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This paper is the written version of a talk that Thurston gave at the AMS Sym-
posium on the Mathematical Heritage of Henri Poincaré held at Bloomington in
April 1980. It is a Research announcement.1

In his “Analysis Situs” paper, Poincaré introduces simplicial homology and the
fundamental group, with the aim of finding invariants which could distinguish 3-
manifolds. He concludes the Vth complement [88] discussing the question: Is any
simply connected closed 3-manifold homeomorphic to the 3-sphere? This ques-
tion, often understood as a conjecture, motivated much of the development of 3-
dimensional topology. At the beginning of his paper Thurston proposes, “fairly con-
fidently”, his Geometrization Conjecture: The interior of any compact 3-manifold
has a canonical decomposition into pieces that carry a geometric structure. By
Kneser and Milnor any orientable compact 3-manifold is homeomorphic to the
connected sum of manifolds which are either irreducible or homeomorphic to a
sphere bundle over S1. By Jaco-Shalen and Johannson any orientable irreducible
3-manifold can be decomposed along a disjoint union of embedded tori into pieces
that are atoroidal or Seifert-fibered (see in [15] the corresponding statement for
non-orientable manifolds). Saying that a manifold carries a geometric structure
means that it has a complete Riemannian metric which is locally modelled on one
of the eight geometries (which are introduced in Section 4 of the paper): the con-

stant curvature ones H3, S3, R3, the Seifert-fibered ones ˜PSL(2,R), H2×R, S2×R,
Nil and Sol. The pieces which are referred to in the Geometrization Conjecture
are essentially the pieces of the Jaco-Shalen-Johannson decomposition; more pre-
cisely, all the pieces except that one needs to keep undecomposed any component
of the Kneser-Milnor decomposition which is a torus bundle over S1 with Anosov
monodromy, since those bundles carry a Sol-geometry. This conjecture contains
the Poincaré Conjecture as a very special case. But the main difference with the
Poincaré Conjecture is that the Geometrization Conjecture proposes a global vi-
sion of all compact 3-manifolds. Furthermore, the geometric structure on a given
3-manifold when it exists is often unique, up to isometry; consequently, all the Rie-
mannian invariants of the geometric structure on a 3-manifold like the volume, the
diameter, the length of the shortest closed geodesic, the Chern-Simons invariant,
etc. are then topological invariants.

The Geometrization Conjecture was proven in 2003 by Grigori Perelman, who fol-
lowed an analytical approach that had been initiated by Richard Hamilton in [44].
This approach was entirely different from that of Thurston, but there is no doubt

1Before 1978 the Bulletin of the AMS did not accept Research announcements longer than 100
lines. For this reason, Thurston could not submit there his preprint about surface diffeomorphisms
[102] which dates back to 1976 and which is written in the same informal style as this one. After

a couple of refusals, he stopped trying to publish it and expected until 1988 to do so (see the
introduction to [102]).
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that the results announced in the present paper contributed to give a very strong ev-
idence for the truth of the Geometrization Conjecture, and therefore for the truth
of the Poincaré Conjecture (in the introduction of [73], John Morgan points out
this apparent paradox that a conjecture might look less plausible than another one
which is much stronger).

Among the results announced in this paper which gave strong evidence for the
validity of the Geometrization Conjecture, the most important is certainly the Hy-
perbolization Theorem for Haken manifolds (Theorem 2.5): Any Haken 3-manifold
which is homotopically atoroidal is hyperbolic, except the particular case of the
twisted I-bundle over the Klein bottle. One corollary is that the Geometrization
Conjecture is true for all Haken manifolds, and in particular for any irreducible
3-manifold with non-empty boundary (once accepted the Hyperbolization Theo-
rem, the proof of this corollary reduces to checking that Seifert fibered spaces and
T 2-bundles over the circle are geometric too).

Haken manifolds form a large class of 3-manifolds for which the Geometrization
Conjecture is true. However, as Thurston writes after the statement of the Hyper-
bolization Theorem, even if the incompressible surface is an essential tool in the
proof of the Hyperbolization Theorem for Haken manifolds, this surface seems to
have little to do with the existence of the hyperbolic metric. And then he discusses
the manifolds obtained by Dehn surgery on a 3-manifold with boundary M when
the interior of M carries a finite volume hyperbolic metric. Theorem 2.6, the Hyper-
bolic Dehn Surgery Theorem, states that for all surgery data, except those involving
a finite set of slopes on each boundary component, the resulting 3-manifold is hyper-
bolic. Furthermore, few of the resulting manifolds are Haken: Thurston had shown
this when M is the figure-eight knot complement [98], and Hatcher-Thurston had
shown this when M is a 2-bridge knot complement [43] (a paper which circulated
as a preprint as early as 1979). So these manifolds form a new family of hyperbolic
manifolds which are not covered by the Hyperbolization Theorem.

Thurston explains that he found using a computer program that most Dehn surg-
eries on certain punctured tori bundles over the circle were hyperbolic and that he
constructed then by hand geometric structures for all the other Dehn surgeries. He
insists on the beauty of the geometric structures “when you learn to see them” that
is often revealed by computer pictures.

The following section “Applications” describes some properties of Haken manifolds
and of hyperbolic manifolds.

– When M is Haken and atoroidal, the group of isotopy classes of homeomorphisms
of M is finite and it lifts to a group of homeomorphisms of M .

– The fundamental group of a Haken manifold is residually finite.

– Theorem 3.4: the Gromov-Thurston theorem on the behavior of volume under a
non-zero degree map between hyperbolic manifolds M → N : vol M ≥ degree · vol N
with equality only when the covering map is homotopic to a regular cover.

– Theorem 3.5: the Jørgensen-Thurston theorem that says that the set of volumes of
hyperbolic manifolds is well-ordered. In particular, there is a finite volume manifold
with smallest volume.

– Thurston suggests that the volume and the eta invariant of a hyperbolic 3-
manifold should be considered as the real and imaginary parts of a complex number.
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Then Thurston describes concrete approaches “to make the calculation of hyper-
bolic structures routine” and he explains how Robert Riley used computers for
constructing hyperbolic structures [90]. Riley was maybe the first person who tried
to “hyperbolize” a given topological 3-manifold, namely the complement in S3 of
certain knots (see [91]).

The last section addresses two theorems which are directly related to the proof of
the hyperbolization of Haken manifolds. Theorem 5.7, the Double Limit Theorem,
is the main step of the hyperbolization for manifolds which fiber over the circle; it
gives a condition for a sequence (ρi) of quasi-Fuchsian groups to contain a subse-
quence which converges up to conjugacy in the space of representations of π1(S) in
PSL(2,C). The condition, formulated in terms of the Ahlfors-Bers coordinates of ρi
is that the two coordinates diverge to laminations whose reunion fills up the surface.
This theorem led to beautiful objects, in particular to the Cannon-Thurston map
which is a sphere-filling curve S1 → ∂H3 which conjugates the action of the surface
group on S1 as a Fuchsian group to its action on ∂H3 as the limiting Kleinian
group; furthermore this map can be described in geometric terms. Theorem 5.8
is the Compactness Theorem of the space of discrete and faithful representations
into PSL(2,C) of the fundamental group of acylindrical 3-manifolds, one of the key
ingredients of the proof in the non-fibered case.

The paper contains neither proofs nor hints of proofs. But the Princeton lecture
notes [98] were circulating widely since the end of the 70’s. These notes were not
aimed to give a proof of the Hyperbolization Theorem, but they did contain im-
portant material which is relevant to the proof (in particular in the notoriously
difficult Chapters 8 and 9 which discuss algebraic versus geometric convergence
of hyperbolic 3-manifolds). Also Thurston had already lectured about the Hyper-
bolization Theorem at several conferences (see [99] and [100]). The first versions of
[101] (proving the Compactness Theorem 5.8 above) and [103] (the Double Limit
Theorem 5.7) were circulating since 1980. The preprint [104] which contains a re-
finement of the main result of [101] was distributed later, in 1986. In 1982, the
most detailed presentation of the proof of the Hyperbolization Theorem in the
non-fibered case, written by John Morgan, was published in the Proceedings of
the Smith Conjecture conference [72], a conference held in 1979; this presentation
follows the proof described in [100]. Dennis Sullivan had reported about the proof
in the fibered case at the Bourbaki seminar in 1980 [97].

The Hyperbolization Theorem for Haken manifolds was sometimes named the Mon-
ster Theorem, because of the length of the proof and the unusual amount of different
techniques that were required. It became a challenge to find other approaches. John
Hubbard observed a deep relation between the main step of the proof for the non-
fibered case – the fixed point theorem for the skinning map – and a conjecture of
Irwin Kra in Teichmüller theory saying that the classical Theta operator acting on
holomorphic quadratic differentials is a contraction for the L1-norm. This conjec-
ture was solved by Curt McMullen who showed how to apply it to the fixed point
problem [61], [62] (see also [84]). A proof of the fibered case is contained in [83];
it is based on a proof of the Double Limit Theorem, different from Thurston’s and
uses R-trees instead of the delicate “Uniform injectivity of doubly incompressible
pleated surfaces” Theorem (see also [50]).
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Thurston concludes his paper with a list of problems about 3-manifolds and about
Kleinian groups which contains many of the most difficult problems of these fields
that had already been posed. Any mathematician can appreciate the importance
and the impact of this paper through the fact that among these 24 problems,
22 were solved by 2012 (and indeed the two remaining ones, Problem 19 – on
properties of arithmetic hyperbolic manifolds – is more a research theme than a
problem and Problem 23 – on the rational independence of volumes of hyperbolic
manifolds – leads to difficult conjectures in number theory). Any topologist knows
how much the new perspective presented in this paper influenced and inspired
research in 3-dimensional topology, in hyperbolic geometry and even much beyond:
it contributed in a lot of ways to the developments of geometric group theory, of
complex dynamics, to the study of spaces of representations, to the study of the
Weil-Petersson geometry of Teichmüller space etc. Reporting about these influences
is not the purpose of this review and I will end by trying to describe each problem
and, for all but two, by giving references to the papers which brought the solution.
As the copious references to be found in Zentralblatt or in MathSciNet testify, this
work has inspired a vast literature. For reasons of space, I have been unable to cite
many important papers which solved significant intermediate steps.

The list of problems

I have classified the problems according to the following themes: Geometrization of
3-manifolds and of 3-orbifolds, Topology of 3-manifolds, Kleinian groups, Subgroups
of the fundamental groups of 3-manifolds, Computer programs and tabulations,
Arithmetic properties of Kleinian groups.

It appeared that there were connections between certain of the problems. For the
exposition, I followed the chronological order of the solutions within a given theme,
rather than the order in which Thurston presented the problems.

Geometrization of 3-manifolds and of 3-orbifolds: Problems 1, 3.

1. The Geometrization Conjecture for 3-manifolds.

This conjecture is proven by Perelman in [85, 86, 87]. The content of these preprints
is explained with details by Bruce Kleiner and John Lott in [55]. John Morgan and
Gang Tian give complete proofs of the Poincaré Conjecture and of the geometriza-
tion of 3-manifolds with finite fundamental groups in [74]. A complete proof of
the Geometrization Conjecture for arbitrary 3-manifolds, including a simplification
of the original argument (but assuming the Hyperbolization Theorem for Haken
manifolds) is contained in [9].

3. The Geometrization Conjecture for 3-orbifolds.

Thurston makes the comment that this problem contains Problem 2 on the clas-
sification of finite group actions on 3-manifolds. Indeed the language of orbifold
gives a way to “encode” non-free actions of finite groups (but it does cover much
more examples). If G is a finite group of diffeomorphisms acting on a 3-manifold
M , the quotient space M/G is naturally the underlying space of an orbifold whose
singular locus is the image of the set of points in M which are fixed by some non-
trivial element in G and labeled by the isotropy groups. Showing that the action
of G on M is geometric is equivalent to showing that this orbifold is geometric.
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The Geometrization Conjecture for 3-orbifolds can be formulated in a way close to
the Geometrization Conjecture for 3-manifolds [15]. In a footnote added in proof,
Thurston announces that he has proven this conjecture when the singular locus
of the orbifold has dimension at least 1: this is the Orbifold Theorem. Thurston
did not write anything about the Orbifold Theorem comparable to what he wrote
about the Hyperbolization Theorem, although he planned to do so in 1986 (cf. the
Introduction to [101]). In lectures at Durham in 1984, he outlined his proof. A com-
plete proof of the Orbifold Theorem (for orientable orbifolds) is given by Michel
Boileau, Bernhard Leeb and Joan Porti in [11]; previously Boileau and Porti had
solved the case when the singular locus is a 1-dimensional submanifold [13]. The
proofs in both papers differ from Thurston’s at the delicate point of recognizing
Seifert fibered pieces: those pieces are identified after a simplicial volume compu-
tation, using Gromov’s vanishing theorem. Another reference, closer to Thurston’s
original proof, is [32].

Topology of 3-manifolds: Problems 2, 4, 24.

2. Is any finite group action on a (geometric) 3-manifold equivalent to an isometric
action?

This problem is a broad extension of the Smith conjecture: Any orientation preserv-
ing periodic diffeomorphism of S3 is conjugated to an orthogonal rotation solved in
[71] (see in particular the history at the end of [94]). When the geometry on M is

˜PSL(2,R), H2 × R, Nil, R3 and Sol, Problem 2 is solved by Williams Meeks and
Peter Scott in [65] using minimal surfaces and topological techniques. The case of
the S2 × R geometry is solved by Meeks and Yau in [66], except for actions of the
alternating group A5. The case when the geometry is S3 or H3 is solved by Jonathan
Dinkelbach and Bernhard Leeb in [35] by making equivariant Perelman’s proof; it
is important to observe that this more recent result applies to an arbitrary finite
group action on S3 or H3 whereas those (non-orientable) actions which have only
isolated fixed points cannot be covered by the Orbifold theorem.

4. Develop a global theory of hyperbolic Dehn surgery.

Let M be a finite volume hyperbolic 3-manifold with k cusps; choose disjoint
horoball neighborhoods of these cusps which are bounded by tori denoted Ti. If
for i = 1, . . . , k, si is a slope, i.e., a non trivial isotopy class of simple closed curves
on Ti, M(s1, . . . , sk) denotes the manifold obtained from M by Dehn filling along
s = (si). The exceptional set is the set of the s’s such that M(s) is not hyperbolic.
Ian Agol and Mark Lackenby find independently conditions on the slopes si that
imply that M(s) is irreducible with a Gromov hyperbolic fundamental group ([1],
[56]). When ∂M is connected, Lackenby and Meyerhoff prove that the exceptional
set contains at most 10 slopes [58], as it was conjectured by Cameron Gordon; the
figure-eight knot has 10 exceptional slopes ([98], §4) and is still conjectured to be
the only knot with this property. A different approach to a quantitative version
of the Dehn Surgery Theorem is due to Craig Hodgson and Steve Kerckhoff us-
ing deformations of hyperbolic cone-manifolds ([45], [46]). When ∂M is connected,
other important universal properties of the exceptional set are also the Cyclic Dehn
Surgery Theorem of Mark Culler, Cameron Gordon, John Luecke, and Peter Shalen



6

[34] which says that there are at most three slopes such that M(s) has cyclic fun-
damental group, and the Finite Dehn Surgery Theorem of Steve Boyer and Xingru
Zhang which says that there are at most six slopes such that M(s) has a finite
fundamental group [22].

24. Show that most 3-manifolds with Heegaard diagrams of a given genus have
hyperbolic structures.

By the Geometrization Theorem, this problem amounts to show that most 3-
manifolds with Heegaard diagrams of a given genus are irreducible and atoroidal.
These properties can be checked on the curve complex of the Heegaard surface in
terms of the distance between the two subcomplexes which are respectively gener-
ated by the meridian systems of each splitting [44]. But Thurston had maybe in
mind a more concrete description of the hyperbolic metric, closer to the description
that comes with the Hyperbolic Dehn Surgery Theorem. In [75] Hossein Namazi
and Juan Souto consider 3-manifolds obtained by glueing 2 copies of a handlebody
by a power φn of a pseudo-Anosov diffeomorphism which satisfies some genericity
assumption. For all sufficiently high powers n, they construct a negatively curved
Riemannian metric on the resulting manifold with curvature arbitrarily close to
−1. Also in this case the Geometrization Theorem implies that those manifolds are
hyperbolic. However, the advantage of the approach in [75] is to show the quasi-
isometry type of the hyperbolic metric in terms of φ and n.

Kleinian groups: Problems 5–14.

In the 60’s, Lipman Bers constructed an embedding of Teichmüller space as a
bounded domain in Cn. He deduced using a topological argument that most points
in the frontier of this embedding did correspond to Kleinian groups which are de-
generate, in the sense that they are not geometrically finite (see also [40]). Explicit
examples of degenerate groups had been given by Troels Jørgensen in [47] (see
also [48], a preprint from around 1975 which describes the fundamental domains
for doubly degenerate once punctured torus groups). But before Thurston, no gen-
eral geometric properties of degenerate Kleinian groups had been established. For
proving the Hyperbolization Theorem, Thurston needed to consider those Kleinian
groups and he began their study. Problems 5 to 14 address mostly those groups.

5. Are all Kleinian groups geometrically tame?

Let G be a finitely generated Kleinian group with infinite covolume that we will
also suppose without parabolic elements for this exposition. By a Theorem of Peter
Scott, the quotient manifold N = H3/G has a compact core, i.e.,, a codimension
0 submanifold M such that the inclusion M ↪→ N is a homotopy equivalence.
Each component of ∂M separates the interior of M from an end of N . The groups
studied by Thurston in §8 and §9 of [98] have the following two properties: (1) M
is boundary-incompressible (i.e., G does not split as a free product or as an HNN
extension over the trivial group) and (2) G is a limit of geometrically finite groups
(i.e., the inclusion homomorphism G → PSL(2,C) is a limit of group embeddings
ρi : G → PSL(2,C) such that for all i, the manifold H3/ρi(G) has a compact core
with convex boundary). A consequence of (1) is that for any boundary component
S of ∂M bounding an end E, the inclusion S ↪→ E is a homotopy equivalence.
Thurston introduced the notion of pleated surface (also called uncrumpled surface
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in [98], §8). He showed that when G satisfies (2), then each end of N is geometrically
tame, i.e., either E is geometrically finite, or there exists a sequence of pleated
surfaces fi : S → E homotopic to the inclusion map S ↪→ E and such that the maps
fi tend to∞. The existence of this sequence has two important consequences. First
N is topologically tame: it is diffeomorphic to the interior of a compact 3-manifold.
Second, N is analytically tame, a property that implies in particular that G satisfies
the Ahlfors conjecture which says that the Lebesgue measure of the limit set of any
finitely generated Kleinian group is 0 or 1; even more, analytical tameness implies
that the action of G on its limit set is ergodic when this limit set has full measure.
The notion of “geometric tameness” which appears in Problem 5 is this one. As
indicated before, Thurston had solved this problem for the Kleinian groups which
satisfy (1) and (2) in [98].

The first breakthrough on Problem 5 is due to Francis Bonahon. He shows in [14]
that any finitely generated Kleinian group is geometrically tame when it satisfies
property (1). In fact, his theorem applies to groups G which satisfy a property
weaker than (1), which requires that no parabolic element of G is conjugated to an
element which is contained in a factor of a decomposition of G as a free product or
as an HNN extension over the trivial group. One of the tools that Bonahon intro-
duced in his proof are the geodesic currents; these are the transverse measures to
the geodesic foliation on the unit tangent bundle of S. Those objects had been much
studied before, in particular in the context of Anosov flows, but they were consid-
ered by Bonahon as a natural generalization of the notion of measured geodesic
laminations.

The next important progress on Problem 5 after Bonahon is due to Richard Canary:
he shows in his thesis, using a beautiful branched covering trick, that, when N =
H3/G is the interior of a compact 3-manifold, then it is geometrically tame [27].
In the 70’s, Al Marden had conjectured that for any finitely generated Kleinian
group G, H3/G is topologically tame, meaning that it is the interior of a compact
manifold [64]; this Marden tameness conjecture is Problem 9 from Thurston’s list.
Therefore, if the Marden conjecture is true, it will follow from Canary’s theorem
that any Kleinian group is geometrically tame.

9. Are all Kleinian groups topologically tame?

The Marden conjecture was proven in 2004 independently by Ian Agol [2] and
by Danny Calegari and David Gabai [25] following distinct approaches. Teruhiko
Soma gave a simplification of the argument of Calegari-Gabai [95] making use of the
notion of “disk-busting” that Agol used. Brian Bowditch exposes a self-contained
proof in [23] which simplifies the original approach and avoids in particular the use
of the “end-reductions” as in the previous references. Canary surveys the history
and applications of the tameness theorem in [30].

10. The Ahlfors measure 0 problem.

Lars Ahlfors showed in [5] that if G is a geometrically finite Kleinian group, then its
limit set either has measure 0, or is equal to the whole sphere and he conjectured
that the same holds for any finitely generated Kleinian group. Thurston had shown
in [98] that when a Kleinian group is geometrically tame and indecomposable, then
it satisfies the Ahlfors conjecture (and furthermore the action of G on the boundary
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of H3 is ergodic when its limit set has full measure). In [27] Canary shows how
to adapt Thurston’s argument to the decomposable case. Therefore the Ahlfors
conjecture follows from the positive answer to the geometric tameness question
(Problem 5) which follows from the truth of the Marden conjecture (Problem 9).

11. Classify geometrically tame representations of a given group.

This problem is the Ending Lamination Conjecture. It comes with

12. Describe the quasi-isometry type of a given group.

Let N = H3/G be an hyperbolic 3-manifold with indecomposable fundamental
group and let M ↪→ N be a compact core. When N is geometrically tame, Thurston
defined end invariants which retain geometric information about the ends of N . By
Bonahon’s theorem, his definition applies to any hyperbolic manifold with indecom-
posable fundamental group. For simplicity, suppose again that G has no parabolic
elements: then each component of ∂M faces exactly one end ofN . If the end E facing
the component S is geometrically finite, one classical invariant of E is the conformal
structure at infinity, which is an element of the Teichmüller space of S. When the
(geometrically tame) end facing S is not geometrically finite, Thurston defined an
ending lamination: it is a measured geodesic lamination on S, well-defined up to the
transversal measure. Problem 11 asks wether this set of invariants, the elements in
Teichmüller space and the ending laminations are sufficient to reconstruct N . When
N has indecomposable fundamental group, the problem can be reduced to the case
when N has the homotopy type of a closed surface. Minsky solves the case when N
has bounded geometry (the length of the closed geodesics is bounded from below by
a positive constant) in [68]. His proof provides also a geometric model for N , i.e., a
metric space constructed directly from the end invariants which is quasi-isometric
to N (this is the “formula” sought for in Problem 12): in the doubly degenerate case,
this model is the metric on S × R such the metric on the slice S × {t} describes a
Teichmüller geodesic between the two ending laminations. Understanding the case
in the presence of short geodesics required a lot of efforts and the development of
new techniques; one can say that much of the study from the geometric view point
of the curve complex of a surface that was initiated by Howard Masur and Yair
Minsky was motivated by this problem. In [69], Minsky shows that the property
that N has bounded geometry in one end can be read on the ending lamination. In
[70], he introduces a new model, which depends on the end invariants. This model
is a metric on S ×R which predicts (in terms of the geodesic in the curve complex
joining the end invariants) which should be the short geodesics of N and where
they should be located; Minsky constructs also a map from this model to N which
is Lipschitz on the thick part. In [20] Jeff Brock, Canary and Minsky show that
this model is biLipschitz equivalent to N ; they announce also the same result (the
existence of a model) for any finitely generated Kleinian group. Another approach
to the same result is also explained in [24]. Therefore, if two hyperbolic manifolds
have the same end invariants, they are biLipschitz equivalent and then by Sullivan’s
No Invariant Line Fields Theorem, they are isometric.

6. Is every Kleinian group a limit of geometrically finite groups?

Let G be a finitely generated Kleinian group. The space of representations of G
into PSL(2,C) that send each parabolic element to a parabolic element is an affine
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algebraic set; the faithful representations with discrete image form a closed subset
DF(G) of this space. The geometrically finite representations without accidental
parabolics form an open subset GF(G) ⊂ DF(G). The question asks if this subset
is dense in DF(G). When G is a surface group and for representations contained in
a Bers slice, this had been conjectured by Bers in [7] and it was solved by Kenneth
Bromberg in [19] using cone manifolds technics. A positive answer to Thurston’s
question in full generality is given independently by Hossein Namazi and Juan Souto
in [76] and by Ken’ichi Ohshika in [80]; previously Brock and Bromberg solve the
case of indecomposable groups without parabolic elements in [21] (see also [20]).
The proofs in [76] and [80] depend on the Ending Lamination Theorem (Problem
11). By this theorem, any hyperbolic 3-manifold is determined up to isometry by
its topology and by its end invariants. Therefore it suffices to show that for any
ρ ∈ DF(G), there is a representation ρ∞ in the closure of GF(G) which has the
same end invariants. The existence of such a ρ∞ comes from a generalization of the
Double Limit Theorem. A different solution to Problem 6, which does not use the
full strength of the Ending Lamination Theorem, has been announced by Bromberg
and Souto.

8. Analyse limits of quasi-Fuchsian groups with accidental parabolics.

One important and difficult step of Thurston’s original proof of the Hyperbolization
of Haken manifolds is the theorem which says that when a sequence of geometri-
cally tame representations into PSL(2,C) of the fundamental group of a 3-manifold
with incompressible boundary which preserves the type of the elements and con-
verges algebraically, then it converges also geometrically (up to possibly extracting
a subsequence) if the limit representation has no accidental parabolics. This last
hypothesis is really necessary since Kerckhoff and Thurston give an example of a
sequence of quasi-Fuchsian representations of a punctured torus group which con-
verges algebraically but such the geometric limit contains a Z+Z parabolic subgroup
[54]. The geometric limit of an algebraically converging sequence of quasi-Fuchsian
groups can even be non finitely generated and for many reasons ([16], [18]). Ohshika
and Soma have announced a complete description of the topological type of the limit
hyperbolic manifolds, and also a classification up to isometry of those limits in the
spirit of the Ending Lamination Theorem [81].

7. Develop a theory of Schottky groups and their limits.

In [98], Thurston studies Kleinian groups which satisfy properties (1) and (2) (cf.
the discussion of Problem 5), in particular surface groups which are limits of quasi-
Fuchsian groups. For those groups he defines the end invariants in §8 and he shows
in §9 the theorem mentioned in the last paragraph: “algebraic convergence without
accidental parabolics implies geometric convergence”. Problem 7 is to develop a
similar study for the Kleinian groups which are limits of Schottky groups, i.e., limits
of geometrically finite free groups.

Brock, Canary and Minsky announce in [20] that using Canary’s work on Problem
5, the solution of Marden’s conjecture (Problem 9) and extending their work on
the Ending lamination Theorem in the boundary incompressible case, they have
constructed biLipschitz models for the geometry of H3/G when G is an arbitrary
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finitely generated Kleinian group; they show indeed that each end of H3/G is quasi-
isometric to an end of a degenerate surface group (with quasi-isometric constants
depending on G).

Jørgensen conjectured that for any finitely generated Kleinian group G, a sequence
of representations ρi : G → PSL(2,C) which converges algebraically to a repre-
sentation ρ without accidental parabolics converges also geometrically to ρ up to
extracting a subsequence. This is proven by Jim Anderson and Canary in [6] when
the domain of discontinuity of ρ is non empty. When the domain of discontinuity
is empty, then any end of H3/ρ(G) is degenerate; it follows from the tameness of
the algebraic limit and from the Thurston-Canary covering theorem [29] that ρ has
finite index in the limit ρ∞ of any subsequence which converges geometrically, and
therefore ρ = ρ∞.

One could also interpet this problem as Thurston asking for a generalization of the
Double Limit Theorem to the context of Schottky groups. He had conjectured a
boundedness criterion for a sequence of geometrically finite representations of a free
group that he formulated in terms close to those of the Double Limit Theorem but
involving laminations in the Masur domain. First attempts to prove this conjecture
are [82] and [54] (see also [28]). In its most general form, when the free group is
replaced by an arbitrary finitely generated Kleinian group, the conjecture is solved
by Namazi-Souto in [76] and by Ohshika in [80] (cf. also the announcement by
Ingkang Kim, Cyril Lecuire and Ohshika of a slightly more general result in [52]).

13. If the Hausdorff dimension of the limit set of a Kleinian group is < 2, is it
geometrically finite?

Bishop and Jones give a positive answer to this question using analytical tools
in [10]. Another solution can be deduced from the geometric tameness of finitely
generated Kleinian groups (which was proven after [10]). Canary observes in [26]
that if N is a geometrically tame hyperbolic 3-manifold which is not geometrically
finite, its Cheeger constant is 0 and therefore λ0(N), the lowest eigenvalue of the
Laplacian on N is 0. By a result of Sullivan, for any hyperbolic 3-manifold N =
H3/G, λ0(N) = δG(2−δG), when the critical exponent δG of G is ≥ 1 or λ0(N) = 1.
Therefore δG = 2 when G is tame and not geometrically finite. By another result
from [10] (true for any non-elementary discrete group of isometries of Hn, for any
dimension) δG equals the Hausdorff dimension of the radial limit set of G. Therefore
the limit set of G has Hausdorff dimension 2.

14. Existence of Cannon-Thurston maps.

Let H be a finitely generated Kleinian group and let M be a compact core of
N = H3/H. It follows from the Hyperbolisation Theorem that there exists a convex
cocompact Kleinian group G such that M is homeomorphic to the quotient by G of
the reunion H3∪Ω(G) of H3 and of the domain of discontinuity of G. The group G is
not unique but its limit set L(G) and the action of G on it are. They can be defined
indeed in purely combinatorial terms, due to the fact that G is convex cocompact:
L(G) is equivariantly homeomorphic to the Floyd boundary of G. Denote by ρ the
isomorphism between G and H induced by the homotopy equivalence M ↪→ N . The
problem asks if there is a continuous G-equivariant map from L(G) to L(ρ(G));
such a map is called a Cannon-Thurston map since it had been shown to exist
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when N is the cyclic cover of an hyperbolic manifold which fibers over the circle by
Cannon and Thurston in [31] (previously Bill Floyd had constructed the map when
N is geometrically finite in [37]). Progress on this problem followed progress on the
Ending lamination conjecture. Minsky solves the case when N has the homotopy
type of a surface and has bounded geometry [68]. Mahan Mj solves the case of
pared manifolds with incompressible boundary and bounded geometry in [59] (see
also [53]). More recently, using the Minsky model for surface groups, Mahan Mj
solves the general case when N has the homotopy type of a closed surface [60]. He
also announces the solution for an arbitrary hyperbolic 3-manifold.

Subgroups of the fundamental group of 3-manifolds: Problems 15–18.

15. Are finitely generated subgroups of a Kleinian group separable?

A group G is LERF (locally extended residually finite) if each finitely generated
subgroup H ⊂ G is separable, i.e., H equals the intersection of the finite index sub-
groups of G which contain H. This algebraic property for a group has important
geometric consequences: Peter Scott had shown in [93] that closed surface groups
are LERF and deduced that any finitely generated subgroup of a surface group
π1(S) is the fundamental group of a subsurface in a finite cover of S. Thurston asks
the question because of its potential implications to the Geometrization Conjecture.
Even if the Geometrization was obtained by quite different routes, the research on
the LERF property has led to a vast literature which shows strong and profound
connections between geometric group theory and hyperbolic manifolds. In particu-
lar, Daniel Wise developed a vast research program to attack this problem which is
centered around the notion of cube complexes [106]. This program is an elaboration
of Scott’s approach (for proving that surface groups are LERF, Scott exploited the
property that the fundamental group of the non-orientable closed surface of Euler
characteristic −1 – which is a quotient of any closed surface – acts on H with a
right-angled pentagon as fundamental domain).

A cube complex is a cell complex whose cells are isomorphic to cubes [−1, 1]n and
such that the attaching maps between cells are isometries. One says that a group
G is cubulated when it acts freely and cocompactly on a simply connected CAT(0)
cube complex. In 2007, Frédéric Haglund and Daniel Wise introduced the notion
of special cube complex which imposes some restrictions on the behavior of the
hyperplanes [41]; they prove that if a compact cube complex X is special and has
a Gromov hyperbolic fundamental group, then all the quasi-convex subgroups of
π1(X) are separable. Wise conjectures in [106] that any compact cube complex
which has a Gromov hyperbolic fundamental group has a finite cover that is special.
This is precisely the conjecture that Agol solves in [4]. The solution of Problems 15
to 18 follows from this.

The separability of quasi-convex subgroups (i.e., convex cocompact subgroups) of a
cocompact Kleinian group is a direct application of this result since Nicolas Berg-
eron and Daniel Wise proved in 2009 that any cocompact Kleinian group is cubu-
lated [8] (subgroups which are not convex cocompact are virtual fibers as a con-
sequence of the tameness and the Thurston-Canary covering theorem). Bergeron
and Wise used a method introduced by Michah Sageev who constructed, from any
finite collection of quasi-convex subgroups of a group G (which satisfy certain con-
ditions) an action of G on a CAT(0) cube complex. This theorem of Bergeron and
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Wise could be proven in such a generality thanks to the recent result of Jeremy
Kahn and Vlad Markovic which says that any cocompact Kleinian group contains
(many) quasi-Fuchsian subgroups [49].

16. Is every irreducible 3-manifold with infinite fundamental group virtually Haken?

This problem contains the question whether the fundamental group of an irreducible
3-manifold contains a surface group when it is infinite. For a cocompact Kleinian
group, this is solved by Kahn and Markovic in [49]; they use in particular fine
properties of the geodesic flow on the unit tangent bundle of hyperbolic manifolds
such as the exponential mixing with respect to the Liouville measure. By the LERF
property of Kleinian groups, any surface subgroup of a cocompact Kleinian group
G provided by this theorem is the fundamental group of a closed surface which is
embedded in an appropriate finite cover of H3/G. This solves Problem 16 for the
case of hyperbolic manifolds which was the remaining case (by the Geometrization
Theorem and since all the other geometries can be handled directly).

17. Does every aspherical 3-manifold have a finite cover with positive first Betti
number?

18. Does every finite volume hyperbolic 3-manifold have a finite cover which fibers
over the circle?

In [3], Agol introduces a new class of groups, the residually finite rational solvable
(RFRS) groups and shows that this class contains all right-angled Artin groups.
He observes that if the fundamental group of a 3-manifold M is not abelian but
RFRS, then M has a first Betti number virtually infinite; he shows also that when
M is irreducible with χ(M) = 0 and π1(M) RFRS, then M virtually fibers over the
circle. In [41], among the properties of special cube complexes they study, Haglund
and Wise show that if a group is cubulated by a special cube complex, then some
finite index subgroup of it embeds into a right-angled Artin group. Therefore, any
cocompact Kleinian group has a finite index subgroup which is RFRS and therefore
Problems 17 and 18 have positive answers.

Computer programs and tabulations: Problems 20–22.

In his PhD thesis, Jeff Weeks wrote the program SnapPea which computes the hy-
perbolic structure of a link complement in S3 when this structure exists (http:
//www.geometrygames.org/SnapPea/). This program provides a lot of useful in-
formation: it shows the Ford domain, it gives the shape of the cusps and shows the
induced tessellation of those, it computes many invariants of the hyperbolic metric
like the volume, the length of its shortest closed geodesic etc. [105]. It allows to tab-
ulate many families of 3-manifolds like the Callahan-Hildebrand-Weeks census of
non compact finite volume hyperbolic 3-manifolds, or the Hodgson-Weeks census of
small volume closed hyperbolic 3-manifolds. It shows evidence for several problems
in the list; in particular in [36], Nathan Dunfield and Thurston check the virtual
Haken conjecture for all 3-manifolds from the Hodgson-Weeks census (all have in-
deed positive virtual Betti number). The Weeks manifold was observed to have the
smallest volume among the known hyperbolic manifolds and was conjectured to be
the closed hyperbolic manifold with smallest volume: this conjecture is now solved
by David Gabai, Robert Meyerhoff and Peter Milley (see [38], [39]). Furthermore,
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SnapPea permits to “feel” the well ordering of hyperbolic manifolds by the volume
as Thurston asks in Problem 22: it gives evidence that this ordering is compatible
with the topological complexity given by the Mom number [38]. SnapPea is a pow-
erful tool, which in addition to helping the intuition with many problems, suggests
also new ones. For instance, its computation of the hyperbolic structure on a link
complement exhibits in all cases a triangulation of this complement by geodesic
ideal tetrahedra; however there are no theoretical proofs yet of the existence of such
a triangulation.

Other software doing computations with 3-manifolds or with surface diffeomor-
phisms can be found at the CompuTop.org Software Archive website http://www.

math.illinois.edu/~nmd/computop/index.html.

Arithmetic properties of Kleinian groups: Problems 19, 23.

19. Find topological and geometric properties of quotient spaces of arithmetic sub-
groups of PSL(2,C).

This problem is more a theme of research than a problem like the ones above.
Certain topological problems from the list were first established for arithmetic hy-
perbolic 3-manifolds: Lackenby proves the Surface subgroup conjecture for arith-
metic manifolds in [57] and Agol applies his criterion for virtual fibering to Bianchi
groups in [3]. A geometric property of arithmetic hyperbolic manifolds that is often
used is that each commensurability class of arithmetic 3-manifolds contains many
representatives with a non-trivial isometry group. An example of this is the fol-
lowing property which characterizes the arithmetic manifolds among all hyperbolic
finite volume 3-manifolds [33]: any closed geodesic γ in an arithmetic hyperbolic
3-manifold N lifts to a geodesic γ̃ in some finite cover Nγ of N which admits an
isometric involution whose fixed point set contains γ̃. One central question, closely
related to questions in number theory like the Lehmer conjecture, is the Short Ge-
odesic Conjecture: it asks wether the injectivity radius of arithmetic hyperbolic
3-orbifolds is bounded from below by a global positive number (cf. [63], §12). For
more information regarding this problem, see the survey by Alan Reid [89].

23. Show that the volumes of hyperbolic 3-manifolds are not all rationally related.

Today, one knows very little about arithmetic properties of volumes of hyperbolic
3-manifolds and this problem is far from being solved; one does not even know of
one single hyperbolic 3-manifold for which one could decide whether its volume
is rational or irrational. However, the algebraic framework for studying arithmetic
properties of volumes is now well established (see [79]). Given a field k ⊂ C, its
Bloch group B(k) is defined as a certain subspace of a certain quotient of the free
Z-module generated by the elements of k \ {0, 1}; there is also a Bloch regulator
map ρ : B(k)→ C/Q. In [79], Walter Neumann and Jun Yang assign to any finite
volume hyperbolic 3-manifold N = H3/G an element β(N) ∈ B(k(N)) ⊂ B(C),
where k(N) is the invariant trace field of N (i.e., the subfield of C generated by
the squares of the traces of the elements of G). They show that, up to a constant
multiple, the volume of N and its Chern-Simons invariant are respectively, the
imaginary part and the real part of ρ(β(N)) (this is one realization of Thurston’s
hint that volume and Chern-Simons invariant should be considered simultaneously
as the real and imaginary parts of the same complex number (see also [107])). It
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is conjectured that when k = Q, the algebraic closure of Q, the imaginary part of
the Bloch regulator map is injective. If this was true, this would imply that two
hyperbolic 3-manifolds with the same volume, have Dirichlet domains which are
scissors congruent. See [77] and [78] for a detailed discussion and for applications
to the study of Chern-Simons invariant.

See also [78] for a discussion of the conjecture that any number field k ⊂ C can ap-
pear as the invariant trace field k(N) of some hyperbolic 3-manifold N , a conjecture
which is directly relevant to Problems 19 and 23.

I thank Brian Bowditch, Jeff Brock, Dick Canary, Alan Reid and Jeff Weeks for
their comments on a first version of this text.
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SMF, Paris 2001.
[14] F. Bonahon, Bouts des variétés hyperboliques de dimension 3, Ann. of Math. 124 (1986),

71–158.

[15] F. Bonahon, Geometric structures on 3-manifolds in Handbook of geometric topology,
eds. R.J. Daverman and R. B. Sher, 2001, Elsevier, 93–164.

[16] F. Bonahon and J.-P. Otal, Variétés hyperboliques avec géodésiques arbitrairement cour-
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