# The polygamma function $\psi^{(k)}(x)$ for $x=\frac{1}{4}$ and $x=\frac{3}{4}$ <br> K.S. Kölbig <br> Computing and Networks Division, CERN, CH-1211 Genève 23, Switzerland <br> Received 3 January 1996 


#### Abstract

Expressions for the polygamma function $\psi^{(k)}(x)$ for the arguments $x=\frac{1}{4}$ and $x=\frac{3}{4}$ are given in terms of Bernoulli numbers, Euler numbers, the Riemann zeta function for odd integer arguments, and the related series of reciprocal powers of integers $\beta(m)$.


Keywords: Polygamma function; Psi function
AMS classification: 33B15

## 1. Introduction

The polygamma function

$$
\psi^{(k)}(x)=\frac{\mathrm{d}^{k}}{\mathrm{~d} x^{k}} \psi(x)=\frac{\mathrm{d}^{k+1}}{\mathrm{~d} x^{k+1}} \ln \Gamma(x)
$$

appears in a number of theoretical and practical applications, and a number of its properties are listed in the relevant handbooks. In particular, it is well-known that for $k \geqslant 1$ [1, 6.4.4]

$$
\psi^{(k)}(1)=(-1)^{k} k!\zeta(k+1), \quad \psi^{(k)}\left(\frac{1}{2}\right)=(-1)^{k+1} k!\left(2^{k+1}-1\right) \zeta(k+1),
$$

where $\zeta(n)$ is the Riemann zeta function for integer arguments. Together with the recursion formula [1, 6.4.6]

$$
\begin{equation*}
\psi^{(k)}(1+x)-\psi^{(k)}(x)=(-1)^{k} k!x^{-k-1} \tag{1}
\end{equation*}
$$

and the reflection formula [1, 6.4.7]

$$
\begin{equation*}
\psi^{(x)}(1-x)+(-1)^{k+1} \psi^{(k)}(x)=(-1)^{k} \pi \frac{\mathrm{~d}^{k}}{\mathrm{~d} x^{k}} \cot \pi x \tag{2}
\end{equation*}
$$

it is easy to find expressions for $\psi^{(k)}(n)$ and $\psi^{(k)}\left(\frac{1}{2} \pm n\right)$, where $n \in \mathbb{N}$.

It seems surprising that the values of $\psi^{(k)}(x)$ for $x=\frac{1}{4}$ and $x=\frac{3}{4}$ and hence for $x=\frac{1}{4} \pm n$ and $x=\frac{3}{4} \pm n$ have received less attention; at least these values are seldom found in the handbooks. Sometimes, e.g., in [2], one finds a relation like $\psi^{\prime}\left(\frac{1}{4}\right)-\psi^{\prime}\left(\frac{3}{4}\right)=16 G$, where $G=0.91596 \ldots$ is the Catalan constant, and Krupnikov [4] has evaluated $\psi^{\prime}(x)$ and $\psi^{\prime \prime}(x)$ for $x=\frac{1}{4}$ and $x=\frac{3}{4}$.

It is the purpose of this note to present expressions for $\psi^{(k)}\left(\frac{1}{4}\right)$ and $\psi^{(k)}\left(\frac{3}{4}\right)$ in terms of the Bernoulli numbers, the Euler numbers, the Riemann zeta function for odd integer arguments, and the related series of reciprocal powers of integers $\beta(m)$.
2. Expressions for $\psi^{(k)}\left(\frac{1}{4}\right)$ and $\psi^{(k)}\left(\frac{3}{4}\right)$

For rational arguments $x=p / q$ the polygamma function $\psi^{(k)}(x)$ can be written as [3, 8.3638]

$$
\begin{align*}
\psi^{(k)}\left(\frac{p}{q}\right) & =(-1)^{k+1} k!\zeta\left(k+1, \frac{p}{q}\right) \\
& =(-1)^{k+1} k!q^{k+1} \sum_{n=0}^{\infty} \frac{1}{(p+q n)^{k+1}} \quad(k \geqslant 1) \tag{3}
\end{align*}
$$

where $\zeta(k+1, x)$ is the generalized zeta function. In particular we obtain

$$
\begin{align*}
& \psi^{(k)}\left(\frac{1}{4}\right)+(-1)^{k} \psi^{(k)}\left(\frac{3}{4}\right) \\
& \quad=(-1)^{k+1} k!2^{2 k+2}\left\{\sum_{n=0}^{\infty} \frac{1}{(4 n+1)^{k+1}}+(-1)^{k} \sum_{n=0}^{\infty} \frac{1}{(4 n+3)^{k+1}}\right\} . \tag{4}
\end{align*}
$$

From the reflection formula (2) we find for $x=\frac{1}{4}$

$$
\begin{equation*}
\psi^{(k)}\left(\frac{1}{4}\right)-(-1)^{k} \psi^{(k)}\left(\frac{3}{4}\right)=-\left.\pi \frac{\mathrm{d}^{k}}{\mathrm{~d} x^{k}} \cot \pi x\right|_{x=\frac{1}{4}} \tag{5}
\end{equation*}
$$

In order to calculate the higher derivatives of $\cot \pi x$ at $x=\frac{1}{4}$, we make use of the trigonometric relation

$$
\tan \pi\left(x+\frac{1}{4}\right)=\sec 2 \pi x+\tan 2 \pi x .
$$

It is then not difficult to obtain the derivatives of the cotangent function at $x=\frac{1}{4} \pi$ from the power series expansions for the tangent and secant functions [1, 4.3.67,69], namely

$$
\tan z=\sum_{n=0}^{\infty} \frac{2^{2 n}\left(2^{2 n}-1\right)\left|B_{2 n}\right|}{(2 n)!} z^{2 n-1} \quad\left(|z|<\frac{1}{2} \pi\right)
$$

and

$$
\sec z=\sum_{n=0}^{\infty} \frac{\left|E_{2 n}\right|}{(2 n)!} z^{2 n} \quad\left(|z|<\frac{1}{2} \pi\right)
$$

by noting that

$$
\left.\frac{\mathrm{d}^{k}}{\mathrm{~d} x^{k}} \cot \pi x\right|_{x=\frac{1}{4}}=\left.(-1)^{k} \frac{\mathrm{~d}^{k}}{\mathrm{~d} x^{k}} \tan \pi x\right|_{x=\frac{1}{4}}
$$

where $B_{2 n}$ and $E_{2 n}$ are the Bernoulli and Euler numbers, respectively. This leads to

$$
\left.\frac{\mathrm{d}^{2 k-1}}{\mathrm{~d} x^{2 k-1}} \cot \pi x\right|_{x=\frac{1}{4}}=-(2 \pi)^{2 k-1} 2^{2 k}\left(2^{2 k}-1\right) \frac{\left|B_{2 k}\right|}{2 k}
$$

and

$$
\left.\frac{\mathrm{d}^{2 k}}{\mathrm{~d} x^{2 k}} \cot \pi x\right|_{x=\frac{1}{4}}=(2 \pi)^{2 k}\left|E_{2 k}\right|
$$

By using the two series [1, 23.2.20,21]

$$
\sum_{j=0}^{\infty} \frac{1}{(2 j+1)^{m}}=\left(1-2^{-m}\right) \zeta(m) \quad \text { and } \quad \sum_{j=0}^{\infty} \frac{(-1)^{j}}{(2 j+1)^{m}}=\beta(m)
$$

we obtain from (4) and (5), for odd $k=2 n-1$,

$$
\begin{aligned}
& \psi^{(2 n-1)}\left(\frac{1}{4}\right)+\psi^{(2 n-1)}\left(\frac{3}{4}\right)=\pi^{2 n} 2^{4 n-1}\left(2^{2 n}-1\right) \frac{\left|B_{2 n}\right|}{2 n} \\
& \psi^{(2 n-1)}\left(\frac{1}{4}\right)-\psi^{(2 n-1)}\left(\frac{3}{4}\right)=(2 n-1)!2^{4 n} \beta(2 n)
\end{aligned}
$$

and for even $k=2 n$

$$
\begin{aligned}
& \psi^{(2 n)}\left(\frac{1}{4}\right)-\psi^{(2 n)}\left(\frac{3}{4}\right)=-\pi(2 \pi)^{2 n}\left|E_{2 n}\right| \\
& \psi^{(2 n)}\left(\frac{1}{4}\right)+\psi^{(2 n)}\left(\frac{3}{4}\right)=-(2 n)!2^{2 n+1}\left(2^{2 n+1}-1\right) \zeta(2 n+1) .
\end{aligned}
$$

Hence for $n \in \mathbb{N}$,

$$
\left.\begin{array}{l}
\psi^{(2 n-1)}\left(\frac{1}{4}\right) \\
\psi^{(2 n-1)}\left(\frac{3}{4}\right)
\end{array}\right\}=\frac{4^{2 n-1}}{2 n}\left\{\pi^{2 n}\left(2^{2 n}-1\right)\left|B_{2 n}\right| \pm 2(2 n)!\beta(2 n)\right\}
$$

and

$$
\left.\begin{array}{l}
\psi^{(2 n)}\left(\frac{1}{4}\right) \\
\psi^{(2 n)}\left(\frac{3}{4}\right)
\end{array}\right\}=\mp 2^{2 n-1}\left\{\pi^{2 n+1}\left|E_{2 n}\right| \pm 2(2 n)!\left(2^{2 n+1}-1\right) \zeta(2 n+1)\right\}
$$

With the exception of $\beta(2)=G$, which is merely a definition, no expressions for $\zeta(2 n+1)$ or $\beta(2 n)$ in terms of other well-known constants are known.

The following list gives a few examples for $\psi^{(k)}\left(\frac{1}{4}\right)$ and $\psi^{(k)}\left(\frac{3}{4}\right)$ :

$$
\begin{aligned}
& \psi^{\prime}\left(\frac{1}{4}\right)=\pi^{2}+8 G, \quad \psi^{\prime}\left(\frac{3}{4}\right)=\pi^{2}-8 G \\
& \psi^{\prime \prime}\left(\frac{1}{4}\right)=-2\left[\pi^{3}+28 \zeta(3)\right], \quad \psi^{\prime \prime}\left(\frac{3}{4}\right)=2\left[\pi^{3}-28 \zeta(3)\right]
\end{aligned}
$$

$$
\begin{aligned}
& \psi^{\prime \prime \prime}\left(\frac{1}{4}\right)=8\left[\pi^{4}+96 \beta(4)\right], \quad \psi^{\prime \prime \prime}\left(\frac{3}{4}\right)=8\left[\pi^{4}-96 \beta(4)\right], \\
& \psi^{(4)}\left(\frac{1}{4}\right)=-8\left[5 \pi^{5}+1488 \zeta(5)\right], \quad \psi^{(4)}\left(\frac{3}{4}\right)=8\left[5 \pi^{5}-1488 \zeta(5)\right], \\
& \psi^{(5)}\left(\frac{1}{4}\right)=256\left[\pi^{6}+960 \beta(6)\right], \quad \psi^{(5)}\left(\frac{3}{4}\right)=256\left[\pi^{6}-960 \beta(6)\right], \\
& \psi^{(6)}\left(\frac{1}{4}\right)=-32\left[61 \pi^{7}+182880 \zeta(7)\right], \quad \psi^{(6)}\left(\frac{3}{4}\right)=32\left[61 \pi^{7}-182880 \zeta(7)\right] .
\end{aligned}
$$

## References

[1] M. Abramowitz and I.A. Stegun, Eds., Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing with corrections (Dover, New York, 1972).
[2] P.J. de Doelder, On the Clausen integral $C l_{2}(\theta)$ and a related integral, J. Comput. Appl. Math. 11 (1984) 325-330.
[3] I.S. Gradshteyn and I.M. Ryzhik, in: A Jeffrey, Ed., Table of Integrals, Series and Products (Academic Press, New York, 5th ed., 1994).
[4] E.B. Krupnikov, Private communication.

