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Abstract—Suppose that f is a positive, nondecreasing, and integrable function in the interval
(0, 1) . Then, by Pólya’s theorem, all the zeros of the Laplace transform

F (z) =

∫ 1

0
eztf(t) dt

lie in the left-hand half-plane Re z ≤ 0 . In this paper, we assume that the additional condition
of logarithmic convexity of f in a left-hand neighborhood of the point 1 is satisfied. We obtain
the form of the left curvilinear half-plane and also, under the condition f(+0) > 0 , the form
of the curvilinear strip containing all the zeros of F (z) .

Key words: Laplace transform, distribution of zeros of the Laplace transform, logarithmically
convex function, regularly varying function.

1. INTRODUCTION

We consider the Laplace transforms of integrable functions concentrated in a finite interval,
which, without loss of generality, we take as the interval (0, 1) . Thus, let

F (z) =
∫ 1

0

eztf(t) dt, f ∈ L1(0, 1). (1)

Such (obviously, entire) functions often occur in different areas of calculus, for example, in spectral
theory, in the theory of difference-differential equations, in the study of nonharmonic Fourier series,
etc. The question of the distribution of the zeros of the functions (1) is of great interest; it was
studied in the papers of Hardy [1], Pólya [2], Titchmarsh [3], Cartwright [4, 5], etc. The following
theorem is the starting point for us.

Theorem A [2]. Suppose that f is an integrable, positive, and nondecreasing function in the
interval (0, 1) . Then all the zeros of the function F (z) lie in the left-hand half-plane Re z ≤ 0 ;
if, moreover, f is not a step-function of the form

f(t) = ci , ti < t < ti+1 , i = 0, . . . , n ; t0 = 0, tn+1 = 1, 0 < ci < ci+1 ,

where the numbers ti are rational, then all the zeros of the function F (z) lie in the half-plane
Re z < 0 .

From the class of functions f satisfying the assumptions of Theorem A, we extract a sufficiently
wide subclass and prove more detailed assertions on the distribution of the zeros of the functions (1)
for it; namely, assertions that all the zeros of the functions (1) belong to well-defined proper
subsets of the set Re z < 0 . The additional condition defining the subclass in question is that
the function f is logarithmically convex in some left-hand neighborhood of the point 1 . For this
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subclass, we obtain the form of the left curvilinear half-plane and, under the condition f(+0) > 0 ,
also the form of the curvilinear strip containing all the zeros of the function (1). In both cases,
the description of the set containing zeros is, in a certain sense, exact. Moreover, we also prove
that if f is logarithmically convex on the whole interval (0, 1) , then, regardless of whether f
is monotone or not, all the zeros of the function F (z) lie in the union of the horizontal strips
(2n− 1)π < | Im z| < 2πn , n ∈ N .

2. LEMMAS

A positive function f in the interval (a, b) is said to be logarithmically convex in this interval if
the function log f is convex in (a, b) . For a twice differentiable positive function, its logarithmic
convexity in (a, b) is equivalent to the condition (f ′)2 ≤ ff ′′ everywhere in (a, b) [6]. In the
general case, the test for logarithmic convexity consists in the following.

Lemma 1. Suppose that f is a positive function in the interval (a, b) . Then for it to be logarith-
mically convex in this interval, it is necessary and sufficient that the function

fx(t) := extf(t)

be convex in (a, b) for all x ∈ R .

Proof. In both the necessary and sufficient parts of the lemma, we deal with continuous func-
tions f and log f . We shall use the fact that for a function ϕ ∈ C(a, b) the convexity ϕ in (a, b)
is equivalent to the condition

ϕ

(
t1 + t2
2

)
≤ ϕ(t1) + ϕ(t2)

2
(2)

for all points t1 , t2 ∈ (a, b) [6]. Then the logarithmic convexity of the function f in (a, b) is
equivalent to the condition

f

(
t1 + t2
2

)
≤

√
f(t1)f(t2) (3)

for all t1 , t2 ∈ (a, b) .
Suppose that the function f is logarithmically convex in (a, b) . Then inequality (3) holds.

Multiplying (3) term-by-term by exp(x(t1 + t2)/2) , we obtain

fx

(
t1 + t2
2

)
≤

√
fx(t1)fx(t2).

Next, for ϕ = fx , the application of Cauchy’s inequality to the right-hand side yields property (2),
which indicates that the function fx is convex.
Suppose that the function fx is convex in (a, b) . Then, for ϕ = fx , inequality (2) is valid; it

can be written as

f

(
t1 + t2
2

)
≤ 1
2
(
ex(t1−t2)/2f(t1) + ex(t2−t1)/2f(t2)

)
. (4)

By assumption, for fixed t1 and t2 , this inequality holds for all x ∈ R , and, in particular, also for
the value of x which yields the minimum of the right-hand side. By differentiation, we find that
for this value of x the summands on the right-hand side of (4) coincide. But, in this case, their
half-sum is equal to their geometric mean, yielding property (3), which indicates the logarithmic
convexity of f . The lemma is proved. �
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Lemma 2 [7]. If ϕ is an integrable and convex function in the interval (0, 2π) (respectively, in
the interval (π/2, 5π/2)), then

∫ 2π

0

ϕ(t) cos t dt ≥ 0
(
respectively,

∫ 5π/2

π/2

ϕ(t) sin t dt ≥ 0
)
.

In what follows, x = Re z , y = Im z , r = |z| , θ = arg z . We denote

Φu(z) =
∫ 1

u

e−ztg(t) dt. (5)

Lemma 3. Suppose that g is a function of bounded variation on [a0 , 1] , 0 ≤ a0 < 1 , with
g(1− 0) �= 0 . Then, for any fixed b0 ∈ (a0 , 1) and u ∈ [a0 , b0] , the following estimate is valid :

|Φu(z)| ≥ C e
−x

r

(
1 + o(1)

)
, x→ −∞, (6)

where C > 0 is independent of u ∈ [a0 , b0] .
Proof. We assume that g(1) = g(1− 0) ; by assumption, g(1) �= 0. Using the left-continuity of g
at the point 1 , we choose δ ∈ (0, 1− b0) so small that

var(g(t) : 1− δ ≤ t ≤ 1) ≤ |g(1)|
2
. (7)

We integrate by parts

Φu(z) = −1
z

(
e−zg(1)− e−zug(u)−

∫ 1

u

e−zt dg(t)
)
. (8)

Next, we split the integral into the summands K1 and K2 corresponding, respectively, to the
closed intervals [u, 1− δ] and [1− δ, 1] . For x ≤ 0 , in view of (7), we obtain the estimates

|K1| ≤ V e−(1−δ)x , |K2| ≤ |g(1)|
2
e−x ,

which, together with the triangle inequality applied to (8), yield the inequality

|Φu(z)| ≥ |g(1)|
2

e−x

r
(1−Me(1−b0)x − V eδx), x ≤ 0,

which means that Lemma 3 is valid. �

3. THE RIGHT BOUNDARY FOR THE ZEROS

Theorem 1. Suppose that the assumptions of Theorem A are satisfied and, moreover, the func-
tion f is logarithmically convex on some interval (1− a, 1) , 0 < a ≤ 1 . Then all the zeros of the
function (1) with a sufficiently large modulus of their imaginary part lie in the set

x ≤ − log
(
y2 ·

∫ π/(2|y|)

0

tf(1− t) dt
)
+ C, |y| > y0 ,

where C is a constant.

Note that Theorem 1 is meaningful (as compared to Theorem A) if, for f(1 − 0) = +∞ , the
following inequality holds:

y2
∫ π/(2y)

0

tf(1− t) dt > π
2

8
f

(
1− π

2y

)
→ +∞, y → +∞. (9)
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Proof of Theorem 1. Since F (z̄) = F (z) , it suffices to consider y > 0 . We have

e−zF (z) =
∫ 1

0

e−ztf(1− t) dt =: G(z),

V (z) := − ImG(z) =
∫ 1

0

e−xtf(1− t) sin yt dt.
(10)

Let us find a lower bound for |V (z)| for sufficiently large y and for x < 0 (recall that, by
Theorem A, F (z) has no zeros for x ≥ 0). We put

N = N(y) := max
(
n ∈ N :

π

2y
+
2πn
y

≤ a
)
, aN :=

π

2y
+
2πN
y

and note that aN ≤ a . Moreover, since π/(2y) + 2π(N + 1)/y > a , we have aN > a− 2π/y and,
therefore,

a

2
< aN ≤ a (11)

for sufficiently large y . Suppose that

V (z) =
(∫ π/(2y)

0

+
∫ aN

π/(2y)

+
∫ 1

aN

)
e−xtf(1− t) sin yt dt =: V1 + V2 + V3.

Since x < 0 , we have

V1 >
2
π
y

∫ π/(2y)

0

tf(1− t) dt.

Further, by assumption, the function f(1 − t) is logarithmically convex on (0, a) . By Lemma 1,
the function e−xtf(1− t) is convex on (0, a) , and hence, by Lemma 2, we have V2 ≥ 0 . Since

V3 = − Im
∫ 1

aN

e−ztf(1− t) dt = Im
(
1
z

∫ 1

aN

f(1− t) de−zt

)

= Im
(
1
z

(
f(+0)− f(1− aN )e−zaN −

∫ 1

aN

e−zt df(1− t)
))
,

in view of (11), for x < 0 we have

|V3| ≤ Ae
−x

r
≤ Ae

−x

y
, A = 3f

(
1− a

2

)
.

The function G(z) , and hence the function F (z) , has no zeros wherever V1+V2 > |V3| . Therefore,
it follows from the estimates for Vi , i = 1, 2, 3 , that F (z) has no zeros wherever

2
π
y

∫ π/(2y)

0

tf(1− t) dt > A
y
e−x , y > y0 > 0.

Taking the logarithm, we obtain the assertion of Theorem 1. �

In view of Theorem A, Theorem 1 and inequality (9) yield the following assertion.
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Corollary 1. Suppose the assumptions of Theorem 1 are satisfied. Then all the zeros of the
function F (z) lie in the union of the set

x ≤ min
(
0, − log f

(
1− π

2|y|
)
+ C

)
, |y| > π

2
,

where C is a constant, with the half-strip x < 0 , |y| ≤ π/2 .
We denote by

(zn)∞1 (where ∀n |zn+1| ≥ |zn|)
the sequence of all zeros of the function F (z) (it is well known [8] that the function (1) has an
infinite set of zeros). Consider conditions on f for which

Re zn → −∞, n→ ∞. (12)

In [9], it was proved that, under the assumptions of Theorem A, all the zeros of the function
F (z) lie in some right half-plane Re z ≥ h > −∞ (i.e., in the vertical strip h ≤ Re z ≤ 0) if and
only if 0 < f(+0) ≤ f(1− 0) < +∞ . Thus, for relation (12) to hold, it is necessary that at least
one of the conditions f(+0) = 0 or f(1 − 0) = +∞ be satisfied. Corollary 1 yields the following
result.

Corollary 2. Suppose that the function f satisfies the assumptions of Theorem 1. In that case,
if f(1− 0) = +∞ , then relation (12) holds for the zeros of the function F (z) .

4. THE LEFT BOUNDARY FOR THE ZEROS

This boundary depends on the behavior of the function f in the neighborhood of the point 0 .
We assume that f(+0) > 0 .

Theorem 2. Suppose that the assumptions of Theorem 1 are satisfied, and also f(+0) > 0 . Then
there exist constants C ∈ R , and H, y0 > 0 such that all the zeros of the function F (z) lie in the
union of the set

x ≥ − log
(
|y|

∫ π/(2|y|)

0

f(1− t) dt
)
+ C, |y| > y0

with the set x ≥ −H , |y| ≤ y0 .
Proof. Suppose that G(z) and aN are the same as in the proof of Theorem 1. It suffices to
consider y ≥ 0 . First, let us show that in any sector cos θ ≤ −δ < 0 there are at most a finite
number of zeros of the function G(z) . To do this, we denote by J1 , J2 the summands in the
integral (10) corresponding to the intervals (0, 1/2) and (1/2, 1) , respectively. Then

|J1| ≤ e−x/2‖f‖1 , x ≤ 0,

and since J2 = Φ1/2 in the notation (5), by Lemma 3, (with g(t) = f(1 − t)) for J2 we have
estimate (6). Hence if H is sufficiently large, then, by the triangle inequality, for x ≤ −H < 0 we
obtain the estimate

|G(z)| ≥ C1
e−x

r
− C2e

−x/2 ≥ C1

r
e−x(1− C3re

x/2).

The last bracket is positive if cos θ ≤ −δ < 0 and r is sufficiently large; hence the intermediate
assertion dealing with the sector is proved.
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Thus, to find the left boundary for the zeros, we need only consider the set

x < −H, y >
r

2
, (13)

where H is sufficiently large. We can assume that a < 1 . Let

G(z) =
(∫ aN

0

+
∫ 1

aN

)
e−ztf(1− t) dt =: G1(z) +G2(z).

In view of (11), by Lemma 3, we have estimate (6) for ΦaN
(z) = G2(z) . Hence, on the set (13),

for sufficiently large H the following estimate is valid:

|G2(z)| ≥ Be
−x

y
, B > 0. (14)

Now, suppose that G1 = U − iV , where

U =
∫ aN

0

e−xtf(1− t) cos yt dt, V =
∫ aN

0

e−xtf(1− t) sin yt dt.

We write

V =
∫ π/y

0

+
∫ 3π/(2y)

π/y

+
∫ aN−π/y

3π/(2y)

+
∫ aN

aN−π/y

=: V1 + V2 + V3 + V4.

Then, since sin yt is negative, V2 < 0 , and the successive applications of Lemmas 1 and 2 yields
the inequality V3 ≤ 0 . Taking into account the fact that the function f(1 − t) is nonincreasing
and also the inequality −x/y ≤M1 < +∞ , on the set (13) we have

0 < V1 < 2e−πx/y

∫ π/(2y)

0

f(1− t) dt < C
∫ π/(2y)

0

f(1− t) dt.

Further, taking (11) and the monotonicity of f into account and denoting IN = (aN − π/y, aN )
and C1 = 3f(1− a/2) , for y > y0 we obtain

|V4| =
∣∣∣∣Im

(
1
z

∫
IN

f(1− t) de−zt

)∣∣∣∣
≤ 1
r

∣∣∣∣f(1− aN )e−zaN − f
(
1− aN +

π

y

)
e−z(aN−π/y) −

∫
IN

e−zt df(1− t)
∣∣∣∣ < C1

e−ax

y
. (15)

But

V =
∫ π/(2y)

0

+
∫ aN

π/(2y)

> 0, (16)

since the integrand in the first summand is positive and, in view of Lemma 1, Lemma 2 can be
applied to the second summand. Since V2 , V3 ≤ 0 , we have

0 < V = (V1 + V4) + (V2 + V3) ≤ V1 + V4 ≤ V1 + |V4|,

i.e.,

|V | ≤ C
∫ π/(2y)

0

f(1− t) dt+ C1
e−ax

y
. (17)
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Treating the function U in a similar way, we can write

U =
∫ π/(2y)

0

+
∫ π/y

π/(2y)

+
∫ aN−3π/(2y)

π/y

+
∫ aN

aN−3π/(2y)

=: U1 + U2 + U3 + U4

and note that U2 < 0 , since cos yt is negative and U3 ≤ 0 by Lemmas 1 and 2. Further, on the
set (13) we have

0 < U1 < e
−πx/(2y)

∫ π/(2y)

0

f(1− t) dt < C
∫ π/(2y)

0

f(1− t) dt,

and for |U4| an estimate of the type (15) is valid, i.e., |U4| ≤ C1e
−ax/y . Similarly to (16), the

following inequality holds:

U =
∫ aN−π/(2y)

0

+
∫ aN

aN−π/(2y)

> 0,

and hence for |U | we obtain estimate (17).
Now, recalling the relation G = U − iV + G2 and using the estimates (14) and (17) (the last

one is also valid for |U |), we obtain

|G(z)| ≥ Be
−x

y
− C2

∫ π/(2y)

0

f(1− t) dt− C3
e−ax

y
. (18)

If H is sufficiently large, then (B/2)e−x > C3e
−ax for x < −H , and it follows from (18) that

G(z) , and hence also F (z) , has no zeros on the set

B

2
e−x > C2y

∫ π/(2y)

0

f(1− t) dt, y > y0.

Theorem 2 is proved. �

In view of Theorem A, Theorems 1 and 2 yield the following assertion.

Corollary 3. Suppose that the assumptions of Theorem 2 are satisfied. Then there exist constants
C1 , C2 ∈ R and H, y0 > 0 such that all the zeros of the function F (z) lie in the curvilinear strip
which is the union of the set

− log
(
|y|

∫ π/(2|y|)

0

f(1− t) dt
)
+ C1 ≤ x ≤ − log

(
y2

∫ π/(2|y|)

0

tf(1− t) dt
)
+ C2 < 0, (19)

where |y| > y0 , with set −H ≤ x < 0 , |y| ≤ y0 .
Remark 1. In view of Corollary 1, the set (19) in Corollary 3 can be replaced by the set

− log
(
|y|

∫ π/(2|y|)

0

f(1− t) dt
)
+ C1 ≤ x ≤ − log f

(
1− π

2|y|
)
+ C2 < 0.
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5. THE CASE OF A REGULARLY CHANGING FUNCTION f

For a regularly varying function f in the neighborhood of the point 1 , the asymptotics of the
integrals appearing in (19) can be calculated, which allows us to simplify the form of the set (19).
The definitions and facts given below are taken from [10].
A positive and measurable function g in the right-hand neighborhood of the point 0 , is called

a regularly varying function of order α ∈ R if, for all λ > 0 ,

lim
t→+0

g(λt)
g(t)

= λα. (20)

A regularly varying function of order α = 0 is called a slowly varying function. A regularly varying
function of order α is of the form g(t) = tαl(t) , where l(t) is a slowly varying function. For any
slowly varying function l(t) , as t → +0, there exists an equivalent continuously differentiable
function l0(t) satisfying the condition

l′0(t) = o
(
l0(t)
t

)
, t→ +0. (21)

We denote
g1(ε) =

1
ε

∫ ε

0

g(t) dt, g2(ε) =
1
ε2

∫ ε

0

tg(t) dt.

Lemma 4. Suppose that the function g is integrable on (0, 1) and is a regularly varying function
of order α > −1 . Then, as ε→ +0 ,

g1(ε) ∼ 1
1 + α

g(ε), g2(ε) ∼ 1
2 + α

g(ε).

Proof. By assumption, g(t) = tαl(t) , where l(t) is a slowly varying function Since the replacement
of the function g by an equivalent function as t→ +0 does not affect the the asymptotics of the
functions g1 and g2 , we can assume that l(t) possesses property (21). By the L’Hospital rule, we
have

lim
ε→+0

g1(ε)
g(ε)

= lim
ε→+0

1
ε1+αl(ε)

∫ ε

0

tαl(t) dt

= lim
ε→+0

εαl(ε)
(1 + α)εαl(ε) + ε1+αl′(ε)

= lim
ε→+0

1
1 + α+ (εl′(ε)/l(ε))

, (22)

which, in view of property (21), yields the required asymptotics for g1 . If g1 is replaced by g2
in (22), then α is replaced by α+ 1, and everything is repeated. The lemma is proved. �
Let us return to Corollary 3. The expressions under the signs of the logarithms in (19) are

proportional to g1(ε) and g2(ε) , respectively, where ε = π/(2|y|) , and g(t) = f(1− t) . Therefore,
using Lemma 4 and relation (20), from Corollary 3 we obtain the following assertion.

Corollary 4. Suppose that the assumptions of Theorem 2 are satisfied and, moreover, the function
f(1 − t) is a regularly varying function of order α ∈ (−1, 0) . Then all the zeros of the function
F (z) lie in the curvilinear strip which is the union of the set −H ≤ x < 0 |y| ≤ y0 with the set∣∣∣∣x+ log f

(
1− 1

|y|
)∣∣∣∣ ≤ C, |y| > y0.

The example of the function f(1 − t) = 1/(t log2 t) , with g1(ε) = 1/(ε| log ε|) , shows that for
α = −1 the functions g1 and g2 are no longer asymptotically proportional, and in this case we
can only rely on Remark 1.
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6. THE DISTRIBUTION OF ZEROS IN THE HORIZONTAL STRIPS

Theorem 3. Suppose that the function f is integrable and logarithmically convex in the interval
(0, 1) . Then all the zeros of the function (1) lie in the union of the horizontal strips

(2n− 1)π < | Im z| < 2πn, n ∈ N.

Proof. Suppose that

G(z) = e−zF (z) =
∫ 1

0

e−ztf(1− t) dt =: U(z)− iV (z).

It suffices to show that the function G(z) has no zeros in the strips

2πn ≤ y ≤ (2n+ 1)π, n ∈ Z+.

First, suppose that (
2n+

1
2

)
π ≤ y ≤ (2n+ 1)π, n ∈ Z+. (23)

If n = 0, then sin yt > 0 for 0 < t < 1 and, since f > 0 , we have V > 0 . If n ≥ 1 , then, taking
the integrand as e−xtf(1− t) sin yt , we can write

V (z) =
∫ π/(2y)

0

+
n−1∑
k=0

∫ π(5/2+2k)/y

π(1/2+2k)/y

+
∫ 1

π(1/2+2n)/y

=: I1 +
n−1∑
k=1

Vk + I2.

In both I1 , and I2 , we have sin yt > 0 ; this is obvious for I1 , but if we consider I2 , then
π(1/2 + 2n)/y < t < 1 , and hence π/2 + 2πn < yt < y ≤ (2n + 1)π (we have taken into account
the right-hand inequality in (23)). Therefore, I1 + I2 > 0 . Successive applications of Lemmas 1
and 2 yield the inequality Vk ≥ 0 . Hence V > 0 in the set (23), and on this set there are no zeros
of G(z) .
It remains to consider the strips

2πn ≤ y < π
2
+ 2πn, n ∈ Z+. (24)

Now, we proceed with the function U(z) in a similar way. If n = 0, then cos yt > 0 for 0 < t < 1
and, therefore, U > 0 . For n ≥ 1 , we can write

U(z) =
n∑

k=1

∫ 2πk/y

2π(k−1)/y

+
∫ 1

2πn/y

=:
n∑

k=1

Uk + J ,

where the integrand is e−xtf(1− t) cos yt . By Lemmas 1 and 2, we again have Uk ≥ 0 , and J > 0
because of the positivity of the integrand: indeed, if 2πn/y < t < 1 , then, in view of the right-hand
inequality in (24), we have 2πn < yt < y ≤ π/2 + 2πn . Hence U > 0 on the set (24), and on this
set G(z) has no zeros, either. Theorem 3 is proved. �

Theorems A and 3 yield the following assertion.
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Corollary 5. Suppose that the function f is integrable, nondecreasing, and logarithmically convex
in the interval (0, 1) . Then all the zeros of the function (1) lie in the union of the half-strips

Re z < 0, (2n− 1)π < | Im z| < 2πn, n ∈ N.

As an example, consider the following function of Mittag–Leffler type of the order of unity:

E1(z ; µ) =
1

Γ(µ− 1)
∫ 1

0

ezt(1− t)µ−2 dt, µ > 1.

(see [11]). For 1 < µ < 2 , the function f(t) = (1− t)µ−2 satisfies the assumptions of Theorem 3.
It is well known [12] that for 1 < µ < 2 all the zeros of the function E1(z ; µ) lie in the half-plane
Re z < µ− 2 . Combining this with Theorem 3, we obtain the following result.

Corollary 6. For 1 < µ < 2 , all the zeros of the function E1(z ; µ) lie in the union of the
half-strips

Re z < µ− 2, (2n− 1)π < | Im z| < 2πn, n ∈ N.
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