ON NON-HARMONIC FOURIER SERIES /
By NormaN LevINsON*
(Received March 5, 1936)

1. Wiener and Paley! have generalized many properties of the Fourier fune-
tions {e"**} to sets {e™=} where

(1.0) i [ gD B, =@ <R &,

for some fixed D.
They have proved that if (1.0) is satisfied then the set {e™=} is closed in
L*(—=, x) and possesses a unique biorthogonal set [ ha(z)] such that for

f(@) el (—m, =)

the series

(1.1) 2 {6-2‘; _' f(£) e=n€ dF — = _' J&) ha(®) de}

converges uniformly to zero over any interval (—x + 8§ S ¢ £ = — 8) for any
posilive 8, and over any such interval the summability properties of

12) > e [0 hat) e

are uniformly the same as those of the Fourier series of f(z).

Wiener and Paley point out that whether or not 1/#* in (1.0) is the best possible
constant is not evident. Malin? has in fact shown that the theorem holds with
10/9x* in place of 1/#%.

Wiener and Paley also ask whether or not the theorem can be generalized to
the case where f(z)eL rather than L2

It is the purpose of this paper to show that the theorem remains true if 1/#?
is replaced by {. Moreover it will be shown that this is the best possible
constant. It will also be shown that there exists no general L theory but that
there does exist an L? theory where 1 < p = 2. These results are contained in
the following theorems:
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TreEoOREM L. If {X,] be a sequence of numbers and D a constant such that

(13) m—n|sD<Pl
2p

for some fized p, 1 < p = 2, then the set {e***} is closed LP(—, x) and possesses a
unique biorthogonal set [h.(zx))| such that for any f(x)el?(—==, x) the series (1.1)
converges uniformly to zero over any interval (—x + 6 £ 2 £ = — ) forany é > 0.
Moreover the difference of the weighted sums (Riesz, Abel, etc.) of the non-harmonic
and ordinary Fourter series also converges uniformly to zero over (—x + 6 S z =
x — 6).

In other words the convergence and summability properties of the series (1.2)
are exactly the same as for the ordinary Fourier series for f(z) over —x < z < .

TaeoreM I1. If (1.3) is replaced by
(1.4) [An = n| 5

—w LN =,

-1
2
then the results of Theorem I no longer hold.
Combining these two theorems, it is clear that there exists no general L
theory of non-harmonic Fourier series since as p — 1, D — 0.
In proving Theorem I the following result is of basie importance,
Treorem III. Let |\,] satigfy (1.3) and let

(1.5) F(z) = ITI (1 - i (1 - ﬁ)

Then there erists an absolule constant A such that

, _ . R A
(l.ﬂ) f_ﬂIF{xH ﬁ{mﬁi
and
e Ac—(r—1-2D)
Jorc > 1.

As we shall see, to prove that Theorem III is a best possible one is quite simple.

2. First we shall prove Theorem III. ‘It is convenient to use 0 < Az, k=10,1,
, for absolute constants. We now prove

2. First we shall prove Theorem III. .It isconvenienttouse 0 < 4;,k =0, 1,
, for absolute constants. We now prove
Lesmwma 1. If F(z) is defined as in Theorem 111 then

oN N IP(z)P’D
+4pD
(2.0) _L | Pi=) P de & AN _[, 2N+ 1z
where
an+"— -z—2
(2.1) P(z)'H( n-D-z-2& )

and a, are constants such that 0 < a, < 1.
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Let N > 0 be some integer. If N < z < 2N it is clear from (1.3) that

z
D tl—:n, 0<n<g »,
T z
(2.2) n—D"laf l, 0<n<N,
x z
l—u_i_D;.‘l—i;, 2N <n < =,
Therefore for N < z < 2N
=z
n—-D
N 1_; 4
x z |
1- 1 2.
e n-}-DH +ﬂ—D ];I - % |
n—DJ

And since forn > 0, n — D = A., it follows from this that

T T
—.DHI-'-n—D‘
(2.3)

I1

IN+1

N

+DH + —"D H

Let us recall the following well-known properties of the gamma function:

An—x I

1= n—D—zl

'z + 1) = zI'(z)

rz)r{l — z) = Sin s

(2.4) Mz 4+ 1) ~ (2r)tzztte—s,
Using these on the right side of (2.3) we have for N < z < 2N

Using these on the right side of (2.3) we have for N < z < 2N

- D)TI'(z+ D)|sinx(z+ D) |I'"2N + 14+ D)I'2N +1—-D — 1)
Tz—D+ 1)I2N +1-D)T@N +1+ D —1z)

|P@) s =

Using (2.4) we have

|sin #(z + D) | T
@Nyi-z2 L

).—r
n—-D—z

(2.5) |F(z) | = A\N—1+@
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When |n — D — 2| < 4 we have

(2.6) 22 | |sinx(z + D)| S 7.
When 4 < |n — D — z | the inequality

2.7 . 14+t e, —wm <t <
gives

(2.8) \n’rpix=1+A::—Btfs‘“pt_;_tf

A —n+ D 4D
<{exp(n—ﬂ—x—2i+|n-ﬂ-—:|’)'

Combining (2.6) and (2.8) we have

N

[1]:25% | 1sin vt + 1)
;\n_ﬂ'-l_D -
(2.9)  |exp (2 21.+w2{ 5 +2D)\
Au_ﬂ+D
<A,exp2 D—-z-2i

If we set @ = (Ao — n 4 D)/2D then clearly 0 £ a. = 1 and (2.9) becomes

N 0
L z g
?‘q - I 2 N n=D=—z—21i '
(2.10) 1:[ 22| [sinxlz + D) | < 4s|e |
For |z| £ % we have
(2.11) e = |14 2|1+ 22
Using this in (2.10) we get
Using this in (2,10) we get
N N
An o+ n—=D—z— 2;’:"
11255 Iimnr(z+D}I<A:H B s
If we use this in (2.5) we have (2.0).
Lemwma 2. Let
{2'12) fl'x) = ( + t'b (I — Oa + ib)

(z—a +="b) (-‘c—au+1+tb)
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where) Sy <@ < -+ < aup S landb 2 0. If0 S ¢ < 1 we have

(2.13) L 1 f@) dr < =

Let

_ e z=am) - (2= aw)
HE) =iy & —aw

Using the partial-fraction expansion for H(z) we have
. [~} Cg Caksl
H(s)-t(z—a;-{_:—d.-'_”'+t—ﬂn+1)
where clearlyc; > 0,65 > 0, -+ -, Ga > 0. If we nowset z = z 4 iy we have

RH (z) = r—-—‘-’-‘l—+ .

z—a)?+y (Z — oun)® + 9
Thus RH(z) = 0 for y = 0, and therefore
(2.14) |am H(z) | < 4, y 0.

Using (2.14) and

RH!(z) = | H(z) |* cos (t am H(z))
we get
RH'(z) _ RH'(2)
cosyri 1 —1¢

Since H(z) has no zeros or poles in y > 0, H*(z) is analytic for y > 0 and its
integral around any closed contour in that region is gzero. Thus for any fixed
quantity ¢, 1 > ¢ > 0,

f’dzm(:+1:c}+ff1dym<2+fy)

1

(2.15) |H(z) |* =

1 1
—-[.Idxﬂ"(m+i)—if dy H(— 1 + iy) = 0.

! The constant 5 is of no particular significance in this inequality. By using a more
refined contour in the proof of this lemma we can show

e

As t — 1 the right side of (*) approaches 2/(1 — ¢). Since

g S
0 Iz—il'-l—l

the inequality (*) is asymptotically perfect ast — 1.
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Or

|f_’am<z+ic)|s[‘dylu(uiy) !
(2.16) : °l y
+£ dy | H(= 1+ iy) |'+/_‘dz|u(x+e->v.

It is clear that for any fixed z

1

Min [z — anu |
0SSk

(2.17) |H(z) | S

Using this in (2.16) we have

2
U B +io|s1+1+3=5
-1

Thus

2
dz RH'(z + ic) S 6.

-1
And using (2.15) we have

2
(2.18) dz | Hiz +i0) |' S 1 S ;
-l -
foranye,1 >¢> 0. Ifc 2 1,(2.18) is trivial by (2.17). If ¢ = 0, (2.18) holds
since it holds for all ¢ > 0. Thus (2.18) is true for all ¢ = 0 and (2.13) follows
immediately.
Proor or TueoreM III. If P(z) is defined as in Lemma 1 and if we set
y=(z = N+ 1)/(N + 2) we have

f’ﬂ-&»l I P(Z) Ig,p A
-1 |2N 41 —z[»®

"y —a+d 0. |y — an + b [P
<4 —2pD -
SN ﬁ|y—a‘+a>1*'°---|y—a..+,+:bzm

where 0 S a; < @3 -+ < agesy = 1 and where b = 2/(N + 2). If we now use
(2.0) and Lemma 2 we have

/'"|F(z) pdz <

If weset N = 2=, 2=+ ... and add we have

- . Ay 2-—1-290)
L'”’)' = S G TT—%D) 0 = 2D

Ay N~ (»—1~2pD)
1 — 2pD

The theorem now follows at once.
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3. In proving Theorems I and II we require the following well-known theorem
on Fourier transforms:
TaEOREM A. Let f(z)el?(— o, =) for some fized p, 1 < p S 2. Then

(3.0) gla) = @Y1, | Fx)dme i,

A—o ~A

(where 1.i.m. is here of p/(p — 1) order), exists almost everywhere and

A

3.1 f(z) = (2x)~} lim (l - ITH) g(u) e~ du
almost everywhere. Moreover if ¢ = p/(p — 1) then

© e - 1/p
3.2) [(2:-)“ /_. | g(u) ¢ du] s [(21)"’ /_' | f(z) |» dz] .

It is clear from (3.1) that

A
(3.3) f(z) = (2x)~t lim g(u) e~ du
A—m J—=4A
wherever this limit exists except for a set of measure zero.

As regards the closure of {e™»#}, it follows from results proved elsewhere* that
the conditions of Theorem I imply the closure L?(—, =) of {e®~*}. The closure
of this set implies at once the uniqueness of {h.(z)] if it exists.

We now turn to the proofs of several lemmas concerning

= w w
(3.4) Gw) = (0 — No) H (1 - (1 -=
where
where
. ) o1
(3.5) ihn “‘Iib{""ﬁ;‘-

We continue to use the A. as absolute positive constants. In Lemma 3 we
will not use all of (3.5) but merely | A\s — n| S }.
Levma 3. If w = u + iv then

(3.6) |Gw) | < An(jw|+1)e"'"],
(3.7) |Gw) | 2 Aulv|(1+ |w])He '],
and

(3.8) |Gk + i) | > Awu.

* Levinson, " On the Closure of [e‘*#],"" Theorem [I. To appear in the Duke Journal of
Mathematics.



926 NORMAN LEVINSON
Ifu 2 0, w| = %, and we choose an integer N determinedby N — } < |w| <
N + 4, then

w

An
Also, gince ¥ = 0, w/A, lies in the right half plane. Therefore

<1 for n > N.

w w
L - -
|1 3‘\--_’1 ﬂ_},, n>N.
Similarly
!E >1 for 0 <n <N
and therefore
w w
Jl—xlgh—“+*L 0<n<A.
Obviously
-2+ 7
[ ol +ﬂ+* n>0
and
w |v]
I :
|1 Ml = N +1

Therefore



