Lommel Polynomials

Dr. Klaus Braun
taken from [GWa] source

The Lommel polynomials g, (x), defined by ([GWa] 9-6)

<[n/2]
0. (%) = i( " (n-m)! T+l-m)

m!(n -2m)! m!

fulfill
gn+1(x) :(n+1)gn(x)_Xgn—1(x) ! go(x) = gl(x) ::1 *
Putting
l N 2
hn(g) =X gn(X )

a relation between the modified Lommel polynomials and the Bessel function is given by
Hurwitz’'s asymptotic formula ([GWa] 9-65):
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Lemma: Being {ak}keN resp. {jk}k y the zeros of j (2//x) resp. Jy(x) i.e. {a = j, /4}ng ,
putting oo ::i 1  thenitholds ([TCh] 7, I, theor. 6.4, [DDI])
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From [GWa] 6-5, 13-6, 13-24, we recall
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We summaries the above in

Proposition 1: For the Lommel polynomials the following relations hold true:
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Lemma (Fourier-Bessel expansion [GWa] 18): Let f(x) be defined arbitrarily in the interval

(0,1) and let jﬁ f (x)dx exist and (if it is an improper integral) let it absolutely convergent
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and j being the zeros of J (x).Let

a, = 7J.xf(x)\] (ji,, X)dx where v>-1/2.
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Let x be any interval point of an interval (a,b) such that 0<a<b<1 and such that f(x) has
limited total fluctuation in (a,b). Then the series
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We recall Sheppard’s result from [GWa] 18-27, i.e.
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In [DDi] proposition 1, iii) is proven building a proper Riemann-Stieltjes integral:

The term
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is analytic outside any circle that contains the finite zeros of JO(E). Hence it possesses a
X

Laurent expansion about the origin that converges uniformly on and in any annulus whose
inside boundary has the finite zeros of Jo(l) in its interior. Let C be the contour that encircles
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the origin in a positive direction and that lies within the annulus. Then it holds [DDi]
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Let a(x)the non-decreasing step function having increase of
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then it holds [DDi]
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Remark:
The Stieltjes inverse formula gives the relation to hyper-functions.
The Riemann-Stieltjes integral representation then leads to proposition 1 iii) and

The Lommel polynomials build an orthogonal polynomial system of a Hilbert space H_, with

£>0.

The relation to the Bagchi Formulation of the Nyman RH criterion is obvious [KBr].



We recall Euler’s analysis of the zeros of the Bessel functions. With the notations we follow
[GWa] 15-41, 15-5. We use the abbreviation j, =—], to write the zeros of J,(x) in the form

{ix }kez_{o}. The zeros of J (2./x) are taking to be «,,q,,q,,......i.e. {¢,},, and it holds for
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In order to determinate the smallest zeros of j (2//x) Euler differentiated logarithmically to
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and change the order of summations results into
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Based on this formula Euler obtained a system of equations, which allow to calculate the
o, and from that to deduce the smallest values of «, , i.e. Euler calculated

o0,=10,=1/2,0,=1/3,0,=11/48,0, =19/120,0, = 473/ 4320,

to deduce e.g.
=1.445795.., a0, =7.6658....,a, =18.72....
We summaries Euler’s results above in the
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With respect to [DDi] we define the bounded variation function
1(x) =—log JO(Z\&),
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Hermite Polynomials

The Hermite polynomials H_(x) fulfill the recursion formula
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this gives the recursion formula
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with ¢,(t) =v27"%¢ "' and [H(g,)] (@) = -isgn(w)@,(w) . Applying the inverse Fourier
transform then gives
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Since sgn(w)e is odd we have
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Substituting the variables  » =427¢ then leads to
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From the Hermite polynomials recursion formula the Hilbert transforms can be calculated by
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The Hermite polynomials and the Hilbert transformed Hermite polynomials build a orthogonal
system of L,(—w, ).
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