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1 IntroductionThe classical limit of quantum mechanics is often identi�ed with the WKB[Mas, BS] method. While this approach gives a good picture of the asymp-totic behaviour of solutions of the Schr�odinger equation as �h ! 0, it doesnot give a satisfactory explanation why in this limit the non-commutativityof quantum observables suddenly turns into the commutativity of classicalobservables. The same is true of approaches based on Feynman integrals[AHK], and on the limits of coherent states [Hep, Hag]. An approach tothe classical limit emphasizing the limit of observables and their algebraicstructure has recently been developed in [We2] (compare also [Rie, Em1]).This approach makes rigorous the intuitive criterion for deciding which ob-servables in quantum theory may e�ectively be treated classically: classicalobservables should not change too much under small position or momentumtranslations, where, due to the relation p = �hk, a small momentum transla-tion might still correspond to a large translation in terms of wave numbers.The aim of this paper is to show that a full theory of the classical limit canbe based on this single physical idea. We make use of nonstandard analysis[Rob, AFHL] because it allows us to describe an in�nite separation of scalesinside a single mathematical structure. The main idea is that our usual\standard" quantities can be embedded into a larger structure containingalso in�nitely small and in�nitely large quantities (this embedding is to acertain extent comparable to the embedding of the reals into the complexnumbers). Like almost all results of nonstandard analysis our results can betranslated into statements about ordinary limits (in an abstract sense), e.g.an in�nitesimal (i.e. an in�nitely small) number can be seen as nothing buta maximally detailed description of how a sequence of real numbers can goto zero. The actual construction of quantum theory with in�nitesimal �h iscompletely trivial, thanks to a powerful principle of nonstandard analysis,called the Transfer Principle. It states that whatever can be formulatedcorrectly in standard terms is immediately true or de�ned, respectively, inthe nonstandard world. In contrast to standard analysis the key here is notto go to the limit, but to extract from the limiting theory the \standardpart". Here the above mentioned physical idea gives an immediate criterion:we only need to restrict the theory to observables which are continuous onthe standard scale, and then to neglect in�nitesimal terms.This formulation corresponds completely to the physical intuition. More-over it is much more compact than the formulation in conventional mathe-matical terms [We2] on which it is based. At the same time it retains fullmathematical rigour. Due to its extreme simplicity the nonstandard formu-lation is also more suggestive of further generalizations. Another bonus isthat some proofs are simpli�ed, but this is not our main point, and, in fact,we draw heavily on the standard techniques of proof.We briey review some ideas and notation relating to nonstandard anal-ysis. There are quite good introductions to the subject [Lin, AFHL, HL],1



including undergraduate calculus courses based on it [Kei], and we refer tothese for more detailed information. Whenever it is convenient we denote anentitiy of our standard mathematical world by a pre�x \ � " if it is consideredin the nonstandard universe. For example the real line is denoted by �IR. Itcontains elements of the form �r, where r 2 IR is an ordinary real number,but by far not all elements of �IR are of this form. In particular, there arein�nitesimals " 2 �IR with the property that " > 0, but " < �r for everyr > 0. When x; y 2 �IR, we write \x � y" for \x � y is in�nitesimal". Thein�nitesimals have a decent arithmetic and, for example, the inverse of anin�nitesimal is an in�nite number, which is larger than any standard real �rin accordance with our intuition.2 Classical limit for phase space observablesThe �rst structure to which we will apply the Transfer Principle is an ir-reducible representation of the canonical commutation relations in Weylform with d < 1 degrees of freedom, i.e. we consider on the Hilbert spaceH = L2(IRd) the unitary operators W (x; p) of phase space translations givenby �W (x; p) �(y) = exp��ix � p2�h + ip � y�h � (y � x) : (1)Alternatively, these operators can be written asW (x; p) = eix�P+iq�Q ; (2)where P and Q denote the usual momentum and position operators, andthe dot stands for the scalar product in IRd. It will often be convenient todenote phase space points (x; p) by a single letter �. The Euclidean length of� is written as j�j = (x � x + p � p)1=2. Observables are described by boundedoperators A on the Hilbert space, written as A 2 B(H). On the observablesthe Weyl operators implement the phase space translations �� via��(A) = W (�)AW (�)� : (3)By the transfer principle all these formulas make sense also in the non-standard world, i. e. for observables A 2 �B(H), for phase space points� = (x; p) 2 �IRd, and for any value of the constant �h 2 �IR, including in-�nitesimal or in�nite numbers. (We refrain from taking the number d ofdegrees of freedom to be an in�nite number in �IN). The norm is a well-de�ned �IR-valued function on �B(H), and, of course, it can be in�nitesimal,as well as in�nite. We will call A 2 �B(H) in�nitesimal, writing A � 0, ifkAk � 0, and we will say that A 2 �B(H) is �nite, if there is an ordinaryreal number r 2 �IR such that kAk � �r.We can now state the basic idea of this paper: inside this monstrouslylarge object �B(H) we will single out those operators that are well-behaved in2



the sense of the classical limit. The Weyl operators themselves are an exampleof badly behaved operators, since they oscillate wildly on an in�nitesimalscale. In contrast, operators that we can imagine as \observables" oughtto depend continuously on P and Q. We de�ne the algebra D � �B(H) of\good" observables as those �nite elements A 2 �B(H), such that ��(A) iscontinuous on the standard scale. Nonstandard analysis o�ers two equivalentways of making this phrase precise. The �rst is to say that for all standard" 2 IR we can �nd a standard � 2 IR such that j�j < �� implies k��(A)� Ak ��". The second is to say that� � 0 implies ��(A) � A : (4)For example, it is seen immediately that the Weyl operators fail this def-inition, whereas, if we scale down their oscillations by a factor �h, they dobecome continuous. Indeed, due to the commutation relations of the Weyloperators, we have ��(W (�h�)) = ei�(�;�) W (�h�) ; (5)where �((x; p); (x0; p0)) = p � x0� x � p0 is the symplectic form on phase space.Since the exponential factor is continuous in � on the standard scale, we haveW (�h�) 2 D, if � is �nite. Also, every in�nitesimal operator is in D. Thus Dis every bit as non-commutative as �B(H). The surprise is, however, that weonly need to neglect in�nitesimal terms to see in it the observable algebra ofclassical mechanics.Theorem. Let D � �B(H) be the algebra of continuous observables de�nedabove, and let D� denote the same algebra, but with all in�nitesimal ele-ments identi�ed with 0. Then D� is canonically isomorphic to the algebraof bounded uniformly continuous functions on phase space.We sketch the rather simple proof because it uses only ideas well-knownfrom the physics literature, and gives an explicit description of the isomor-phism claimed in the Theorem. Let 
 denote the ground state wave functionof the oscillator Hamiltonian H = (P2 +Q2)=2 = (��h2�+Q2)=2. Then forany A 2 B(H), we de�ne a function on phase space by(S"A)(�) = hW (�)
; AW (�)
i= h
; ���(A)
i : (6)This is variously called the lower symbol [Sim], a smeared Wigner function[Car], the Husimi function [Tak], or the convolution with a coherent state[We1] of the operator A. In the other direction, we have the upper symbol[Sim], or P-representation [KS] (also going by many other names) whichassigns an operator to each bounded measurable function f viaS#f = Z dx dp(2��h)d f(x; p)��(j
ih
j) : (7)3



Unlike the Wigner-Weyl isomorphisms between operators and phase spacefunctions, these operators map positive elements into positive elements.Moreover, S"S# and S#S" are both operators which just average over trans-lations with a Gaussian weight. Explicitly,S#S"(A) = Z dx dp(2��h)d e��2=(2�h) ��(A) : (8)By transfer, all these formulas remain valid in the nonstandard case. How-ever, since �h is in�nitesimal, the Gaussian factor is a nonstandard repre-sentation of a Dirac �-Function. Hence for continuous operators A 2 D,S#S"(A) � A. Identifying in�nitesimally close elements we �nd that S" andS# become inverses of each other. On the other hand, it is clear that, forA 2 D, the function S"(A) is also �nite and continuous in the sense of equa-tion (4), �� being interpreted as the phase space translation of functions.This is the same as saying that �� is uniformly continuous up to in�nitesi-mals. Hence D� is isomorphic to the space of bounded uniformly continuousfunctions on phase space. Because S" and S# both preserve positivity, theseisomorphisms respect the ordering as well. This implies that they are alsoalgebraic isomorphisms.Since the product of functions is commutative, we have that AB�BA � 0for A;B 2 D. For su�ciently smooth observables we can even determine theprecise order of this in�nitesimal. We say that A 2 D is twice di�erentiable,if it has \partial derivatives" Ai; Aij 2 D such that � � 0 implies��(A) = A + 2dX1 �iAi + 2dXi;j=1 �i�jAij + �2D(�) ; (9)where D(�) � 0. Here �i denotes the components of �, i.e. the d position andthe d momentum coordinates. Applying S" and ��+� = ���� we see thatS"(A) is twice di�erentiable with uniformly continuous bounded derivatives.Then, if A;B 2 D are twice di�erentiable, we geti�h [A;B] � S#fS"(A); S"(B)g ; (10)where the braces on the right hand side denote the Poisson bracket of thephase space functions. The operators S" and S# just e�ect the isomorphismbetween functions and operators given by the Theorem. The proof of formula(10) is rather involved, but completely parallel to the standard proof of theanalogous result in [We2], so we will omit it.An instructive example is the case of Weyl operators with slowed-downoscillation, i.e. W (�h�) for �nite �. Their classical limits are the exponentialfunctions (S"W (�h�))(�) = eif�;�g��h�2=4 � eif�;�g ; (11)with the \symplectic form" f(x1; p1); (x2; p2)g = p1�x2�p2 �x1. Commutatorsbecome i�h [W (�h�); W (�h�)] = 2�h sin(�h2f�; �g)W (�h(� + �)) : (12)4



Because �h � 0, and �; � are �nite, the factor is � f�; �g, from which equation(10) is veri�ed by applying S" to each Weyl operator.By equation (10) the quantum mechanical equations of motion are in-�nitesimally close to the classical ones. The same is also true for the solu-tions of these equations: If H 2 D is a hermitian operator, we de�ne thetime evolution of an observable A 2 D as usual byA(t) = eitH=�hAeitH=�h : (13)Then one can prove as in the standard case [We2] that(S"A(t))(�) � (S"A)(Ft�) : (14)Here Ft� denotes the solution of Hamilton's equation of motion with Hamil-tonian function S"H for the time interval t with initial condition �.3 Classical limit for spin systemsThe same basic idea for obtaining a classical limit works in a number of othercontexts. We present here the case of spin systems, restricting attentionto a single spin, for simplicity of presentation. The basic relation here isthat angular momentum, which is the quantity remaining meaningful in theclassical limit equals �hs, where s is the usual integer or half-integer spinparameter labelling the irreducible representations of SU(2). Hence in thiscontext �h ! 0 simply means s ! 1. The nonstandard approach to thislimit is to take an an irreducible representation U of �SU(2) with in�nite spins 2 12�IN, where �IN denotes the nonstandard version of the natural numbers.The nonstandard notions of \representation" and \irreducibility" are againde�ned by the Transfer Principle. Since standard rotations R 2 SU(2) arecontained in �SU(2) in the form �R 2 �SU(2), and since the nonstandardrepresentation space is also a complex vector space with scalar multiplicationrestricted to standard numbers, SU(2) is also represented by the in�nite spinrepresentation, but, of course, this representation is highly reducible as astandard representation.The analogue of the Theorem in the previous section is proved preciselyalong the same lines, with the Weyl operators replaced by the representingunitaries UR, and the coherent state 
 replaced by the eigenvector of therotations around the 3-axis with maximal eigenvalue (namely s). The ana-logue of the phase space is the orbit of the one-dimensional projection j
ih
junder rotations, which is isomorphic in an obvious way to the (nonstandard)sphere. The measure \d�" is thus replaced by the integration over the sphere.The operators S"; S# are also de�ned analogously, and that S# maps the con-stant function into the identity operator is obvious from the irreducibility ofU . 5



Only one thing really has to be veri�ed, namely that the kernel describingthe operator S#S" is in�nitesimal outside the so-called monad f� : � � 0g ofthe north pole, i.e. if R = � cos(�=2) sin(�=2)� sin(�=2) cos(�=2)� (15)is the SU(2)-rotation taking the north pole to latitude � � 2�,jh
; UR
ij2 � 0 ; unless � � 0 : (16)This can be seen without computation by realizing the spin-s representationas the subrepresentation of a tensor product of 2s copies of the de�ning (spin-1=2) representation, namely the representation on the completely symmetric(Bose-) subspace. In this subspace 
 is identi�ed with the product of 2s\spin up" vectors. The matrix element we have to compute is thus equal to(cos(�=2))2s, and the estimate (16) follows.Scaled commutators of the form is[A;B] become Poisson brackets as be-fore. The \phase space" on which this bracket lives is the sphere, which isslightly unusual in that it does not contain unbounded momenta. The Pois-son bracket is uniquely determined by the condition that the three coordinatefunctions on the sphere (which are the limits of the angular momentum com-ponents divided by s) satisfy angular momentum \commutation" relations.In di�erential geometric terms this is saying that the symplectic form is thesurface 2-form of the sphere. Moreover, the dynamics converges in the samesense as before.For the proof of these statements it is helpful once again to look at thespin-s representation as a representation on the permutation symmetric sub-space of 2s spins-1=2. One can then appeal to the theory of mean-�eld latticesystems in which permutation symmetry is the key ingredient, and in whichthese results already exist. We refer the reader to [RW, DW] for the standardversion of this theory, and to [Wo, WH] for its nonstandard form.Generalizations to compact Lie groups other than SU(2), or to severalinteracting spins are straightforward using the appropriate coherent statesand symbol maps [Sim]. For a discussion of phase measurements in theclassical limit, also using nonstandard methods, see [Oza].AcknowledgementsThe work reported in this paper was done during a visit of R.F.W. inT�ubingen. He would like to thank the members of the mathematical physicsgroups in both departments for their warm hospitality. R.F.W. acknowledges�nancial support from the DFG (Bonn).
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