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Lommel Polynomials 
 

Dr. Klaus Braun 
taken from [GWa] source  

 

 

The Lommel polynomials )(xgn
, defined by ( [GWa] 9-6) 
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a relation between the modified Lommel polynomials and the Bessel function is given by 

Hurwitz’s asymptotic formula ( [GWa] 9-65): 
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   then it holds ([TCh] 7, II, theor. 6.4, [DDi]) 
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v)          for large values of m  it holds    
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From [GWa] 6-5, 13-6, 13-24, we recall  
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We summaries the above in 

Proposition 1: For the Lommel polynomials the following relations hold true: 
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Lemma (Fourier-Bessel expansion [GWa] 18): Let )(xf  be defined arbitrarily in the interval 

(0,1) and let 
1

0

)( dxxfx  exist and (if it is an improper integral) let it absolutely convergent 

and 
mj  being the zeros of  )(0 xJ . Let 
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Let x  be any interval point of an interval ),( ba  such that 10  ba  and such that )(xf  has 

limited total fluctuation in ),( ba . Then the series 
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We recall Sheppard’s result from [GWa] 18-27, i.e. 
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In [DDi] proposition 1, iii) is proven building a proper Riemann-Stieltjes integral: 

The term      
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is analytic outside any circle that contains the finite zeros of )
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J . Hence it possesses a 

Laurent expansion about the origin that converges uniformly on and in any annulus whose 

inside boundary has the finite zeros of )
1

(0
x

J  in its interior. Let C  be the contour that encircles 

the origin in a positive direction and that lies within the annulus. Then it holds [DDi]   
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Let )(x the non-decreasing step function having increase of  
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Remark: 

The Stieltjes inverse formula gives the relation to hyper-functions.  

The Riemann-Stieltjes integral representation then leads to proposition 1 iii) and 

The Lommel polynomials build an orthogonal polynomial system of a Hilbert space 
H  with 

0 .  

The relation to the Bagchi Formulation of the Nyman RH criterion is obvious [KBr]. 
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We recall Euler’s analysis of the zeros of the Bessel functions. With the notations we follow 

[GWa] 15-41, 15-5. We use the abbreviation kk jj  :  to write the zeros of )(0 xJ  in the form 

   0Zkkj . The zeros of  )2(0 xJ  are taking to be ,.....,, 321  .i.e.  
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   and it holds for  
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In order to determinate the smallest zeros of )2(0 xJ  Euler differentiated logarithmically to 

conclude 
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provided that 
1x , and the last series is absolute convergent. 

Putting      
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and change the order of summations results into 
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Based on this formula Euler obtained a system of equations, which allow to calculate the 

k and from that to deduce the smallest values of k , i.e. Euler calculated 

4320/473,120/19,48/11,3/1,2/1,1 654321   , ...... 

to deduce e.g. 

....72.18....,6658.7..,445795.1 321     

We summaries Euler’s results above in the  

Lemma    Being    0Zkkj the zeros of )(0 yJ and  
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With respect to [DDi] we define the bounded variation function 
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We note the relation 
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Hermite Polynomials 

 

The Hermite polynomials )(xHn
 fulfill the recursion formula 
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this gives the recursion formula 
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From the Hermite polynomials recursion formula the Hilbert transforms can be calculated by
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The Hermite polynomials and the Hilbert transformed Hermite polynomials build a orthogonal 

system of ),(2 L .
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