)

2
.

�

Now our goal is more clear and we proceed with deriving the asymptotic formula via the Hardy-
Littlewood Circle Method. For this, we must partition the circle into major and minor arcs,
much like in Waring, where we thought of the major arcs as those points which were “close to
rationals with small denominator.” However, what we took as our meanings of “close” and “small
denominator” were inspired by the Weyl Inequality and the range of denominators for which it
provided a worthwhile estimate. The same will be the case here, but we need an analog to the
Weyl Inequality in terms of the von Mangoldt function, and we will define the major and minor
arcs appropriately based on that estimate.

Lemma 3. If α ∈ [0, 1] and |α− a/q| < 1/q2 for some q ∈ N and (a, q) = 1, then

|Λ̂N (α)| ≤ C(Nq−
1
2 +N

4
5 +N

1
2 q

1
2 ) log4N

for some absolute constant C.

Lemma 3 was Vinogradov’s main achievement in proving this theorem unconditionally. Hardy
and Littlewood attained the result in the 1920’s, but they needed to assume the Generalized
Riemann Hypothesis to get the required estimate on the minor arcs.
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Corollary 4. If we suppose further that, for a fixed B > 0, logB N ≤ q ≤ N
logB N

, then

|Λ̂N (α)| ≤ C
( N

log
B
2 N

+N
4
5 +

N

log
B
2 N

)
log4N ≤ C ′ N

log
B
2
−4N

.

Now, given a fixed A > 0 as in Theorem 2, we set B = 2A + 10 and we define the major and
minor arcs as follows.

Definition. For (a, q) = 1, we define the arc

Ma
q

= {α ∈ [0, 1] | |α− a

q
| < logB N

N
},

the major arcs

M =

logB N⋃
q=1

⋃
0≤a≤q
(a,q)=1

Ma
q
,

and the minor arcs
m = [0, 1] \M.

Lemma 5. For sufficiently large N, M comprises a small portion of the circle and the individual
arcs in M are pairwise disjoint.

Proof. The first part is clear from the definition, as the measure of M is at most 2 log3B N
N .

The second part requires only slightly more argument, so let’s assume α ∈Ma
q

⋂
Ma′

q′
with a

q 6=
a′

q′ ,

then we have
1

qq′
≤ |a

q
− a′

q′
| ≤ |α− a

q
|+ |α− a′

q′
| ≤ 2 logB N

N
which implies

max{q, q′} ≥
( N

2 logB N

)1/2
> logB N

for sufficiently large N, i.e. one of the original arcs was not in the collection of major arcs, since its
corresponding denominator was too large. �

The following estimate on the minor arcs follows almost immediately from the definition and
Lemma 3.

Lemma 6. There exists a constant C such that

|Λ̂N (α)| ≤ C N

log
B
2
−4N

for all α ∈ m.

Proof. Fix α ∈ m. By the Dirichlet Principle, there exists 1 ≤ q ≤ N
logB N

and (a, q) = 1 with

|α− a

q
| < logB N

qN
≤ 1

q2
.

But, since α ∈ m and |α− a
q | <

logB N
N , we must have q > logB N .

Therefore, q lies in the required range for Corollary 4 and the estimate applies. �
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Corollary 7.

|
∫
m

(Λ̂N (α))3e2πiNαdα| ≤ C N2

logAN
.

Proof. Recall Plancherel’s Identity, which states in particular that∫ 1

0
|Λ̂N (α)|2dα =

N∑
k=1

|Λ(k)|2.

From this fact, Lemma 6, and the prime number theorem, we have

|
∫
m

(Λ̂N (α))3e2πiNαdα| ≤
∫
m
|Λ̂N (α)|3dα ≤ C N

log
B
2
−4N

∫ 1

0
|Λ̂N (α)|2dα

= C
N

log
B
2
−4N

N∑
k=1

|Λ(k)|2 ≤ C ′ N

log
B
2
−4N

·N logN

= C ′
N2

log
B
2
−5N

= C ′
N2

logAN
.

�

This tells us that the contribution from the minor arcs to the integral R(N) can be absorbed
into the error term from the asymptotic formula, so if we take Lemma 3 on faith, then we can turn
our attention to the major arcs. In order to estimate the integral over the major arcs, we need to

estimate Λ̂N near rationals with small denominator, so it’s only natural to begin by considering

Λ̂N at rationals with small denominator.

Definition. For N, r, q ∈ N, we define

ψN (r, q) =
∑

1≤k≤N
k≡r(mod q)

Λ(k),

and note that

Λ̂N (
a

q
) =

N∑
k=1

Λ(k)e
−2πik a

q =

q−1∑
r=o

∑
1≤k≤N

k≡r(mod q)

Λ(k)e
−2πik a

q

=

q−1∑
r=o

∑
1≤k≤N

k≡r(mod q)

Λ(k)e
−2πir a

q =

q−1∑
r=0

ψN (r, q)e
−2πir a

q .

To estimate this rephrased sum, we invoke a useful identity, which we will prove, and a famous
theorem, which we will not.

Lemma 8 (Siegel-Walfisz Theorem, 1936). If (r, q) = 1 and 1 ≤ q ≤ logB N , then there exists a
constant cB > 0 such that

ψN (r, q) =
N

φ(q)
+O(Ne−cB

√
logN ).

This is a quantitative strengthening of Dirichlet’s Theorem on primes in arithmetic progressions.
Roughly, it states that the primes are “evenly distributed” in the congruence classes coprime to q.
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Lemma 9 (Ramanujan Sum). If (a, q) = 1, then∑
0≤r≤q−1
(r,q)=1

e−2πira/q = µ(q),

where µ(q) is the standard Möbius function.

Proof. Recall that ∑
d|n

µ(d) =

{
1 n = 1

0 else
,

so we can write ∑
0≤r≤q−1
(r,q)=1

e−2πira/q =

q−1∑
r=0

∑
d|(r,q)

µ(d)e−2πra/q,

which, after switching the order of summation, equals

∑
d|q

µ(d)
∑

0≤r≤q−1
d|r

e−2πira/q =
∑
d|q

µ(d)

q
d
−1∑
l=0

e−2πilda/q (setting r = ld)

=
∑
d|q

µ(d) ·

{
q
d if d = q

0 else
= µ(q).

�

Lemmas 8 and 9, plus a little additional elbow grease, yield the following estimate.

Lemma 10. If (a, q) = 1 and 1 ≤ q ≤ logB N , then there exists cB > 0 such that

Λ̂N

(a
q

)
=
µ(q)

φ(q)
N +O(Ne−cB

√
logN ).

Proof. We first note that the primary contributions to the rewritten sum Λ̂N (aq ) come from classes

r which are coprime to q. More specifically,

|
∑

0≤r≤q−1
(r,q)>1

ψN (r, q)e−2πira/q| ≤
∑

0≤r≤q−1
(r,q)>1

∑
1≤k≤N

k≡r(mod q)

Λ(k) ≤
∑
p|q

pk≤N

log p

≤
∑
p|q

(logpN)(log p) = logN ·#{p|q} ≤ C log2N.

Now we proceed by substituting in the results from the lemmas.
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Λ̂N

(a
q

)
=

q−1∑
r=0

ψN (r, q)e
−2πir a

q =
∑

0≤r≤q−1
(r,q)=1

ψN (r, q)e
−2πir a

q +
∑

0≤r≤q−1
(r,q)>1

ψN (r, q)e
−2πir a

q

=
∑

0≤r≤q−1
(r,q)=1

(
N

φ(q)
+O(Ne−cB

√
logN ))e

−2πir a
q +O(log2N)

=
N

φ(q)

∑
0≤r≤q−1
(r,q)=1

e
−2πir a

q +O(qNe−cB
√
logN ) +O(log2N)

=
µ(q)

φ(q)
N +O(Ne−c

′
B

√
logN ).

�

In order to extend our estimate to all of the major arcs, we utilize the summation by parts formula

N∑
k=1

akbk = SNbN+1 +

N∑
k=1

Sk(bk − bk+1), where Sk = a1 + a2 + · · ·+ ak,

including the special case

N∑
k=1

bk = NbN+1 +

N∑
k=1

k(bk − bk+1).

With these facts and Lemma 10, we get the following estimates for Λ̂N on M.

Lemma 11. If α = a
q + β, (a, q) = 1, 1 ≤ q ≤ logB N , and |β| < logB N

N , then there exists cB > 0

such that

Λ̂N (α) =
µ(q)

φ(q)
νN (β) +O(Ne−cB

√
logN ),

where

νN (β) =

N∑
k=1

e−2πiNβ .

Proof.

Λ̂N (α) =
N∑
k=1

Λ(k)e
−2πik a

q e−2πikβ,

so setting ak = Λ(k)e
−2πik a

q and bk = e−2πikβ in the summation by parts formula, Lemma 10 yields
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Λ̂N (α) = Λ̂N (
a

q
)e−2πi(N+1)β +

N∑
k=1

Λ̂k(
a

q
)(e−2πikβ − e−2πi(k+1)β)

= (
µ(q)

φ(q)
N +O(Ne−cB

√
logN ))e−2πi(N+1)β +

N∑
k=1

(
µ(q)

φ(q)
k +O(Ne−cB

√
logN ))(e−2πikβ − e−2πi(k+1)β)

=
µ(q)

φ(q)
(Ne−2πi(N+1)β +

N∑
k=1

k(e−2πikβ − e−2πi(k+1)β))

+O(Ne−cB
√
logN ) +

N∑
k=1

O(Ne−cB
√
logN )e−2πikβ(1− e2πiβ),

which, by the aforementioned special case of summation by parts and the fact that |1−e2πiβ| < C|β|
and |β| < logB N

N , equals

µ(q)

φ(q)

N∑
k=1

e−2πikβ +O((1 + |β|N)Ne−cB
√
logN ) =

µ(q)

φ(q)
νN (β) +O((logB N)Ne−cB

√
logN

=
µ(q)

φ(q)
νN (β) +O(Ne−c

′
B

√
logN ).

�

Corollary 12.∫
M

(Λ̂N (α))3e2πiNαdα =

logB N∑
q=1

µ(q)

φ(q)3
Cq(N)

∫
|β|< logB N

N

(νN (β))3e2πiNβdβ +O(N2e−cB
√
logN ),

where
Cq(N) =

∑
0≤a≤q−1
(a,q)=1

e2πiNa/q.

Proof. For sufficiently large N, by Lemma 5,∫
M

(Λ̂N (α))3e2πiNαdα =

logB N∑
q=1

∑
0≤a≤q−1
(a,q)=1

∫
Ma

q

(Λ̂N (α))3e2πiNαdα

=

logB N∑
q=1

∑
0≤a≤q−1
(a,q)=1

∫
|β|< logB N

N

(
µ(q)

φ(q)
νN (β) +O(Ne−cB

√
logN ))3e2πiN(a/q+β)dβ,

which, after applying the binomial theorem to the error term and noting that µ(q)3 = µ(q), equals

logB N∑
q=1

∑
0≤a≤q−1
(a,q)=1

∫
|β|< logB N

N

(
µ(q)

φ(q)3
(νN (β))3 +O(N3e−cB

√
logN ))e2πiN(a/q+β)dβ
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=

logB N∑
q=1

µ(q)

φ(q)3

∑
0≤a≤q−1
(a,q)=1

e
2πiN a

q

∫
|β|< logB N

N

((νN (β))3 +O(N3e−cB
√
logN ))e2πiNβdβ

=

logB N∑
q=1

µ(q)

φ(q)3
Cq(N)

∫
|β|< logB N

N

(νN (β))3e2πiNβdβ +O(N2(logB N)e−cB
√
logN )

=

logB N∑
q=1

µ(q)

φ(q)3
Cq(N)

∫
|β|< logB N

N

(νN (β))3e2πiNβdβ +O(N2e−c
′
B

√
logN ). �

To make better sense of this estimate we use the following two lemmas, from which the asymptotic
formula for R(N) will follow.

Lemma 13. ∫
|β|< logB N

N

(νN (β))3e2πiNβdβ =
N2

2
+O(

N2

log2B N
).

Proof. We first note that
∫ 1
0 (νN (β))3e2πiNβdβ is simply the number of ways of writing N as the

sum of three natural numbers (1∗N(N) in our previous notation). Once the first two natural numbers
n1, n2, are chosen with 2 ≤ n1 + n2 ≤ N − 1, then there is exactly one choice for the third natural
number, n3 = N − n1 − n2. Of course, for each 2 ≤ k ≤ N − 1, there are exactly k − 1 ways to
write k = n1 + n2. In other words,∫ 1

0
(νN (β))3e2πiNβdβ =

N−1∑
k=2

k − 1 =
N−2∑
k=1

k =
(N − 2)(N − 1)

2
=
N2

2
+O(N).

Therefore, it will suffice to show∫
|β|< logB N

N

(νN (β))3e2πiNβdβ =

∫ 1

0
(νN (β))3e2πiNβdβ +O(

N2

log2B N
).

Recall the following estimate on the geometric series, which we used in our discussion of Waring to
prove the Weyl Inequality.

|νN (β)| = |
N∑
k=1

e−2πikβ| ≤ min{N, 1

‖β‖
} ≤ C N

1 +N‖β‖
, where ‖β‖ = min

n∈Z
|β − n|.

Applying this estimate, we have

|
∫ 1

0
(νN (β))3e2πiNβdβ −

∫
|β|< logB N

N

(νN (β))3e2πiNβdβ| ≤
∫ 1− logB N

N

logB N
N

|νN (β)|3dβ

≤ C
∫ 1− logB N

N

logB N
N

(
N

1 +N‖β‖
)3dβ = 2C

∫ 1
2

logB N
N

(
N

1 +Nβ
)3dβ = 2CN2

∫ N
2

logB N

1

(1 + β)3
dβ

= CN2
[ −1

(1 + β)2

]N
2

logB N
≤ C N2

log2B N
,

and the result follows. �
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Lemma 14.
logB N∑
q=1

µ(q)

φ(q)3
Cq(N) = S(N) +O(

1

log
B
2 N

).

Proof. First we will show that

logB N∑
q=1

µ(q)

φ(q)3
Cq(N) =

∞∑
q=1

µ(q)

φ(q)3
Cq(N) +O(

1

log
B
2 N

).

Recall that for every ε > 0, there exists a constant cε > 0 such that φ(k) ≥ cεk1−ε for every k ∈ N,
so in particular, we can fix c = c 3

4
. We also see that |Cq(N)| ≤ φ(q) for all q. Combining these

facts, we have

|
∞∑
q=1

µ(q)

φ(q)3
Cq(N)−

logB N∑
q=1

µ(q)

φ(q)3
Cq(N)| ≤

∞∑
logB N

|Cq(N)|
φ(q)3

≤ C
∞∑

logB N

1

q
3
2

≤ C ′
∫ ∞
logB N

1

x
3
2

dx ≤ C ′′

log
B
2 N

.

Now it will suffice to show that
∑∞

q=1
µ(q)
φ(q)3

Cq(N) = S(N). We see that AN (q) = µ(q)
φ(q)3

Cq(N) is

a multiplicative function of q, as µ and φ are known to be multiplicative, and Cq(N) can be seen to
be multiplicative in q by the Chinese Remainder Theorem. We can also see, by arguments similar
to those above, that

∑∞
q=1 |AN (q)| <∞. Therefore, we can write

∞∑
q=1

AN (q) =
∏
p∈P

∞∑
k=0

AN (pk).

However, by the definition of the Möbius function µ, AN (pk) = 0 for all p ∈ P, k ≥ 2. This yields

∞∑
q=1

AN (q) =
∏
p∈P

(1 +
µ(p)

φ(p)3
Cp(N)).

We know that φ(p) = p− 1 and µ(p) = −1, and we can see that

Cp(N) =

{
p− 1 if p|N
−1 if p - N

.

Putting it all together, we have

∞∑
q=1

AN (q) =
∏
p∈P

(1− Cp(N)

(p− 1)3
) =

∏
p|N

(1− 1

(p− 1)2
)
∏
p-N

(1 +
1

(p− 1)3
) = S(N),

and the result follows. �

We are now ready to put the final pieces together. In particular, we will directly apply Corollary
7, Corollary 12, Lemma 13, and Lemma 14.
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Proof of Theorem 2.

R(N) =

∫ 1

0
(Λ̂N (α))3e2πiNαdα =

∫
M

(Λ̂N (α))3e2πiNαdα+

∫
m

(Λ̂N (α))3e2πiNαdα

=

logB N∑
q=1

µ(q)

φ(q)3
Cq(N)

∫
|β|< logB N

N

(νN (β))3e2πiNβdβ +O(N2e−CB
√
logN ) +O(

N2

logAN
)

= (S(N) +O(
1

log
B
2 N

))(
N2

2
+O(

N2

log2B N
)) +O(

N2

logAN
)

=
S(N)

2
N2 +O(

N2

logAN
).

�

We have now shown not only that every sufficiently large odd integer is the sum of three primes,
but also that the order of growth of the number of representations of an odd integer as the sum of
three primes agrees with our expectation.

2. A partial result of the binary Goldbach Conjecture

Using a similar heuristic as before, we could also guess that the number of representations of an
even natural number N as the sum of two primes would be on the order of N

log2N
. Using the same

estimates we have already obtained in our exposition of Vinogradov’s Theorem, we can show that
this is the case for “almost every” even integer, in an appropriate sense, yielding another a partial
result to the binary Goldbach Conjecture, also originally obtained in the late 1930s.

Recall that for S ⊆ N, the density of S, denoted δ(S), is defined as

δ(S) = lim
N→∞

|S ∩ [1, N ]|
N

,

if the above limit exists. We wish to investigate the density of a particular set of integers, the “bad
guys” if you will.

Definition. Let E = {n ∈ N even |n /∈ P + P}, and EN = E ∩ [1, N ].

Note that Goldbach’s Conjecture is precisely the statement that E = {2}. We will obtain the
weaker result that δ(E) = 0, or equivalently δ(P +P) = 1/2, the statement that almost every even
integer is the sum of two primes. We start by defining the appropriate weighted count and the
corresponding singular series, analogous to what we did previously.

Definition. We define

G(N) =
∑

k1+k2=N

Λ(k1)Λ(k2) =

∫ 1

0
(Λ̂N (α))2e2πiNαdα,

and S2(N) =

∞∑
q=1

µ(q)2

φ(q)2
Cq(N) = (

∏
p|N

1 +
1

p− 1
)(
∏
p-N

1− 1

(p− 1)2
).

11



The equality of the two expressions for the singular series follows in identical fashion to the
corresponding formula in the ternary problem. Note that S2(N) = 0 for N odd, and S2(N) > 1
for N even. A direct analogy to the Vinogradov result would be an asymptotic formula of the shape

G(N) = S2(N) ·N +O(
N

logAN
).

Such a result would be a quantitative version of Goldbach’s Conjecture, and would in particular
imply that E is finite. Obviously this is out of reach, but a weaker way of displaying that G(N)
looks like S2(N) ·N is to bound the mean-square difference. This turns out to be tractable, and
yields the promised result.

Theorem 3. For a fixed A > 0, there exists a constant C depending only on A such that

N∑
n=1

(G(n)−S2(n) · n)2 ≤ C N3

logAN
.

Before we get our hands dirty with this proof, let’s see why it gets us what we want.

Corollary 15. |EN | ≤ C N
logAN

, and in particular δ(E) = 0.

Proof. If n ∈ E, then

G(n) =
∑

p
k1
1 +p

k2
2 =n

k1 or k2≥2

(log p1)(log p2) ≤
∑
pk≤n
k≥2

(log p)(log n)

≤
∑
p≤
√
n

(logp n)(log p)(log n) =
∑
p≤
√
n

log2 n ≤ C
√
n log n.

In particular, there exists N0 ∈ N such that

(G(n)−S2(n) · n)2 >
n2

4
,

whenever n > N0 and n ∈ E. In other words, for sufficiently large n,

4

n2
(G(n)−S2(n) · n)2 > 1E(n),

which implies

|EN | ≤ N0 + 4
∑

N0<n<N

1

n2
(G(n)−S2(n) · n)2 for all N > N0.

Therefore, it will suffice for us to show that

N∑
n=1

1

n2
(G(n)−S2(n) · n)2 ≤ C N

logAN
,

for which we use summation by parts. Letting an = (G(n) − S2(n) · n)2 and Sn =
∑n

k=1 ak, we

have from Theorem 3 that Sn ≤ C n3

logA n
for all n > 1, so summation by parts yields

N∑
n=1

an
n2

=
SN
N2

+

N∑
n=1

Sn(
1

n2
− 1

(n+ 1)2
) ≤ C(

N

logAN
+

∫ N

2

1

logA x
dx),

so it will suffice to show that

∫ N

2

1

logA x
dx ≤ C N

logAN
.

12



By dividing the interval [2, N ], we see∫ N

2

1

logA x
dx =

∫ √N
2

1

logA x
dx+

∫ N

√
N

1

logA x
dx

≤
√
N

logA 2
+ 2A

N

logAN
≤ C N

logAN
.

This proves the corollary, but the theorem remains. �

Proof of Theorem 3. Fix A > 0, and define B, M, and m as before.

We see that G(n) = G1(n) +G2(n), where

G1(n) =

∫
M

(Λ̂n(α))2e2πinαdα

and

G2(n) =

∫
m

(Λ̂n(α))2e2πinαdα.

By Cauchy-Schwarz,

N∑
n=1

(G(n)−S2(n) · n)2 ≤ 2
( N∑
n=1

|G1(n)−S2(n) · n|2 +
N∑
n=1

|G2(n)|2
)
,

and it will suffice to show that

N∑
n=1

|G1(n)−S2(n) · n|2 ≤ C N3

logAN

and
N∑
n=1

|G2(n)|2 ≤ C N3

logAN
.

For the latter, we notice that G2(n) is a Fourier coefficient for Λ̂N (α)2 · 1m, and hence by Bessel’s
inequality,

N∑
n=1

|G2(n)|2 ≤
∫
m
|Λ̂N (α)|4dα.

Invoking Lemma 6 and Plancherel’s Identity, we have that

N∑
n=1

|G2(n)|2 ≤ C N2

logB−8N

∫ 1

0
|Λ̂N (α)|2dα = C

N2

logB−8N

N∑
n=1

|Λ(n)|2

≤ C N3

logB−9N
≤ C N3

logAN
.

This need to jump to the mean-square value in order to estimate the minor arcs is the primary
obstruction to obtaining a true asymptotic formula the way we did in the ternary problem.

To estimateG1(n), we invoke Lemma 11, apply arguments virtually identical to those in Corollary
12 and Lemma 13 (just replacing the cubes with squares), and after noticing that∫ 1

0
νn(β)2e2πinβ = #{(n1, n2) ∈ N2|n1 + n2 = n} = n− 1,

13



we obtain the following estimate for n ≤ N .

G1(n) = S′2(n) · n+O(
N

log
B
2 N

), where S′2(n) =

logB N∑
q=1

µ(q)2

φ(q)2
Cq(n).

Now we see that because

N∑
n=1

|G1(n)−S2(n) · n|2 ≤ 2(

N∑
n=1

|G1(n)−S′2(n) · n|2 +

N∑
n=1

n2|S′2(n)−S2(n)|2)

≤ C(
N3

logAN
+N2

N∑
n=1

|S′2(n)−S2(n)|2),

it will suffice to show that

N∑
n=1

|S′2(n)−S2(n)|2 ≤ C N

logAN
.

For this, we use the following facts:

(i) Cq(n) =
µ( q

(q,n))φ(q)

φ( q
(q,n))

, a generalized version of Lemma 9

(ii)
n∑
d=1

1

φ(d)
≤ C log n

(iii)
∞∑
q=X

1

φ(q)2
≤ C

X

From these, we obtain

S2(n)−S′2(n) =

∞∑
q=logB N

µ(q)2

φ(q)2
·
µ( q

(q,n))φ(q)

φ( q
(q,n))

=
∑
d|n

∑
logB N<q<∞

(q,n)=d

µ(q)2

φ(q)2
·
µ( qd)φ(q)

φ( qd)

=
∑
d|n

∑
logB N

d
<q<∞

(q,n)=1

µ(dq)2

φ(dq)2
· µ(q)φ(dq)

φ(q)
(setting q =

q

d
)

=
∑
d|n

∑
logB N

d
<q<∞

(q,n)=1

µ(d)2µ(q)3φ(d)φ(q)

φ(d)2φ(q)3
(since d|n, (q, n) = 1 =⇒ (d, n) = 1)

=
∑
d|n

µ(d)2

φ(d)

∑
logB N

d
<q<∞

(q,n)=1

µ(q)

φ(q)2
≤ C

∑
d|n

µ(d)2

φ(d)
·min(

d

logB N
, 1),
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which yields S2(n)−S′2(n) ≤ C log n, and hence

N∑
n=1

|S′2(n)−S2(n)|2 ≤ C logN

N∑
n=1

|S′2(n)−S2(n)|

≤ C logN

N∑
n=2

∑
d|n

µ(d)2

φ(d)
· d

logB N
≤ C logN

N∑
d=2

N

d

µ(d)2

φ(d)
· d

logB N

≤ C N

logB−1N

N∑
d=2

1

φ(d)
≤ C N

logB−2N
≤ C N

logAN
,

and the result follows. �
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