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ABSTRACT 

The Wiener-Ikehara theorem was devised to obtain a simple proof of the prime number theorem. It uses 
no other information about the zeta function ~(z) than that it is zero-free and analytic for Rez/> 1, apart 
from a simple pole at z = 1 with residue 1. In the Wiener-Ikehara theorem, the boundary behavior of a 
Laplace transform in the complex plane plays a crucial role. Subtracting the principal singularity, a first 
order pole, the classical theorem requires uniform convergence to a boundary function on every finite 
interval. Here it is shown that local pseudofunction boundary behavior, which allows mild singularities, 
is necessary and sufficient for the desired asymptotic relation. It follows that the twin-prime conjecture 
is equivalent to pseudofunction boundary behavior of a certain analytic function. 

1. INTRODUCTION 

Relaxing the boundary behavior of  the Laplace transform in the classical Wiener- 
Ikehara theorem [ 10,27]; cf. [ 15,16], we obtain an extension which includes a result 
in the opposite direction. 

Theorem 1.1. Let S(t) vanish for t < O, be nondecreasing, continuous from the 
right and such that the Laplace transform 
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(1.1) 

oo 

f(z):CS(z): f s(t)e-Z'dt=l f 
0 0 -  

1 
=-12dS(z ) ,  z = x + iy, 

Z 

exists f o r  Rez = x > 1. For some constant A, let g(z) denote the analytic funct ion 

given by 

A 
(1.2) g ( x + i y ) = f ( x + i y )  x + i y - l '  x > l .  

(i) Suppose that g(x  + iy) has a distributional limit g(1 + iy) as x x a 1, which on 

everyfini te interval {-IZ < y < tz} coincides with a pseudofunction g~(1 + iy). 

Then 

(1.3) e - t S ( t )  -+ A as t ~ oo. 

(ii) Conversely, the limit relation (1.3) implies that g(x + iy) converges distribu- 

tionally to a pseudofunction g(1 + iy) as x ",4 1. 

Locally uniform and local L 1 convergence imply distributional convergence. 
A pseudofunction on IR is the distributional Fourier transform of  a bounded function 
which tends to zero at -boo. A continuous or integrable function g(1 + iy) on a 
compact interval {-)~ ~< y ~< ~,} can be extended to an integrable function on R, 
which is a special case of  a pseudofunction. 

The classical Wiener-Ikehara theorem dealt with f * ( z )  = £ dS(z )  and g*(z) = 

f * ( z )  - A / ( z  - 1), rather than f and g. The distinction is unimportant until 
one considers a converse. Wiener and Ikehara postulated that g*(x + iy) extend 
analytically, or at least continuously, to the closed half-plane {x ~> 1}; cf. [28, 
Theorem 16]. Their theorem represented an important breakthrough: in related 
results, Landau, and Hardy and Littlewood, had to impose growth conditions on 
g*(x + iy) as y --> -t-oo. For details, see [18, Section 66], [15,16]. 

The standard proofs for the Wiener-Ikehara theorem make use of  the approx- 
imate identity given by the Fej6r kernel for R. The distributional case requires 
higher-order kernels. 

2. FROM W I E N E R - I K E H A R A  TO PRIME NUMBER THEORY 

Background material in number theory can be found in many books; classics are 
[18] and [7]. To obtain the PRIME NUMBER THEOREM (PNT) from Wiener- 
Ikehara, one takes S(t) equal to 

(2.1) Sl(t)=O(et) -= Z A(n), 
l ~ n ~ e  t 
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where 7z(v) = Y~,z~<v A(n) is Chebyshev's function. The symbol A(.) stands for von 

Mangoldt's function, 

(2.2) A(n) = 

0 

log p 

0 

i fn  = 1, 

if  n = pa with p prime and a ~> 1, 

if n has at least two different prime factors. 

Always taking Re z > 1, one may use the Euler product for the zeta function, 

( ( z ) = Z ~ - =  1--I l _ p - Z '  
n =  1 p prime 

to obtain the generating function 

~ A(n) p - Z l o g p  _ d 

~ -- ~ 1 -  p -z  dz 
n = 1 p prime 

log ((z). 

Writing f l  (z) for f (z) in the present case, one has 

(2.3) 

(x) 

fl(Z) =/2SI(z) = 1 e_ZtdO(et )  = A(n) ('(z) 
z j -~ nZ z¢(z)" 

O-- 

The function f l  (z) is analytic for {Re z 7> 1 }, except for a simple pole at the point 
z = 1 with residue 1. Indeed, ((z) is analytic and flee of zeros for {Rez >~ 1}, and 
has a simple pole at the point z = 1 with residue 1. Thus by the (classical) Wiener- 
Ikehara theorem, 

Sl (t) ~ e t a s t - - + ~ ,  ~ ( v ) =  Z l °gp"~v  asv--+ec.  
pe~ <~ v 

In the final summation, the powers p~ with o~ ~> 2 may be omitted without affecting 
the asymptotic relation. Furthermore, log p ~ log v for 'most' primes p ~< v. One 
thus obtains the PNT: 

Z V 
a s  v --+ ~ ) .  (2.4) 7r(v) 1 ~ logv 

p<~v 

Turning to twin primes: there is still no proof that there are infinitely many. 
However, there is ample numerical support for an even stronger statement: the 
TWIN-PRIME CONJECTURE (TPC) of Hardy and Littlewood [6, p. 42]; cf. [23-25]. 
Denoting the number of prime pairs (p, p + 2) with p ~< v by rc2(v), the TPC asserts 
that 

V 
(2.5) zr2(v) "~ C21G-~v as v --+ oo, 

39 



or equivalently, 

(2.6) Z log p • log(p ÷ 2) C2v. 
p ,p+2  prime, p<~v 

Here C2 > 0 is the so-called twin-prime constant, 

  --2ri/1 i ]  
p > 2 "  (P 1)2 " 

A natural generating function associated with the twin-prime problem is the 
(adjusted) Dirichlet series 

(2.8) f2(z) = _1 ~ A(n)A(n + 2) (Rez > 1). 
Z n z 

n = l  

The TPC--see (2.6)--is equivalent to the relation 

( 2 . 9 )  ~2(V) = Z A(n)A(n + 2) ~ C2v as v --+ ec, 
n<~v 

because the contribution of the prime powers p" with o~ ~> 2 can again be neglected. 
In a recent preprint, Arenstorf [2] made a serious effort to derive the TPC from 

a Wiener-Ikehara theorem. As of this writing, it is not clear whether the classical 
Wiener-Ikehara theorem, involving continuous boundary values, will be adequate. 
The distributional form might provide a more promising approach. Indeed, set 

(2.10) S2(t) = ~2(et), so that fz(z) = £$2(z), 

and define 

C2 
(2.11) g2(z )=f2(z )  - - -  (Rez > 1). 

z - 1  

Then Theorem 1.1 implies 

Corollary 2.1. The Twin-Prime Conjecture is equivalent to (local) pseudofunction 
boundary behavior o f  the function {y -+ g2(x + iy)} as x "a 1. 

Cf. also the final remarks in Section 7. 

3. AUXILIARY RESULTS ON DISTRIBUTIONS 

We consider locally integrable functions and more general distributions on R, 
continuous linear functionals on the testing space C~(R).  The latter consists of 
the C ~ functions q5 of compact support, the testing functions, supplied with an 
appropriate notion of convergence. Applying distributions G to testing functions 4} 
one obtains a bilinear ffmctional, denoted by (G, 4}). 
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When we deal with holomorphic functions G(z) = G(x + iy) on the half-plane 
{x > 0}, it is sometimes convenient to denote a boundary distribution by G(iy). By 
definition, functions or distributions G(x + iy) = Gx (iy) converge to a distribution 
G(iy) as x "N 0 if 

(3.1) (Gx(iy), 49(y)) ~ (G(iy), 49(y)) 

for all testing functions 49. We need a standard result on the restriction of  distribu- 
tions to the class C~[-)~,  ~.] of  the testing functions with support in [-~., ;~]. For 
m 6 No, let C~[-)~, )~] denote the Banach space of  the C m functions 49 with support 
in [-)~, )~], provided with the norm 

1149 II = sup l Din49 (Y) l" 
Y 

Proposi t ion 3.1. Let x "N 0 through a sequence {Xj } and suppose that corre- 
sponding distributions Gx(iy) converge to G(iy) in the sense of (3.1). Then for 
every compact interval [-~,  )~], there exists an integer m = m()~) >>. 0 such that 
the functionals Gx(iy), G(iy) on C~[-)~, ~] can be extended to continuous linear 
functionals on the space C~[-)~, )q, and 

(3.2) (Gx(iy),49(y))-+ (G(iy),49(y)) asx  = x j  "NO 

for every function 49 in C~ [-)~, )q. 

Cf. the books [22, Section III.6], [21, Theorem 6.8] and [9, Section 2.1]. 

Fourier  transforms 

Our aim is to prove Theorem 1.1, which involves pseudofunction boundary behavior 
of  Laplace transforms Gx (y) = G(x + iy). It is then convenient to use the theory of  
distributional Fourier transforms. Its natural setting is Schwartz's space of  tempered 
distributions, the continuous linear functionals G on the Schwartz space S. The 
space S consists of the functions 49 in C~  (R) and their limits under the family of  
seminorms 

Nrs(49) =sup]xrDS49(x)l , r,s = 0 ,  1,2 . . . .  ; 
X 

the seminorms are used to define convergence in S. The tempered distributions on 
R form the dual space S'  of  S. It consists of  the locally integrable functions of  
at most polynomial growth and their distributional derivatives of  any order. Such 
functions or distributions Gx (y) converge to a tempered distribution G(y) as x `N 0 
if 

Gx(y)49(y)dy --+ (G(y), 49 (y)} 
N 

for every function 49 6 S. 
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A 

The Fourier transform G of  G 6 8~ is defined by the relation 

for all testing functions q~. Fourier transformation on S~ is continuous, one to one 
and onto; cf. [22,21,9]. I f H  is the Fourier transform of  G, then G is equal to 1/(2rr) 
times the reflected Fourier transform of  H. 

A tempered distribution G on IR is called a pseudomeasure i f  it is the Fourier 
transform of  a bounded (measurable) function b(.); it is called a pseudofunction 
if  it is the Fourier transform of a bounded function which tends to zero at -4-ec. 
Cf. Katznelson [12, Section 6.4]. By Fourier inversion and the Riemann-Lebesgue 
theorem, every function in L ~ (1R) is a pseudofunction. A nontrivial example of  a 
pseudomeasure on R is the distribution 

OG 

(3.3) - - - i  -- lira _ _ 1  -- lim f e-Xte -iyt dr. 
y - iO x"~o x + iy x',~o 

0 

It is the Fourier transform of  the Heaviside function l+(t),  which equals 1 for t ~> 0 
and 0 for t < 0. Other examples are the delta distribution or Dirac measure, and the 
principal-value distribution, p.v. ( l /y ) .  In the case of  boundary singularities, and 
roughly speaking, first order poles correspond to pseudomeasures, slightly milder 
singularities to pseudofunctions. 

L e m m a  3.2. 
represented in the form 

Every pseudomeasure or pseudofunction G = b on R can be 

f 
(3.4) G(y) = lim Gx(y), Gx(v) = I e-xltlb(t)e -iyt dt (x > 0). 

x"~0 J 
R 

One actually has 

(3.5) <Gx(y), qb(y)) --+ </~(y), ~b(y)), Vq~ ~ C2(R). 

Proof. Relation (3.4) follows immediately from the continuity of  Fourier transfor- 
mation: for bounded b(-) and x ",, 0, the product e-Xltlb(t) tends to b(t) in S ~. 

The more precise relation (3.5) illustrates Proposition 3.1 and will be used later 
on. It follows from the observation that ~(t) = O{1/(t 2 + 1)} and an inversion of  
the order of  integration: 

(3.6) <Gx(y),~(y))= f e-Xltlb(t)~(t)dt-+ f b(t)~(t)dt 

N N 

= (/~(y), qS(y)) as x "N 0. [] 

Formula (3.4) can be used to justify formal inversion of the order of integration in 
some situations. As an important consequence we have a Riemann-Lebesgue type 
lemma for pseudofunctions G: 
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L e m m a  3.3. For any pseudofunction G on IR and any testing function O, 

(3.7) (G(y), 4)(y)e iuy) -+ 0 as u -+ -t-ee. 

For this it is sufficient if O is in C2(IR). 

Proof.  By representation (3.4), 

(G(y), (o(y)eiuy} = limo< / e-Xltlb(t )e-iyt dt, c/)(y)eiUy ) 

= lim f e-Xltlb(t)dt f e-i(t-u)Yc/)(y)dy 
x'aO J 

R R 

N 

The final integral tends to zero as u --+ +ec ;  by the proof of  Lemma 3.2, the result 
holds for every function ~b in C2(R). [] 

There is also a result in the other direction which can be used to recognize local 
pseudofunction behavior. 

L e m m a  3.4. Let G be a tempered distribution such that (3.7) holds for any testing 
function 4). Then G is locally equal to a pseudofunction. 

Proof.  Let r be a testing function which is equal to 1 on [ - R ,  R] and define G1 = 
Gr .  We now use the fact that for a distribution with compact support, the Fourier 
transform can be represented by a formula, similar to the one for an L 1 function; c f  
[9, Theorem 7.1.14]. In particular, the inverse Fourier transform of our G t is equal 
to the function 

1 H(t) = ~-ff(G1 (y), r(y)eity). 

A 

Then GI(y)  -- H(y), and by (3.7), 

2rr H(t )  = (G(y)r(y), r(y)e ity) = (G(y), r2(y)e ity) --~ 0 

Thus G1 is a pseudofunction, and we have G = G1 on ( - R ,  R). 

a s  t ~ ± o o .  

[]  

4. A BASIC A U X I L I A R Y  RESULT 

Wiener [27], and subsequently, Landau [19] and Bochner [3], based the proof  of  
the classical Wiener-lkehara theorem on a nonnegative approximate identity { K J ,  
0 < ~. ~ ec, for which the Fourier transforms Kx have support in [-)~, L]. They 
used the 'Fej6r kernel for R ' :  
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(4.1) 
1 - cos)~t )~ (s in)~t /2]  2 

Kz(t) = )~KO~t) -- 
7c)~t 2 27c \ ~t/2 ] '  

K z ( Y ) = f K ~ ( t ) e - i y t d t = {  1-'yl/)~O forf°r ly, ~< ) ~ . , y ,  > X. 
N 

The functions Kz, ~. ~ oc, form an approximate identity in L 1 (R): for any 
L 1 function f ,  one has Kx * f ~ f ,  both in L 1 and in the sense of almost 
everywhere convergence. The functions in an approximate identity converge to the 
delta distribution. 

We need nonnegative approximate identities whose Fourier transforms have a 
suitable degree of smoothness: 

Lemma 4.1. For E V E N  q c N and )~ > O. let 

c { s in t / q~q  
(4.2) Kq(t )= q~ t/q ] '  Kq,~.(t)=)~Kq()~t), 

where Cq is chosen such that fR Kq = 1. Then for 0 < )~ ~ c~, the fuff.nctions Kq,z (t) 
form a nonnegative approximate identity. The Fourier transform Kq.L has support 
in [-)~, )J and is of  class C q-2 on R. 

Proofi That the functions Kq,~ form an approximate identity follows from the 
fact that they have integral 1, and for )~ --+ cx~ tend to zero uniformly outside any 
neighborhood of the point 0. In the case q - 4 one obtains the 'Jackson kernel for 
N'. For large q one has Cq ~ c / v ~  with c > 0. An exact formula for Cq goes back 
to Laplace; cf. [8], [26, p. 123] and [13]. 

For the second part one may change the scale and consider the qth power M q (t) 
of the simple kernel M(t) = (sint)/(Tvt). The latter has Fourier transform M(y) 
equal to 1 for [y[ < 1 and equal to 0 for ]y[ > 1. Thus M q is the qth convolution 
power of M; by induction, it has support [ -q ,  q] and is of class C q-2. [] 

Proposition 4.2. Let a(t)  vanish for t < O, be nonnegative for t >>. 0 and sueh that 
the Laplace transform 

o o  

(4.3) F(z) = £~(z) = f a(t)e-Zt dt, z = x + iy, 

0 

exists for x > O. Suppose that for x "~ O, the analytic function 

(4.4) G ( x + i y ) = F ( x + i y ) - A / ( x + i y ) ,  x>O,  

has a distributional limit G(iy), which on the finite interval {-Iz < y < I~} coincides 
with a pseudofunction Gu(iy). Then for 0 < )~ < lz and sufficiently large even q = 
qO0, the integral 
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(4.5) f K q , ) ~ ( u - - t ) o ( t ) d t ~ f ( T ( u - - ~ ) / ) ~ ) K q ( ~ ) ) d  ~) 
R --oo 

exists and tends to A [ Kq (v) dv = A as u --> ~ .  
d 
R 

Proof. For x > 0, the convolution of  the L 1 function ~(t )e  -xt and Kq,x(t) has 
Fourier transform F (x + iy) Kq,)~ (y), so that by Fourier inversion 

(4.6) f c r ( t ) e - x t K q ' ~ ( u - t ) d t =  ~zTr d f F(x +iy)Kq,~(y)e iuy dy. 
-~. 

The special function Fl(x  + iy) = 1/(x + iy) is the Laplace transform of  the 
Heaviside function 14. Hence by (4.6) applied to a = 1+ and F = F1, 

f ' f  e-XtKq,x(u - t ) d t  = ~ Fl(x  + iy)Kq,~(y)eiUY dy. 

0 -)~ 

One now subtracts A times this identity from (4.6) and then replaces F - AF1 by 
G. The result may be written as 

(4.7) 

oo 

f ¢(t)e-XtKq,x(u - t) 

0 

o o  

dt = A f e-XtKq,x(u - t )d t  

0 

' f  + ~ G(x -t- iy)Kq,)~(y)e iuy dy. 

- )~ 

Observe that Kq,x is in L 1 and that ~'q,X is of  class C~-Z[-)~, X]. By the 
hypothesis G(x + iy) has a distributional limit G(iy) as x "~ 0. We now fix an 
even q/> m + 2, where m is a number provided by Proposition 3.1 for a sequence 
x = xj  "~ O. We then use Kq,)~(y)e iuy as testing function ~b(y) in (3.2). Then for 
x = xj  ",a O, the right-hand side of  (4.7) has the finite limit 

(4.8) 

OO 

f 1 A Kq.,k(u -- t ) d t  + ~-ff(G(iy), Kq,;~(y)eiUy). 

0 

The left-hand side of  (4.7) has the same limit. Since the product (r (t)Kq,~ (u - t) is 
nonnegative, application of  the monotone convergence theorem will show that this 
product is integrable over (0, ~ ) .  Letting x : xj  "~ 0 in (4.7), one obtains the basic 
relation 

(4.9) 

o o  o o  

1 

o 0 
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We finally use the fact that on ( - / z ,  # ) ,  the distribution G(iy) is equal to a 

pseudofunction G,  (iy). Thus by the 'R i emann-Lebesgue '  L e m m a  3.3, with G,  (iy) 
instead of  G(y), the last term in (4.9) tends to zero as u -+ co. Substituting 
u - t = v/)~ and replacing Kq,)~(v/)O by LKq (v), one concludes that 

Xu ~ u  

l im f cr(u - v /L)Kq(v)dv= A lim f Kq(v)dv= A. 
b/---> OQ U --~- OO 

- -OO - -OQ 

[] 

5. PROOF OF THEOREM 1.1, FIRST PART 

We set e-tS(t) = cr (t). Then for R e z  = x > 0, 

O~ 

(5.1) F(z) d-----ef/2cr (Z) = ] S(t)e -(z+Dt dt = f ( z  + 1), 
t l  

0 

def A A 
G(z) = F ( z ) - - - =  f ( z  + l ) - - - = g ( z  + l); 

Z Z 

cf. (1.1), (1.2). By  the hypotheses o f  Theorem 1.1, part  (i), the functions ~r, F and 
G will satisfy the conditions o f  Proposit ion 4.2 for any # > 0 and 0 < ~ < /z .  Thus 
conclusion (4.5) can be applied to the present situation; for given Iz and )~, we have 
to use a sufficiently large (even) number  q = q(£).  Because {Kq.x}, )~ --+ cx~, is an 
approximate identity, one expects that the first member  o f  (4.5) will be close to cr (u) 
when )~ is large, provided q(;~) can be kept under control! Let us investigate. 

By  the monotonici ty o f  S, one has o- (w I) >/~r (w)e w-w' i f  w I ~> w. For any number  
r > 0, (4.5) thus shows that 

~ u  r 

A = u-,oclim f v/)~)Kq(v)dv >~ limsuPu~cc v/L)Kq(v)dv 
- - (2~ - - F  

r 

~> l im sup cr ( u u ~ o a  - r/)~)e-2r/)~ f K q ( v ) d r .  

- - r  

As a result, 

e2r/;~ 
(5.2) l imsup cr (t) ~< A. 

t-+~ fr_ r Kq (V) dv 

Conclusion for our fixed # ,  )~, q and r: the function cr is bounded. 
Referring to (5.1), it follows that the boundary distributions F(iy) = ~ (y) and 

G(iy) are pseudomeasures;  A/z  is the Laplace t ransform of  the constant function A. 

L e m m a  3.2 now shows that the limit relation 

(5.3) {G(x + iy), ¢(y)} ~ {G(iy), ¢(y)) as x xa 0 
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holds for any function q~ of  class C g (R). We combine this information with the fact 
that G(iy) is equal to a pseudofunction G,(iy)  on any finite interval ( - # , / z ) .  As 
a result, the proof of  Proposition 4.2 can be applied with q -- 4 for any compact 
interval [-~., )q; the function KA4,Z is of  class cg[-)~, )q. 

The conclusion is that we can use (5.2) with q = 4 for every pair of  positive 
numbers )~ and r. Taking r = ~ one obtains an upper bound for limsupcr(t) of  
the form C()OA, where C()0 is close to 1 for large )~. Under the hypotheses of 
Theorem 1.1 we may indeed let )~ go to cx~ to conclude that 

(5.4) limsupcr(t) ~< A. 

Denote supo-(t) by M. Taking R > 0 and observing that K4(v) ~ C/v 4, one 
obtains an estimate from below: 

R R 

lim._+~info" (u + R/~.)e 2R/z f K4 (v) dv >. limu_+~inf f - 4 (V) dl) 

- R  - R  

- R  oo 

>limf,,__,~ . . . .  lim sup . . . .  lim sup [ - • . , _ , ~  a 

]R --ec R 

cx3 

>~ A - aMc f (i/,4) d, = A - (2 /3)MC/R 3. 

R 

This gives a lower bound for lim inft~,c ~ (t) which for large )~ and related large R 
is as close to A as one wishes. Conclusion: 

liminfcr(t) ~> A. 
t --> (x) 

Since ~r (t) = S(t)e -t,  this completes the proof of  Theorem 1.1, part (i). 

6. THE S E C O N D  P A R T  OF T H E O R E M  1.1 

It is convenient to continue with the notation introduced in Section 5. In addition, 
w e  s e t  

(6.1) a*(t) d---ef~r (t) - A- l+(t)  = e-tS(t)  - A .  l+(t).  

Thus by the hypotheses of  part (ii) in Theorem 1.1, 

c r* ( t )=0  f o r t < 0 ,  cr*(t)--+0 a s t - + e o ;  

in particular o-* (t) is bounded. In view of  these properties, the functions 

e-Xtcr*(t) converge to c~*(t) 
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boundedly on R as x "a 0, and hence, distributionally. It follows that the Fourier 
transform of  e-Xta* (t), namely, 

(6.2) 

oo 

f f z e-Xt a*(t)e  -iyt dt  = {a(t) - A}e -(x+iy)t dt  = F (x  ÷ iy) x ÷ iy 

R 0 

= G(x + iy) = g(1 + x + iy), 

converges distributionally to the Fourier transform 6*(y)  as x "N 0. We may of 
course denote the distributional limit 6*(y)  of  g(1 + x + iy) by g(1 + iy). Since 

o-*(t) --+ 0 as t --+ + o o ,  

the distribution g(1 + iy) is a pseudofunction. 

7. F I N A L  R E M A R K S  

T h e  prime number  theorem. Newman [20] has given a nice proof for the 
PNT by complex analysis. He used a Tauberian theorem of  Ingham [11] involving 
Dirichlet series, for which he found a clever proof by contour integration. The 
method is easily adapted to the case of  Laplace transforms; cf. [1,14-16,29]. 
Newman's contour integration method can also be modified to obtain a proof of  
the classical Wiener-Ikehara theorem by complex analysis; see [ 17]. 

Twin primes. Developing his sieve method, Brun [4] showed that Yg2(V) = 

0 (v / log  2 v), so that ~2 (v) in (2.9) is O(v); cf. [5, Theorem 3.11 ].  Thus the function 

cr2(t ) = e- t  ~2(e t) = e - t  S2(t) 

is bounded. It follows that the functions 

e-Xtcrz(t) converge to o-2(t) 

boundedly on R as x "N 0, which implies distributional convergence of  the Fourier 
transforms. By the definition of  f2(') this means that f z (x  + iy) converges dis- 
tributionally to the Fourier transform ~2(y) as x "a 1; cf. (2.8), (2.10). By the 
boundedness of  crz(t), the latter transform is a pseudomeasure. Hence f2(x  + iy) 
converges to a pseudomeasure f2(1 + iy) as x "a 1. To prove the twin-prime 

conjecture, one has to show that 

C2 i C2 
g2(1 + iy) = f2(1 + iy) -- lim -- ~2(Y) + - -  

xNa x - 1 + iy y - -  iO 

is (locally) equal to a pseudofunction; see Corollary 2.1 and cf. (3.3). 
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