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EULER’S CONSTANT: EULER’S WORK AND MODERN

DEVELOPMENTS

JEFFREY C. LAGARIAS

Abstract. This paper has two parts. The first part surveys Euler’s work on the con-
stant γ = 0.57721... bearing his name, together with some of his related work on the
gamma function, values of the zeta function, and divergent series. The second part
describes various mathematical developments involving Euler’s constant, as well as
another constant, the Euler-Gompertz constant. These developments include connec-
tions with arithmetic functions and the Riemann hypothesis, and with sieve methods,
random permutations, and random matrix products. It also includes recent results on
Diophantine approximation and transcendence related to Euler’s constant.
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1. Introduction

Euler discovered the constant γ, defined by

γ := lim
n→∞





n
∑

j=1

1

j
− log n



 .

This is a fundamental constant, now called Euler’s constant. We give it to 50 decimal
places as

γ = 0.57721 56649 01532 86060 65120 90082 40243 10421 59335 93992...

In this paper we shall describe Euler’s work on it, and its connection with values of
the gamma function and Riemann zeta function. We consider as well its close relatives
eγ = 1.7810724... and e−γ = 0.561459.... We also inquire as to its possible meaning, by
describing many situations in mathematics where it occurs.

The constant γ is often known as the Euler-Mascheroni constant, after later work
of Mascheroni discussed in Section 2.6. As explained there, based on their relative
contributions it seems appropriate to name it after Euler.

There are many famous unsolved problems about the nature of this constant. The
most well known one is:

Conjecture 1.0.1. Euler’s constant is irrational.

This is a long-standing open problem. A recent and stronger version of it is the
following.

Conjecture 1.0.2. Euler’s constant is not a Kontsevich-Zagier period. In particular,
Euler’s constant is transcendental.

A period is defined by Kontsevich and Zagier [186] to be a complex constant whose real
and imaginary parts separately are given as a finite sum of absolutely convergent integrals
of rational functions in any number of variables with rational coefficients, integrated over
a domain cut out by a finite set of polynomial equalities and inequalities with rational
coefficients, see Section 3.14. Many constants are known to be periods, in particular all
zeta values {ζ(n) : n ≥ 2}. The set of all periods forms a ring P which includes the field
Q of all algebraic numbers. It follows that if Euler’s constant is not a period, then it must
be a transcendenta numberl. Conjecture 1.0.2 also implies that γ would be Q-linearly
independent of all odd zeta values ζ(3), ζ(5), ζ(7), ... and of π.

This paper also presents results on another constant defined by Euler, the Euler-
Gompertz constant

δ :=

∫ 1

0

dv

1− log v
=

∫ ∞

0

e−t

1 + t
dt = 0.59634 73623 23194 . . . (1.1)

Here we adopt the notation of Aptekarev [13] for this constant (in which δ follows γ)
and refer to it by the name given by Finch [116, Sec. 6.2] (who denotes it C2). Some
results about δ intertwine directly with Euler’s constant, see Sections 3.5, 3.6, 3.15 and
3.16.

Euler’s name is also associated with other constants such as e = 2.71828... given by

e :=
∞
∑

n=0

1

n!
.
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He did not discover this constant, but did standardize the symbol “e” for its use. He
used the notation e in his 1737 essay on continued fractions ([97, p. 120], cf. [98]), where
he determined its continued fraction expansion

e = [2; 1, 2, 1, 1, 4, 1, 1, 6, 1, 1, 8, · · · ] = 2 +
1

1 +
1

2 +
1

1 +
1

1 + · · ·
and from its form deduced that it was irrational. Elsewhere he found the famous relation
eπi = −1. The constant e is also conjectured not to be a Kontsevich-Zagier period. It is
well known to be a transcendental number, consistent with this conjecture.

In this paper we review Euler’s work on the constant γ and on mathematical topics
connected to it and survey subsequent developments. It is correspondingly divided into
two parts, which may be read independently. We have also aimed to make individual
subsections readable out of order.

The first part of this paper considers the work of Euler. Its emphasis is historical, and
it retains some of the original notation of Euler. It is a tour of part of Euler’s work related
to zeta values and other constants and methods of finding relations between them. Euler
did extensive work related to his constant: he returned to its study many times. The
basic fact to take away is that Euler did an enormous amount of work directly on his
constant and related areas, far more than is commonly appreciated.

The second part of this paper addresses mathematical developments made since Euler’s
time concerning. Euler’s constant. Since Euler’s constant is an unusual constant that
seems unrelated to other known constants, its appearance in different mathematical
subjects can be a signal of possible connections between these subjects. We present many
contexts in which Euler’s constant appears. These include connections to the Riemann
hypothesis, to random matrix theory, to probability theory and to other subjects. There
is a set of strong analogies between factorizations of random integers in the interval [1, n]
and cycle structures of random permutations in the symmetric group SN , taking N to
be proportional to log n. In this analogy there appears another constant that might have
appealed to Euler: the Golomb-Dickman constant, which can be defined as

λ :=

∫ 1

0
eLi(x)dx = 0.62432 99885 43550 . . .

where Li(x) :=
∫ x
0

dt
log t , see Section 3.10. The constant λ appears in connection with

the distribution of the longest cycle of a random permutation, while the constant e−γ

appears in connection with the distribution of the shortest cycle. The discovery of this
analogy is described at the beginning of Section 3.11. It was found by Knuth and Trabb-
Pardo [180] through noticing a numerical coincidence to 10 decimal places between two
computed constants, both subsequently identified with the Golomb-Dickman constant.

In passing we present many striking and elegant formulas, which exert a certain fasci-
nation in themselves. Some of the formulas presented were obtained by specialization of
more general results in the literature. Other works presenting striking formulas include
the popular book of J. Havil [158] devoted extensively to mathematics around Euler’s
constant, and Finch [116, Sections 1.5 and 4.5].

In Section 4 we make concluding remarks and briefly describe other directions of work
related to Euler’s constant.
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2. Euler’s work

Euler (1707–1783) was born in Basel, and entered the University of Basel at age
13, to study theology. He also received private tutorials in mathematics from Johann
Bernoulli (1667–1748), who was Professor of Mathematics at the University of Basel.
Johann recognized his mathematical gift and convinced his family to let him switch to
mathematics. Euler was excellent at computation and had an essentially photographic
memory. He had great persistence, and returned over and over again to problems that
challenged him.

Here we only scratch the surface of Euler’s enormous output, which contains over 800
works. These include at least 20 books, surveyed in Gautschi [125]. We trace a thread
comprising results corresponding to one of his interests, the determination of specific
constants given by infinite sums, definite integrals, infinite products, and divergent series,
and finding identities giving interrelations among these constants. Ancillary to this topic
is the related problem of determining numerical values of these constants; computing such
values allow one to guess and test possible identities.

In his work Euler made extensive calculations, deriving approximations of numbers to
many decimal places. He often reported results of calculations obtained using various
approximation schemes and sometimes compared the values he obtained by the different
methods. In Euler’s numerical results reported below the symbol ≈ is used to mean “the
result of an approximate calculation”. The symbol ≈ does not imply agreement to the
number of digits provided. An underline of a digit in such an expansion indicates the
first place where it disagrees with the known decimal expansion.

We refer to Euler’s papers by their index numbers in the Enëstrom catalogue ([86]).
These papers may be found online in the Euler archive ([88]). For discussions of Euler’s
early work up to 1750 see Sandifer [266], [267]. For his work on the Euler(-Maclaurin)
summation formula see Hofmann [167] and Knoebel et al. [178, Chapter 1]. For other
discussions of his work on the zeta function see Stäckel [285], Ayoub [21], Weil [315,
Chap. 3] and Varadarajan [310, Chap. 3]. For Euler’s life and work see Calinger [54]
and other articles in Bradley and Sandifer [41].

2.1. Background. Euler spent much effort evaluating the sums of reciprocal powers

ζ(m) :=

∞
∑

j=1

1

jm
. (2.1.1)

for integer m ≥ 2. He obtained the formula ζ(2) = π2

6 , solving the “Basel problem,”
as well as formulas for all even zeta values ζ(2n). He repeatedly tried to find analogous
formulas for the odd zeta values ζ(2n + 1) which would explain the nature of these
numbers. Here he did not completely succeed, and the nature of the odd zeta values
remains unresolved to this day. Euler’s constant naturally arises in this context, in
attempting to assign a value to ζ(1).

Euler discovered the constant γ in a study of the harmonic numbers

Hn :=
n
∑

j=1

1

j
, (2.1.2)

which are the partial sums of the harmonic series. The series “ζ(1)” =
∑∞

n=1
1
n diverges,

and Euler approached it by (successfully) finding a function f(z) (of a real or complex
variable z) that interpolates the harmonic number values, i.e. it has f(n) = Hn for
integer n ≥ 1. The resulting function, denoted Hz below, is related to the gamma
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function via (2.2.2). In studying it he also studied, for integer m, the related sums

Hn,m :=

n
∑

j=1

1

jm
, (2.1.3)

which we will term m-harmonic numbers; in this notation Hn,1 = Hn.
Euler obtained many inter-related results on his constant γ. These are intertwined

with his work on the gamma function and on values of the (Riemann) zeta function.
In Sections 2.2 - 2.4 we present results that he obtained for Euler’s constant, for the
gamma function and its logarithmic derivative, and for values of the zeta function at
integer arguments, concentrating on explicit formulas. In Section 2.5 we discuss a paper
of Euler on how to sum divergent series, applied to the example 0! − 1! + 2! − 3! + · · ·
His analysis produced a new constant, the Euler-Gompertz constant δ, given above in
(1.1). In Section 2.6 we review the history of the name Euler-Mascheroni constant, the
adoption of the notation γ for it, and summarize Euler’s approach to research.

Taken together Euler’s many papers on his constant γ, on the related values ζ(n)
for n ≥ 2, and other values show his great interest in individual constants (“notable
numbers”) and on their arithmetic interrelations.

2.2. Harmonic series and Euler’s constant. One strand of Euler’s early work in-
volved finding continuous interpolations of various discrete sequences. For the sequence
of factorials this led to the gamma function, discussed below. In the 1729 paper [90,
E20] he notes that the harmonic numbers Hn =

∑n
k=1

1
k are given by the integrals

Hn :=

∫ 1

0

1− xn

1− x
dx.

He proposes a function interpolating Hn by treating n as a continuous variable in this
integral. The resulting interpolating function, valid for real z ≥ 0, is

Hz :=

∫ 1

0

1− xz

1− x
dx. (2.2.1)

Using this definition, he derives the formula

H 1
2
= 2− 2 log 2.

The function Hz is related to the digamma function ψ(z) = d
dz log Γ(z) by

Hz = ψ(z + 1) + γ, (2.2.2)

see Section 2.3 and also Theorem 3.1.1.
In a paper written in 1731 (”On harmonic progresssions”) Euler [93, E43] summed

the harmonic series in terms of zeta values, as follows, and computed Euler’s constant
to 5 decimal places.

Theorem 2.2.1. (Euler 1731) The limit

γ = lim
n→∞

(Hn − log n)

exists. It is given by the (conditionally) convergent series

γ =
∞
∑

n=2

(−1)n
ζ(n)

n
. (2.2.3)
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Euler explicitly observes that this series (2.2.3) converges (conditionally) since it is an
alternating series with decreasing terms. He reports that the constant γ ≈ 0.577218.

Euler obtains the formula (2.2.3) using the expansion log(1 + x) =
∑∞

k=1(−1)k+1 xk

k ,
which was found by Nicholas Mercator (c.1620–1687) [218] in 1668. Evaluating this
formula at x = 1, 12 , ...,

1
n Euler observes the following in tabular form:

log 2 = 1− 1

2
·
(1

1

)2
+

1

3
·
(1

1

)3
− ...

log
3

2
=

1

2
− 1

2
·
(1

2

)2
+

1

3
·
(1

2

)3
+ ...

log
4

3
=

1

3
− 1

2
·
(1

3

)2
+

1

3
·
(1

3

)3
+ ..

log
5

4
=

1

4
− 1

2
·
(1

4

)2
+

1

4
·
(1

4

)3
+ ..

Summing by columns the first n terms, he obtains

log(n+ 1) = Hn −
1

2
Hn,2 +

1

3
Hn,3 − · · · (2.2.4)

One may rewrite this as

Hn − log(n + 1) =
1

2
Hn,2 −

1

3
Hn,3 + · · ·

Now one observes that for j ≥ 2,

lim
n→∞

Hn,j = H∞,j = ζ(j)

Taking this limit as n→ ∞ term by term in (2.2.4) formally gives the result (2.2.3).
We note that such representations of infinite sums in a square array, to be summed in

two directions, were already used repeatedly by Johann Bernoulli’s older brother Jacob
Bernoulli (1654–1705) in his 1689 book on summing infinite series ([29]). Another nice
example of an identity found by array summation is

(ζ(2) − 1) + (ζ(3)− 1) + (ζ(4)− 1) + · · · = 1, (2.2.5)

using

ζ(2)− 1 =
1

22
+

1

32
+

1

42
+

1

52
+ · · ·

ζ(3)− 1 =
1

23
+

1

33
+

1

43
+

1

53
+ · · ·

ζ(4)− 1 =
1

24
+

1

34
+

1

44
+

1

54
+ · · ·

since the column sums yield the telescoping series

1

22
× 2 +

1

32
× 3

2
+

1

42
× 4

3
+ · · · = 1

1 · 2 +
1

2 · 3 +
1

3 · 4 + · · · = 1.

Compare (2.2.5) to Euler’s expression (2.2.11) below for Euler’s constant.
In 1732 Euler [91, E25] stated his first form of his summation formula, without a

proof. He then gives it in detail in his 1735 paper [94, E47], published 1741. Letting s
denote the sum of the function t(n) over some set of integer values (say n = 1 to N), he
writes

s =

∫

tdn+ αt+ β
dt

dn
+ γ

d2t

dn2
+ δ

d3t

dn3
+ etc..
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where α = 1
2 , β = α

2 − 1
6 , γ = β

2 − α
6 +

1
24 , δ =

γ
2 −

β
6 +

α
24 − 1

120 . etc. These linear equations

for the coefficients are solvable to give α = 1
2 , β = 1

12 , γ = 0, δ = − 1
720 etc. Thus

s =

∫

tdn+
t

2
+

1

12

dt

dn
− 1

720

d3t

dn3
+ etc.

The terms on the right must be evaluated at both endpoints of this interval being
summed. In modern terms,

N
∑

n=1

t(n) =

∫ N

0
t(n) dn+

1

2

(

t(N)−t(0)
)

+
B2

2!

(d t(N)

dn
−d t(0)

dn

)

−B4

4!

(d3 t(N)

dn3
−d

3 t(0)

dn3

)

+· · ·

where the B2k are Bernoulli numbers, defined in (2.2.6) below, and the sum must be cut
off at a finite point with a remainder term (cf. [293, Sec. 1.0]). Euler’s formulas omit any
remainder term, and he applies them by cutting off the right side sum at a finite place,
and then using the computed value of the truncated right side sum as an approximation
to the sum on the left, in effect making the assumption that the associated remainder
term is small.

A similar summation formula was obtained independently by Colin Maclaurin (1698–
1746), who presented it in his 1742 two-volume work on Fluxions [208]. A comparison
of their formulas is made by Mills [220], who observes they are substantially identical,
and that neither author keeps track of the remainder term. It is appropriate that this
formula, now with the remainder term included, is called the Euler-Maclaurin summation
formula.

Jacob Bernoulli introduced the numbers now bearing his name (with no subscripts),
in Ars Conjectandi [30], published posthumously in 1713. They arose in evaluating (in
modern notation) the sums of n-th powers

m−1
∑

k=1

kn =
1

n+ 1

(

n
∑

k=0

(

n+ 1

k

)

Bkm
n+1−k.

)

We follow the convention that the Bernoulli numbers Bn are those given by the expansion

t

et − 1
=

∞
∑

n=0

Bn
n!
tn, (2.2.6)

so that

B1 = −1

2
, B2 =

1

6
, B3 = 0, B4 = − 1

30
, B5 = 0, B6 =

1

42
, ...

Euler later named the Bernoulli numbers in his 1768 paper (in [107, E393]) (“On
the sum of series involving the Bernoulli numbers”), and there listed the first few as
1
6 ,

1
30 ,

1
42 ,

1
30 ,

5
66 . His definition led to the convention1 that the notation Bn corresponds

to |B2n| in (2.2.6). This convention is followed in the classic text of Whittaker and
Watson [317, p. 125].

In his 1755 book on differential calculus [103, E212, Part II, Chap. 5 and 6] Euler
presented his summation formula in detail, with many worked examples. (See Pengelley
[244], [245] for a translation and for a detailed discussion of this work.) In Sect. 122
Euler computes the Bernoulli numbers |B2n| through n = 15. In Sect. 129 he remarks
that:

1However in [107] and elsewhere Euler does not use subscripts, writing A,B,C etc.
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The [Bernoulli numbers] form a highly divergent sequence, which grows
more strongly than any geometric series of growing terms. 2

In Sect. 142 he considers the series for the harmonic numbers s = Hx =
∑x

n=1
1
n , where

his summation formula reads (in modern notation)

s = log x+

(

1

2x
− |B2|

2x2
+

|B4|
4x4

− |B6|
6x6

+ · · ·
)

+ C, (2.2.7)

where the constant C to be determined is Euler’s constant. He remarks that this series
is divergent. He substitutes x = 1, stating that s = 1 in (2.2.7), obtaining formally

C =
1

2
+

|B2|
2

− |B4|
4

+
|B6|
6

− |B8|
8

+ · · ·

although the right side diverges. Substituting this expression in (2.2.7) yields

s = log x+

(

1

2x
− |B2|

2x2
+

|B4|
4x4

− |B6|
6x6

+
|B8|
8x8

− · · ·
)

+

(

1

2
+

|B2|
2

− |B4|
4

+
|B6|
6

− |B8|
8

+ · · ·
)

.

In Sect. 143 he sets x = 10 in (2.2.7) so that s = H10, and gives the numerical value s =
2.92896 82539 68253 968. The right side contains C as an unknown, and by evaluating
the other terms (truncating at a suitable term) he finds

C ≈ 0.57721 56649 01532 5

a result accurate to 15 places. We note that the divergent series on the right side of (2.2.7)

is the asymptotic expansion of the digamma function ψ(x+ 1) + γ, where ψ(x) = Γ′(x)
Γ(x) ,

see Theorem 3.1.3, and in effect Euler truncates the asymptotic expansion at a suitable
term to obtain a good numerical approximation.

Over his lifetime Euler obtained many different numerical approximations to Euler’s
constant. He calculated approximations using truncated divergent series, and his papers
report the value obtained, sometimes with a comment on accuracy, sometimes not. In
contrast, some of the convergent series he obtained for Euler’s constant converge slowly
and proved of little value for numerics. He also explored various series acceleration
methods, which he applied to both convergent and divergent series. He compared and
cross-checked his work with various different numerical methods. In this way he obtained
confidence as to how many digits of accuracy he had obtained using the various methods,
and also obtained information on the reliability of his calculations using divergent series.

In 1765 in a paper studying the gamma function [106, E368] (which will be discussed
in more detail in Section 2.3) he derives the formula Γ′(1) = −γ. It is given in Section 14
of his paper as equation (2.3.6) in Section 2.3, which is equivalent to the integral formula

− γ =

∫ ∞

0
e−x log x dx. (2.2.8)

This result follows from differentiation under the integral sign of Euler’s integral (2.3.4)
in Section 2.4.

In a 1768 paper mainly devoted to relating Bernoulli numbers to values of ζ(n), Euler
[107, E393] obtains more formulas for γ (denoting it O). In Section 24 he reports the
evaluation of γ found earlier and remarks:

2“pariter ac Bernoulliani A,B,C,D &c. serium maxime divergentem, quae etiam magis increscat,
quam ulla series geometrica terminis crescentibus procedens.” [Translation: David Pengelley [244],
[245].]
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O = 0, 57721 56649 01532 5. This number seems also the more notewor-
thy because even though I have spent much effort in investigating it, I
have not been able to reduce it to a known kind of quantity. 3

He derives in Section 25 the integral formula

γ =

∫ ∞

0

(

e−y

1− e−y
− e−y

y

)

dy. (2.2.9)

Here we may note that the integrand

e−y

1− e−y
− e−y

y
=

1

y

( y

ey − 1
− e−y

)

=

∞
∑

n=1

(

Bn − (−1)n
)yn−1

n!
.

In Section 26 by change of variables he obtains

γ =

∫ 1

0

(

1

1− z
+

1

log z

)

dz (2.2.10)

In Section 27 he gives the following new formula for Euler’s constant

γ =
1

2
(ζ(2) − 1) +

2

3
(ζ(3)− 1) +

3

4
(ζ(4)− 1) + · · · (2.2.11)

and in Section 28 he obtains a formula in terms of log 2 and the odd zeta values:

γ =
3

4
− 1

2
log 2 +

∞
∑

k=1

(

1− 1

2k + 1

)(

ζ(2k + 1)− 1
)

He concludes in Section 29:

Therefore the question remains of great moment, of what character the
number O is and among what species of quantities it can be classified.4

In a 1776 paper [110, E583] (On a memorable number naturally occurring in the
summation of the harmonic series), 5 Euler studied the constant γ in its own right. This
paper was not published until 1785, after his death. In Section 2 he speculates that the
number N = eγ should be a notable number:

And therefore, if x is taken to be an infinitely large number it will then
be

1 +
1

2
+

1

3
+ · · · + 1

x
= C + log x.

One may suspect from this that the number C is the hyperbolic [= nat-
ural] logarithm of some notable number, which we put = N , so that
C = logN and the sum of the infinite series is equal to the logarithm of
the number N · x. Thus it will be worthwhile to inquire into the value
of this number N , which indeed it suffices to have defined to five or six
decimal figures, since then one will be able to judge without difficulty
whether this agrees with any known number or not.6

3“O = 0.5772156649015325 qui numerus eo maiori attentione dignus videtur, quod eum, cum olim in
hac investigatione multum studii consumsissem, nullo modo ad cognitum quantitatum genus reducere
valui.” [Translation: Jordan Bell]

4“Manet ergo quaestio magni momenti, cujusdam indolis sit numerus iste O[:= γ] et ad quodnam
genus quantitatum sit referendus.”[Translation: Jordan Bell]

5De numero memorabili in summatione progressionis harmonicae naturalis occurrente
6“Quod si ergo numerus x accipiatur magnus, tum erit

1 +
1

2
+

1

3
+ · · ·+ 1

z
= C + lx
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Euler evaluates N = 1.78106 and says he cannot connect it to any number he knows.
He then gives several new formulae for γ, and tests their usefulness for calculating its
value, comparing the values obtained numerically with the value 0.57721 56649 01532 5
that he previously obtained. His first new formula in Sect. 6 is

1− γ =
1

2
(ζ(2)− 1) +

1

3
(ζ(3)− 1) +

1

4
(ζ(4) − 1) + · · ·

Using the first 16 terms of this expansion, he finds γ ≈ 0, 57721 69. He finds several
other formulas, including, in Sect. 15, the formula

1− log
3

2
− γ =

1

3 · 22 (ζ(3)− 1) +
1

5 · 24 (ζ(5)− 1) +
1

7 · 26 (ζ(7)− 1) + · · · ,

from which he finds γ ≈ 0.57721 56649 01791 3, a result accurate to 12 places. He
concludes the paper with a list of eight formulas relating Euler’s constant, log 2, and
even and odd zeta-values. One striking formula (number VII), involving the odd zeta
values is

γ = log 2−
∞
∑

k=1

ζ(2k + 1)

(2k + 1)22k
.

In another 1776 paper [112, E629] (The expansion of the integral formula
∫

∂x( 1
1−x +

1
ℓx) with the term extended from x = 0 to x = 1), which was not published until 1789,
Euler further investigated the integral formula (2.2.10) for his constant. He denotes its
value by n, and says:

the number n, [...] which is found to be approximately 0, 57721 56649 01532 5,
whose value I have been able in no way to reduce to already known tran-
scendental measures; therefore, it will hardly be useless to try to resolve
the formula in many different ways.7

He then finds several expansions for related integrals. One of these starts from the
identity, valid for m,n ≥ 0,

∫ 1

0

xm − xn

log x
dx = log

(

m+ 1

n+ 1

)

,

and from this he deduces, for n ≥ 1, that

∫ 1

0

(1− x)n

log x
dx = log





n
∏

j=0

(j + 1)
(−1)j

(

n
j

)



 .

This formula gives the moments of the measure x
log(1−x)dx on [0, 1].

istum numerum C[:= γ] esse logarithmum hyperbolicum cuiuspiam numeri notabilis, quem statuamus
= N , ita ut sit C = logN , et summa illius seriei infinitae aequeture logarithmo numeri Nx, under operae
pretium erit in valorem huius numeri N inquirerre, quem quidem sufficiet ad quinque vel fex figuras
decimales definiuisse, quoniam hinc non difficulter iduicari poterit, num cum quopiam numero cogito
conueniat nec ne.” [Translation: Jordan Bell]

7“numerus n [...], et quem per approximationem olim inveni esse = 0, 5772156649015325, cuius val-
orem nullo adhuc modo ad mensuras transcendentes iam cogitas redigere potui; unde haud inutile erit
resolutionem huius formulae propositae pluribus modis tentare.”[Translation: Jordan Bell]
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2.3. The gamma function. Euler was not the originator of work on the factorial func-
tion. This function was initially studied by John Wallis (1616–1703), followed by Abra-
ham de Moivre (1667–1754) and James Stirling (1692–1770). Their work, together with
work of Euler, Daniel Bernoulli (1700–1782) and Lagrange (1736–1813) is reviewed in
Dutka [79].

In 1729, in correspondence with Christian Goldbach, Euler discussed the problem
of obtaining continuous interpolations of discrete series. He described a (convergent)
infinite product interpolating the factorial function, m!,

1 · 2m
1 +m

· 2
1−m · 3m
2 +m

· 3
1−m · 4m
3 +m

· 4
1−m · 5m
4 +m

· etc.

This infinite product, grouped as shown, converges absolutely on the region Cr{−1,−2, ...},
to the gamma function, which we denote Γ(m + 1), following the later notation of Le-
gendre. John Wallis (1616–1703) had earlier called this function the “hypergeometric
series”. Euler substitutes m = 1

2 and finds

Γ
(3

2

)

=
1

2

√
π,

by recognizing a relation of this infinite product to Wallis’s infinite product for π
2 . In

this letter he also introduced the notion of fractional integration, see Sandifer [267].
Also in 1729 Euler [89, E19] wrote a paper presenting these results ( On transcendental

progressions, that is, those whose general term cannot be given algebraically), but it
was not published until 1738. This paper describes the infinite products, suitable for
interpolation. It then considers Euler’s first integral8

∫ 1

0
xe(1− x)ndx

which in modern terms defines the Beta function B(e + 1, n + 1), derives a recurrence
relation from it, and in Sect. 9 derives B(e+1, n+1) = e!n!

(e+n+1)! . More generally, in the

later notation of Legendre this extends to the Beta function identity

B(r, s) :=

∫ 1

0
xr−1(1− x)s−1dx =

Γ(r)Γ(s)

Γ(r + s)
. (2.3.1)

relating it to the gamma function. Euler [89, Sect. 14] goes on to obtain a continuous
interpolation of the factorial function f(n) = n!, given by the integral

f(n) =

∫ 1

0
(− log x)ndx, (2.3.2)

where n is to be interpreted as a continuous variable, n > −1. He then computes formulas
for Γ

(

1 + n
2

)

at half-integer values [89, Sect. 20].
In 1765, but not published until 1769, Euler [106, E368] (“On a hypergeometric curve

expressed by the equation y = 1 ∗ 2 ∗ 3 ∗ · · · ∗ x”) studied the “hypergeometric curve”
given (using Legendre’s notation) by y = Γ(x+ 1), where

Γ(x) :=

∫ ∞

0
tx−1e−tdt.

8Here the letter e denotes an integer. Only in a later paper, [E71], written in 1734, does Euler use
the symbol e to mean the constant 2.71828....
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Euler interpolates the factorial function by an infinite product. In Sect. 5 he gives the
product formula

y = ax
∞
∏

k=1

(

k

k + x

(

a+ k

a+ k − 1

)x)

with any fixed a with 1 < a < x, and with a = 1+x
2 obtains

y =

(

1 + x

2

)x ∞
∏

k=1

(

k

k + x

(

2k + 1 + x

2k − 1 + x

)x)

In Sect. 9 he derives a formula, which in modern notation reads

log y = −γx+
∞
∑

n=2

(−1)n
ζ(n)

n
xn, (2.3.3)

where γ is Euler’s constant. In Sect. 11 he makes an exponential change of variables
from his formula (2.3.2) to obtain the integral formula

y =

∫ ∞

0
e−vvxdv, (2.3.4)

which is (essentially) the standard integral representation for the gamma function. This
formula shows that the “hypergeometric curve” is indeed given as9

y = Γ(x+ 1).

In Sect. 12 he obtains a formula for the digamma function ψ(x) = Γ′
Γ (x), which is

Γ′(x+ 1)

Γ(x+ 1)
:=

dy

y dx
= −γ +

∞
∑

k=1

x

k(x+ k)
.

In formula VII in this section he gives the asymptotic expansion of log Γ(x+1), (Stirling’s
series), expressed as

log y =
1

2
log 2π + (x+

1

2
) log x

(2.3.5)

−x+
A

2x
− 1 · 2

23
B

x3
+

1 · 2 · 3 · 4
25

C

x5
− 1 · 2 · 3 · 4 · 5 · 6

27
D

x7
+ etc.

with A = 1
6 , B = 1

90 , C = 1
945 , D = 1

9450 , ... Euler also gives here the value of Euler’s
constant as γ ≈ 0, 57721 56649 01422 5. In Sect. 14 he finds the explicit value

Γ′(1) :=
dy

dx
|x=0 = −γ. (2.3.6)

In Sect. 15 he uses Γ(32 ) =
1
2

√
π to derive the formula

Γ′

Γ

(

3

2

)

= −γ + 2− 2 log 2.

In Sect. 26 he observes that, for x = n a positive integer, and with a treated as a
variable,

Γ(x+ 1) =

∞
∑

k=0

(−1)k
(x

k

)

(a− k)x, (2.3.7)

9If one instead used the notation Π(x) for this integral used by Gauss, cf. Edwards [81, p. 8], then
the hypergeometric curve is y = Π(x). Gauss made an extensive study of hypergeometric functions.
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the series terminates at k = n, and the resulting function is independent of a. This leads
him to study in the remainder of the paper the series

s = xn −m(x− 1)n +
m(m− 1)

1 · 2 (x− 2)n +
m(m− 1)(m − 2)

1 · 2 · 3 (x− 3)n +&c

In this formula he sets n = m + λ, and he investigates the expansion s = s(x, λ) as a
function of two variables (λ, x) which corresponds to the variables (x− n, a) in (2.3.7).
These expansions involve Bernoulli numbers.

2.4. Zeta values. Already as a young student of Johann Bernoulli (1667–1748) in the
1720’s Euler was shown problems on the summation of infinite series of arithmetical func-
tions, including in particular the sums of inverse k-th powers of integers. The problem of
finding a closed form expression for this value, ζ(2), became a celebrated problem, called
“The Basel Problem.” The Basel problem had been raised by Pietro Mengoli (1628-1686)
in his 1650 book on the arithmetical series arising in geometrical quadratures (see [215],
[126]). In that book Mengoli [217, Prop. 17] summed in closed form the series of (twice
the) inverse triangular numbers

∞
∑

n=1

1

n(n+ 1)
=

1

2
+

1

6
+

1

12
+ · · · = 1,

which is a telescoping sum. The problem became well known because it was also raised by
Johann Bernoulli’s older brother Jacob (also called James or Jacques) Bernoulli (1654–
1705), earlier holder of the professorship of mathematics at the University of Basel. He
wrote a book on infinite series ([29]) in 1689; and several additional works on them. A
collection of this work appeared posthumously in 1713 [30]. He could tell that the sum
of inverse squares converged to a value between 1 and 2, using the triangular numbers,
via

1 <

∞
∑

n=1

1

n2
< 2

( ∞
∑

n=1

1

n(n+ 1)

)

= 2

∞
∑

n=1

(

1

n
− 1

n+ 1

)

= 2.

He was unable to relate this value to known constants, and wrote ([30, art. XVII, p.
254]):

And thus by this Proposition, the sums of series can be found when the
denominators are either triangular numbers less a particular triangular
number or square numbers less a particular square number; by [the results
of art.] XV, this happens for pure triangular numbers, as in the series
1
1 +

1
3 +

1
6 +

1
10 +

1
15 &c., while on the other hand, when the numbers are

pure squares, as in the series 1
1 +

1
4 +

1
9 +

1
16 +

1
25 &c., it is more difficult

than one would have expected, which is noteworthy. If someone should
succeed in finding what till now withstood our efforts and communicate
it to us, we would be much obliged to them.10

Here he says that if a ≥ 1 is an integer and the denominators range over n(n + 1) −
a(a + 1) or alternatively n2 − a2, with n ≥ a + 1, then he can sum the series, but he
cannot sum the second series when a = 0.

10“Atque ita per hanc Propositionem, inveniri possunt summae serierum, cum denominatores sunt vel
numeri Trigonales minuti alio Trigonali, vel Quadrati minuti alio Quadrato; ut & per XV. quando sunt
puri Trigonales, ut in serie 1

1
+ 1

3
+ 1

6
+ 1

10
+ 1

15
&c. at, quod notatu dignum, quando sunt puri Quadrati,

ut in serie 1
1
+ 1

4
+ 1

9
+ 1

16
+ 1

25
&c difficilior est, quam quis expectaverit, summae pervestigatio, quam

tamen finitam esse, ex altera, qua manifesto minor est, colligimus: Si quis inveniat nobisque communicet,
quod industriam nostram elusit hactenus, magnas de nobis gratias feret.”[Translation: Jordan Bell]
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Euler solved the Basel problem by 1735 with his famous result that

ζ(2) =
π2

6
.

Euler’s first contributions on the Basel problem involved getting numerical approxima-
tions of ζ(2). In [90, E20], written in 1731, integrating his representation for the harmonic
numbers led to a representation (in modern terms)

∫ 1

0

dx

x

∫ x

0

1− tn

1− t
dt =

n
∑

j=1

1

j2
.

By a series acceleration method he obtained the formula

ζ(2) = (log 2)2 +
∞
∑

n=1

1

2n−1n2
,

in which the final sum on the right is recognizable as the dilogarithm value 2Li2(
1
2). Euler

used this formula to calculate ζ(2) ≈ 1.64492 4, cf. Sandifer [267]. He next obtained
a much better approximation using Euler summation (the Euler-Maclaurin expansion).
He announced his summation method in [91, E25] in 1732, and gave details in [94, E47],
a paper probably written in 1734. In this paper he computed Bernoulli numbers and
polynomials, and also applied his summation formula to obtain ζ(2) and ζ(3) to 20
decimal places.

In December 1735, in [92, E41], published in 1740, Euler gave three proofs that ζ(2) =
π2

6 . The most well known of these treated sinx as though it were a polynomial with
infinitely many roots at ±π,±2π,±3π, · · · . He combines these roots in pairs, and asserts
the infinite product formula

sinx

x
=

(

1− x2

π2

)(

1− x2

4π2

)(

1− x2

9π2

)

· · · , (2.4.1)

He then equates certain algebraic combinations of coefficients of the Taylor series expan-
sion at x = 0 on both sides of the equation. The right side coefficients give the power
sums of the roots of the polynomials. Writing these Taylor coefficients as 1−αx2+βx4−
γx6+ . . ., he creates algebraic combinations giving the power sums of the roots, in effect
obtaining11

1

π2
ζ(2) = α

1

π4
ζ(4) = α2 − 2β

1

π6
ζ(6) = α3 − 3αβ + 3γ,

and so on. Now the coefficients α, β, γ may be evaluated as rational numbers from the
power series terms of the expansion of sinx

x which Euler computes directly. In this way
he determined formulas for ζ(2n) for 1 ≤ n ≤ 6. He also evaluated by a similar approach
alternating sums of odd powers, obtaining in Sect. 10 the result of Leibniz (1646–1716)
that

∞
∑

k=0

(−1)k
1

2k + 1
=
π

4
.

He views this as confirming his method, saying:

11Euler only writes down the right sides of these equations.
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And indeed this is the same series discovered some time ago by Leibniz,
by which he defined the quadrature of the circle. From this, if our method
should appear to some as not reliable enough, a great confirmation comes
to light here; thus there should not be any doubt about the rest that will
be derived from this method. 12

In Sect. 12 he obtained a parallel result for cubes,

∞
∑

k=0

(−1)k
1

(2k + 1)3
=
π3

32
.

These proofs are not strictly rigorous, because the infinite product expansion is not
completely justified, but Euler makes some numerical cross-checks, and his formulas
work. Euler was sure his answer was right from his previous numerical computations. In
this same paper he gives two more derivations of the result, still susceptible to criticism,
based on the use of infinite products.

We note that directly equating power series coefficients on both sides of (2.4.1), for
the the 2n-th coefficient would give the identity

(−1)n

(2n + 1)!
=

(−1)n

π2n

∑

1≤m1<m2<···<mn

1

m2
1m

2
2 · · ·m2

n

.

The sum on the right hand side is the multiple zeta value ζ(2, 2, ..., 2) (using n copies of
2, see (2.4.5) below), and the case n = 1 gives ζ(2). Relations like this may have inspired
Euler’s later study of multiple zeta values.

Euler communicated his original proof to his correspondents Johann Bernoulli, Daniel
Bernoulli (1700–1782), Nicolaus Bernoulli (1687–1759) and others. Daniel Bernoulli
criticized it on the grounds that sinπx may have other complex roots, cf. [21, Sec. 4],
[315, p. 264]. In response to this criticism Euler eventually justified his infinite product
expansion for sinπx, obtaining a version that can be made rigorous in modern terms, cf.
Sandifer [267].

In a paper [95, E61] published in 1743, Euler obtained more results using infinite
products, indicating how to derive formulas for ζ(2n), for all n ≥ 1, as well as for the
sums

[L(2n + 1, χ−4) :=]

∞
∑

k=0

(−1)k
1

(2k + 1)2n+1
,

for n ≥ 0. In this paper he studied the function ex =
∑∞

n=0
xn

n! . He recalls his formula
for sin s, as

s− s3

1 · 2 · 3 +
s5

1 · 2 · 3 · 4 · 5 − · · · = s(1− s2

π2
)(1− s2

4π2
)(1 − s2

9π2
)(1 − s2

16π2
) · · ·

Then he obtains the formula sin z = eiz−e−iz

2i , introducing the modern notation for e,
saying:

For, this expression is equal to es
√−1−e−s

√−1

2
√
−1

, where e denotes that number

whose logarithm = 1, and

ez =
(

1 +
z

n

)n
,

12“Atque haec est ipsa series a Leibnitio iam pridem prolata, qua circuli quadraturam definiuit. Ex
quo magnum huius methodi, si cui forte ea non satis certa videatur, firmamentum elucet; ita ut de
reliquis, quae ex hac methodo deriuabantur, omnino non liceat dubitari” [Trans: Jordan Bell]
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with n being an infinitely large number13.

Now he introduces a new principle. He evaluates the following integrals, where p and q
are integers with 0 < p < q:

∫ 1

0

xp−1 + xq−p−1

1 + xq
dx =

π

q sin pπ
q

and
∫ 1

0

xp−1 − xq−p−1

1− xq
dx =

π cos pπq
q sin pπ

q

Expanding the first integral as an indefinite integral in power series in x, evaluating term
by term, and setting x = 1 he obtains the formula

π

q sin pπ
q

=
1

p
+

1

q − p
− 1

q + p
− 1

2q − p
+

1

2q + p
+

1

3q − p
− 1

3q + p
+ · · ·

and similarly for the second integral. Setting p
q = s, and rescaling, he obtains

π

sinπs
=

1

s
+

1

1− s
− 1

1 + s
− 1

2− s
+

1

2 + s
+

1

3− s
− · · ·

and
π cos πs

sinπs
=

1

s
− 1

1− s
+

1

1 + s
− 1

2− s
+

1

2 + s
− 1

3− s
+ · · ·

By differentiating with respect to s, he obtains

π2 cos πs

(sinπs)2
=

1

s2
− 1

(1− s)2
− 1

(1 + s)2
+

1

(2− s)2
+

1

(2 + s)2
− 1

(3− s)2
+ · · ·

and
π2

(sinπs)2
=

1

s2
+

1

(1− s)2
+

1

(1 + s)2
+

1

(2− s)2
+

1

(2 + s)2
+ · · ·

Now he substitutes s = p
q with 0 < p < q integers and obtains many identities. Thus

π2

q2(sin pπ
q )

2
=

1

p2
+

1

(q − p)2
+

1

(q + p)2
+

1

(2q − p)2
+

1

(2q + p)2
+ · · ·

For q = 4 and p = 1 he obtains in this way

π2

8
√
2
= 1− 1

32
− 1

52
+

1

72
+

1

92
− 1

112
− 1

132
+ · · ·

and
π2

8
= 1 +

1

32
+

1

52
+

1

72
+

1

92
+

1

112
+ · · ·

He observes that it is not difficult to derive on like principles the value ζ(2) = π2

6 . (This

identity follows for example from the observation that the series above is (1− 1
22
)ζ(2).)

He concludes that one may continue differentiating in s to obtain formulas for various
series in n-th powers, and gives several formulas for the derivatives. In this way one
can obtain a formula for ζ(2n) that expresses it as a rational multiple of π2n. However
this approach does not make evident the closed formula for ζ(2n) expressed in terms of
Bernoulli numbers (given below as (2.4.2)).

In a paper [96, E63], published in 1743, Euler gave a new derivation of ζ(2) = π2

6 ,
using standard methods in calculus involving trigonometric integrals, which is easily

13“Haec enim expressio aequivalet isti es
√

−1−e−s
√

−1

2
√

−1
denotante e numerorum, cujus logarithmus est

= 1,& cum sit ez =
(

1 + z
n

)n
existente n numero infinito, ” [Translation: Jordan Bell]



EULER’S CONSTANT: EULER’S WORK AND MODERN DEVELOPMENTS 17

made rigorous by today’s standards. He takes s to be arclength on a circle of radius 1
and sets x = sin s so that s = arcsinx. He observes x = 1 corresponds to s = π

2 and here
he uses the symbol π with its contemporary meaning :

It is clear that I employ here the letter π to denote the number of Ludolf
van Ceulen 3.14159265...14

Here Euler refers to Ludolf van Ceulen (1540-1610), who was a professor at Leiden
University and who computed π to 35 decimal places. In his calculations Euler works
with differentials and writes ds = dx√

1−xx , so that s =
∫

dx√
1−xx . Multiplying these

expressions gives

sds =
dx√
1− xx

∫

dx√
1− xx

.

He integrates both sides from x = 0 to x = 1. The left side is
∫

π
2
0 sds = ππ

8 . For the right
side, he uses the binomial theorem

1√
1− xx

[= (1− xx)−
1
2 ] = 1 +

1

2
x2 +

1 · 3
2 · 4x

4 +
1 · 3 · 5
2 · 4 · 6x

6 + etc.

In fact this expansion converges for |x| < 1. Euler integrates it term by term to get
∫

dx√
1− xx

= x+
1

2 · 3x
3 +

1 · 3
2 · 4 · 5x

5 +
1 · 3 · 5

2 · 4 · 6 · 7x
7 + etc.

He then obtains

sds =
xdx√
1− xx

+
1

2 · 3
x3dx√
1− xx

+
1 · 3

2 · 4 · 5
x5dx√
1− xx

+
1 · 3 · 5

2 · 4 · 6 · 7
x7dx√
1− xx

+ etc.

Integrating from x = 0 to x = 1 would give

ππ

8
=

∫ 1

0

xdx√
1− xx

+
1

2 · 3

∫ 1

0

x3dx√
1− xx

+
1 · 3

2 · 4 · 5

∫ 1

0

x5dx√
1− xx

+ etc.

The individual terms on the right can be integrated by parts
∫

xn+2dx√
1− xx

=
n+ 1

n+ 2

∫

xndx√
1− xx

− xn+1

n+ 2

√
1− xx.

When integrating from x = 0 to x = 1, the second term on the right vanishes and Euler
gives a table

∫ 1

0

xdx√
1− xx

= 1−
√
1− xx = 1

∫ 1

0

x3dx√
1− xx

=
2

3

∫ 1

0

xdx√
1− xx

=
2

3
∫ 1

0

x5dx√
1− xx

=
4

5

∫ 1

0

x3dx√
1− xx

=
2 · 4
3 · 5

∫ 1

0

x7dx√
1− xx

=
6

7

∫ 1

0

x5dx√
1− xx

=
2 · 4 · 6
3 · 5 · 7

∫ 1

0

x9dx√
1− xx

=
8

9

∫ 1

0

x7dx√
1− xx

=
2 · 4 · 6 · 8
3 · 5 · 7 · 9

14“Il est clair que j’emplois la lettre π pour marquer le nombre de LUDOLF à KEULEN 3,14159265
etc.”
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Substituting these values in the integration above yields

ππ

8
= 1 +

1

3 · 3 +
1

5 · 5 +
1

7 · 7 +
1

9 · 9 + etc.

This gives the sum of reciprocals of odd squares, and Euler observes that multiplying by
1
4 gives

1

4
+

1

16
+

1

36
+

1

64
+ etc.

from which follows
ππ

6
= 1 +

1

4
+

1

9
+

1

16
+ · · ·

This proof is rigorous and unarguable.
He goes on to evaluate sums of larger even powers by the same methods, and gives a

table of explicit evaluations for ζ(2n) for 1 ≤ n ≤ 13, in the form

[ζ(2n) =]
22n−1

(2n + 1)!
C2nπ

2n.

In this expression, he says part of the formula is known and explainable, and that the
remaining difficulty is to explain the nature of the fractions [ C2n] which take values of
a different character:

1

2

1

6

1

6

3

10

5

6

691

210

35

2
etc.

He says that he has two other methods for finding these numbers, whose nature he does
not specify. As we know, these involve Bernoulli numbers.

In this same period, around 1737, not published until 1744, Euler [99, E72] obtained
the “Euler product” expansion of the zeta function. In [99, Theorem 8] he proved:

The expression formed from the sequence of prime numbers

2n · 3n · 5n · 7n · 11n · etc.
(2n − 1)(3n − 1)(5n − 1)(7n − 1)(11n − 1) etc.

has the same value as the sum of the series

1 +
1

2n
+

1

3n
+

1

4n
+

1

5n
+

1

6n
+

1

7n
+ etc.15

This infinite product formula for ζ(n) supplies in principle another way to approximate
the values ζ(n) for n ≥ 2, using finite products.

Euler made repeated attempts throughout his life to find closed forms for the odd
zeta values, especially ζ(3). In a 1739 paper [101, E130], not published until 1750, he
developed partial fraction decompositions and a method equivalent to Abel summation.

In particular, letting θ(s) =
∑∞

n=0
1

(2n+1)s and φ(s) =
∑∞

n=1
(−1)n−1

ns , he obtained the

formula

φ(1− 2m) =
(−1)m−12 · (2m− 1)!

π2m
θ(2m)

for m = 1, 2, 3, 4, in which the left side is determined as the Abel sum

φ(m) := lim
x→1−

∞
∑

n=1

(−1)n−1xn

nm
;

in fact the function φ(s) is Abel summable for all s ∈ C.

15“Si ex serie numerorum primorum sequens formetur espressio 2n·3n·5n·7n·11n·etc.
(2n−1)(3n−1)(5n−1)(7n−1)(11n−1) etc.

erit eius aequalis summae huius seriei 1 + 1
2n

+ 1
3n

+ 1
4n

+ 1
5n

+ 1
6n

+ 1
7n

+ etc.′′ [Translation: David

Pengelley [244], [245].] Here n is an integer.
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In a paper written in 1749 [105, E352], not presented until 1761, and published in
1768, Euler derived the functional equation for the zeta function at integer points, and
he conjectured

φ(1− s)

φ(s)
=

−Γ(s)(2s − 1) cos πs2
(2s−1 − 1)πs

.

He apparently hoped to use this functional relation to deduce a closed form for the odd
zeta values, including ζ(3), and says:

As far as the [alternating] sum of reciprocals of powers is concerned,

1− 1

2n
+

1

3n
− 1

4n
+

1

5n
− 1

6n
+&c

I have already observed the sum [φ(n)] can be assigned a value only when
n is even and that when n is odd, all my efforts have been useless up to
now.16

In his 1755 book on differential calculus Euler [103, E212, Part II, Chap. 6, Arts. 141-
153] gave closed forms for ζ(2n) explicitly expressed in terms of the Bernoulli numbers.
These are equivalent to the modern form

ζ(2n) = (−1)n+1B2n(2π)
2n

2(2n!)
. (2.4.2)

He also used his summation formula to numerically evaluate the sums using divergent
series, as follows. To estimate ζ(2) he considers the finite sums

s = 1 +
1

4
+

1

9
+ · · ·+ 1

x2
,

where x is fixed, and obtains the summation

s = C − 1

x
+

1

2x2
− |B2|

x3
+

|B4|
x5

− |B6|
x7

+ · · · , (2.4.3)

where the constant C is to be determined by finding all the other terms at one value
of x. Choosing x = ∞ we have s = ζ(2) and the summation formula formally gives
s = C = ζ(2). On setting x = 1, the finite sum gives s = 1, therefore one has, formally,

C = 1 + 1− 1

2
+ |B2| − |B4|+ |B6| − · · ·

The right side of this expression is a divergent series and Euler remarks:

But this series alone does not give the value of C, since it diverges
strongly. Above [Section 125] we demonstrated that the sum of the se-
ries to infinity is ππ

6 ; and therefore setting x = ∞ and s = ππ
6 , we have

C = ππ
6 , because then all other terms vanish. Thus it follows that

1 + 1− 1

2
+ |B2| − |B4|+ |B6| − · · · = ππ

6
.17

16“A l’égard des séries réciproques des puissances

1− 1

2n
+

1

3n
− 1

4n
+

1

5n
− 1

6n
+&c

j’ai déjà observé, que leurs sommes ne sauroient être assignées que lorsque l’exposant n est un nombre
entier par, & que pour les cas ou n est un nombre entier impair, tous mes soins ont été jusqu’ici inutiles.”

17“quae series autem cum sit maxime divergens, valorem constantis C[:= ζ(2)] non ostendit. Quia
autem supra demonstavimus summam huius seriei in infinitum continuatae esse = ππ

6
; facto x = ∞, si

ponatur s = ππ
6
, fiet C = ππ

6
, ob reliquos terminos omnes evanescentes. Erit ergo 1 + 1− 1

2
+ U−B+

C−D+ E−&c = ππ
6
. ” [Translation: David Pengelley [244, Sec. 148], [245]]
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Euler’s idea is to use these divergent series to obtain good numerical approximations to
C by substituting a finite value of x and to add up the terms of the series “until it begins
to diverge”, i.e. to truncate it according to some recipe. We do not address the question
of what rule Euler used to determine where to truncate. This procedure has received
modern justification in the theory of asymptotic series, cf. Hardy [156], Hildebrand [166,
Sec. 5.8], [81, Sec 6.4]. By taking large x one can get arbitrarily accurate estimates
(for some functions). If the series is alternating, one may sometimes estimate the error
as being no larger than the smallest term. Euler demonstrates in this particular case

how to find the value C = π2

6 numerically using the value x = 10, with s =
∑10

i=1
1
n2 , by

truncating the expansion (2.4.3) after power 1
x17 , obtaining C ≈ 1, 64493 40668 48226 430.

He writes:

And this number is at once the value of the expression π2

6 , as will be
apparent by doing the calculation with the known value of π. Whence
it is at once understood that even though the series [|B2|, |B4|, |B6| · · · ]
diverges, still the true sum is produced.18.

Euler also applies this method to the odd zeta values, obtaining numerical approxima-

tions for all zeta values up to ζ(15), in particular ζ(3) ≈ π3

25.79436 . He also (implicitly)
introduces in Sec. 153 a “Bernoulli function” b(z) which interpolates at integer values
the variable z his version of the even Bernoulli numbers, i.e.

b(n) = |B2n| = (−1)n+1B2n, n ∈ Z≥1.

Euler remarks:

The series of Bernoulli numbers [|B2|, |B4|, |B6|, · · · ] however irregular,
seem to be interpolated from this source; that is, terms constituted in
the middle of two of them can be defined: for if the middle term lying
between the first A and the second B, corresponding to the index 11

2 were
= p, then it would certainly be

1 +
1

23
+

1

33
+&tc =

22p

1 · 2 · 3π
3

and hence

p =
3

2π3
(1 +

1

23
+

1

33
+&c) = 0, 05815 227.19

That is, Euler shows the interpolating value p := b(32 ) is related to ζ(3), by the relation

p =
3

2

ζ(3)

π3
,

and he finds the numerical value p ≈ 0.05815227. He similarly obtains a value for b(52 )
in terms of ζ(5).

In a 1771 paper, published in 1776, Euler [109, E477] (“Meditations about a singular
type of series”) introduced multiple zeta values and with them obtained another formula
for ζ(3). He had considered this topic much earlier. In Dec. 1742 Goldbach wrote Euler

18“Hicque numerus simul est valor expressionis ππ
6
, quemadmodem ex valore ipsius π cogito calculum

institutenti patebit. Unde simul intelligitur, etiamsi series A,B, C & c. divergat, tamen hoc modo veram
prodire summan.” [Translation: Jordan Bell]

19“Ex hoc fonte series numerorum Bernoulliarum 1
U

2
B

3
C
[· · · ] quantumvis irregularis videatur inter-

polari, seu termini in medio binorum quorumcunque constituti assignari poterunt; se enim terminus
medium interiacens inter primum A and secundum B, sue indici 1 1

2
, respondens fuerit = p; erit utique

1 + 1
23

+ 1
33

+ &tc. = 22p
1·2·3π

3 ideoque p = 3
2π3 (1 + 1

23
+ 1

33
+ &c) = 0, 05815227.” [Translation: Jordan

Bell]
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a letter about multiple zeta values, and they exchanged several further letters on their
properties. The 1771 paper recalls this correspondence with Goldbach, and considers
the sums, for m,n ≥ 1 involving the n-harmonic numbers

Sm,n :=

∞
∑

k=1

Hk,n

km
=
∑

k≥1





∑

1≤l≤k

1

kmln



 =
∑

l≥1

∑

k≥l

(

1

kmln

)

. (2.4.4)

Euler lets
∫

1
zm denote ζ(m) and lets

∫

1
zm (1z )

n denote the sum Sm,n. He considers all
values 1 ≤ m,n ≤ 8. This includes divergent series, since all sums S1,n are divergent.
The modern definition of multiple zeta values, valid for positive integers (a1, ..., ak) with
a1 ≥ 2, is

ζ(a1, a2, ..., ak) =
∑

n1>n2>···>nk>0

1

na11 n
a2
2 · · ·nakk

. (2.4.5)

In this notation (2.4.4) expresses the identities (valid for m ≥ 2, n ≥ 1)

Sm,n = ζ(n+m) + ζ(m,n).

Euler presents three methods for obtaining identities, and establishes a number of addi-
tional identities for each range m+ n = j for 2 ≤ j ≤ 11. For j = 3 he obtains

S2,1 = 2 ζ(3).

This is equivalent to

ζ(3) = ζ(2, 1) =
1

2

(

∞
∑

k=1

Hk

k2

)

.

Being thorough, Euler also treats cases m = 1 where the series diverge, and observes
that for j = 2 he cannot derive useful identities.

In a 1772 paper [108, E432] (“Analytical Exercises”), published in 1773, Euler obtained
new formulas for values ζ(2n+ 1) via divergent series related to the functional equation
for the zeta function. As an example, in Sect. 6 he writes, treating n as a positive integer
and ω as an infinitely small quantity, the formula

1 +
1

3n+ω
+

1

5n+ω
+ · · · = −1

2 cos(n+ω2 π)

πn+ω

1 · 2 · · · (n − 1 + ω)

(

1− 2n−1+ω + 3n−1+ω − etc
)

.

Here the right side contains a divergent series. In Sect. 7, he in effect takes a derivative
in ω and obtains, for example in the case n = 3, the formula

1 +
1

33
+

1

53
+

1

73
+ etc. = −π

2

2
(22 log 2− 32 log 3 + 42 log 4− 52 log 5 + etc.

)

The right side is another divergent series, which he names

Z := 22 log 2− 32 log 3 + 42 log 4− 52 log 5 + 62 log 6− 72 log 7 + etc.

He applies various series acceleration techniques on this divergent series, compare the
discussion of divergent series in Section 2.5 below. In Sect. 20 he transforms Z into a
rapidly convergent series,

Z =
1

4
− απ2

3 · 4 · 22 − βπ4

5 · 6 · 24 − γπ6

7 · 8 · 26 − δπ8

9 · 10 · 28 − ǫπ10

11 · 12 · 210 − etc.

In his notation ζ(2) = απ2, ζ(4) = βπ4 etc, so he thus obtains the valid, rapidly conver-
gent formula

7

8
ζ(3) =

π2

2

(1

4
−

∞
∑

n=1

ζ(2n)

(2n + 1)(2n + 2)22n

)

.
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After further changes of variable, he deduces in Sect. 21 the formula

1 +
1

33
+

1

53
+

1

73
+ etc. =

π2

4
log 2 + 2

∫ π
2

0
Φ log(sinΦ)dΦ.

This may be rewritten

7

8
ζ(3) =

π2

4
log 2 + 2

∫ π
2

0
x log(sinx)dx.

Euler notes also the “near miss” that a variant of the last integral is exactly evaluable:
∫ π

2

0
log(sinx)dx = −π

2
log 2.

Euler continued to consider zeta values. In the 1775 paper [111, E597] (“A new and
most easy method for summing series of reciprocals of powers”), published posthumously
in 1785, he gave a new derivation of his formulas for the even zeta values ζ(2n). In the
1779 paper [113, E736], published in 1811, he studied the dilogarithm function Li2(x) :=
∑∞

n=1
xn

n2 . In Sect. 4 he establishes the functional equation

Li2(x) + Li2(1− x) =
π2

6
− (log x)(log(1− x)).

The special case x = 0 of this functional equation gives again ζ(2) = π2

6 . Euler deduces
several other functional equations for the dilogarithm, and by specialization, a number
of new series identities.

2.5. Summing divergent series: the Euler-Gompertz constant. In the course
of his investigations Euler encountered many divergent series. His work on divergent
series was a by-product of his aim to obtain accurate numerical estimates for the sum
of various convergent series, and he learned and developed summability methods which
could be applied to both convergent and divergent series. By cross-checking predictions
of various summability methods he developed useful methods to sum divergent series.
Of particular interest here, Euler’s summation of a particular divergent series, the Wal-
lis hypergeometric series, produced an interesting new constant, the Euler-Gompertz
constant.

Euler’s near contemporary James Stirling (1692–1770) developed methods of accelera-
tion of convergence of series by differencing, starting in 1719, influenced by Newton’s work
([234, pp. 92-101]) on interpolation, see Tweddle [307]. Euler obtained Stirling’s 1730
book ( “Differential methods and summation of series”) ([291], translated in [308]) which
discussed infinite series, summation, interpolation and quadrature, in which Proposition
14 gives three examples of a method of accelerating convergence of series of hyperge-
ometric type. On 8 June 1736 Euler wrote to Stirling, saying ([308, p. 229], [306, p.
141]):

I searched all over for your excellent book on the method of differences, a
review of which I had seen in the Acta Lipenses, until I have achieved my
desire. Now that I have read through it diligently, I am truly astonished
at the great abundance of excellent methods in such a small volume, by
which you show to sum slowly convergent series with ease and how to in-
terpolate progressions which are very difficult to deal with. But especially
pleasing to me was Prop. 14 of Part I, in which you present a method
for summing so easily series whose law of progression is not even estab-
lished, using only the relation of the last terms; certainly this method
applies very widely and has the greatest use. But the demonstration of
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this proposition, which you seemed to have concealed from study, caused
me immense difficulty, until at last with the greatest pleasure I obtained
it from the things which had gone before...

A key point is that Proposition 14 applies when the members an of the series satisfy linear
recurrence relations whose coefficients are rational functions of the parameter n. This
point was not made explicit by Stirling. It is known that there exist counterexamples to
Proposition 14 otherwise (cf. Tweddle [308, pp. 229–233]). The convergence acceleration
method of Stirling is really a suite of methods of great flexibility, as is explained by Gosper
[136].20 Euler incorporated these ideas in his subsequent work.21.

In a 1760 paper [104, E247] (“On divergent series”) Euler formulated his views on
the use and philosophy of assigning a finite value to some divergent series. This paper
includes work Euler had done as early as 1746. In it Euler presents four different methods
for summing the particular divergent series

1− 1 + 2− 6 + 24− 120 + · · · [= 0!− 1! + 2!− 3! + 4!− 5! + · · · ], (2.5.1)

which he calls “Wallis’ hypergeometric series,” and shows they each give (approximately)
the same answer, which he denotes A. Barbeau and Leah [26] give a translation of the
initial, philosophical part of this paper, followed by a summary of the rest of its contents,
and Barbeau [27] gives a detailed exposition of Euler’s treatment of this example.

The series (2.5.1) is termed “hypergeometric” because each term in the series is mul-
tiplied by a ratio which varies from term to term, rather than by a constant ratio as in
a geometric series. Series of this type appeared in the Scholium to Proposition 190 in
Wallis’s 1656 book Arithmetica Infinitorum [314]22.

Euler’s four methods were:

(1) [104, Sect. 13–16] The iteration of a series acceleration method involving a
differencing operation applied to this series. Euler iterates four times, truncates
the resulting divergent series and obtains an approximation to its “sum” A of
A ≈ 38015/65536 = 0.58006...;

(2) [104, Sect. 17-18] The interpolation of solutions to the difference equation Pn+1 =
nPn + 1, with P1 = 1. Euler obtains the closed formula

Pn = 1 + (n− 1) + (n− 1)(n− 2) + (n− 1)(n − 2)(n − 3) + · · · ,

which is a finite sum for each n ≥ 1, and observes that substituting n = 0
formally gives the Wallis series. He considers interpolation methods that rescale
Pn by an invertible function f(x) to obtain values f(Pn), and then attempts to
interpolate the value f(P0). For the choice f(x) = 1

x he obtains A ≈ 0.6 and for
f(x) = log x he obtains A ≈ 0.59966;

20Gosper [136, p.122] says: “We will be taking up almost exactly where James Stirling left off, and
had he been granted use of a symbolic mathematics system such as MIT MACSYMA, Stirling would
probably have done most of this work before 1750.”

21We do not attempt to untangle the exact influence of Stirling’s work on Euler. In the rest of his
1736 letter Euler explains his own Euler summation method for summing series. In a reply made 16 April
1738 Stirling tells Euler that Colin Maclaurin will be publishing a book on Fluxions that has a similar
summation formula that he found some time ago. Euler replied on 27 July 1738 that “ Mr. Maclaurin
probably came upon his summation formula before me, and consequently deserves to be named as its
first discoverer. For I found that theorem about four years ago, at which time I also described its proof
and application in greater detail to our Academy.” Euler also states that he independently found some
summability methods in Stirling’s book, before he knew of its existence ([306, Chap. 6]).

22This reference was noted by Carl Boehm, an editor of Euler’s Collected Works, cf. [26, p. 157].
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(3) [104, Sect. 19–20] The construction and solution of an associated differential
equation. Euler views the Wallis series as the special case x = 1 of the power
series

s(x) = 1− 1!x+ 2!x2 − 3!x3 + 4!x4 − 5!x5 + · · · .
Although this series diverges for all nonzero x ∈ C, he observes that s(x) formally
satisfies a linear differential equation. This differential equation has a convergent
solution given by an integral with variable endpoint x, and by specializing it to
x = 1 he obtains an exact answer A. We discuss this method in detail below.

(4) [104, Sec. 21–25] The determination of a continued fraction expansion for the
series s(x) given by the integral in (3). This is

s(x) =
1

1 +
x

1 +
x

1 +
2x

1 +
2x

1 +
3x

1 +
3x

1 + · · ·

(2.5.2)

This continued fraction is convergent at x = 1. Using it, he computes a good
numerical approximation, given in (2.5.8) below, to the answer A.

.
In the third of four summation methods, Euler considers the series to be the “value”

at x = 1 of the asymptotic series

s(x) ∼
∞
∑

n=0

(−1)nn!xn+1. (2.5.3)

He notes this series satisfies the inhomogeneous linear differential equation

s′(x) +
1

x2
s(x) =

1

x
. (2.5.4)

He writes down an explicit solution to the differential equation (2.5.4), namely

s(x) := e
1
x

∫ x

0

1

t
e−

1
t dt. (2.5.5)

The expansion of this integral near x = 0 has the asymptotic expansion (2.5.3). Euler

transforms the integral (2.5.5) into other forms. Using the change of variable v = e1−
1
t

he obtains

s(x) = e(
1
x
−1)

∫ e1−
1
x

0

dv

1− log v
. (2.5.6)

He then obtains as his proposed summation for the divergent series the value

δ := s(1) = e

∫ 1

0

1

t
e−

1
t dt =

∫ 1

0

dv

1− log v
. (2.5.7)

He numerically estimates this integral using the trapezoidal rule and obtains δ ≈ 0.59637255.
Using his fourth method, in Sec. 25 Euler obtained a more precise numerical value for
this constant, finding

δ ≈ 0.59634 73621 237. (2.5.8)
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The constant δ defined by (2.5.7) is of some interest and we call it the Euler-Gompertz
constant, following Finch [116, Sect. 6.2]. This constant was earlier named the Gompertz
constant by Le Lionnais [203]. 23 Benjamin Gompertz (1779–1865) was a mathematician
and actuary who in 1825 proposed a functional model for approximating mortality tables,
cf. Gompertz [132],[133]. The Gompertz function and Gompertz distribution are named
in his honor. I have not located the Euler-Gompertz constant in his writings. However
Finch [116, Sect. 6.2.4] points out a connection of the Euler-Gompertz constant with a
Gompertz-like functional model.

The Euler-Gompertz constant has some properties analogous to Euler’s constant. The
integral representations for the Euler-Gompertz constant given by (2.5.5) and (2.5.6)
evaluated at x = 1 resemble the integral representations (2.2.9) and (2.2.10) for Euler’s
constant. An elegant parallel was noted by Aptekarev [13],

γ = −
∫ ∞

0
log x e−xdx, δ =

∫ ∞

0
log(x+ 1) e−xdx. (2.5.9)

There are also integral formulae in which both constants appear, see (3.5.11) and (3.6.8).
In 1949 G. H. Hardy [156, p. 26] gave a third integral representation for the function

s(x), obtained by using the change of variable t = x
1+xw , namely

s(x) = x

∫ ∞

0

e−w

1 + xw
dw.

Evaluation at x = 1 yields the integral representation

δ =

∫ ∞

0

e−w

1 + w
dw. (2.5.10)

From this representation Hardy obtained a relation of δ to Euler’s constant given by

δ = −e
(

γ − 1 +
1

2 · 2! −
1

3 · 3! +
1

4 · 4! + · · ·
)

. (2.5.11)

One can also deduce from (2.5.10) that

δ = −eEi(−1) (2.5.12)

where Ei(x) is the exponential integral

Ei(x) :=

∫ x

−∞

et

t
dt, (2.5.13)

which is defined as a function of a complex variable x on the complex plane cut along
the nonnegative real axis.24

Here we note that Euler’s integral (2.5.5) is transformed by the change of variable
t = 1

u to another simple form, which on replacing x by 1/x becomes

s(
1

x
) = ex

∫ ∞

x

e−u

u
du = exE1(x). (2.5.14)

23Le Lionnais [203] gives no explanation or reference for his choice of name “Gompertz”.
24This is sufficient to define Ei(−1). For applications the function Ei(x) is usually extended to positive

real values by using the Cauchy principal value at the point x = 0 where the integrand has a singularity.
The real-valued definition using the Cauchy principal value is related to the complex-analytic extension
by

Ei(x) := lim
ǫ→0+

1

2

(

Ei(x+ ǫi) + Ei(x− ǫi)
)

.

.
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Here E1(z) is the principal exponential integral, defined for | arg z| < π by a contour
integral

E1(z) :=

∫ ∞

z

e−u

u
du, (2.5.15)

that eventually goes to +∞ along the positive real axis, see [1, Chap. 5]. Choosing x = 1
yields the identity

E1(1) =

∫ ∞

1

e−t

t
dt =

δ

e
. (2.5.16)

Further formulas involving the Euler-Gompertz constant are given in Sections 3.5, 3.6,
3.15 and 3.16.

Regarding method (4) above, Euler had previously done much work on continued
fractions in the late 1730’s in [97, E71] and in particular in his sequel paper [100, E123],
in which he expands some analytic functions and integrals in continued fractions. This
work of Euler is discussed in the book of Khrushchev [175], which includes an English
translation of [100]. In 1879 E. Laguerre [193] found an analytic continued fraction ex-
pansion for the principal exponential integral, which coincides with e−xs(1/x)by (2.5.14),
obtaining

∫ ∞

x

e−t

t
dt =

e−x

x+ 1− 1

x+ 3− 1

x+5
4 −

1
4

x+7
9 −

1
9

x+9
16 − · · ·

. (2.5.17)

Laguerre noted that this expansion converges for positive real x. His expansion simplifies
to25

∫ ∞

x

e−t

t
dt =

e−x

x+ 1− 12

x+ 3− 22

x+ 5− 32

x+ 7− 42

x+ 9− · · ·

, (2.5.18)

which is the form in which it appears in Wall [313, (92.7)]. On taking x = 1 it yields
another continued fraction for the Euler-Gompertz constant,

δ = e

∫ ∞

1

e−t

t
dt =

1

2− 12

4− 22

6− 32

8− 42

10− · · ·

. (2.5.19)

In his great 1894 work T. J. Stieltjes ([289], [290]) developed a general theory for

analytic continued fractions representing functions F (x) given by
∫∞
0

dΦ(u)
x+u , which takes

25This form of fraction with minus signs between convergents is often called a J-continued fraction,
see Wall [313, p. 103].
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the form
∫ ∞

0

dΦ(u)

x+ u
=

1

a1x+
1

a2 +
1

a3x+
1

a4 +
1

a5x+
1

a6 + · · ·

. (2.5.20)

for positive real an. He formulated the (Stieltjes) moment problem for measures on the
nonnegative real axis, and related his continued fractions to the moment problem. In
the introduction of his paper he specifically gives Laguerre’s continued fraction (2.5.18)
as an example, and observes that it may be converted to a continued fraction in his form
(2.5.20) with a2n−1 = 1 and a2n = 1

n . On taking x = 1 his converted fraction is closely
related to Euler’s continued fraction (2.5.2). Stieltjes notes that his theory extends the
provable convergence region for Laguerre’s continued fraction (2.5.18) to all complex x,
excluding the negative real axis. In [289, Sect. 57] he remarks that associated measure
in the moment problem for this continued fraction must be unbounded, and in [289,
Sect. 62] he obtains a generalization of (his form of) Laguerre’s continued fraction to
add extra parameters; cf. Wall [313, eqn. (92.17)].

It is not known whether the Euler-Gompertz constant is rational or irrational. How-
ever it has recently been established that at least one of γ and δ is transcendental, as
presented in Section 3.16.

2.6. Euler-Mascheroni constant; Euler’s approach to research. Euler’s constant
is often called the Euler-Mascheroni constant, after later work of Lorenzo Mascheroni
[213], [214]. In 1790, in a book proposing to answer some problems raised by Euler,
Mascheroni [213] introduced the notation A for this constant. In 1792 Mascheroni [214,
p.11] also reconsidered integrals in Euler’s paper [112, E629], using both the notations A
and a for Euler’s constant. In his book, using an expansion of the logarithmic integral,
he gave a numerical expression for it to 32 decimal places ([213, p. 23]), which stated

A ≈ 0.57721 56649 01532 86061 81120 90082 39

This computation attached his name to the problem; Euler had previously computed it
accurately to 15 places. At that time constants were often named after a person who
had done the labor of computing them to the most digits. However in 1809 Johann
von Soldner [275], while preparing the first book on the logarithmic integral function
li(x) =

∫

dx
log x , found it necessary to recompute Euler’s constant, which he called H

(perhaps from the harmonic series). He computed it to 22 decimal places by a similar
method, and obtained ([275, p. 13])

H ≈ 0.57721 56649 01532 86060 65

Von Soldner’s answer disagreed with Mascheroni’s in the 20-th decimal place. To settle
the conflict von Soldner asked the aid of C. F. Gauss, and Gauss engaged the 19-year old
calculating prodigy F. G. B. Nicolai (1793—1846) to recheck the computation. Nicolai
used the Euler-Maclaurin summation formula to compute γ to 40 places, finding agree-
ment with von Soldner’s calculations to 22 places (see [158, p. 89]). Thus the conflict was
settled in von Soldner’s favor, and Mascheroni’s value is accurate to only 19 places. In
the current era, which credits the mathematical contributions, it seems most appropriate
to name the constant after Euler alone.
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The now-standard notation γ for Euler’s constant arose subsequent to the work of both
Euler and Mascheroni. Euler himself used various notations for his constant, including
C and O and n; Mascheroni used A and a; von Soldner used H and C. The notation
γ appears in an 1837 paper on the logarithmic integral of Bretschneider [45, p. 260].
It also appears in a calculus textbook of Augustus de Morgan [226, p. 578], published
about the same time. This choice of symbol γ is perhaps based on the association of
Euler’s constant with the gamma function.

To conclude our discussion of Euler’s work, it seems useful to contemplate the approach
to research used by Euler in his long successful career. C. Truesdell [303, Essay 10], [304,
pp. 91–92], makes the following observations about the methods used by Euler, his
teacher Johann Bernoulli, and Johann’s teacher and brother Jacob Bernoulli.

(1) Always attack a special problem. If possible solve the special problem in a way
that leads to a general method.

(2) Read and digest every earlier attempt at a theory of the phenomenon in question.
(3) Let a key problem solved be a father to a key problem posed. The new problem

finds its place on the structure provided by the solution of the old; its solution
in turn will provide further structure.

(4) If two special problems solved seem cognate, try to unite them in a general
scheme. To do so, set aside the differences, and try to build a structure on the
common features.

(5) Never rest content with an imperfect or incomplete argument. If you cannot
complete and perfect it yourself, lay bare its flaws for others to see.

(6) Never abandon a problem you have solved. There are always better ways. Keep
searching for them, for they lead to a fuller understanding. While broadening,
deepen and simplify.

Truesdell speaks here about Euler’s work in the area of foundations of mechanics, but his
observations apply equally well to Euler’s work in number theory and analysis discussed
above.

3. Mathematical Developments

We now consider a collection of mathematical topics in which Euler’s constant appears.

3.1. Euler’s constant and the gamma function. Euler’s constant appears in several
places in connection with the gamma function. Already Euler noted a basic occurrence
of Euler’s constant with the gamma function,

Γ′(1) = −γ. (3.1.1)

Thus γ appears in the Taylor series expansion of Γ(z) around the point z = 1. Further-
more Euler’s constant also appears (in the form eγ) in the Hadamard product expansion
for the entire function 1

Γ(z) , which states:

1

Γ(z)
= zeγz

∞
∏

n=1

(

1 +
z

n

)

e−
z
n .

Euler’s constant seems however more tightly associated to the logarithm of the gamma
function, which was studied by Euler [106, E368] and many subsequent workers. The
function log Γ(z) is multivalued under analytic continuation, and many results are more
elegantly expressed in terms of the digamma function, defined by

ψ(z) :=
Γ′(z)
Γ(z)

=
d

dz
log Γ(z). (3.1.2)
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The theory of the digamma function is simpler in some respects because it is a mero-
morphic function. Nielsen [239, Chap. 1] presents results and some early history, and
Ferraro [115] describes the work of Gauss on these functions.

We recall a few basic facts. The digamma function satisfies the difference equation

ψ(z + 1) = ψ(z) +
1

z
, (3.1.3)

which is inherited from the functional equation zΓ(z) = Γ(z + 1). It has an integral
representation, valid for Re(z) > 0,

ψ(z) =

∫ ∞

0

(e−t

t
− e−zt

1− e−t

)

dt,

found in 1813 by Gauss [124, Art. 30 ff] as part of his investigation of the hypergeometric
function 2F1(α, β; γ;x) (see [115]). The difference equation gives

ψ(x) = ψ(x+ n)−
n−1
∑

j=0

1

x+ j

from which follows

ψ(x) = lim
n→∞

(

log n−
n−1
∑

j=0

1

x+ j

)

.

This limit is valid for all x ∈ CrZ≤0, using the fact that ψ(x)− log x goes uniformly to
0 in the right half-plane as Re(x) → ∞ ([239, p. 85, 93]). This formula gives ψ(1) = −γ,
a fact which also follows directly from (3.1.1).

Euler’s constant appears in the values of the digamma function ψ(x) at all positive
integers and half-integers. In 1765 Euler [106, E368] found the values Γ(12),Γ(1) and

Γ′(12 ),Γ
′(1). These values determines ψ(1/2), ψ(1), and then, by using the difference

equation (3.1.3), the values of ψ(x) for all half-integers.

Theorem 3.1.1. (Euler 1765) The digamma function ψ(x) := Γ′(x)
Γ(x) satisfies, for inte-

gers n ≥ 1,

ψ(n) = −γ +Hn−1

using the convention that H0 = 0. It also satisfies, for half integers n+ 1
2 , and n ≥ 0,

ψ(n +
1

2
) = −γ − 2 log 2 + 2H2n−1 −Hn−1,

using the additional convention H−1 = 0.

Proof. The first formula follows from ψ(1) = −γ using (3.1.3). The second formula will
follow from the identity

ψ(
1

2
) = −γ − 2 log 2, (3.1.4)

because the difference equation (3.1.3) then gives

ψ(n+
1

2
) = ψ(

1

2
) + 2

(

1 +
1

3
+ · · · + 1

2n − 1

)

.

To obtain (3.1.4) we start from the duplication formula for the gamma function

Γ(2z) =
1√
π
22z−1Γ(z)Γ(z +

1

2
). (3.1.5)

We logarithmically differentiate this formula at z = 1
2 , and solve for ψ(12 ). �
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The next two results present expansions of the digamma function that connect it with
integer zeta values. The first one concerns its Taylor series expansion around the point
z = 1.

Theorem 3.1.2. (Euler 1765) The digamma function has Taylor series expansion
around z = 1 given by

ψ(z + 1) = −γ +

∞
∑

k=1

(−1)k+1ζ(k + 1) zk (3.1.6)

This expansion converges absolutely for |z| < 1.

Remark. The pattern of Taylor coefficients in (3.1.6) has the k = 0 term formally
assigning to “ζ(1)” the value γ.

Proof. Euler [106, E368, Sect. 9] obtained a Taylor series expansion around z = 1 for
log Γ(z), given as (2.3.3) (with x = z − 1). Differentiating it term by term with respect
to x yields (3.1.6). �

The second relation to zeta values concerns the asymptotic expansion of the digamma
function around z = +∞, valid in the right half-plane. In this formula the non-positive
integer values of the zeta function appear.

Theorem 3.1.3. The digamma function ψ(z) has the asymptotic expansion

ψ(z + 1) ∼ log z +
∞
∑

k=1

(−1)kζ(1− k)

(

1

z

)k

, (3.1.7)

which is valid on the sector −π+ ǫ ≤ arg z ≤ π− ǫ, for any given ǫ > 0. This asymptotic
expansion does not converge for any value of z.

The statement that (3.1.7) is an asymptotic expansion means: For each finite n ≥ 1,
the estimate

ψ(z + 1) = log z +

n
∑

k=1

(−1)kζ(1− k)

(

1

z

)k

+O(z−n−1)

holds on the sector −π+ ǫ ≤ arg z ≤ π− ǫ, with ǫ > 0 where the implied constant in the
O-symbol depends on both n and ǫ.

Theorem 3.1.3 does not seem to have been previously stated in this form, with coef-
ficients containing ζ(1 − k). However it is quite an old result, stated in the alternate
form

ψ(z + 1) ∼ log z − B1

z
−

∞
∑

k=1

B2k

2k

1

z2k
. (3.1.8)

The conversion from (3.1.8) to (3.1.7) is simply a matter of substituting the formulas for

the zeta values at negative integers: ζ(0) = −1
2 = B1 and ζ(1− k) = (−1)k+1Bk

k , noting
B2k+1 = 0 for k ≥ 1, see [87, Sec. 1.18], [1, (6.3.18)]. As a formal expansion (3.1.8)
follows either from Stirling’s expansion of sums of logarithms obtained in 1730 ([291,
Prop. 28], c.f. Tweddle [306, Chap. 1]), or from Euler’s expansion of log Γ(z) given
in (2.3.5), by differentiation term-by-term. Its rigorous interpretation as an asymptotic
expansion having a remainder term estimate valid on the large region given above is due
to Stieltjes. In his 1886 French doctoral thesis Stieltjes [287] treated a general notion
of an asymptotic expansion with remainder term, including the case of an asymptotic
expansion for log Γ(a) ([287, Sec. 14–19]). In 1889 Stieltjes [288] presented a detailed
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derivation of an asymptotic series for log Γ(a), whose methods can be used to derive the
result (3.1.8) above.

Proof. The 1889 formula of Stieltjes [288] for log Γ(a) embodys Stirling’s expansion with
an error estimate. Stieltjes first introduced the function J(a) defined by

log Γ(a) = (a− 1

2
) log a− a+

1

2
log(2π) + J(a).

His key observation is that J(a) has an integral representation

J(a) =

∫ ∞

0

P (x)

x+ a
dx, (3.1.9)

in which P (x) is the periodic function

P (x) =
1

2
− x+ ⌊x⌋ = −B1(x− ⌊x⌋),

where B1(x) is the first Bernoulli polynomial. He observes that the integral formula
(3.1.9) has the merit that it converges on the complex a-plane aside from the negative
real axis, unlike two earlier integral formulas for J(a) of Binet,

J(a) =

∫ ∞

0

( 1

1− e−x
− 1

x
− 1

2

)e−ax

x
dx,

and

J(a) =
1

π

∫ ∞

0

a

a2 + x2
log
( 1

1− e−2πx

)

dx,

which are valid on the half-plane Re(a) > 0. He now repeatedly integrates (3.1.9) by
parts to obtain a formula 26 for log Γ(a), valid on the entire complex plane aside from
the negative real axis,

log Γ(a) = (a− 1

2
) log a−a+ 1

2
log(2π)+

|B2|
1 · 2a−

|B4|
3 · 4a3 + · · ·+ (−1)k−1|B2k|

(2k − 1)2k a2k−1
+Jk(a),

(3.1.10)

in which Jk(a) =
∫∞
0

Pk(x)
(x+a)2k+1 dx where Pk(x) is periodic and given by its Fourier series

Pk(x) = (−1)k(2k)!

∞
∑

n=1

1

22k(πn)2k+1
sin(2πnx),

and is related to the (2k + 1)-st Bernoulli polynomial. He obtains an error estimate for
Jk(a) ([288, eqn. (34)]), valid for −π + ǫ < θ < π − ǫ, that

|Jk(Reiθ)| <
|B2k+2|

(2k + 2)(2k + 1)
(sec

1

2
θ)2k+2R−2k−1.

We obtain a formula for ψ(a) by differentiating (3.1.10), and using B2k = (−1)k−1|B2k|
gives

ψ(a) = log a− 1

2a
− B2

2 a2
− B4

4 a4
− · · · − B2k

2k a2k
+ J

′
k(a).

This formula gives the required asymptotic expansion for ψ(a), as soon as one obtains

a suitable error estimate for J
′
k(a), which may be done on the same lines as for Jk(a).

The asymptotic expansion (3.1.8) follows after using ψ(a+1) = ψ(a)+ 1
a , which has the

effect to reverse the sign of the coefficient of 1
a .

26In Stieltjes’s formula Bj denotes the Bernoulli number |B2j | in (2.2.6). We have altered his notation
to match (2.2.6).
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The formula (3.1.7) follows by direct substitution of the zeta values ζ(0) = −1
2 = B1

and ζ(1− k) = (−1)k+1Bk
k for k ≥ 2, noting B2k+1 = 0 for k ≥ 1, see [87, Sec. 1.18], [1,

(6.3.18)].
Finally, the known growth rate for even Bernoulli numbers,

|B2n| ∼
2

(2π)2n
(2n)! ∼ 4

√
πn(πe)−2nn2n.

implies that the asymptotic series (3.1.7) diverges for all finite values of z. �

A consequence of the asymptotic expansion (3.1.7) for ψ(x) is an asymptotic expansion
for the harmonic numbers, given by

Hn ∼ log n+ γ +
∞
∑

k=1

(−1)kζ(1− k)
1

nk
. (3.1.11)

This is obtained on taking z = n in (3.1.6) and substituting ψ(n + 1) = Hn − γ. Sub-
stituting the zeta values allows this expansion to be expressed in the more well-known
form

Hn ∼ log n+ γ − B1

n
−

∞
∑

k=2

B2k

2k

1

n2k
,

∼ log n+ γ +
1

2n
− 1

12n2
+

1

120n4
− 1

252n6
+ · · ·

Note that although Hn has jumps of size 1
n at each integer value, nevertheless the as-

ymptotic expansion is valid to all orders ( 1n)
k for k ≥ 1, although the higher order terms

are of magnitude much smaller than the jumps.
Theorem 3.1.2 and Theorem 3.1.3 (2) have the feature that these two expansions

exhibit between them the full set of integer values ζ(k) of the Riemann zeta function,
with Euler’s constant appearing as a substitute for “ζ(1)”. This is a remarkable fact.

3.2. Euler’s constant and the zeta function. The function ζ(s) was studied at
length by Euler, but is named after Riemann [259], commemorating his epoch-making
1859 paper. Riemann showed that ζ(s) extends to a meromorphic function in the plane
with its only singularity being a simple pole at s = 1. Euler’s constant appears in the
Laurent series expansion of ζ(s) around the point s = 1, as follows.

Theorem 3.2.1. (Stieltjes 1885) The Laurent expansion of ζ(s) around s = 1 has the
form

ζ(s) =
1

s− 1
+ γ0 +

∞
∑

n=1

(−1)n

n!
γn(s− 1)n (3.2.1)

in which γ0 = γ is Euler’s constant, and the coefficients γn for n ≥ 0 are defined by

γn := lim
m→∞

(

m
∑

k=1

(log k)n

k
− (logm)n+1

n+ 1

)

(3.2.2)

Proof. We follow a proof of Bohman and Fröberg [36]. It starts from the identity
(s− 1)ζ(s) =

∑∞
k=1(s− 1)k−s, which is valid for Re(s) > 1. For real s > 1, one has the

telescoping sum
∞
∑

k=1

(k1−s − (k + 1)1−s) = 1.
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Using it, one obtains

(s− 1)ζ(s) = 1 +

∞
∑

k=1

{(k + 1)1−s − k1−s + (s− 1)k−s}.

Noting that at s = 1 the telescoping sum above is 0, one has

(s − 1)ζ(s) = 1 +
∞
∑

k=1

{exp(−(s− 1) log(k + 1)) − exp(−(s − 1) log k)

+(s− 1)
1

k
exp(−(s− 1) log k)}

= 1 +

∞
∑

k=1

{

∞
∑

n=0

(−1)n(s− 1)n

n!
[(log(k + 1))n − (log k)n]

+
s− 1

k

∞
∑

n=0

(−1)n(s− 1)n(log k)n

n!

}

.

Dividing by (s− 1) now yields

ζ(s) =
1

s− 1
+

∞
∑

n=0

(−1)n

n!
γn(s− 1)n,

with γ0 = γ, and with

γn =
∞
∑

k=1

{(log k)n

k
− (log(k + 1))n+1 − (log k)n+1

n+ 1

}

. (3.2.3)

This last formula is equivalent to (3.2.2), since the first m terms in the sum add up to
the m-th term in (3.2.2). �

Theorem 3.2.1 gives the coefficients γn of the zeta function in a form resembling the
original definition of Euler’s constant. These constants arose in a correspondence that
Stieltjes carried on with his mentor Hermite (cf. [23] ) from 1882 to 1894. In Letter 71 of
that correspondence, written in June 1885, Stieltjes stated that he proposed to calculate
the first few terms in the Laurent expansion27 of ζ(s) around s = 1,

ζ(z + 1) =
1

z
+A0 +A1 z + ...

noting that A0 = 0.577215665... is known and that he finds A1 = −0.072815520... In
Letters 73 and 74, Hermite formulated (3.2.2), which he called “very interesting,” and
inquired about rigorously establishing it.28 In Letter 75 Stieltjes [23, pp. 151–155] gave
a complete derivation of (3.2.2), writing

ζ(s+ 1) =
1

s
+ C0 − C1 s+

C2

1 · 2 s
2 − C3

1 · 2 · 3 x
3 + · · ·

The Laurent series coefficients An are now named the Stieltjes constants by some authors
who follow Letter 71 ([36], [39]), while other authors follow Letter 75 and call the scaled
values γn = Cn the Stieltjes constants ([173], [59]).

Table 1 presents values of γn for small n as computed by Keiper [173]. A good deal
is known about the size of these constants. There are infinitely many γn of each sign

27In Letter 71 Stieltjes uses the notation C0, C1, ..., but in Letter 75 he uses the same notation with
a different meaning. We substitute A0, A1, ... for the Letter 71 coefficients following [36].

28The result (3.2.2) is misstated in Erdëlyi et al [87, (1.12.17)], making the right side equal (−1)n

n!
γn,

a mistake tracing back to a paper of G. H. Hardy [154].
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n γn
0 + 0.57721 56649 01532
1 − 0.07281 58454 83676
2 − 0.00969 03631 28723
3 + 0.00205 38344 20303
4 + 0.00232 53700 65467
5 + 0.00079 33238 17301
6 − 0.00023 87693 45430
7 − 0.00052 72895 67057
8 − 0.00035 21233 53803
9 − 0.00003 43947 74418
10 + 0.00020 53328 14909

Table 1. Values for Stieltjes constants γn.

(Briggs [46]). Because ζ(s)− 1
s−1 is an entire function, the Laurent coefficients An must

rapidly approach 0 in absolute value as n→ ∞. However despite the sizes of the initial
values in Table 1, the scaled values γn are known to be unbounded (and to sometimes
be exponentially large) as a function of n, cf. Cohen [62, Sec. 10.3.5]. Keiper estimated
that γ150 ≈ 8.02× 1035. More detailed asymptotic bounds on the γn are given in Coffey
[59] and Knessl and Coffey [176], [177]; see also Coffey [60]. At present nothing is known
about the irrationality or transcendence of any of the Stieltjes constants.

Various generalizations of the Riemann zeta function play a role in theoretical physics,
especially in quantum field theory, in connection with a method of “zeta function regu-
larization” for assigning finite values in certain perturbation calculations. This method
was suggested by S. Hawking [159] in 1977, and it has now been widely extended to other
questions in physics, see the book of Elizalde [82] (See also [83], [84].) Here one forms
a generalized “zeta function” from spectral data and evaluates it an an integer point,
often s = 0. If the function is meromorphic at this point, then the constant term in the
Laurent expansion at this value is taken as the “regularized” value. This procedure can
be viewed as a quite special kind of “dimensional regularization,” in which perturbation
calculations are made viewing the dimension of space-time as a complex variable s, and
at the end of the calculation one specializes the complex variable to the integer value of
the dimension, often s = 4, see Leibbrandt [202]. Under this convention Euler’s constant
γ functions as a “regularized” value “ζ(1)” of the zeta function at s = 1, because by
Theorem 3.2.1 it is the constant term in the Laurent expansion of the Riemann zeta
function at s = 1. This interpretation as “ζ(1)” also matches the constant term in the
Taylor expansion of the digamma function ψ(z) around z = 1 in Theorem 3.1.2.

Euler’s constant occurs in many deeper ways in connection with the behavior of the
Riemann zeta function. The most tantalizing open problem about the Riemann zeta
function is the Riemann hypothesis, which asserts that the non-real complex zeros of
the Riemann zeta function all fall on the line Re(s) = 1

2 . Sections 3.7 and 3.8 present
formulations of the Riemann hypothesis in terms of the relation of limiting asymptotic
behaviors of arithmetic functions to eγ . Section 3.9 presents results relating the extreme
value distribution of the Riemann zeta function on the line Re(s) = 1 to the constant
eγ .

In 1885 Stieltjes announced a proof of the Riemann hypothesis ([286], English trans-
lation in [290, p. 561]). In Letter 71 to Hermite discussed above, Stieltjes enclosed his
announcement of a proof of the Riemann hypothesis, requesting that it be communicated
to Comptes Rendus, if Hermite approved, and Hermite did so. In Letter 79, written later
in 1885, Stieltjes sketched his approach, saying that his proof was very complicated and
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that he hoped to simplify it. Stieltjes considered the Mertens function

M(n) =

n
∑

j=1

µ(j),

in which µ(j) is the Möbius function (defined in Section 3.3) and asserted that he could
prove that |M(n)|/√n is a bounded function, a result which would certainly imply the
Riemann hypothesis. Stieltjes had further correspondence in 1887 with Mittag-Leffler,

also making the assertion that he could prove M(n)√
n

is bounded between two limits, see [23,

Tome II, Appendix], [258, Sect. 2]. He additionally made numerical calculations29 of the
Mertens functionM(n) for ranges 1 ≤ n ≤ 1200, 2000 ≤ n ≤ 2100, and 6000 ≤ n ≤ 7000,
verifying it was small over these ranges. However he never produced a written proof
of the Riemann hypothesis related to this announcement. Modern work relating the
Riemann zeta zeros and random matrix theory now indicates that |M(n)|/√n should
be an unbounded function, although this is unproved, see te Riele [258, Sect. 4] and
Edwards [81, Sect. 12.1].

3.3. Euler’s constant and prime numbers. Euler’s constant appears in various sta-
tistics associated to prime numbers. In 1874 Franz Mertens [219] determined the growth
behavior of the sum of reciprocals of prime numbers, as follows.

Theorem 3.3.1. (Mertens’s Sum Theorem 1874) For x ≥ 2,
∑

p≤x

1

p
= log log x+B +R(x),

with B being a constant

B = γ +

∞
∑

m=2

µ(m)
log ζ(m)

m
≈ 0.26149 72129 · · · (3.3.1)

and with remainder term bounded by

|R(x)| ≤ 4

log(P + 1)
+

2

P log P
,

where P denotes the largest prime smaller than x.

Here µ(n) is the Möbius function, which takes the values µ(1) = 1 and µ(n) = (−1)k

if n is a product of k distinct prime factors, and µ(n) = 0 otherwise. This result asserts
the existence of the constant

B := lim
x→∞





∑

p≤x

1

p
− log log x



 ,

which is then given explicitly by (3.3.1). Mertens’s proof deduced that B = γ −H with

H := −
∑

p

{log(1− 1

p
) +

1

p
} = 0.31571 84519 . . . . (3.3.2)

For modern derivations which determine the constant B see Hardy and Wright [157,
Theorem 428] or Tenenbaum and Mendes France [294, Sect. 1.9].

Mertens [219, Sect. 3] deduced from this result the following product theorem, involv-
ing Euler’s constant alone.

29Such calculations were found among his posthumous possessions, according to te Riele [258, p. 69].
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Theorem 3.3.2. (Mertens’s Product Theorem 1874) One has

lim
x→∞

(log x)
∏

p≤x

(

1− 1

p

)

= e−γ . (3.3.3)

More precisely, for x ≥ 2,
∏

p≤x

(

1− 1

p

)

=
e−γ+S(x)

log x

in which

|S(x)| ≤ 4

log(P + 1)
+

2

P log P
+

1

2P
,

where P denotes the largest prime smaller than x. Thus S(x) → 0 as x→ ∞.

In this formula the constant e−γ encodes a property of the entire ensemble of primes
in the following sense: if one could vary a single prime in the product above, holding the
remainder fixed, then the limit on the right side of (3.3.3) would change.

In Mertens’s product theorem the finite product

D(x) :=
∏

p≤x

(

1− 1

p

)

(3.3.4)

is the inverse of the partial Euler product for the Riemann zeta function, taken over
all primes below x, evaluated at the point s = 1. The number D(x) gives the limiting
density of integers having no prime factor smaller than x, taken on the interval [1, T ]
and letting T → ∞ while holding x fixed. Now the set of integers below T = x2 having
no prime smaller than x consists of exactly the primes between x and x2. Letting π(x)
count the number of primes below x, the prime number theorem gives π(x) ∼ x

log x , and

this yields the asymptotic formula.

π(x2)− π(x) ∼ x2

log x2
− x

log x
∼ 1

2

x2

log x
.

On the other hand, if the density D(x) in Merten’s theorem were asymptotically correct

already at T = x2 then it would predict the number of such primes to be about e−γ x2

log x .

The fact that e−γ = 0.561145... does not equal 1
2 , but is slightly larger, reflects the failure

of the inclusion-exclusion formula to give an asymptotic formula in this range. This is a
basic difficulty studied by sieve methods.

A subtle consequence of this failure is that there must be occasional unexpectedly
large fluctuations in the number of primes in short intervals away from their expected
number. This phenomenon was discovered by H. Maier [210] in 1985. It is interesting
to note that Maier’s argument used a “double counting” argument in a tabular array of
integers that resembles the array summations of Euler and Bernoulli exhibited in section
2.2. His argument also used properties of the Buchstab function discussed in section 3.6.
See Granville [139] for a detailed discussion of this large fluctuation phenomenon.

3.4. Euler’s constant and arithmetic functions. Euler’s constant also appears in
the behavior of three basic arithmetic functions, the divisor function d(n), Euler’s totient
function φ(n) and the sum of divisors function σ(n). For the divisor function d(n) it
arises in its average behavior, while for φ(n) and σ(n) it concerns extremal asymptotic
behavior and there appears in the form eγ . These extremal behaviors can be deduced
starting from Mertens’s results.

A basic arithmetic function is the divisor function

d(n) := #{d : d|n, 1 ≤ d ≤ n}.
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which counts the number of divisors of n. In 1849 Dirichlet [75] introduced a method to
estimate the average size of the divisor function and other arithmetic functions. In the
statement of Dirichlet’s result {x} := x− [x] denotes the fractional part x (mod 1).

Theorem 3.4.1. (Dirichlet 1849) (1) The partial sums of the divisor function satisfy

n
∑

k=1

d(k) = n log n+ (2γ − 1)n+O(
√
n) (3.4.1)

for 1 ≤ n <∞, where γ is Euler’s constant.
(2) The averages of the fractional parts of n

k satisfy

n
∑

k=1

{n
k
} = (1− γ)n +O(

√
n) (3.4.2)

for 1 ≤ n <∞.

Proof. Dirichlet’s proof starts from the identity
n
∑

k=1

d(k) =

n
∑

k=1

⌊n
k
⌋, (3.4.3)

which relates the divisor function to integer parts of a scaled harmonic series. The right
side of this identity is approximated using the harmonic sum estimate

n
∑

k=1

n

k
= n log n+ γn+O(1),

in which Euler’s constant appears. The difference term is the sum of fractional parts.
In Sect. 2 Dirichlet formulates the “hyperbola method” to count the sum of the lattice
points on the right side of (3.4.3), and in Sect. 3 he applies the method to get (1).
In Sect. 4 he compares the answer (3.4.1) with (3.4.3) and obtains the formula (3.4.2)
giving (2). A modern treatment of the hyperbola method appears in Tenenbaum [293,
I.3.2]. �

The problem of obtaining bounds for the size of the remainder term in (3.4.1),

∆(n) :=
n
∑

k=1

d(k)− (n log n+ (2γ − 1)n), (3.4.4)

is now called the Dirichlet divisor problem. This problem seeks the best possible bound
for the exponent θ of the form |∆(n)| = O(nθ+ǫ), valid for any given ǫ > 0 for 1 ≤ n <∞,
with O-constant depending on ǫ. This problem appears to be very difficult. Dirichlet’s
argument shows that the size of the remainder term ∆(n) is dominated by the remainder
term in the fractional part sum (3.4.2). In 1916 Hardy [155] established the lower bound
θ ≥ 1

4 . The exponent θ = 1/4 is conjectured to be the correct answer, and would
correspond to an expected square-root cancellation. The best Ω-result on fluctuations
of ∆(n), which does not change the lower bound exponent, is that of Soundararajan
[283] in 2003. Concerning upper bounds, a long sequence of improvements in exponent
bounds has arrived at the current record θ ≤ 131

416 ≈ 0.31490, obtained by Huxley ([168],
[169]) in 2005. Tsang [302] gives a recent survey on recent work on ∆(n) and related
problems.

Dirichlet noted that (3.4.2) implies that the fractional parts {{nk }; 1 ≤ k ≤ n} are
far from being uniformly distributed (mod1). In Sect. 4 of [75] he proved that the
set of fractional parts k having 0 ≤ {nk } ≤ 1

2 has a limiting frequency (2 − log 4)n =
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(0.61370 . . . )n. and those with 1
2 < {nk } < 1 have the complementary density (log 4 −

1)n = (0.38629 . . . )n, as n→ ∞.
In 1898 de La Vallée Poussin [189] generalized the fractional part sum estimate (3.4.2)

above to summation over k restricted to an arithmetic progression. He showed for each
integer a ≥ 1 and integer 0 < b ≤ a,

(n−b)/a
∑

k=0

{ n

ak + b
} =

1

a
(1− γ)n +O(

√
n),

for 1 ≤ n <∞, with O-constant depending on a. He comments that it is very remarkable
that these fractional parts approach the same average value 1 − γ no matter which
arithmetic progression we restrict them to. Very recently Pillichshammer [246] presented
further work in this direction.

We next consider Euler’s totient function

φ(n) := #{j : 1 ≤ j ≤ n, with gcd(j, n) = 1},

which has φ(n) = |(Z/nZ)∗|. Euler’s constant appears in the asymptotics of the minimal
growth rate (minimal order) of φ(n). In 1903 Edmund Landau [195] showed the following
result, which he also presented later in his textbook [196, pp. 216–219].

Theorem 3.4.2. (Landau 1903) Euler’s totient function φ(n) has minimal order n
log logn .

Explicitly,

lim inf
n→∞

φ(n) log log n

n
= e−γ .

Since φ(n) = n
∏

p|n(1− 1
p), its extremal behavior is attained by the primorial numbers,

which are the numbers that are products of the first k primes, i.e. Nk := p1p2 · · · pk, for
example N4 = 2 ·3 ·5 ·7 = 210. The result then follows using Mertens’s product theorem.

The sum of divisors function is given by

σ(n) :=
∑

d|n
d,

so that e.g. σ(6) = 12. Euler’s constant appears in the asymptotics of the maximal
growth rate (maximal order) of σ(n). In 1913 Gronwall [145] obtained the following
result.

Theorem 3.4.3. (Gronwall 1913) The sum of divisors function σ(n) has maximal order
n log log n. Explicitly,

lim sup
n→∞

σ(n)

n log log n
= eγ .

For σ(n) the extremal numbers form a very thin set, with a more complicated descrip-
tion, which was analyzed by Ramanujan [253] in 1915 (see also Ramanujan [255]) and
Alaoglu and Erdős [3] in 1944. They have the property that their divisibility by each

prime pep(n) has exponent ep(n) → ∞ as n→ ∞, see Section 3.7 and formula (3.7.3).
The Euler totient function φ(n) and the sum of divisors function σ(n) are related by

the inequalities

6

π2
n2 < φ(n)σ(n) ≤ n2,
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which are easily derived from the identity30

φ(n)σ(n) = n2
∏

pe||n
e≥1

(

1− 1

pe+1

)

.

We note that the ratio of extremal behaviors of the “smallest” φ(n), resp. the “largest”
σ(n), given in Theorem 3.4.2 and Theorem 3.4.3 have a product asymptotically growing
like n2. The extremal numbers Nk = p1p2 · · · pk in Landau’s theorem are easily shown
to satisfy φ(Nk)σ(Nk) ∼ 6

π2Nk
2 as Nk → ∞. The extremal numbers ñ in Gronwall’s

theorem can be shown to satisfy the other bound

φ(ñ)σ(ñ) ∼ ñ2

as ñ→ ∞. The latter result implies that the Gronwall extremal numbers satisfy

lim
ñ→∞

φ(ñ) log log ñ

ñ
= e−γ ,

showing they are asymptotically extremal in Landau’s theorem as well.
In Sections 3.7 and 3.8 we discuss more recent results showing that the Riemann

hypothesis is encoded as an assertion as to how the extremal limits are approached in
Landau’s theorem and Gronwall’s theorem.

3.5. Euler’s constant and sieve methods: the Dickman function. Euler’s con-
stant appears in connection with statistics on the sizes of prime factors of general integers.
Let Ψ(x, y) count the number of integers n ≤ x having largest prime factor no larger
than y. These are the numbers remaining if one sieves out all integers divisible by some
prime exceeding y. The Dirichlet series associated to the set of integers having no prime
factor > y is the partial zeta function

ζ(s; y) :=
∏

p≤y

(

1− 1

ps

)−1

, (3.5.1)

and we have

ζ(1; y) =
1

D(y)
,

where D(y) is given in (3.3.4). It was shown by Dickman [73] in 1930 that, for each
u > 0, a positive fraction of all integers n ≤ x have all prime factors less than x1/u.
More precisely, one has the asymptotic formula

Ψ(x, x
1
u ) ∼ ρ(u)x,

for a certain function ρ(u), now called the Dickman function. The notation ρ(u) was
introduced by de Bruijn [50], [51].) This function is determined for u ≥ 0 by the prop-
erties:

(1) (Initial condition) For 0 ≤ u ≤ 1, it satisfies

ρ(u) = 1.

(2) (Differential-difference equation) For u ≥ 1,

uρ′(u) = −ρ(u− 1).

30 pe||n means pe|n and pe+1 ∤ n.
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The Dickman function is alternatively characterized as the solution on the real line to
the integral equation

uρ(u) =

∫ 1

0
ρ(u− t)dt, (3.5.2)

(for uρ(u)) with initial condition as above, extended to require that ρ(u) = 0 for all
u < 0, as shown in de Bruijn [50, (2.1)]. Another explicit form for ρ(u) is the iterated
integral form

ρ(u) = 1 +

⌊u⌋
∑

k=1

(−1)k

k!

∫

t1+···+tk≤u

t1,...,tk≥1

dt1
t1

dt2
t2

· · · dtk
tk
, (3.5.3)

which also occurs in connection with random permutations, see (3.10.2) ff.
It is known that for u ≥ 1 the Dickman function ρ(u) is a strictly decreasing positive

function that decreases rapidly, satisfying

ρ(u) ≤ 1

Γ(u+ 1)
,

see Norton [240, Lemma 4.7]. The key relation of the Dickman function to Euler’s
constant is that it has total mass eγ , see Theorem 3.5.1 below.

In 1951 N. G. de Bruijn [50] gave an exact expression for the Dickman function as a
contour integral,

ρ(u) =
1

2πi

∫ i∞

−i∞
exp

(

γ +

∫ z

0

es − 1

s
ds

)

e−uzdz (u > 0). (3.5.4)

One may also consider the one-sided Laplace transform of the Dickman function which
we denote

ρ̂(s) :=

∫ ∞

0
ρ(u)e−usdu,

following Tenenbaum [293, III.5.4]. This integral converges absolutely for all s ∈ C
and defines ρ̂(s) as an entire function. To evaluate it, recall that the complementary
exponential integral

Ein(z) :=

∫ z

0

1− e−t

t
dt =

∞
∑

n=1

(−1)n−1 1

n · n!z
n, (3.5.5)

is an entire function of z.

Theorem 3.5.1. (de Bruijn 1951, van Lint and Richert 1964) The one-sided Laplace
transform ρ̂(s) of the Dickman function ρ(u) is an entire function, given by

ρ̂(s) = eγ−Ein(s), (3.5.6)

in which Ein(s) is the complementary exponential integral. In particular, the total mass
of the Dickman function is

ρ̂(0) =

∫ ∞

0
ρ(u) du = eγ . (3.5.7)

Proof. Inside de Bruijn’s formula (3.5.4) there appears the integral

I(s) :=

∫ s

0

et − 1

t
dt = −Ein(−s).

This formula determines the Fourier transform of the Dickman function to be eγ+I(−it).
The change of variable s = −it yields the the one-sided Laplace transform of ρ(u) above.
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The total mass identity (3.5.7) was noted in 1964 in van Lint and Richert [204]. Moreover
they noted that as u→ ∞,

∫ u

0
ρ(t)dt = eγ +O

(

e−u
)

.

A direct approach to the determination of the Laplace transform given in (3.5.6) was
given by Tenenbaum [293, III.5.4, Theorem 7] in 1995. His proof uses a lemma showing
that for all s ∈ Cr (−∞, 0] one has

− I(−s) = Ein(s) = γ + log s+ J(s), (3.5.8)

with

J(s) :=

∫ ∞

0

e−s−t

s+ t
dt. (3.5.9)

Tenenbaum sketches a direct arithmetic proof of the identity (3.5.7) in [293, III.5 Exercise
2, p. 392]; in this argument the quantity eγ is derived using Mertens’s product theorem.
We note the identity

J(s) = E1(s),

in which E1(s) :=
∫∞
s

e−t

t dt is the principal exponential integral. The function E1(s)
appeared in connection with Euler’s divergent series in Section 2.5, see (2.5.14). �

In 1973 Chamayou [56] found a probabilistic interpretation of the Dickman function
ρ(x) which is suitable for computing it by Monte Carlo simulation.

Theorem 3.5.2. (Chamayou 1973) Let X1,X2,X3, ... be a sequence of independent iden-
tically distributed random variables with uniform distribution on [0, 1]. Set

P (u) := Prob[X1 +X1X2 +X1X2X3 + · · · ≤ u.]

This function is well defined for u ≥ 0 and its derivative P ′(u) satisfies

ρ(u) = eγP ′(u).

A discrete identity relating the Dickman function and eγ was noted by Knuth and
Trabb-Pardo [180], which complements the continuous identity (3.5.7).

Theorem 3.5.3. (Knuth and Trabb-Pardo 1976) For 0 ≤ x ≤ 1 the Dickman function
satisfies the identity

x+
∞
∑

n=1

(x+ n)ρ(x+ n) = eγ . (3.5.10)

In particular, taking x = 0,

ρ(1) + 2ρ(2) + 3ρ(3) + · · · = eγ .

Proof. The identity (3.5.10) immediately follows from (3.5.7), using the integral equation
(3.5.2) for uρ(u). �

We conclude this section by using formulas above to deduce a curious identity relating
a special value of this Laplace transform to the Euler-Gompertz constant δ given in
Section 2.4; compare also Theorem 3.16.2.

Theorem 3.5.4. The Laplace transform ρ̂(s) of the Dickman function ρ(u) is given at
s = 1 by

ρ̂(1) :=

∫ ∞

0
ρ(u) e−udu = e−

δ
e .

in which δ :=
∫ 1
0

dv
1−log v is the Euler-Gompertz constant.
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Proof. By definition ρ̂(1) =
∫∞
0 ρ(u)e−udu. We start from Hardy’s formula (2.5.11) for

the Euler-Gompertz constant:

δ = s(1) =

∫ ∞

0

e−w

1 + w
dw.

Comparison with (3.5.9) then yields

E1(1) = J(1) =

∫ ∞

0

e−1−t

1 + t
dt =

δ

e
.

Now (3.5.8) evaluated at s = 1 gives

Ein(1) = γ + E1(1) = γ +
δ

e
, (3.5.11)

which can be rewritten using (3.5.5) as
∫ 1

0

1− e−t

t
dt = γ +

δ

e
. (3.5.12)

We conclude from Theorem 3.5.1 that

ρ̂(1) = eγ−Ein(1) = e−
δ
e ,

which is the assertion. �

Hildebrand and Tenenbaum [165] and Granville [140] give detailed surveys including
estimates for Ψ(x, y), a field sometimes called psixyology, see Moree [224]. It has re-
cently been uncovered that Ramanujan had results on the Dickman function in his ‘Lost
Notebook’, prior to the work of Dickman, see Moree [225, Sect. 2.4].

3.6. Euler’s constant and sieve methods: the Buchstab function. Euler’s con-
stant also arises in sieve methods in number theory in the complementary problem where
one removes integers having some small prime factor. Let Φ(x, y) count the number of
integers n ≤ x having no prime factor p ≤ y. In 1937 Buchstab [52] (see also [53])
established for u > 1 an asymptotic formula

Φ(x, x
1
u ) ∼ uω(u)

x

log x
,

for a certain function ω(u) named by de Bruijn [49] the Buchstab function.
The Buchstab function is defined for u ≥ 1 by the properties:

(1) (Initial conditions) For 1 ≤ u ≤ 2, it satisfies

ω(u) =
1

u
.

(2) (Differential-difference equation) For u ≥ 2,

(uω(u))
′
= ω(u− 1).

This function is alternatively characterized as the solution on the real line to the integral
equation

uω(u) = 1 +

∫ u−1

1
ω(t)dt, (3.6.1)

as shown in de Bruijn [49, (2.1)], who determined properties of this function. Another
explicit formula for this function, valid for u > 2, is

uω(u) = 1 +
∑

2≤k≤⌊u⌋

1

k!

∫

1/u≤yi≤1
1/u≤1−(y1+y2+···+yk−1)≤1

dy1dy2 · · · dyk−1

y1y2 · · · yk−1(1− (y1 + y2 + · · ·+ yk−1))
.
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It is known that the function ω(u) is oscillatory and satisfies

lim
u→∞

ω(u) = e−γ .

The convergence to e−γ is extremely rapid, and satisfies the estimate

ω(u) = e−γ +O(u−u/2) for u ∈ [2,∞). (3.6.2)

Proofs of these results can be found in Montgomery and Vaughan [223, Sec. 7.2] and in
Tenenbaum [293, Chap. III.6].

The convergence behavior of the Buchstab function to eγ as x → ∞ played a crucial
role in the groundbreaking 1985 work of Helmut Maier [210] showing the existence of
large fluctuations in the density of primes in short intervals; this work was mentioned at
the end of Section 3.3. Maier [210, Lemma 4] showed that ω(u)−e−γ changes sign at least
once on each interval [a − 1, a] for any a ≥ 2. In 1990 Cheer and Goldston [57] showed
there are at most two sign changes and at most two critical points on an interval [a−1, a],
and Hildebrand [164] showed that the spacing between such sign changes approaches 1
as u→ ∞,

A consequence of the analysis of de Bruijn [49] is that the constant e−γ appears as a
universal limiting constant for sieve methods, for a wide range of sieve cutoff functions
y = y(x) growing neither too slow nor too fast compared to x.

Theorem 3.6.1. (de Bruijn 1950) Suppose that y = y(x) depends on x in such a way

that both y → ∞ and log y
log x → 0 hold as x→ ∞. Under these conditions we have

Φ(x, y) ∼ e−γ
x

log y
. (3.6.3)

Proof. This result can be deduced from de Bruijn [49, (1.7)]. This asymptotic formula
also follows as a corollary of very general estimate ([293, III.6.2, Theorem 3]) valid
uniformly on the region x ≥ y ≥ 2, which states

Φ(x, y) = ω(
log x

log y
)
x

log y
− y

log y
+O

( x

(log y)2

)

.

The formula (3.6.3) follows using the estimate (3.6.2) for ω(u), which applies since the

hypotheses x/y → ∞ when x→ ∞ imply log x
log y → ∞. �

The one-sided Laplace transform of the Buchstab function is given as

ω̂(s) :=

∫ ∞

0
e−suω(u)du, (3.6.4)

where we make the convention that ω(u) = 0, for 0 ≤ u < 1. Under this convention,
this Laplace transform has a simple relation with the Laplace transform of the Dickman
function.

Theorem 3.6.2. (Tenenbaum 1995) The one-sided Laplace transform ω̂(s) defined for
Re(s) > 0 by (3.6.4), extends to a meromorphic function on C, given explicitly by the
form

1 + ω̂(s) =
1

sρ̂(s)
, (s 6= 0). (3.6.5)

When s is not real and negative,

1 + ω̂(s) = eJ(s), (3.6.6)

with J(s) =
∫∞
0

e−s−t

s+t dt = E1(s).
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Proof. The Laplace transforms individually have been evaluated many times in the sieve
method literature, see Wheeler [316, Theorem 2, ff], who also gives references back to
the 1960’s. One has explicitly that

ω̂(s) =
1

s
exp(−Ein(s)), (3.6.7)

in terms of the complementary exponential integral. The identity (3.6.5) connecting
them seems to be first explicitly stated in Tenenbaum [293, III.6, Theorem 5]. �

Combining this result with Theorem 3.5.1 gives

ω̂(s) ∼ e−γ

s
, as s→ 0.

We also obtain using (3.6.6), (3.6.7) along with (2.5.16) that

ω̂(1) :=

∫ ∞

0
ω(u)e−udu = e−γ exp(−E1(1)) = e−γe−δ/e, (3.6.8)

where δ is the Euler-Gompertz constant.
Wheeler [316, Theorem 2] also observes that the solutions to the differential-difference

equations for the Dickman function and the Buchstab function are distinguished from
those for general initial conditions by the special property that their Laplace transforms
analytically continue to entire (resp. meromorphic) functions of s ∈ C.

For a retrospective look at the work of N. G. de Bruijn on ρ(x) and Ψ(x, y) in Section
3.6, and of ω(x) and Φ(x, y) in this section, see Moree [225].

3.7. Euler’s constant and the Riemann hypothesis. Several formulations of the
Riemann hypothesis can be given in terms of Euler’s constant. Here we describe some
that involve the approach towards the extremal behaviors of Euler’s totient function φ(n)
and the sum of divisors function σ(n) given in Section 3.4. The Riemann hypothesis is
also related, in another way, to generalized Euler’s constants considered in Section 3.8.

In 1981 J.-L. Nicolas ([236], [237]) proved that the Riemann hypothesis is encoded
in the property that the Euler totient function values φ(nk) for the extremal numbers
nk = p1p2 · · · pk given in Landau’s theorem approach their limiting value from one side
only. Nicolas stated his result using the inverse of Landau’s quantity, as follows.

Theorem 3.7.1. (Nicolas 1981) The Riemann hypothesis holds if and only if all the
primorial numbers Nk = p1p2 · · · pk with k ≥ 2 satisfy

Nk

φ(Nk) log logNk
> eγ .

If the Riemann hypothesis is false, then these inequalities will be true for infinitely many
primorial numbers Nk and false for infinitely many Nk.

This inequality is equivalent to the statement that the Riemann hypothesis implies
that all the primorial numbers Nk for k ≥ 2 undershoot the asymptotic lower bound e−γ

in Landau’s Theorem 3.4.2. As an example, φ(2 · 3 · 5 · 7) = φ(210) = 48 and

φ(n4) log log n4
n4

=
φ(210) log log 210

210
= 0.38321 · · · < e−γ = 0.56145 . . . .

For most n one will have φ(n) log logn
n > e−γ , and only a very thin subset of n will be close

to this bound. For example taking n = pk, a single prime, one sees that as k → ∞ this
ratio goes to +∞.
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Very recently Nicolas [238] obtained a refined encoding of the Riemann hypothesis in
terms of a sharper asymptotic for small values of the Euler φ-function, in which both γ
and eγ appear.

Theorem 3.7.2. (Nicolas 2012) For each integer n ≥ 2 set

c(n) :=
( n

φ(n)
− eγ log log n

)

√

log n.

Then the Riemann hypothesis is equivalent to the statement that

lim sup
n→∞

c(n) = eγ(4 + γ − log(4π)). (3.7.1)

Proof. The assertion that the Riemann hypothesis implies (3.7.1) holds is [238, Theorem
1.1], and the converse assertion is [238, Corollary 1.1]. Here the constant

eγ
(

4 + γ − log(4π)
)

= eγ(2 + β) = 3.64441 50964...,

in which

β =
∑

ρ

1

ρ(1− ρ)
= 2 + γ − log(4π) = 0.04619 14179...,

where in the sum ρ runs over the nonreal zeros of the zeta function, counted with
multiplicity. For the converse direction, he shows that if the Riemann hypothesis fails,
then

lim sup
n→∞

c(n) = +∞.

Note that lim infn→∞ c(n) = −∞ holds unconditionally. �

In 1984 G. Robin [265] showed that for the sum of divisors function σ(n) the Riemann
hypothesis is also encoded as a one-sided approach to the limit in Gronwall’s theorem
(Theorem 3.4.3).

Theorem 3.7.3. (Robin 1984) The Riemann hypothesis holds if and only if the in-
equalities

σ(n)

n log log n
< eγ (3.7.2)

are valid for all n ≥ 5041. If the Riemann hypothesis is false, then this inequality will be
true for infinitely many n and false for infinitely many n.

Robin’s result says that Riemann hypothesis is equivalent to the limiting value eγ

being approached from below, for all sufficiently large n. The inequality (3.7.2) fails to
hold for a few small n, the largest known exception being n = 5040. Here the extremal

numbers giving record values for f(n) = σ(n)
n will have a different form than that in

Nicolas’s theorem. It is known that infinitely many of the extremal numbers will be
colossally abundant numbers, as defined by Alaoglu and Erdős [3] in 1944. These are
numbers n such that there is some ǫ > 0 such that

σ(n)

n1+ǫ
≥ σ(k)

k1+ǫ
, for 1 ≤ k < n.

Alaoglu and Erdős showed that the “generic” colossally abundant number is a product
of powers of small primes having a sequence of exponents by a parameter ǫ > 0 as

n = n(ǫ) :=
∏

p

pap(ǫ),

in which

ap(ǫ) := ⌊ log(p
1+ǫ − 1)− log(pǫ − 1)

log p
⌋ − 1. (3.7.3)
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For fixed ǫ the sequence of exponents ap(ǫ) is non-increasing as p increases and become
0 for large p. However for fixed p the exponent ap(ǫ) increases as ǫ decreases towards
0, so that n(ǫ) → ∞ as ǫ → 0+. Colossally abundant and related numbers had actually
been studied by Ramanujan [253] in 1915, but the relevant part of this paper was sup-
pressed by the London Mathematical Society to save expense. The suppressed part of
the manuscript was recovered in his Lost Notebook, and later published in 1997 ( [255]).

In 2002 this author ([191]), starting from Robin’s result, obtained the following el-
ementary criterion for the Riemann hypothesis, involving the sum of divisors function
σ(n) and the harmonic numbers Hn.
Theorem 3.7.4. The Riemann hypothesis is equivalent to the assertion that for each
n ≥ 1 the inequality

σ(n) ≤ eHn logHn +Hn (3.7.4)

is valid. Assuming the Riemann hypothesis, equality holds if and only if n = 1.

The additive term Hn is included in this formula for elegance, as it makes the result
hold for all n ≥ 1 (assuming RH), rather than be valid for n ≥ 5041, as in Robin’s
theorem 3.7.3. The converse direction of this result requires additional proof, which
is accomplished in [191] using certain asymptotic estimates obtained in Robin’s paper
[265]. It shows that if the Riemann hypothesis is false then the inequalities (3.7.4) will
fail to hold for infinitely many positive integers n.

3.8. Generalized Euler constants and the Riemann hypothesis. In 1961 W.
Briggs [47] introduced the notion of an Euler constant associated to an arithmetic pro-
gression of integers. This notion was studied in detail by D. H. Lehmer [201] in 1975.
For the arithmetic progression h (mod k) with 0 ≤ h < k we set

γ(h, k) := lim
x→∞

(

∑

0<n≤x
n≡h ( mod k)

1

n
− log x

k

)

.

These constants were later termed Euler-Lehmer constants by Murty and Saradha [228].
Here one has γ(0, 1) = γ, γ(1, 2) = 1

2(γ + log 2) and γ(2, 4) = 1
4γ, where γ is Euler’s

constant. It suffices to study the constants where gcd(h, k) = 1, other cases reduce to
these by dividing out the greatest common factor.

We next define generalized Euler constants γ(Ω) associated to a finite set of primes
Ω = {pi1 , ...., pik}, possibly empty. These constants were introduced by Diamond and
Ford [71] in 2008. To specify them, we first define a zeta function ZΩ(s) by

ZΩ(s) :=





∏

p∈Ω
(1− 1

ps
)



 ζ(s) =

∞
∑

n=1

1Ω(n)n
−s =

∑

gcd(n,PΩ)=1

n−s

where we set

1Ω(j) =

{

1 if (n, PΩ) = 1,

0 otherwise,

in which
PΩ :=

∏

p∈Ω
p.

The function ZΩ(s) defines a meromorphic function on the entire plane which has a
simple pole at s = 1 with residue

D(Ω) :=
∏

p∈Ω

(

1− 1

p

)

.
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The generalized Euler constant γ(Ω) associated to Ω is the constant term in the Laurent
expansion of ZΩ(s) around s = 1, namely

ZΩ(s) =
D(Ω)

s − 1
+ γ(Ω) +

∞
∑

j=1

γk(Ω)(s − 1)k.

In the case that Ω = ∅ is the empty set, this function ZΩ(s) is exactly the Riemann
zeta function, and γ(∅) = γ by Theorem 3.2.1. These numbers γ(Ω) generalize the
characterization of Euler’s constant in (3.2.2) in the sense that

γ(Ω) = lim
n→∞

(

n
∑

j=1

1Ω(j)

j
−D(Ω) log n

)

.

The constants γ(Ω) are easily shown to be finite sums of Euler-Lehmer constants

γ(Ω) =
∑

1≤h<PP
gcd(h,PΩ)=1

γ(h, PΩ). (3.8.1)

Diamond and Ford [71, Theorem 1] show that these generalized Euler constants are
related to Euler’s constant in a second way which involves the constant e−γ rather than
γ. Let Ωr denote the set of the first r primes and set γr := γ(Ωr).

Theorem 3.8.1. (Diamond and Ford 2008) Let Γ = inf{γ(P) : all finite P}. Then:
(1) The values of γ(P) are dense in [Γ,∞).
(2) The constant Γ satisfies

0.56 ≤ Γ ≤ e−γ . (3.8.2)

If Γ < e−γ then the value Γ is attained at some γr.

Proof. (1) This is shown as [71, Prop. 2].
(2) Diamond and Ford show that each γ(P) ≥ γr for some 1 ≤ r < |P|. This implies

Γ = inf{γr : r ≥ 1}. (3.8.3)

Merten’s formulas for sums and products yield the asymptotic formula

γr ∼ e−γ as r → ∞. (3.8.4)

which by (3.8.3) implies that Γ ≤ e−γ . If Γ < e−γ then it must be attained by one of the
γr, For there must be at least one γr1 < e−γ , and by (3.8.4) there are only finitely many
γr ≤ γr1 . and one of these must attain the infimum by the bound above. Diamond and
Ford established the lower bound γr ≥ 0.56 for all r ≥ 1. �

Diamond and Ford [71, Theorem 2] also show that the behavior of the quantities γ(Ω)
is complicated as the set Ω increases, in the sense that γr is not a monotone function of
r, with γr+1 > γr and γr+1 < γr each occurring infinitely often. Nevertheless Diamond
and Ford [71, Theorems 3, 4] obtain the following elegant reformulation of the Riemann
hypothesis.

Theorem 3.8.2. (Diamond and Ford 2008) The Riemann hypothesis is equivalent to
either one of the following assertions.

(1) The infimum Γ of γ(P) satisfies

Γ = e−γ .

(2) For every finite set Ω of primes

γ(Ω) > e−γ . (3.8.5)
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Here (2) implies (1), and (2) says that if the Riemann hypothesis is true, then (3.8.5)
holds for all Ω and the infimum Γ = e−γ is not attained, while if it does not hold, then
by Theorem 3.8.1 (1) the reverse inequality holds for infinitely many Ω, and the infimum
is attained. Theorem 3.8.2 seems remarkable: on taking P = ∅ to be the empty set, it
already requires, for the truth of the Riemann hypothesis, that

γ = 0.57721... > e−γ = 0.56145...

In consequence the unique real root x0 ≈ 0.56714 of the equation x0 = e−x0 necessarily
satisfies γ > x0 > e−γ .

Results on the transcendence of Euler-Lehmer constants γ(h, k) and generalized Euler
constants γ(Ω) have recently been established, see Section 3.16.

Finally we note that one may define more generally higher order Euler-Lehmer con-
stants. For j ≥ 1 Dilcher [74] defines for h ≥ 1, and 0 < k ≤ h, the constants

γj(h, k) := lim
x→∞

(

∑

0<n≤x
n≡h( mod k)

(log n)j

n
− (log x)j+1

k(j + 1)

)

.

Here j is the order, with γ1(h, k) = γ(h, k) being the Euler-Lehmer constants, and
γj(1, 1) = γj is the j-th Stieltjes constant (see Theorem 3.2.1), Dilcher relates these
constants to values of derivatives of the digamma function at rational points, and also
to derivatives of Dirichlet L-functions evaluated at s = 1.

3.9. Euler’s constant and extreme values of ζ(1 + it) and L(1, χ−d). Some of the
deepest questions in number theory concern the distribution of values of the Riemann
zeta function and its generalizations, Dirichlet L-functions. In this section we consider
such value distributions at the special point s = 1 and on the vertical line Re(s) = 1.
Here Euler’s constant appears in connection with the size of extreme values of ζ(1 + it)
as t → ∞. It also appears in the same guise in connection with extreme values of the
Dirichlet L-function L(s, χ−d) at the point s = 1 where χ−d is the real primitive Dirichlet
character associated to the quadratic field Q(

√
−d), and we let d→ ∞. (The quantity −d

denotes a fundamental discriminant of an imaginary quadratic field, which is necessarily
squarefree away from the prime 2.) In both case these connections were first made by
J. E. Littlewood. Some of his results are conditional on the Riemann hypothesis or the
generalized Riemann hypothesis, while others are unconditional.

In these results Euler’s constant occurs by way of Merten’s Theorem 3.3.2. The basic
idea, in the context of large values of |ζ(1 + it)|, is that large values will occur (only)
when a suitable finite truncation of its Euler product representation is large, and this in
turn will occur when the phases of the individual terms in the product line up properly.
Mertens’s theorem is then used in estimating the size of this Euler product.

We first consider extreme values of ζ(1 + it). To place results in context, it is known
unconditionally that |ζ(1 + it)| = O(log |t|) and that 1

|ζ(1+it)| = O(log |t|) as |t| → ∞.

In 1926 Littlewood determined, assuming the Riemann hypothesis, the correct maximal
order of growth of the Riemann zeta function on the line Re(s) = 1, and in 1928 he
obtained a corresponding bound for 1

ζ(1+it) .

Theorem 3.9.1. (Littlewood 1926, 1928) Assume the Riemann hypothesis. Then
(1) The maximal order of |ζ(1 + it)| is at most log log t, with

lim sup
t→∞

|ζ(1 + it)|
log log t

≤ 2eγ .

(2) The maximal order of 1
|ζ(1+it)| is at most log log t, with
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lim sup
t→∞

1

|ζ(1 + it)| log log t ≤
2

ζ(2)
eγ

Proof. The bound (1) is [205, Theorem 7] and the bound (2) is [206, Theorem 1]. �.

Littlewood also established unconditionally a lower bound for the quantity in (1) and,
conditionally on the Riemann hypothesis, a lower bound for that in (2), both of which
matched the bounds above up to a factor of 2. In 1949 a method of Chowla [58] made
this lower bound for the quantity in (2) unconditional. These combined results are as
follows.

Theorem 3.9.2. (Littlewood 1926, Titchmarsh 1933) The following bounds hold uncon-
ditionally.

(1) The maximal order of |ζ(1 + it)| is at least log log t, with

lim sup
t→∞

|ζ(1 + it)|
log log t

≥ eγ .

(2) The maximal order of 1
|ζ(1+it)| is at least log log t, with

lim sup
t→∞

1

|ζ(1 + it)| log log t ≥
1

ζ(2)
eγ

Proof. The bound (1) is Theorem 8 of [205]. The lower bound (2) was proved, assuming
the Riemann hypothesis, in 1928 by Littlewood [206]. An unconditional proof was later
given by Titchmarsh [299], see also [300, Theorem 8.9(B)]. �

Littlewood’s proof of (1) used Diophantine approximation properties of the values
log p for primes p, namely the fact that they are linearly independent over the rationals.
This guarantees that there exist suitable values of t where the all terms in the Euler
product

∏

p≤X(1− 1
p1+it )

−1 have most phases t log p near 0 (mod 2π) for p ≤ X.

Littlewood was struck by the fact that the unconditional lower bound for

lim supt→∞
|ζ(1+it)|
log log t in Theorem 3.9.2(1) and the conditional upper bound for it given in

Theorem 3.9.1(1) differ by the simple multiplicative factor 2. He discusses this fact at
length in [206], [207]. The Riemann hypothesis is not sufficient to predict the exact value!
It seems that more subtle properties of the Riemann zeta function, perhaps related to
Diophantine approximation properties of prime numbers or of the imaginary parts of
zeta zeros, will play a role in determining the exact constant. Littlewood favored the
right answer as being the lower bound in Theorem 3.9.2 saying ([207, p. 359]):

The results involving c [= eγ ] are evidently final except for a certain
factor 2. I showed also that on a certain further hypothesis (which there
is, perhaps, no good reason for believing) this factor 2 disappears.

In the fullness of time this statement has been elevated to a conjecture attributed to
Littlewood.

There is now relatively strong evidence favoring the conjecture that the lower bound
(1) in Theorem 3.9.2 should be equality. In 2006 Granville and Soundararajan [143] ob-
tained a bound for the frequency of occurrence of extreme values of |ζ(1+it)|, considering
the quantity

ΦT (τ) :=
1

T
meas{t ∈ [T, 2T ] : |ζ(1 + it)| > eγτ},

where meas denotes Lebesgue measure. They established a result [143, Theorem 1]
showing that for all sufficiently large T , uniformly in the range 1 ≪ τ ≤ log log T + 20,
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there holds

ΦT (τ) = exp
(

− 2eτ−C−1

τ

(

1 +O(
1√
τ
+ (

eτ

log T
)1/2)

))

. (3.9.1)

where C is a positive constant. An extension of these ideas established the following
result ([143, Theorem 2]).

Theorem 3.9.3. (Granville and Soundararajan 2006) For all sufficiently large T , the
measure of the set of points t in [T, 2T ] having

|ζ(1 + it)| ≥ eγ
(

log log T + log log log T − log log log log T − logA+O(1)
)

is at least T 1− 1
A , uniformly for A ≥ 10.

They observe that if the estimate (3.9.1) remained valid without restriction on the
range of τ , this would correspond to the following stronger assertion.

Conjecture 3.9.4. (Granville and Soundararajan 2006) There is a constant C1 such
that for T ≥ 10,

max
T≤t≤2T

|ζ(1 + it)| = eγ
(

log log T + log log log T + C1 + o(1)
)

This conjecture implies that the lower bound (1) in Theorem 3.9.2 would be an equality.
We next consider the distribution of extreme values of the Dirichlet L-functions

L(s, χ−d) at s = 1, for real primitive characters χ−d(n) = (−dn ), where −d is the discrim-

inant of an imaginary quadratic field Q(
√
−d). The Dirichlet L-function

L(s, χ−d) =
∞
∑

n=1

(−d
n

)

n−s,

is a relative of the Riemann zeta function, having an Euler product and a functional
equation. Dirichlet’s class number formula states that for a fundamental discriminant
−d with d > 0,

L(1, χ−d) =
2π h(−d)
w−d

√
d
,

where h(−d) is the order of the ideal class group in Q(
√
−d) and w−d is the number of

units in Q(
√
−d) so that w−d = 2 for d > 4, w−3 = 6 and w−4 = 4. Thus the size of

L(1, χ−d) encodes information on the size of the class group, and the formula shows that
L(1, χ−d) > 0.

Theorem 3.9.5. (Littlewood 1928) Assume the Generalized Riemann hypothesis for
all real primitive characters L(s, χ−d) where −d is the discriminant of an imaginary
quadratic field Q(

√
−d). Then:

(1) The maximal order of L(1, χ−d) is at most log log d, with

lim sup
d→∞

L(1, χ−d)
log log d

≤ 2eγ .

(2) The maximal order of 1
L(1,χ−d)

is at most log log d, with

lim sup
d→∞

1

L(1, χ−d) log log d
≤ 2

ζ(2)
eγ .

Proof. The bounds (1) and (2) are the content of [207, Theorem 1]. �

There are corresponding unconditional lower bounds that differ from these by a factor
of 2, as noted by Littlewood in 1928 for the bound (1), and completed by a result of
Chowla [58] for the bound (2).
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Theorem 3.9.6. (Littlewood 1928, Chowla 1949) The following bounds hold uncondi-
tionally as d→ ∞ with −d a fundamental discriminant.

(1) The maximal order of L(1, χ−d) is at least log log d, with

lim sup
d→∞

L(1, χ−d)
log log d

≥ eγ .

(2) The maximal order of 1
L(1,χ−d)

is at least log log d, with

lim sup
d→∞

1

L(1, χ−d) log log d
≥ 1

ζ(2)
eγ .

Proof. The bound (1) is due to Littlewood [207]. The bound (2) is due to Chowla [58,
Theorem 2]. �

There is again a factor of 2 difference between the unconditional lower bound and the
conditional upper bound. In 1999 Montgomery and Vaughan [222] formulated a model
for the general distribution of sizes of Dirichlet character values at s = 1, and based on
it they advanced very precise conjectures in favor of the lower bounds being the correct
answer, as follows.

Conjecture 3.9.7. (Montgomery and Vaughan 1999)
(1) For each ǫ > 0, for all D ≥ D(ǫ) there holds

max
d≤D

L(1, χ−d) ≤ eγ log logD + (1 + ǫ) log log logD,

(2) For each ǫ > 0, for all D ≥ D(ǫ) there holds

max
d≤D

1

L(1, χ−d)
≤ 1

ζ(2)
eγ log logD +O

( 1

(log logD)(log log logD)

)

.

In 2003 Granville and Soundararajan [142] obtained detailed probabilistic estimates for
the number of characters having extreme values eγτ . Their results imply unconditionally
that there are infinitely many d with

L(1, χ−d) ≥ eγ
(

log log d+ log log log d− log log log log d− 10
)

.

In their later paper [143, Theorem 3] they sketched a proof that for any fixed A ≥ 10

for all sufficiently large primes q there are at least q1−
1
A Dirichlet characters χ (mod q)

such that

|L(1, χ)| ≥ eγ
(

log log d+ log log log d− log log log log d− logA+O(1)
)

.

Finally we remark on a related problem, concerning the distribution of the phase
arg(ζ(1 + it)). In 1972 Pavlov and Faddeev [243] observed that the phase of ζ(1 + it)
appears in the scattering matrix data for the hyperbolic Laplacian operator acting on
the modular surface X(1) = PSL(2,Z)\H, where H = {z = x + iy : y = Im(z) > 0}
denotes the upper half plane. Then in 1980 Lax and Phillips [199, Sect. Theorem 7.19]
treated this case as an example of their version of scattering theory for automorphic
functions (given in [198]). Recently Y. Lamzouri [194] obtained interesting results on
the joint distribution of the modulus and phase (|ζ(1 + it)|, arg(ζ(1 + it))).

3.10. Euler’s constant and random permutations: cycle structure. Let SN de-
note the symmetric group of all permutations on [1, N ] := {1, 2, 3, · · · , N}. By a random
permutation we mean an element σ ∈ SN drawn with the uniform distribution, picked
with probability 1

N ! . We view σ as a product of distinct cycles, and let cj(σ) count the
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number of cycles of length j in σ. Three interesting statistics on the cycle structure of
a permutation σ ∈ SN are its total number of cycles

n(σ) :=
n
∑

j=1

cj ,

the length of its longest cycle

M(σ) := max{j : cj > 0},
and the length of its shortest cycle

m(σ) := min{j : cj > 0}.
Euler’s constant γ appears in connection with the the distributions of each of these
statistics, viewed as random variables on SN .

In 1939 J. Touchard [301, p. 247] expressed the distribution of cycle lengths using
exponential generating function methods. In 1944 Goncharov [135, Trans. pp. 31-
34] (announced 1942 [134]) also gave generating functions, derived in a probabilistic
context. He showed that if one lets c(N, k) denote the number of permutations in SN
having exactly k cycles, then one has the generating function

N
∑

k=1

c(N, k)xk = x(x+ 1)(x+ 2) · · · (x+N − 1). (3.10.1)

Goncharov computed the mean and variance of the number of cycles n(σ), as follows.

Theorem 3.10.1. (Touchard 1939, Goncharov 1944) Draw a random permutation σ
from the symmetric group SN on N elements with the uniform distribution.

(1) The expected value of the number of cycles in σ is:

E[n(σ)] = HN =
N
∑

j=1

1

j
.

In particular one has the estimate

E[n(σ)] = logN + γ +O(
1

N
).

(2) The variance of the number of cycles in σ is:

V ar[n(σ)] := E[(n(σ)− E[n(σ)])2] = HN −HN,2 =

N
∑

j=1

1

j
−

N
∑

j=1

1

j2
.

In particular one has the estimate

√

V ar[n(σ)] =
√

logN +
(γ

2
− π2

12

) 1√
logN

+O((logN)−
3
2 ).

Proof. In 1939 Touchard [301, p. 291] obtained the formula E[n(σ)] = HN . In 1944
Goncharov [135, Sect. 15] derived both (1) and (2), using (3.10.1). A similar proof was
given in 1953 by Greenwood [144, p. 404]. Note also that for all J ≥ 1 the J-th moment
of n(σ) is given by

E[n(σ)J ] =
1

N !
(x

d

dx
)JMN (x) |x=1.

It follows using (3.10.1) that the J-th moment can be expressed as a polynomial in the
m-harmonic numbers HN,m for 1 ≤ m ≤ J.
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Goncharov [135, Sect. 16] used the moments to show furthermore that the normalized

random variables n̄(σ) := n(σ)−E[n(σ)]√
V ar[n(σ)]

satisfy a central limit theorem as N → ∞, i.e.

they converge in distribution to standard unit normal distribution. �

Goncharov [135] also obtained information on the distribution of the maximum cycle

M(σ) as well. Define the scaled random variable L
(N)
1 := 1

NM(σ). Then, as N →
∞, Goncharov showed these random variables have a limiting distribution, with the

convergence in distribution L
(N)
1 →d L1, in which L1 is the probability distribution

supported on [0, 1] whose cumulative distribution function

F1(α) := Prob[0 ≤ L1 ≤ α]

is given for 0 ≤ α ≤ 1 by

F1(α) = 1 +

⌊ 1
α
⌋

∑

k=1

(−1)k

k!

∫

t1+···+tk≤ 1
α

t1,··· ,tk≥1

dt1
t1

dt2
t2

· · · dtn
tn
. (3.10.2)

with F1(α) = 1 for α ≥ 1. Much later Knuth and Trabb-Pardo [180, Sec. 10] in 1976
showed that this distribution is connected to the Dickman function ρ(u) in Section 3.5
by

F1(α) = ρ(
1

α
), 0 ≤ α ≤ 1, (3.10.3)

and this yields the previously given formula (3.5.3). From this connection we deduce
that this distribution has a continuous density f1(α) dα given by

f1(α) = −ρ′( 1
α
)
1

α2
= ρ(

1− α

α
)
1

α
,

with the last equality deduced using the differential-difference equation (??) for ρ(u).
In 1966 Shepp and Lloyd [268] obtained detailed information on the distribution of

both m(σ) and M(σ) and also of the r-th longest and r-th shortest cycles. Euler’s
constant appears in the distributions of longest and shortest cycles, as follows.

Theorem 3.10.2. (Shepp and Lloyd 1966) Pick a random permutation σ on N elements
with the uniform distribution.

(1) Let Mr(σ) denote the length of the r-th longest cycle under iteration of the per-
mutation σ ∈ SN . Then the k-th moment E[Mr(σ)

k] satisfies, for k ≥ 1 and r ≥ 1, as
N → ∞,

lim
N→∞

E[Mr(σ)
k]

Nk
= Gr,k ,

for positive limiting constants Gr,k. These constants are explicitly given by

Gr,k =

∫ ∞

0

xk−1

k!

Ei(−x)r−1

(r − 1)!
e−Ei(−x)e−xdx, (3.10.4)

in which Ei(−x) =
∫∞
x

e−t

t dt is the exponential integral. They satisfy, for fixed k, as
r → ∞,

lim
r→∞

(k + 1)rGr,k =
1

k!
e−kγ ,

in which γ is Euler’s constant.
(2) Let mr(σ) denote the length of the r-th shortest cycle of the permutation σ ∈ SN .

Then the expected value E[mr(σ)] satisfies, as N → ∞,

lim
N→∞

E[mr(σ)]

(logN)r
=

1

r!
e−γ . (3.10.5)
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Furthermore the k-th moment E[mr(σ)
k] for k ≥ 2 and r ≥ 1 satisfies, as N → ∞,

lim
N→∞

E[mr(σ)
k]

Nk−1(logN)r−1
=

1

(r − 1)!

∫ ∞

0

xk−1

(k − 1)!
eEi(−x)e−xdx. (3.10.6)

Proof. The exponential integral Ei(x), defined for x < 0 is given in (2.5.13). Here (1)
appears in Shepp and Lloyd [268, eqns. (13) and (14) ff., p. 347]. Here (2) appears as
[268, eqn. (22), p. 352]. �

Shepp and Lloyd [268] also obtained the limiting distribution of the r-th longest cy-

cle as N → ∞. In terms of the scaled variables L
(N)
r := 1

NMr(σ), they deduced the
convergence in distribution

L(N)
r −→d Lr,

in which Lr is a distribution supported on [0, 1r ] whose cumulative distribution function

Fr(α) := Prob[0 ≤ L1 ≤ α], 0 ≤ α ≤ 1

r
,

is given by

Fr(α) = 1 +

⌊ 1
α
⌋

∑

k=r

(−1)k−r+1

(r − 1)!(k − r)!k

∫

t1+···+tk≤ 1
α

t1,··· ,tk≥1

dt1
t1

dt2
t2

· · · dtn
tn
,

and we set Fr(α) = 1 for 1
r ≤ α < ∞. This extends to general r the case r = 1 treated

by Goncharov [135]. In 1976 Knuth and Trabb-Pardo [180, Sec. 4] defined ρr(u) by
ρr(u) := Fr(

1
u), so that ρ1(u) = ρ(u) by (3.10.3). The functions ρr(u) for r ≥ 1 are

uniquely determined by the conditions

(1) (Initial condition) For 0 ≤ u ≤ 1, it satisfies

ρr(u) = 1.

(2) (Differential-difference equation) For u > 1,

uρ
′
r(u) = −ρr(u− 1) + ρr−1(u− 1),

with the convention ρ0(u) ≡ 0.

Knuth and Trabb-Pardo formulated these conditions in the integral equation form

ρr(u) = 1−
∫ u

1
(ρr(t− 1)− ρr−1(t− 1))

dt

t
.

One may directly check that these equations imply ρr(u) = 1 for 0 ≤ u ≤ r.
Associated to the longest cycle distribution is another interesting constant

λ := G1,1 = lim
N→∞

E[M(σ)]

N
.

The formula (3.10.4) gives

λ =

∫ ∞

0
e−x−Ei(−x)dx = 0.62432 99885 . . . (3.10.7)

This constant λ is now named the Golomb-Dickman constant in Finch [116, Sec. 5.4],
for the following reasons. It was first encountered in 1959 work of Golomb, Welch and
Goldstein [129], in a study of the asymptotics of statistics associated to shift register
sequences. Their paper expressed this constant by an integral involving a solution to a
differential-difference equation, described later in Golomb [131, p. 91, equation (33)]. In
1964 Golomb [130] asked for a closed form for this constant, and the Shepp and Lloyd’s
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work answered it with (3.10.7) above. It was evaluated to 53 places by Mitchell [221] in
1968. In 1976 Knuth and Trabb-Pardo [180, Sect. 10] showed that

λ = 1−
∫ ∞

1

ρ(u)

u2
du, (3.10.8)

where ρ(x) is the Dickman function discussed in Section 3.5. This associates the name
of Dickman with this constant. In fact the constant already appears in de Bruijn’s 1951
work [51, (5.2)], where he showed

λ =

∫ ∞

0

ρ(u)

(u+ 1)2
du,

as noted Wheeler [316, p. 516]. According to Golomb [131, p. 192] another integral
formula for this constant, found by Nathan Fine, is

λ =

∫ 1

0
eLi(x)dx, (3.10.9)

in which Li(x) :=
∫ x
0

dt
log t for 0 ≤ x < 1. In 1990 Wheeler [316, pp. 516–517] established

the formula

λ =

∫ ∞

0

ρ(u)

u+ 2
du

empirically noted earlier by Knuth and Trabb-Pardo, and also the formula

λ = eγ
∫ ∞

0
e−Ein(t)−2tdt,

in which Ein(t) is given in (3.5.5). The Golomb-Dickman constant λ is not known to
be related to either Euler’s constant γ or the Euler-Gompertz constant δ, and it is not
known whether it is irrational or transcendental.

The Golomb-Dickman constant λ appears as a basic statistic in the limit distribution
L1 for the scaled longest cycle, whose expected value is given by

E[L1] =

∫ 1

0
α dF1(α) = −

∫ 1

0

1

α
ρ
′
(
1

α
)dα.

Letting x = 1
α we obtain

E[L1] = −
∫ ∞

1

ρ′(x)
x

dx =

∫ ∞

1
ρ(x− 1)

dx

x2
= λ,

see [180, (9.2)].
In 1996 Gourdon [138, Chap. VII, Théorème 2] determined a complete asymptotic

expansion of the expected values E[M(σ)] as N → ∞ in powers of 1
N , which both the

Golomb-Dickman constant and Euler’s constant appear, with the initial terms being

E[M(σ)] = λN +
1

2
λ− eγ

24

1

N
+O

(

1

N2

)

.

The omitted higher order terms for k ≥ 2 in Gourdon’s asymptotic expansion are of

form Pk(N)
Nk in which each Pk(N) is a oscillatory function of N which is periodic with an

integer period pk that grows with k as k → ∞.
A result in a different direction relates Euler’s constant to the probability of all cycles

having distinct lengths as N → ∞. This result follows from work of D. H. Lehmer [200].
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Theorem 3.10.3. (Lehmer 1972) Draw a random permutation σ on N elements with
the uniform distribution. Let Pd(N) denotes the probability that the cycles of σ have
distinct lengths, then

lim
N→∞

Pd(N) = e−γ .

Proof. The cycle lengths of a permutation σ form a partition λ = (1c1 , 2c2 , · · · , N cN ) of
N ( written λ ⊢ N), having n(λ) = c1+ c2+ · · ·+ cN cycles with cycle length j occurring
cj times. The number of permutations N(λ) giving rise to a given partition λ is

N(λ) =
N !

c1!c2! · · · cN !1c12c2 · · ·N cN
,

and by definition we have
1

N !

∑

λ⊢N
N(λ) = 1.

In the case that all cycles are of distinct lengths, then all ci = 0 or 1, and the formula
for N(λ) becomes

N(λ) =
N !

a1a2 · · · an
,

in which a1 < a2 < · · · < an with n = n(λ) are the lengths of the cycles. (The division by
ai reflects the fact that a cyclic shift of a cycle is the same cycle.) Lehmer [200] assigned
weights (1c12c2 · · ·N cN )−1 to each partition, and counted different sets of such weighted
partitions. Theorem 2 counted partitions with distinct summands, in his notation

W ∗
N :=

∑

λ⊢N

′ 1

a1a2 · · · an
,

with the prime indicating the sum runs over partitions having distinct parts. and showed
that W ∗

N → e−γ as N → ∞. (Lehmer’s weights agree with the weights assigned to
partitions from the uniform distribution on SN only for those partitions having distinct
parts.) �

3.11. Euler’s constant and random permutations: shortest cycle. There are
striking parallels between the distribution of cycles of random permutations of SN and
the distributions of factorizations of random numbers in an interval [1, n], particularly
concerning the number of these having factorizations of restricted types, allowing either
factorizations with only small factors, treated in Section 3.5, or having only large prime
factors, treated in Section 3.6, where we take N to be on the order of log n. This
relation was first observed by Knuth and Trabb-Pardo [180], whose 1976 work (already
mentioned in Sections 3.5 and 3.10) was done to analyze the performance of an algorithm
for factoring integers by trial division. They observed in [180, Sect. 10, p. 344]:

Therefore, if we are factoring the digits of a random m-digit number, the
distribution of the number of digits in its prime factors is approximately
the same as the distribution of the cycle lengths in a random permutation
on m elements! (Note that there are approximately lnm factors, and
lnm cycles.)

They uncovered this connection after noticing that the Shepp-Lloyd formula for Golomb’s
constant λ in (3.10.7), as evaluated by Mitchell [221], agreed to 10 places with their
calculation of Dickman’s constant, as defined by (3.10.8). A comparison of the k-th
longest cycle formulas of Shepp and Lloyd in Theorem 3.10.2 for cycles of length αN
then revealed matching relatives ρk(x) of the Dickman function (defined in Section 3.5).
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These parallels extend to the appearance of the Buchstab function in the distribution of
random permutations having no short cycle, as we describe below.

Concerning the shortest cycle, recall first that a special case of Theorem 3.10.2(2)
shows that the expected length of the shortest cycle is

E[m(σ)] = e−γ logN(1 + o(1)) as N → ∞,

It is possible to get exact combinatorial formulas for the probability

P (N,m) := Prob[m(σ) ≥ m : σ ∈ SN ].

that a permutation has no cycle of length shorter than m. There are several limiting
behaviors of this probability as N → ∞, depending on the way m = m(N) grows as
N → ∞. There are three regimes, first, wherem is constant, secondly wherem(N) = αN
grows proportionally to N , with 0 < α ≤ 1 (i.e. only long cycles occur) and thirdly, the

intermediate regime, where m(N) → ∞ but m(N)
N → 0 as N → ∞.

First, suppose that m(N) = m is constant. This case has a long history. The derange-
ment problem (Problème des ménages), concerns the probability that a permutation has
no fixed point, which is the case m = 2. It was raised by Rémond de Montmort [256] in
1708 and solved by Nicholas Bernoulli in 1713, see [257, pp. 301–303]. The derangement
problem was also solved by Euler in 1753 [102, E201], who was unaware of the earlier
work. The well known answer is that

P (N, 2) =

N
∑

j=0

(−1)j

j!
,

and this exact formula yields the result

lim
N→∞

P (N, 2) =
1

e
.

In 1952 Gruder [147] gave a generalization for permutations having no cycle shorter than
a fixed m, as follows.
Theorem 3.11.1. (Gruder 1952) For fixed m ≥ 1 there holds

lim
N→∞

Prob[m(σ) ≥ m : σ ∈ SN ] = e−Hm−1 , (3.11.1)

in which Hm denotes the m-th harmonic number.

Proof. Let PN (m,k) count the number of permutations of N having exactly k cycles,

each of length at least m, and set PN (m) =
∑N

k=1 PN (m,k), so that P (N,m) = PN (m)
N ! .

These are given in the exponential generating function

∞
∑

N=0

zN

N !

(

N
∑

k=1

PN (m,k)u
k
)

= exp
[

u(log
1

1− x
−
m−1
∑

j=1

xj

j
)
]

=
exp

[

− u
(

x+ x2

2 + · · · + xm−1

m−1

)]

(1− x)u
.

Gruder [147, Sect. 8, (85)] derives from the case u = 1,

∞
∑

N=0

PN (m)
xN

N !
=

exp
(

−x− x2

2 − · · · − xm−1

m−1

)

1− x
.

Using this fact Gruder [147, Sect. 9, eqn. (94)] derives limN→∞
N !

PN (m) = eHm−1 , giving

the result. �
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Gruder also observes that one obtains Euler’s constant from these values via the scaling
limit

lim
m→∞

lim
N→∞

mP (N,m) = e−γ .

An asymptotic expansion concerning convergence to the limit (3.11.1) for constant m
is now available in general circumstances. Panario and Richmond [242, Theorem 3, eq.
(9)], give such an asymptotic expansion for the r-th largest cycle being ≥ m for a large
class of probability models.

Secondly, for the intermediate range where m = m(N) → ∞ with m
N → 0 as N → ∞,

there is the following striking universal limit estimate, in which e−γ appears.

Theorem 3.11.2. (Panario and Richmond 2001) Consider permutations on N letters
whose shortest cycle m(σ) ≥ m. Suppose that m = m(N) depends on N in such a way

that m(N) → ∞ and m(N)
N → 0 both hold as N → ∞. Under these conditions we have

Prob[m(σ) ≥ m(N) : σ ∈ SN ] ∼ e−γ

m
, as N → ∞.

Proof. This result is deducible form a general asymptotic result of Panario and Richmond
[242, Theorem 3, eq. (11)], which applies to distribution of the r-th largest cycle of a
logarithmic combinatorial structure. �

Thirdly, we consider the large range, concerning those permutations having shortest
cycle of length at least a constant fraction αN of the size of the permutation. Here the
resulting scaled density involves the Buchstab function ω(u) treated in Section 3.6, with
α = 1

u , with u > 1.

Theorem 3.11.3. (Panario and Richmond 2001) Consider permutations on N letters
whose shortest cycle m(σ) ≥ m. Suppose that m = m(N) depends on N in such a way

that m(N)
N → α holds as N → ∞, with 0 < α ≤ 1. Under these conditions we have, for

fixed 0 < α ≤ 1, that

Prob[m(σ) > αN : σ ∈ SN ] ∼ ω(1/α)
1

αN
, as N → ∞, (3.11.2)

where ω(u) denotes the Buchstab function.

Proof. This result follows from a general result of Panario and Richmond [242, Theorem
3, eq. (10)], which gives an asymptotic expansion for the r-th largest cycle. The proof
for this case uses in part methods of Flajolet and Odlyzko [120]. �

The matching of the large range estimate (3.11.2) as α → 0 with the intermediate
range estimate follows from the limiting behavior of the Buchstab function ω(u) → e−γ as
u→ ∞.One may compare Theorem 3.11.2 with the sieving result in Theorem 3.6.1. They
are quite parallel, and in both cases the factor e−γ arises from the limiting asymptotic
behavior of the Buchstab function.

The appearance of the Buchstab function in the sieving models in Section 3.6 and
the permutation cycle structure above is precisely accounted for in stochastic models
developed by Arratia, Barbour, and Tavaré [17], [18] in the late 1990’s, which they
termed Poisson-Dirichlet processes (and which we do not define here). They showed
([17], [19, Sec. 1.1, 1.2] that (logarithmically scaled) factorizations of random integers,
and (scaled) cycle structures of random permutations asN → ∞ lead to identical limiting
processes. To describe the scalings, one considers an ordered prime factorization of an
random integer m =

∏n
i=1 pi, with 2 ≤ p1 ≤ p2 ≤ · · · ≤ pk. Let k := Ω(m) count the
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number of prime factors of m with multiplicity, one defines the logarithmically scaled
quantities

ā∗i :=
log pi
logm

, 1 ≤ i ≤ k.

The random quantities drawn are (ā∗1, ā
∗
2, ..., ā

∗
k), where k itself is also a random variable,

and these quantities sum to 1. To a random permutation σ of SN let a1 ≤ a2 ≤ · · · ≤
an(σ) represent the lengths of the cycles arranged in increasing order. Then associate to
σ the normalized cycle lengths

āi :=
ai
N
, 1 ≤ i ≤ n.

Here n = n(σ) is a random variable, and these quantities also sum to 1. Arratia,
Barbour and Tavaré [18] showed that in both cases, as N → ∞ (resp. n → ∞) these
random variables converge to a limiting stochastic process, a Poisson-Dirichlet process of
parameter 1. They furthermore noted ([19, p. 34]) that both models required exactly the
same normalizing constant: e−γ . The existence of a normalizing constant for Poisson-
Dirichlet processes was noted in 1977 by Vershik and Shmidt [311], who conjectured it
to be e−γ , and this was proved in 1982 by Ignatov [170].

The model for random cycles applies as well to random factorization of polynomials
of degree N over the finite field GF (q), as q → ∞, see Arratia, Barbour and Tavaré [16].

3.12. Euler’s constant and random finite functions. Euler’s constant also appears
in connection with the distribution of cycles in a random finite function F : [1, N ] →
[1, N ]. Iteration of a finite function on a given initial seed leads to iterates of an element
having a preperiodic part, followed by arrival at a cycle of the function. Thus not every
element of N belongs to a cycle.

In 1968 Purdom and Williams [251] established results for random finite functions
that are analogous to results for random permutations given in Section 3.10. They
studied the length of the longest and shortest cycles for a random function; note however
that the expected length of the longest cycle grows proportionally to

√
N, rather than

proportional to N as in the case of a random permutation.

Theorem 3.12.1. (Purdom and Williams 1968) Pick a random function F : [1, N ] →
[1, N ] with the uniform distribution over all NN such functions.

(1) The length M(F ) of the longest cycle of F under iteration satisfies

lim
N→∞

E[M(F )]√
N

= λ

√

π

2
,

in which λ is the Golomb-Dickman constant.
(2) Let m(F ) denote the length of the shortest cycle under iteration of the function

F . Then the expected value E[m(F )] satisfies

lim
N→∞

E[m(F )]

logN
=

1

2
e−γ .

Proof. For fixed N , Purdom and Williams [251] use the notation E[M(F )] = EFN ,1(ℓ) :=
E[M(F )] and EFN ,1(s) := E[m(F )]. The result (1) follows from [251, p. 550, second
equation from bottom]. Purdom and Williams state a result related to (2) without
detailed proof. Namely, the top equation on [251, p. 551] states

E[m(F )] = S1,1Qn(1, 1) + o(Qn(1, 1)),



60 JEFFREY C. LAGARIAS

where

Qn(1, 1) =
n
∑

j=1

(n− 1)!j(log j)

(n− j)!nj
. (3.12.1)

Here the values Sr,k are taken from Shepp and Lloyd [268], where for k = 1 they are
given by the right hand side of (3.10.5), and for k ≥ 2 by the right hand side of (3.10.6),
and in particular S1,1 = e−γ . To estimate Qn(1, 1) given by (3.12.1) we use the identity
( [251, p. 550])

Qn(0) =
n
∑

j=1

(n− 1)!j

(n− j)!nj
= 1.

We observe that Qn(1, 1) is the expected value of the function log j with respect to the
probability distribution given by the individual terms in Qn(0). One may deduce that
Qn(1, 1) =

1
2 log n+o(logn) by showing that this probability distribution is concentrated

on values j =
√
n+ o(

√
n). This gives (2) . �

The study of random finite functions is relevant for understanding the behavior of the
Pollard [247] “rho” method of factoring large integers. The paper of Knuth and Trabb-
Pardo [180] analyzed the performance of this algorithm, but their model used random
permutations rather than random functions. An extensive study of limit theorems for
statistics for random finite functions was made by V. F. Kolchin [182]. A very nice
asymptotic analysis of the major statistics for random finite functions is given in Flajolet
and Odlyzko [119, Theorems 2 and 3].

3.13. Euler’s constant as a Lyapunov exponent. Certain properties of Euler’s con-
stant have formal resemblance to properties of a dynamical entropy. More precisely, the
quantity C = eγ might be interpretable as the growth rate of some dynamical quantity,
with γ = logC being the associated (topological or metric) entropy. Here we present re-
sults about the growth rates of the size of products of random matrices having normally
distributed entires. These growth rates naturally involve γ, together with other known
constants.

Before stating results precisely, we remark that products of random matrices often
have well-defined growth rates, which can be stated either in terms of growth rates of
matrix norms or in terms of Lyapunov exponents. Let {A(j) : j ≥ 1} be a fixed sequence
of d × d complex matrices., and let M(n) = A(n)A(n − 1) · · ·A(2)A(1) be product of
d× d complex matrices. We define for an initial vector v ∈ Cd and a vector norm || · ||,
the logarithmic growth exponent of v to be

λ(v) := lim sup
n→∞

1

n
log

||M(n)v||
||v|| . (3.13.1)

This value depends on v and on the particular sequence {A(j) : j ≥ 1} but is independent
of the choice of the vector norm. For a fixed infinite sequence {A(j) : j ≥ 1} as v varies
there will at most d distinct values λ∗1 ≤ λ∗2 ≤ · · · ≤ λ∗d for this limit.

Now let the sequence {A(j) : j ≥ 1} vary, with each A(j) being drawn independently
from a given probability distribution on the set of d×d matrices. In 1969 Furstenberg and
Kesten [122] showed that for almost all vectors v (off a set of positive codimension) the
limiting value λ∗d takes with probability one a constant value λd, provided the distribution
satisfied the condition

∫

X
log+ ||A(x)||dµ(x) <∞, (3.13.2)

where (X,Σ, µ) is the probability space, || · || is a fixed matrix norm, required to be
submultiplicative, i..e ||M1M2|| ≤ ||M1||||M2||, and where log+ |x| := max(0, log |x|). A
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corollary of the multiplicative ergodic theorem proved by Oseledec in 1968 (see [241],
[252]) asserts that with probability one all these logarithmic exponents take constant
values, provided the probability distribution on random matrices satisfies (3.13.2). These
constant values λ1 ≤ λ2 ≤ · · · ≤ λd are called the Lyapunov exponents of the random
matrix product, with λd being the maximal Lyapunov exponent. For almost all random
products and almost all starting vectors v0, one will have λ(v) = λd, compare Pollicott
[248]. The value Cd := exp(λd) may be thought of as approximating the exponential

growth rate of matrix norms ||M(n)TM(n)||1/2, as n→ ∞.
In general the Lyapunov exponents are hard to determine. In 1984 J. Cohen and C. M.

Newman[63, Theorem 2.5] obtained the following explicit result for normally distributed
variables. Note that condition (3.13.2) holds for such variables.

Theorem 3.13.1. (Cohen and Newman 1984) Let {A(1)ij : 1 ≤ i, j ≤ d} be independent,
identically distributed (i.i.d.) normal random variables with mean 0 and variance s, i.e.
A(1)ij ∼ N(0, s2). Let v(0) be a nonzero vector in Rd. Define for independent random
draws

v(n) = A(n)A(n − 1) · · ·A(1)v(0), n = 1, 2, 3, ...

and consider31

λ(v(0)) := lim
n→∞

1

n
log ||v(n)|| (3.13.3)

using the Euclidean norm || · || on Rd. Then with probability one the limit exists in
(3.13.3), is nonrandom, is independent of v(0), and is given by

λ =
1

2
[log(s2) + log 2 + ψ(

d

2
)], (3.13.4)

in which ψ(x) is the digamma function. Moreover as n → ∞ the random variables
1√
n
log(e−λn||v(n)||) converge in distribution to N(0, σ2) with

σ2 =
1

4
ψ′(

d

2
).

It is easy to deduce from Cohen and Newman’s result the following consequence con-
cerning d× d (non-commutative) random matrix products.

Theorem 3.13.2. Let A(j) be d× d matrices with entries drawn as independent identi-
cally distributed (i.i.d.) normal random variables with variance 1, i.e. N(0, 1). Consider
the random matrix product

S(n) = A(n)A(n − 1) · · ·A(1),

and let ||S||F =
√

∑

i,j |Si,j|2 be the Frobenius matrix norm. Then, with probability one,

the growth rate is given by

lim
n→∞

(

||S(n)||2F
)

1
n =







2e−γ+Hd/2−1 if d is even,

1
2e

−γ+2Hd−1−H(d−1)/2 if d is odd.

(3.13.5)

Here Hn denotes the n-th harmonic number, using the convention that H0 = 0.

31Cohen and Newman write the left sides of (3.13.3) and (3.13.4) as log λ, but here we replace these
by the rescaled variables λ(v0) and λ, in order to match the definition of Lyapunov exponent given in
(3.13.1).
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Proof. We use an exponentiated version of the formula (3.13.4) in Theorem 3.13.1, setting
the variance s = 1 and multiplying both sides of (3.13.4) by 2 before exponentiating. We
obtain, for a nonzero vector v(0), that with probability one,

lim
n→∞

(

||S(n)v(0)||2
)

1
n = 2eψ(

d
2
). (3.13.6)

where || · || is the Euclidean norm on vectors. To obtain the Frobenius norm bound we

use the identity ||S||2F =
∑d

j=1 ||Sej ||2 where ei is the standard orthonormal basis of

column vectors. On taking vectors vj(0) = ej we obtain

||S(n)||2F =

d
∑

j=1

||S(n)vj(0)||2,

and using (3.13.6) and the fact that limn→∞ d
1
n = 1, we obtain with probability one that

lim
n→∞

(

||S(n)||2F
)

1
n = 2eψ(

d
2
).

On applying the digamma formulas for ψ(d2 ) given in Theorem 3.1.1, with the convention
H0 = 0, and noting for d = 2m+ 1 that

2eψ(d/2) =
1

2
e−γ+2H2m−1−Hm−1 =

1

2
e−γ+2H2m− 2

2m
−Hm−1 =

1

2
e−γ+2H2m−Hm,

we obtain (3.13.5). �

Rephrased in terms of Lyapunov exponents, Theorem 3.13.2 says that the correspond-
ing d× d matrix system, for odd dimension d has top Lyapunov exponent

λd =
1

2

(

−γ − log 2 + 2Hd−1 −H d−1
2

)

,

and for even dimension d has top Lyapunov exponent

λd =
1

2

(

−γ + log 2 +H d
2
−1

)

.

The simplest expressions occur in dimension d = 1, giving λ1 = 1
2(−γ − log 2), and in

d = 2, giving λ2 =
1
2 (−γ + log 2).

Note that any real number can be obtained as a maximal Lyapunov exponent in
Theorem 3.13.1 simply by adjusting the variance parameter s properly in the normal
distributionN(0, s). It follows that the content of the specific formulas in Theorem 3.13.2
is in part arithmetic, where one specifies the variance s of the normal distributions to be
a fixed rational number. Moreover, if we rescale s to choose normal distributions N(0, s)
with variance s = 2 in dimension 1 and with variance s = 1

2 in dimension 2, then we

obtain the Lyapunov exponents λd =
1
2 (−γ) in these dimensions.

Returning to the theme of Euler’s constant being (possibly) interpretable as a dynam-
ical entropy, one approach to the Riemann hypothesis suggests that it may be related
to an (as yet unknown) arithmetical dynamical system, cf. Deninger [67], [68], [69], [70].
There is a statistical mechanics interpretation of the Riemann zeta function as a par-
tition function given in Bost and Connes [40], with subsequent developments described
in Connes and Marcolli [64]. For some other views on arithmetical dynamical systems
related to zeta functions see Lagarias [190], [192] and Lapidus [197, Chap. 5]. Here
we note the coincidence that in formulations of the Riemann hypothesis given earlier in
Theorems 3.7.1 and 3.7.3, a “growth rate” e±γ naturally appears.
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3.14. Euler’s constant and periods. In 2001 M. Kontsevich and D. Zagier [186] de-
fined a period to be a complex number whose real and imaginary parts are values of ab-
solutely convergent integrals of rational functions with rational coefficents, over domains
in Rn given by polynomial inequalities with rational coefficients. More conceptually
these are values of integrals of an algebraic differential form with algebraic coefficients,
integrated over an algebraic cycle, see Kontsevich [185, Section 4.3]. We will call such
an integral a period integral. They observed that for the real part one can reduce such
integrals to the case where all coefficients are rational numbers, all differentials are top
degree, integrals are taken over divisors with normal crossings defined over Q. In partic-
ular they introduced a ring P of effective periods, which includes the field of all algebraic
numbers Q as a subring, as well as a ring of extended periods P̂ obtained by adjoining
to P the constant 1

2πi , which conjecturally is not a period.
One has, for n ≥ 2 the representation

ζ(n) =

∫

0<t1<t2<...<tn<1

dt1
1− t1

dt2
t2

· · · dtn
tn

as a period integral. Thus convergent positive integer zeta values are periods. One more
generally can represent all (convergent) multiple zeta values

ζ(n1, n2, ..., nk) :=
∑

m1>m2>...>mk>0

1

mn1
1 m

n2
2 · · ·mnk

k

.

at positive integer arguments as period integrals. Other period integrals are associated
with special values of L-functions, a direction formulated by Deligne [65]. An overview
paper of Zagier [320] gives a tour of many places that multiple zeta values appear.

Some other examples of periods given by Kontsevich and Zagier are the values log α
for α a positive real algebraic number. In addition the values (Γ(pq ))

q where p
q is a

positive rational number are periods, see Kontsevich and Zagier [186, p. 775], André [9,
Chap. 24]. This can be deduced using Euler’s Beta integral (2.3.1). Another well known
example is ([20, (5.11)])

∫ 1

0

dt√
1− t4

=
(Γ(14))

2

√
32π

,

giving a period of an elliptic curve with complex multiplication.
Periods arise in many places. They arise in evaluating Feynman integrals in quantum

field theory calculations. For more work on periods and zeta values in this context, see
Belkale and Brosnan [28]. Periods appear as multiple zeta values in Drinfeld’s associator,
cf. Drinfeld [76], [77], [78]. Periods appear in Vassiliev’s knot invariants, due to the
connection found by Kontsevich [184], see Bar-Natan [25]. They appear in expansions of
Selberg integrals, cf. Terasoma [296]. They appear in the theory of motives as periods of
mixed Tate motives, cf. Terasoma [297], [298], and Deligne and Goncharov [66]. Other
constants that are periods are values of polylogarithms at integers. Algebraic multiples of
beta values B( rn ,

s
n) occur as periods of differentials on abelian varieties, cf. Gross [146,

Rohrlich appendix]. In 2002 P. Cartier [55] gave a Bourbaki seminar exposé surveying
multiple zeta values, polylogarithms and related quantities.

There is a good deal known about the irrationality or transcendence of specific periods.
The transcendence of ζ(2n) for n ≥ 1 is immediate from their expression as powers of
π. For odd zeta values, in 1978 Apery ([10], [11]) established that ζ(3) is irrational, see
van der Poorten [249] and Section 3.15 for more details. In 1979 F. Beukers [31] gave an
elegant proof of the irrationality of ζ(3) suggested by the form of Apery’s proof, showing
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that certain integer linear combinations of period integrals defined for integer r, s ≥ 0 by

Ir,s :=

∫ 1

0

∫ 1

0

− log xy

1− xy
xrys dxdy =

∫ 1

0

∫ 1

0

∫ 1

0

xrys

1− (1− xy)z
dz dx dy

were very small. He evaluated

I0,0 =

∫ 1

0

∫ 1

0

− log xy

1− xy
dx dy = 2 ζ(3), (3.14.1)

and for r ≥ 1,

Ir,r = 2
(

ζ(3)− 1

13
− 1

23
− · · · − 1

r3
)

= 2
(

ζ(3)−Hn,3

)

.

As a necessary part of the analysis he also showed for r > s that each Ir,s = Is,r is a
rational number with denominator dividing D3

r where Dr is the least common multiple
[1, 2, ..., r]. It is now known that infinitely many odd zeta values are irrational, without
determining which ones (Rivoal [260], Ball and Rivoal [24]). In particular Zudilin [321]
showed that at least one of ζ(5), ζ(7), ζ(9), ζ(11) is irrational. See Fischler [117] for a
survey of recent developments on irrationality of zeta values. The state of the art for
showing transcendence of periods is surveyed by Waldschmidt [312].

There is currently no effective way known to decide whether a given number is a period.
One can certify a number is a period by directly exhibiting it as a Q̄-linear combination of
values of known period integrals. However no properties of periods are currently known
which would be useful in distinguishing them from non-periods. Kontsevich and Zagier
[186, Problem 3] raise the problem of exhibiting a single specific number that is provably
not a period.

As mentioned in the introduction it is conjectured: Euler’s constant is not a period.
The conjectures that e and γ are not periods appears in [186, Sec. 1.1]. We have already
seen a number of different integral representations for Euler’s constant, which however
involve exponentials and/or logarithms, in addition to rational functions. These integrals
do not resolve the question whether γ is a period.

Kontsevich and Zagier [186, Sec. 4.3] also suggest enlarging the class of periods to
allow exponential functions in the integrals. They define an exponential period to be an
absolutely convergent (multiple) integral of the product of an algebraic function with
the exponential of an algebraic function, taken over a real semi-algebraic set, where all
polynomials entering the definition of the algebraic functions and the semi-algebraic set
have algebraic coefficients32. The set of all such values forms a ring EP, which we call
the ring of exponential periods, and which contains the field Q̄ of all algebraic integers.
This ring is countable, and is known to include the constant e, all values Γ(pq ) at rational

arguments, namely p
q ∈ Qr Z≤0, and the constant

√
π =

∫ ∞

−∞
e−t

2
dt.

It also includes various values of period determinants for confluent hypergeometric func-
tions studied by Terasoma [295, Theorem 2.3.3] and by Bloch and Esnault [35, Proposi-
tion 5.4]. Here we observe that:

(1) Euler’s constant γ ∈ EP.
(2) The Euler-Gompertz constant δ ∈ EP.

32The semialgebraic set is cut out by a system of (real) polynomial inequalities fj(x1, ..., xn) ≥ 0, and
it is supposed that the coefficients of the fj are all real algebraic numbers.
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M. Kontsevich observes that an integral representation certifying that γ ∈ EP is obtain-

able from (2.2.8) by substituting − log x =
∫ 1
x
dy
y for 0 < x < 1 and log x =

∫ x
1
dy
y for

x > 1, yielding

γ =

∫ 1

0

∫ 1

x

e−x

y
dy dx−

∫ ∞

1

∫ x

1

e−x

y
dy dx.

An integral representation certifying that δ ∈ EP is given by (2.5.10), stating that

δ =

∫ ∞

0

e−t

1 + t
dt.

It is not known whether δ is a period.

3.15. Diophantine approximations to Euler’s constant. Is Euler’s constant ratio-
nal or irrational? This is unknown.

One can empirically test this possibility by obtaining good rational approximations
to Euler’s constant. The early calculations of Euler’s constant were based on Euler-
Maclaurin summation. In 1872 Glaisher [128] reviewed earlier work on Euler’s constant,
which included his own 1871 calculation accurate to 100 places ([127]) and uncovered
a mistake in an earlier calculation of Shanks. In 1878 the astronomer J. C. Adams [2]
determined γ to 263 places, again using Euler-Maclaurin summation, an enormous labor
done by hand. In 1952 J. W. Wrench, Jr [318], using a desk calculator, obtained γ to
328 places. In 1962 Knuth [179] automated this approach and obtained Euler’s constant
to 1272 places with an electronic computer. However this record did not last for long. In
1963 D. W. Sweeney [292] introduced a new method to compute Euler’s constant, based
on the integral representation

γ =
∞
∑

k=1

(−1)k−1nk

k! k
−
∫ ∞

n

e−u

u
du− log n,

By making a suitable choice of n in this formula, Sweeney obtained 3566 digits of γ. The
following year Beyer and Waterman [37] used a variant of this method to compute γ to
7114 places, however only the initial 4879 digits of these turned out to be correct, as
determined by later computations. In 1977 Brent [42] used a modification of this method
to compute γ and eγ to 20700 places. In 1980 Brent and McMillan [44] formulated new
algorithms based on the identity

γ =
U(n)

V (n)
− K0(2n)

I0(2n)
,

whose right hand side contains for ν = 0 the modified Bessel functions

Iν(z) :=

∞
∑

k=0

(z2)
ν+2k

k!Γ(ν + k + 1)
and K0(z) := − ∂

∂ν
Iν(z)|ν=0,

and

U(n) :=
∞
∑

k=0

(nk

k!

)2
(Hk − log n),

V (n) := I0(2n) =

∞
∑

k=0

(nk

k!

)2
.

The second term 0 < K0(2n)/I0(2n) < πe−4n can be made small by choosing n large,

hence γ is approximated by U(n)
V (n) , choosing n suitably (their Algorithm B1). With this

algorithm they computed both γ and eγ to 30000 places. They also determined the initial
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part of the ordinary continued fraction expansions of both γ and eγ , and established the
following result.
Theorem 3.15.1. (Brent and McMillan 1980)

(1) If γ = m0
n0

is rational, with m0, n0 ∈ Z>0 then its denominator n0 > 1015000.

(2) If eγ = m1
n1

is rational, with m1, n1 ∈ Z>0 then its denominator n1 > 1015000.

Proof. We follow Brent [42]. For any real number θ Theorem 17 of Khinchin [174] states:
if pn

qn
is an ordinary continued fraction convergent for θ then |qnθ − pn| ≤ |qθ − p| for

all integers p and q with 0 < |q| ≤ qn. It therefore suffices to find a convergent pn
qn

with

qn > 1015000 such that θ 6= pn
qn
, and the latter inequality holds if qn+1 exists. �

The continued fraction expansion of γ begins

γ = [0; 1, 1, 2, 1, 2, 1, 4, 3, 13, 5, 1, 1, 8, 1, 2, 4, 1, 1, 40, 1, 11, 3, 7, 1, 7, 1, 1, 5, 1, 49, 4, ...],

see [274, Sequence A002852]. Brent and McMillan also computed various statistics for
the initial part of this continued fraction, concerning the number of partial quotients of
different sizes of the initial continued fractions of γ and of eγ , in order to test whether γ
behaves like a “random” real number. They found good agreement with the predicted
limiting distribution of partial quotients for a random real number θ = [a0, a1, a2, · · · ].
It is a theorem of Kuz’min that the distribution of the j-th partial quotient Prob[aj = k]
rapidly approaches the Gauss-Kuz’min distribution

p(k) := log2(1 +
1

k
)− log2(1 +

1

k + 1
),

as j → ∞, see Khinchin [174, III.15].
Diophantine approximations to γ can be extracted from various series expansions for

γ involving rational numbers. In 1910 Vacca [309] found the expansion

γ =

∞
∑

k=1

(−1)k
⌊log2 k⌋

k

=
(1

2
− 1

3

)

+ 2
(1

4
− 1

5
+

1

6
− 1

7

)

+ 3
(1

8
− 1

9
+ · · · − 1

15

)

+ · · · .

Truncating this expansion at k = 2m− 1 gives approximations pm
qm

to γ satisfying

0 < γ − pm
qm

≤ 4(logm+ 1)

m
.

In 2010 Sondow [279] gave refinements of this expansion yielding approximations with

a convergence rate O( logmmr ) for an arbitrary but fixed r ≥ 2. However approximations
of these types fall far short of establishing irrationality of γ, since the denominators qm
grow exponentially with m.

Much recent work on Diophantine approximation of explicit constants θ has focused
on finding a series of rational approximations un

vn
with the properties:

(1) Each sequence un, vn separately satisfies the same linear recurrence with coeffi-
cients that are polynomials in the ring Z[n], where n is the recurrence parameter.

(2) The initial conditions for the recurrences un, vn are rational, so that both se-
quences consist of rational numbers.

(3) One has un
vn

→ θ as n→ ∞.

We give examples of such recurrences below, e.g. (3.15.1). For such sequences the
power series U(z) =

∑∞
n=1 unz

n resp. V (z) =
∑∞

n=1 vnz
n will each (formally) satisfy a
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homogeneous linear differential equation DF (z) = 0 in the z-variable, whose coefficients
are polynomials in Q[z], i.e. the operator D has the form

D =
n
∑

j=0

Rj(z)
dj

dzj
.

We will refer to such a sequence of approximations satisfying (1), (2) as being of H-type,
and will call any real number obtainable as a limit of such approximations an elementary
H-period. More generally, the ring HP of H-periods will be the ring generated over Q
by elementary H-periods33. The ring HP is clearly countable, and its possible relations
to rings of periods P or exponential periods EP discussed in Section 3.14 remain to be
determined.

It turns out to be useful to single out a subclass of such numbers, which are the set of
such approximations for which the linear differential operators D have a special property:

G-operator Property. At some algebraic point z0 ∈ Q the linear differential operator
with coefficients in C[z] has a full rank set of a G-function solutions.

The notion of G-function is presented in detail in Bombieri [38], André [4], [8], and
Dwork, Gerotto and Sullivan [80]. We give a definition of a subclass of G-functions
obtained by specializing to the rational number case. (The general case allows algebraic
number coefficients all drawn from a fixed number field K.) It is a function given by a
power series F (z) =

∑∞
n=0 anz

n, with rational an such that

(1) There is a constant C > 0 such that |an| ≤ Cn, so that the power series F (z)
has a nonzero radius of convergence.

(2) There is a constant C ′ > 0 such that the least common multiple of the denomi-
nators of a1, .., an is at most (C ′)n.

(3) The an = pn
qn

are solutions of a linear recurrence having coefficients that are

polynomials in the variable n with integer coefficients.

The notion of G-operator was formulated in André [4, IV. 5], [6, Sect. 3]. André’s
definition of G-operator is given in another form, in terms of it satisfying the Galochkin
condition (from Galochkin [123], also see Bombieri [38]), but this class of operators is
known to coincide with those given by the definition above. The minimal differential
operator satisfied by a G-function is known to be a G-operator in Andr’e’s sense [6,
Theorem 3.2], by a result of D. and G. Chudnovsky. Conversely, any G-operator in
André’s sense has a full rank set of G-function solutions at any algebraic point not a
singular point of the operator ([6, Theorem 3.5])..

André [6, p. 719] has shown that G-operators, viewed in the complex domain, are of
a very restricted type. They must be Fuchsian on the whole Riemann sphere P1(C), i.e.
they have only regular singular points, including the point ∞, see also [8, Theorem 3.4.1].
A conjecture formulated in André [4], [6, p. 718] is that all G-operators should come
from (arithmetical algebraic) “geometry”, i.e. they each should be a product of factors
of Picard-Fuchs operators, controlling the variation of cohomology in a parametrized
family of algebraic varieties defined over Q̄.

We will say that a real number θ that is a limit of a convergent sequence of rational
approximations unvn with un, vn coefficients in the power series expansions of two (rational)
G-functions is an elementary G-period. As above we obtain a ring GP of G-periods,
defined as the ring generated over Q by elementary G-periods. This ring has recently
been shown in Fischler and Rivoal [118, Theorem 3], to coincide with the field Frac(G),

33The name H-period is proposed by analogy with the more studied class of G-periods given below.
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in which Frac(G) is the fraction field of a certain ring G constructed from G-function
values. The ring G is defined to be the set of complex numbers f(α) where α ∈ Q̄
and f(z) is any branch of a (multi-valued) analytic continuation of a G-function with
coefficients defined over some number field which is nonsingular at z = α. Fischler and
Rivoal [118, Theorem 1] show that the ring G coincides with the set of all complex
numbers whose real and imaginary parts can each be written as f(1), with f(z) being
some G-function with rational coefficients (as in the definition above) and whose power
series expansion has radius of convergence exceeding 1. Their result [118, Theorem 3]
also establishes that the set of elementary G-periods is itself a ring containing all real
algebraic numbers, which coincides with Frac(G) ∩ R. Again, possible relations of the
field GP with the Kontsevich-Zagier rings of periods P and extended periods EP remain
to be determined.34

As already mentioned in Section 3.14, a famous result of Apéry ([10], [11]) in 1979
established that the period ζ(3) is irrational. Apéry’s result was obtained by finding
rational approximations pn

qn
to ζ(3) which were generated by two different solutions

{pn, qn : n ≥ 1}, to the second order linear recurrence with polynomial coefficients:

n3 un = (34n3 − 51n2 + 27n − 5)un−1 − (n− 1)3un−2 (3.15.1)

with initial conditions p0 = 0, p1 = 6 and q0 = 1, q1 = 5, respectively. Here qn are now
called Apéry numbers, and are given by

qn =

n
∑

k=0

(

n+ k

k

)2(n

k

)2

, (3.15.2)

while pn are given by

pn =

n
∑

k=0

(

n+ k

k

)2(n

k

)2
(

n
∑

m=1

1

m3
+

k
∑

m=1

(−1)m−1

2m3
(n
m

)(n+m
m

)

)

, (3.15.3)

see Fischler [117, Sect. 1.2]). These approximations are closely spaced enough and good
enough to imply that, for any ǫ > 0, and all q ≥ q(ǫ) one has

|ζ(3)− p

q
| > q−θ+ǫfor all p ∈ Z,

with exponent θ = 13.41782, which implies that ζ(3) is irrational. The method permits
deriving families of approximations given by related recurrences for ζ(m) for allm ≥ 2 (cf.
Cohen [61]) , but only for m = 2 and 3 are they are good enough to prove irrationality.
For each m ≥ 2 the associated power series

f(z) =
∑

n≥0

pnz
n, g(z) =

∞
∑

n=0

qnz
n

will be solutions to a linear differential equation with polynomial coefficients, and are of
H-type. For m = 2, 3 these approximations are known to be of G-type. A conceptually
new proof of irrationality of ζ(3) using the same approximations, but connecting them
with modular forms on the congruence subgroup Γ1(6) of SL(2,Z) was presented in 1987
by Beukers [33].

34The paper [118, Sect. 2.2] discusses the possibility that the equality G = P̂ = P [ 1
π
] might hold,

and sketches an argument due to a reviewer that supports the conjecture that G ⊆ P̂ .
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Apéry’s discovery was based on series acceleration transformations of the series ζ(3) =
∑∞

n=1
1
n3 . An initial example of Apéry of such accelerations is the identity

ζ(3) =
5

2

∞
∑

n=1

(−1)n−1

n3
(2n
n

) , (3.15.4)

see [249, Sect. 3]. The partial sums of this series converge at a rate O(4−n) to 2
5ζ(3),

but are by themselves insufficient to prove irrationality. Apéry’s proof used further series
acceleration transformations, described in [249, Sect. 4]. It is interesting to note that the
identity (3.15.4) is a special case of identities in an 1890 memoir of A. A. Markoff [212] on
series acceleration, as is explained in Kondratieva and Sadov [183]. In 1976 Gosper ([136],
[137]) noted related identities, also found by series acceleration techniques, including

ζ(3) =
∞
∑

n=1

30n− 11

16(2n − 1)n3
(

2n−1
n

)2 .

A new approach to Apéry’s irrationality proof of ζ(3) was found by Nesterenko [231] in
1996, which used a relation of the Apéry approximations pn, qn to Padé approximations
to polylogarithms. Nesterenko also found a new continued fraction for 2ζ(3),

2ζ(3) = 2 +
1

2 +
2

4 +
1

3 +
4

2 +
2

4 +
6

6 +
4

5 +
9

4 + · · ·

. (3.15.5)

Writing this as 2ζ(3) = b0 +
a1

b1 + · · ·, the numerators an grow quadratically in n while

the denominators bn grow linearly with n, and are given for k ≥ 0 (excluding a1) by

a4k+1 = k(k + 1), b4k+1 = 2k + 2, a4k+2 = (k + 1)(k + 2), b4k+2 = 2k + 4,
a4k+3 = (k + 1)2, b4k+3 = 2k + 3, a4k+4 = (k + 2)2, b4k+4 = 2k + 2.

This result was obtained starting from Padé type simultaneous polynomial approxima-
tions to the logarithm, dilogarithm and trilogarithm found by Gutnik [152], see also the
survey of Beukers [32]. When specialized at the point x = 1 these Padé approxima-
tions yield the sequences qn,−2pn. The continued fraction (3.15.5) was obtained from
a Mellin-Barnes type integral for a special case of the Meijer G-function [216], a gen-
eralized hypergeometric function (see [87, Chap. V]). A survey of methods using Padé
approximations to polylogarithms is given in Nesterenko [232]. This approach has led to
further results, including a new proof of irrationality of ζ(3) of Nesterenko [233].

A natural question concerns whether γ has rational approximations of H-type. A
family of such rational approximations to γ were found in 2007 through the combined
efforts of A. I. Aptekarev, A. I. Bogolyubskii, D. V. Khristoforov, V. G. Lysov and D.
N. Tulyakov in the seven papers in the volume [12]. Their result is stated in Aptekarev
and Tulyakov [15] in the following slightly improved form.
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Theorem 3.15.2. (Aptekarev, Bogolyubskii, Khristoforov, Lysov, Tulyakov 2007) Eu-
ler’s constant is approximated by a ratio of two rational solutions of the third-order
recurrence relation with polynomial coefficients

(16n − 15)qn+1 = (128n3 + 40n2 − 82n − 45)qn − n2(256n3 − 240n2 + 64n − 7)qn−1

+(16n + 1)n2(n − 1)2qn−2.

The two solutions {pn : n ≥ 0} and {qn : n ≥ 0} are determined by the initial conditions

p0 := 0, p1 := 2, p2 := 31,

and

q0 := 1, q1 := 3, q2 := 50.

They have the following properties:

(1) (Integrality) For n ≥ 0,

pn ∈ Z, qn ∈ Z.

(2) (Denominator growth rate) For n ≥ 1,

qn = (2n)!
e
√
2n

4
√
n

(

1√
π(4e)3/8

+O(
1√
n
)

)

.

(3) (Euler’s constant approximation) For n ≥ 1,

γ − pn
qn

= −2πe−2
√
2n

(

1 +O(
1√
n
)

)

.

The original result showed in place of (1) the weaker result that qn ∈ Z and Dnpn ∈ Z
with Dn = l.c.m.[1, 2, ..., n]. The integrality result for pn follows from a later result
of Tulyakov [305], which finds a more complicated system of recurrences that these
sequences satisfy, in terms of which the integrality of pn is manifest. These approximants
clearly are of H-type.

The results in Theorem 3.15.2 are based on formulas derived from a family of multiple
orthogonal polynomials in the sense of Aptekarev, Branquinho and van Assche [14].
These lead to exact integral formulas

qn =

∫ ∞

0
Qn(x)e

−xdx,

and

pn − γqn =

∫ ∞

0
Qn(x)e

−x log x dx, (3.15.6)

in which Qn(x) are the family of polynomials (of degree 2n) given by

Qn(x) =
1

(n!)2
ex

x− 1

(

d

dx

)n

xn
(

d

dx

)n

(x− 1)2n+1xne−x.

Note for Q0(x) = 1 that (3.15.6) becomes the integral formula (2.2.8) for Γ′(1). Also in
2009 Rivoal [261] found an alternative construction of these approximants that makes
use of Padé acceleration methods for series similar to Euler’s divergent series (2.5.1). His
method applies more generally to numbers γ+log x, where x > 0 is rational. In 2010 Kh.
and T. Hessami Pilehrood [162, Corollary 4] found closed forms for these approximants,

qn =

n
∑

k=0

(

n

k

)2

(n+ k)!, pn =

n
∑

k=0

(

n

k

)2

(n+ k)!(Hn+k + 2Hn−k − 2Hk),
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where the Hk are harmonic numbers. These rational approximations pn
qn

thus are of a

kind similar in appearance to Apéry’s approximation sequence (3.15.2), (3.15.3) to ζ(3),
and also satisfy a third order recurrence.

Recently Kh. and T. Hessami Pilehrood [163, Theorem 1, Corollary 1] constructed an
elegant sequence of rational approximations converging to Euler’s constant, also analo-
gous to the Apéry approximations to ζ(3), with slightly better convergence properties
than those given in Theorem 3.15.2, and having a surprising connection with certain
approximations to the Euler-Gompertz constant. They set

qn =

n
∑

k=0

(

n

k

)2

k!, pn =

n
∑

k=0

(

n

k

)2

k! (2Hn−k −Hk).

The sequence qn satisfies the homogeneous second order recurrence

qn+2 = 2(n + 2)qn+1 − (n + 1)2qn. (3.15.7)

and initial conditions q0 = 1, q1 = 2. The sequence pn satisfies the inhomogeneous second
order recurrence

pn+2 = 2(n+ 2)pn+1 − (n+ 1)2pn −
n

n+ 2
,

with initial conditions p0 = 0, p1 = 1, and it satisfies a homogeneous third order recur-
rence.

Theorem 3.15.3. (Kh. and T. Hessami Pilehrood 2013) Let (qn)n≥0, (pn)n≥0 be defined
as above. Then qn ∈ Z and Dnpn ∈ Z, where Dn = l.c.m.[1, 2, ..., n], and for all n ≥ 1,

γ − pn
qn

= −e−4
√
n
(

2π +O(
1√
n
)
)

.

Here the growth rate of the sequence qn is, for all n ≥ 1,

qn = n!
e2

√
n

4
√
n

( 1

2
√
πe

+O(
1√
n
)
)

These approximations converge to γ from one side. The sequence Dn needed to clear
the denominator of pn is well known to have growth rate

Dn = en(1+o(1)),

an asymptotic result that is equivalent in strength to the prime number theorem.
The Euler-Gompertz constant δ also has a convergent series of rational approximations

with the same denominator sequence qn as the Euler constant approximations above. The
new numerators sn satisfy the same recurrence (3.15.7) as the denominators qn, i.e.

sn+2 = 2(n + 2)sn+1 − (n+ 1)2sn,

but with initial conditions s0 = 0, s1 = 1. The sn are integers, and are also given by the
expression

sn =
n
∑

k=1

a(k − 1)(k + 1)

(

n

k

)

(n− 1)!

(k − 1)!
,

in which the function values a(m) are

a(m) =

m
∑

k=0

(−1)k k!,

see [274, Sequence A002793]. Here the a(m) are the partial sums of Euler’s divergent
series discussed in Section 2.5. These approximations sn

qn
are exactly the partial quotients

sn
qn

of the Laguerre continued fraction (2.5.19) for the Euler-Gompertz constant.
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n qn Dnpn Dn sn
0 1 0 1 0
1 2 1 1 1
2 7 8 2 4
3 34 118 6 20
4 209 1450 12 124
5 1546 53584 60 920
6 13327 461718 60 7940
7 130922 31744896 420 78040
8 1441729 699097494 840 859580
9 17572114 25561222652 2520 10477880
10 234662231 341343759982 2520 139931620

Table 2. Approximants pn/qn and sn/qn to γ and δ, with Dn = l.c.m.[1, 2, ..., n].

One has the following rate of convergence estimate for this sequence of rational ap-
proximations ([163, Theorem 2]).

Theorem 3.15.4. (Kh. and T. Hessami Pilehrood 2013) Let (qn)n≥0, (sn)n≥0 be defined
as above. Then qn, sn ∈ Z, and for all n ≥ 1, the approximations sn/qn to the Euler-
Gompertz constant satisfy

δ − sn
qn

= e−4
√
n
(

2πe+O(
1√
n
)
)

.

The proof of Theorem 3.15.4 relates these approximations to values of a Mellin-Barnes
type integral

In = (n!)2
1

2πi

∫ c+i∞

c−i∞

Γ(s− n)2

Γ(s+ 1)
ds.

where the vertical line of integration has c > n. The integral is expressed in terms of
Whittaker function Wκ,ν(z) (a confluent hypergeometric function). The proof displays
some identities involving the Euler-Gompertz constant and Whittaker function values,
namely

δ =
W−1/2,0(1)

W1/2,0(1)

using

W−1/2,0(1) =
δ√
e
, W1/2,0(1) =

1√
e
.

Table 2 presents data on the approximations (qn, pn, sn) for small n providing good
approximations to γ and δ. Recall that pn are rational numbers, while qn,Dnpn, sn are
integers, with Dn = l.c.m.[1, 2, ..., n].

The approximations given in Theorems 3.15.3 and 3.15.4, certify that both γ and δ are
elementary H-periods, so that both γ, δ ∈ HP. These approximations are of insufficient
quality to imply the irrationality of either Euler’s constant or of the Euler-Gompertz
constant. It remains a challenge to find a sequence of Diophantine approximations to γ
(resp. δ) that approach them sufficiently fast to certify irrationality.

One may ask whether γ has Diophantine approximations of G-type. This is unknown.
The current expectation is that this is not possible, i.e. that γ 6∈ GP. Based on the
observation of Rivoal and Fischler that GP = Frac(G), and the the belief ([118, Sect.

2.2]) that the ringGmay coincide with the Kontsevich-Zagier ring P̂ of extended periods,
this expectation amounts to a stronger form of Conjecture 1.0.2.
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We conclude this section with recent results concerning G-type and H-type approx-
imations to other constants considered by Euler. In 2010 Rivoal [263] showed that the
periods Γ( kn)

n, where k
n > 0 , can be approximated by sequences pn

qn
of rational num-

bers of the G-type, so are elementary G-periods. In another paper Rivoal [262] finds
sequences of rational approximations showing that the individual numbers Γ( kn), which
are not known to be periods for 0 < k < n, are elementary H-periods.

Finally we note that various authors have suggested other approaches to establishing
the irrationality of Euler’s constant, e.g. Sondow [276], [278]. and Sondow and Zudilin
[282].

3.16. Transcendence results related to Euler’s constant. The first transcendence
results for numbers involving Euler’s constant came from the breakthrough of Shidlovskii
[269], [270] in the 1950’s and 1960’s on transcendental values of E-functions, which is
detailed in his book [271]. The class of E-functions was introduced in 1929 by Siegel
[272, p. 223], consisting of those analytic functions F (z) =

∑∞
n=0 cn

zn

n! whose power
series expansions have the following properties:

(1) The coefficients cn belong to a fixed algebraic number field K (a finite extension
of Q). For each ǫ > 0, the maximum of the absolute values of the algebraic
conjugates of cn is bounded by O(nnǫ) as n→ ∞.

(2) For each ǫ > 0 such that there is a sequence of integers q0, q1, q2... such that qncn
is an algebraic integer, with qn = O(nnǫ) as n→ ∞.

(3) The function F (z) satisfies a (nontrivial) linear differential equation

n
∑

j=0

Rj(z)
dj

dzj
y(z) = 0,

whose coefficients are polynomials Rj(z) ∈ K1[z], where K1 is some algebraic
number field.35

Each E-function is an entire function of the complex variable z. The set of all E-functions
forms a ring E (under (+,×)) which is also closed under differentiation, and this ring is
an algebra over Q̄.

We also define a subclass of E-functions called E∗-functions in parallel with the class
of G-functions, following Shidlovskii [271, Chap. 13]. An analytic function F (z) =
∑∞

n=1 cn
zn

n! is an E∗-function if it has the following properties:

(1) F (z) is an E-function.
(2) There is some constant C > 0 such that the maximum of the absolute values of

the algebraic conjugates of cn is bounded by O(Cn) as n→ ∞.
(3) There is some constant C ′ > 0 such that there is a sequence of integers q0, q1, q2...

such that each qncn is an algebraic integer, and with qn = O((C ′)n) as n→ ∞.

This definition narrows the growth rate conditions on the coefficients compared to Siegel’s
conditions. The set of all E∗-functions forms a ring E∗ closed under differentiation which
is also an algebra over Q̄. Certainly E∗ ⊆ E, and it is conjectured that the two rings are
equal ([271, p. 407]). Results of André ([6], [7]) apply to the class E∗.

Siegel [272, Teil I] originally applied his method to prove transcendence of algebraic
values of the Bessel function J0(α) for algebraic α where J0(α) 6= 0. In formalizing his
method in 1949, Siegel [273] first converted an n-th order differential operator to a linear

35This condition on K1 could be weakened to require only that the coefficients are in C[z].
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system of first order linear differential equations

dyi
dx

=

n
∑

j=1

Rij(x)yj , 1 ≤ i ≤ n,

where the functions Ri,j(x) are rational functions. In order for his proofs to apply,
he required this system to satisfy an extra condition which he called normal. Siegel
was able to verify normality in a few cases, including the exponential function and
certain Bessel functions. A great breakthrough of Shidlovskii [269] in 1959 permitted
the method to prove transcendence of solution values for all cases where the obvious
necessary conditions are satisfied. The Siegel-Shidlovskii theorem states that if the Ei(x)
are algebraically independent functions over the rational function field K(x), then at
any non-zero algebraic number not a pole of any function Rij(x), the values Ej(α)
are algebraically independent. For treatments of these results see Shidlovskii [271] and
Feldman and Nesterenko [114, Chap. 5].

More recent progress on E-functions includes a study in 1988 of the Siegel normality
condition by Beukers, Brownawell and Heckman [34] which obtains effective measures
of algebraic independence in some cases. In 2000 André [6, Theorem 4.3] (see also [8])
established that for each E∗-function the minimal order linear differential equation with
C(z) coefficients that it satisfies has singular points only at z = 0 and z = ∞; that is, it
has a basis of n independent holomorphic solutions at all other points. Furthermore z = 0
is necessarily a regular singular point and ∞ is an irregular singular point of a restricted
type. This result goes a long way towards explaining why all the known E∗-functions are
of hypergeometric type. André [7] applied this characterization to give a new proof of
the Siegel-Shidlovskii theorem. Finally we remark that although transcendence results
are usually associated to E-functions and irrationality results to G-functions, in 1996
André [5] obtained transcendence results for certain G-function values.

Returning to Euler’s constant, in 1968 Mahler [209] applied Shidlovskii’s methods to
certain Bessel functions. For example

J0(z) =
∞
∑

n=0

(−1)n

(n!)2
(
z

2
)2n

is a Bessel function of the first kind, and

Y0(z) =
2

π

(

log(
z

2
) + γ

)

J0(z) +
2

π

(

∞
∑

n=1

(−1)n−1 Hn

(n!)2
(
z2

4
)n
)

(3.16.1)

is a Bessel function of the second kind, see [1, (9.1.13)]. Here J0(z) is an E∗-function,
but Y0(z), which contains Euler’s constant in its expansion (3.16.1), is not, because it
has a logarithmic singularity at x = 0. However the modified function

Ỹ0(z) :=
π

2
Y0(z)−

(

log(
z

2
) + γ

)

J0(z) =

∞
∑

n=1

(−1)n−1 Hn

(n!)2
(
z2

4
)n

is an E∗-function, and Mahler uses this fact. He noted the following special case of his
general results.

Theorem 3.16.1. (Mahler 1968) The number

π

2

Y0(2)

J0(2)
− γ

is transcendental.
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We have J0(2) =
∑∞

n=0
(−1)n

(n!)2
and π

2Y0(2) = γJ0(2) +
∑∞

n=1(−1)n−1 Hn

(n!)2
, from which

it follows that Mahler’s transcendental number is

π

2

Y0(2)

J0(2)
− γ =

∑∞
n=1

(−1)n−1Hn

(n!)2

∑∞
n=0

(−1)n

(n!)2

.

More recent transcendence results apply to Euler’s constant along with other con-
stants. In 2012 Rivoal [264] proved a result which, as a special case, implies the tran-
scendence of at least one of the Euler constant γ and the Euler-Gompertz constant δ. It
uses the Shidlovskii method and improves on an observation of Aptekarev [13] that at
least one of γ and δ must be irrational. This transcendence of at least one of γ and δ was
also established about the same time by Kh. and T. Hessami Pilehrood [163, Corollary
3].

Theorem 3.16.2. (Rivoal 2012) Euler’s constant γ and the Euler-Gompertz constant

δ :=

∫ ∞

0

e−w

1 + w
dw =

∫ 1

0

dv

1− log v

together have the following properties:

(1) (Simultaneous Diophantine Approximation) One cannot approximate the pair (γ, δ)
very well with rationals (pq ,

r
q ) having the same denominator. For each ǫ > 0 there is a

constant C(ǫ) > 0 such that for all integers p, q, r with q 6= 0, there holds

|γ − p

q
|+ |δ − r

q
| ≥ C(ǫ)

H3+ǫ
,

where H = max(|p|, |q|, |r|).
(2) (Transcendence) The transcendence degree of the field Q(e, γ, δ) generated by e, γ

and δ over the rational numbers Q is at least two.

Proof. This follows from a much more general result of Rivoal’s [264, Theorem 1], which
concerns values of the function

Gα(z) := z−α
∫ ∞

0
(t+ z)α−1e−tdt.

Here we specialize to the case α = 0, and on taking z = 1 we have

G0(1) =

∫ ∞

0

e−t

t+ 1
dt = δ,

using Hardy’s integral (2.5.10). The function G0(z) satisfies a linear differential equation,
but is not an E-function in the sense of transcendence theory. Rivoal makes use of the
identity

γ + log z = −e−zG0(z)− E(−z), (3.16.2)

valid for z ∈ Cr R≤0, where the entire function

E(z) :=
∞
∑

n=1

zn

n · n! ,

is an E∗-function.
Result (i) follows from the assertion of Theorem 1 (ii) of Rivoal [264], specialized to pa-

rameter values α = 0 and z = 1. This result uses explicit Hermite-Padé approximants to
the E∗-functions 1, ez , Eα(z), where Eα(z) =

∑∞
m=0

zm

m!(m+α+1) , with α 6= −1,−2,−3, ....

Here E(z) corresponds to α = −1 with the divergent constant term dropped from the
power series expansion.
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Result (ii) follows from the assertion of Theorem 2 (ii) of Rivoal [264], which asserts
for (complex) algebraic numbers z 6∈ (−∞, 0] that the field generated over Q by the
three numbers ez, γ + log z, G0(z) has transcendence degree at least two. It makes use
of (3.16.2), which can be rewritten as the integral identity

−γ = log z + z

∫ 1

0
e−tz log t dt+ e−z

∫ ∞

0

e−t

t+ z
dt

It uses the specialization z = 1, which essentially gives Hardy’s identity (2.5.11) divided
by e, which we may rewrite as

−E(−1) = γ +
δ

e
.

The result then follows using Shidlovskii’s Second Fundamental Theorem [271, p. 123].
�

Rivoal [264] remarks that the transcendence result Theorem 3.16.2 (2) is implicit in
the approach that Mahler [209] formulated in 1968. At the end of his paper Mahler [209,
p. 173] states without details that his method extends to show that for rational ν0 > 0
and nonzero algebraic numbers α, the integrals

Ik(ν0, α) :=

∫ 1

0
xν0−1(log x)ke−αxdx, k = 0, 1, 2, ...

are algebraically independent transcendental numbers. Choosing ν0 = 1, α = 1 and
k = 0, 1, we have

I0(1, 1) :=

∫ 1

0
e−xdx = 1− 1

e
,

and, using (2.5.9),

I1(1, 1) =

∫ 1

0
(log x) e−xdx =

∫ ∞

0
(log x) e−xdx− 1

e

∫ ∞

0
log(x+ 1)e−xdx = −γ − δ

e
.

Mahler’s statement asserts that these are algebraically independent transcendental num-
bers. This assertion implies that Q(γ, δ, e) has transcendence degree at least two over
Q.

We next present recent results which concern the transcendence of collections of gener-
alized Euler constants discussed in Section 3.8. These results are applications of Baker’s
results on linear forms in logarithms, and allow the possibility of one exceptional alge-
braic value. Recall that the Euler-Lehmer constants, for 0 ≤ h < k studied by Lehmer
[201], are defined by

γ(h, k) := lim
x→∞

(

∑

0≤n<x
n≡h ( mod k)

1

n
− log x

k

)

.

In 2010 M. R. Murty and N. Saradha [228, Theorem 1] obtained the following result.

Theorem 3.16.3. (Murty and Saradha 2010) In the infinite list of Euler-Lehmer con-
stants

{γ(h, k) : 1 ≤ h < k, for all k ≥ 2},
at most one value is an algebraic number. If Euler’s constant γ is an algebraic number,
then only the number γ(2, 4) = 1

4γ in the above list is algebraic.
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Their proof uses the fact that a large set of linear combinations of γ(h, k) are equal to
logarithms of integers. Then Baker’s bounds for linear forms in logarithms of algebraic
numbers are applied to derive a contradiction from the assumption that the set contains
at least two algebraic numbers. An immediate consequence of Theorem 3.16.3 is the fact
that over all rational numbers 0 < x ≤ 1 at least one of Γ(x),Γ′(x) is transcendental,
with at most one possible exceptional x. ([228, Corollary]), see also Murty and Saradha
[227].

In a related direction Murty and Zaytseva [229, Theorem 4] obtained a corresponding
transcendence result for the generalized Euler constants γ(Ω) associated to a finite set Ω
of primes that were introduced by Diamond and Ford [71]. Recall from Section 3.8 that

these constants are obtained by setting ζΩ(s) =
∏

p∈Ω

(

1 − p−s
)

ζ(s) and defining γ(Ω)

as the constant term in its Laurent expansion around s = 1, writing

ζΩ(s) =
D(Ω)

s− 1
+ γ(Ω) +

∞
∑

n=1

γn(Ω)(s− 1)n.

In particular γ(∅) = γ.

Theorem 3.16.4. (Murty and Zaytseva 2013) In the infinite list of Diamond-Ford gen-
eralized Euler constants γ(Ω) where Ω runs over all finite subsets of primes (including
the empty set), all numbers are transcendental with at most one exception.

The constants γ(Ω) can be expressed as finite linear combinations of Euler-Lehmer
numbers, cf. (3.8.1), so this result is closely related to the previous theorem. This result
is also proved by contradiction, using Baker’s results on linear forms in logarithms. If γ
were algebraic then γ(∅) would be the unique exceptional value. However one expects
there to be no algebraic value in the list.

4. Concluding remarks

Euler’s constant appears sui generis. Despite three centuries of effort, it seems unre-
lated to other constants in any simple way.

A first consequence arising from this is: the appearance of Euler’s constant in osten-
sibly unrelated fields of mathematics may signal some hidden relationship between these
fields. A striking example is the analogy between results concerning the structure of
factorizations of random integers and cycle structure of random permutations. These
results are given for restricted factorizations in Sections 3.5 and 3.6 and for restricted
cycle structure of permutations in Sections 3.10 and 3.11, respectively. Results in these
two fields were initially proved separately, and were later unified in limiting probability
models developed by Arratia, Barbour and Tavaré [17]. These models account not only
for the main parts of the probability distribution but also for tail distributions, where
there are large deviations results in which Euler’s constant appears. On a technical level
an explanation for the parallel results in the two subjects was offered by Panario and
Richmond [242] at the level of asymptotic analysis of generating functions of a particu-
lar form. This research development is an example of one of Euler’s research methods
detailed in Section 2.6, that of looking for a general scheme uniting two special problems.

In a second direction, the study of Euler’s constant and multiple zeta values can now
be viewed in a larger context of rings of periods connected with algebraic integrals. The
sui generis nature of γ is sharply formulated in the conjecture that it is not a Kontsevich-
Zagier period. On the other hand, it is known to belong to the larger ring of exponential
periods EP, as described in Section 3.14. This research development illustrates another
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of Euler’s research methods, to keep searching for a fuller understanding of any problem
already solved.

In a third direction, one may ask for an explanation of the appearance of Euler’s
constant in various sieve method formulas. Here Friedlander and Iwaniec [121, p. 239]
comment that these appearances stem from two distinct sources. The first is through
Mertens’s product theorem 3.3.2. The second is via differential-difference equations of
the types treated in Sections 3.5 and 3.6.

In a fourth direction, there remain mysteries about the appearance of Euler’s constant
in number theory in the gamma and zeta function.

Observation. Euler’s constant γ appears in the Laurent expansion of the Riemann
zeta function at s = 1; here the zeta function is a function encoding the properties of
the finite primes. Euler’s constant also appears in the Taylor expansion of the gamma
function at s = 1; here the gamma function encodes properties of the (so-called) “infinite
prime” or ”real prime” (Archimedean place).

The analogy between the ”real prime” and the finite primes traces back to Ostrowski’s
work in the period 1913-1917 which classified all absolute values on Q (Ostrowski’s
Theorem). Such analogies have been pursued for a century; a comprehensive treatment
of such analogies is given in Haran [153].

A mild mystery is to give a conceptual explanation for this occurrence of Euler’s
constant in two apparently different contexts, one associated to the finite primes, and
the other associated to the real prime (Archimedean place). There is a known connection
between these two contexts, given by the product formula for rational numbers over all
places, finite and infinite. It says

∏

p≤∞
|r|p = 1, r ∈ Q.

in which | · |p denotes the p-adic valuation, normalized with |p|p = 1
p and |x|∞ being

the real absolute value. Does this relation explain the common appearance? On closer
examination there appears to be a mismatch between these two occurrences, visible in
the functional equation of the Riemann zeta function. The functional equation can be
written

ζ̂(s) = ζ̂(1− s),

in which appears the completed zeta function

ζ̂(s) := π−
s
2Γ(

s

2
)ζ(s) = π−

s
2Γ(

s

2
)
∏

p

(

1− 1

ps

)−1

.

The completed zeta function is given as an Euler product over all “primes”, both the
finite primes and the Archimedean Euler factor π−

s
2Γ( s2 ). In this formula evaluation at

the point s = 1 for the Riemann zeta function corresponds to evaluation of the gamma
function at the shifted point s′ = s

2 = 1
2 . The mismatch is that for the gamma function,

Euler’s constant most naturally appears in connection with its derivative at the point
s′ = 1, rather than at the point s′ = 1

2 , cf (3.1.1). Is there a conceptual explanation of
this mismatch? Theorem 3.1.1 associates Euler’s constant with the digamma function
at s = 1

2 , but in that case an extra factor of log 2 appears. Perhaps this mismatch can
be resolved by considering an asymmetric functional equation for the function Γ(s)ζ(s).
Here one has, valid for Re(s) > 1, the integral formula

Γ(s)ζ(s) =

∫ ∞

0

1

ex − 1
xs−1dx.

One of Riemann’s proofs of the functional equation for ζ(s) is based on this integral.
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Another mystery concerns whether there may exist an interesting arithmetical dy-
namical interpretation of Euler’s constant, different from that given in Section 3.12. The
logarithmic derivative of the archimedean factor π−

s
2Γ( s2) at the value s = 2 (that is,

s′ = 1) produces the value −g/2 where

g := γ + log π.

The constant g appears elsewhere in the “explicit formulas” of prime number theory, as
a contribution at the (special) point x = 1 in the Fourier test function space, cf. [39, p.
280]. Perhaps one should search for a dynamical system whose entropy is the constant
−g := −γ − log π ≈ −1.721945.

In a fifth direction, Euler’s constant can be viewed as a value emerging from reg-
ularizing the zeta function at s = 1, identified with the constant term in its Laurent
series expansion at s = 1. There are a number of different proposals for “renormalizing”
multiple zeta values, including the value of “ζ(1)”, with the intent to preserve other
algebraic structures. This is an active area of current research. Various alternatives are
discussed in Ihara, Kaneko and Zagier [171], Guo and Zhang [150] , [151], Guo, Paycha,
Xie and Zhang [149] and Manchon and Paycha [211]. Some of these authors (for example
[171]) prefer to assign the “renormalized” value 0 to “ζ(1)”, to be obtained by further
subtracting off Euler’s constant.

This direction generalizes to algebraic number fields. For background we refer to
Neukirch [235, Chap. VII. Section 5]. The Dedekind zeta function ζK(s) of a number
field K is given by

ζK(s) =
∑

A

1

NK/Q(A)s

where A runs over all the ideals in the ring of integers OK of the number field, and NK/Q

is the norm function. This function analytically continues to a meromorphic function on
C which has a simple pole at s = 1, with Laurent expansion

ζK(s) =
α−1(K)

s− 1
+ α0(K) +

∞
∑

j=1

αj(K)(s − 1)j . (4.1)

The term α−1(K) encodes arithmetic information about the fieldK, given in the analytic
class number formula

Ress=1(ζK(s)) := α−1(K) =
hKRK
egK

,

in which hK is the (narrow) class number of K, RK is the regulator of K (the log-
covolume of the unit group of K) and gK is the genus of K, given by

gK := log
wK |dK |1/2
2r1(2π)r2

,

in which wK is the number of roots of unity in K, dK is the absolute discriminant of K,
r1 and r2 denote the number of real (resp. complex) Galois conjugate fields to K, inside
Q̄. The constant term α0(K) is then an analogue of Euler’s constant for the number
field K, since α0(Q) = γ. A refined notion studies the constant term of a zeta function
attached to an individual ideal class C of a number field K. Such a partial zeta function
has the form

ζ(C, s) :=
∑

A∈C

1

NK/Q(A)s

where the sum runs over all integral ideals A of the number field belonging to the ideal
class C. The Dedekind zeta function is the sum of ideal class zeta functions over all
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hK ideal classes. These partial zeta functions ζ(C, s) extend to meromorphic functions
of s on C with only singularity a simple pole at s = 1 having a residue term that is
independent of C, i.e. α−1(C,K) = 1

hK
α−1(K) ([235, Theorem VII (5.9)]).

For imaginary quadratic fields the constant term a0(C,K) in the Laurent expansion
at s = 1 of an ideal class zeta function can be expressed in terms of a modular form
using the first Kronecker limit formula; cf. Kronecker [187]. This limit formula concerns
the real-analytic Eisenstein series, for τ = x+ iy with y > 0 and s ∈ C

E(τ, s) =
∑

(m,n)6=(0,0)

ys

|mτ + n|2s ,

which for fixed τ analytically continues to a meromorphic function of s ∈ C and has a
simple pole at s = 1 with residue π and Laurent expansion

E(τ, s) =
π

s− 1
+ c0(τ) +

∞
∑

j=1

cn(τ)(s− 1)n.

The first Kronecker limit formula expresses the constant term c0(τ) as

c0(τ) = 2π(γ − log 2)− log(
√
y|η(τ)|2),

in which η(τ) is the Dedekind eta function, a modular form given by

η(τ) = q1/24
∞
∏

n=1

(1− qn), with q = e2πiτ ,

see [319, Sect. 2]. In 1923 Herglotz [160] found an analogous formula for the constant
term in the Laurent series expansion at s = 1 of ζ(C, s) for an ideal class C of a real
quadratic field, which involved Dedekind sums and an auxiliary transcendental function.
In 1975 by Zagier [319] obtained another formula for this case which is expressed using
continued fractions and an auxiliary function.

In 2006 Ihara [172] studied another quantity extracted from the Laurent expansion
(4.1) of the Dedekind zeta function of a number field at s = 1, given by

γ(K) :=
α0(K)

α−1(K)
,

which he termed the Euler-Kronecker constant of the number field K. Here γ(K) rep-
resents a scaled form of the constant term, and it generalizes Euler’s constant since
γ(Q) = γ. Motivated by the function field case, Ihara hopes that γ(K) encodes inter-
esting information of a different type on the field K, especially as K varies. Under the
assumption of the Generalized Riemann Hypothesis, Ihara obtained upper and lower
bounds

−c1 logDK ≤ γ(K) ≤ c2 log logDK ,

where DK is the (absolute value of the) discriminant of K and c1, c2 > 0 are absolute
constants. Further unconditional upper bounds on γ(K) were obtained by Murty [230]
and lower bounds were given by Badzyan [22].

Finally, ongoing attempts to place Euler’s constant in a larger context have continued
in many directions. These include studies of new special functions involving Euler’s
constant, such as the generalized Euler-constant function γ(z) proposed by Sondow and
Hadjicostas [280]. Two other striking formulas, found in 2005 by Sondow [277], are the
double integrals

∫ 1

0

∫ 1

0

1− x

(1− xy)(− log xy)
dxdy = γ
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and
∫ 1

0

∫ 1

0

1− x

(1 + xy)(− log xy)
dxdy = log

4

π
,

Guillera and Sondow [148] then found a common integral generalization with a complex
parameter that unifies these formulas with double integrals of Beukers [31] for ζ(2) and
ζ(3), see (3.14.1).

Many other generalizations and variants of Euler’s constant have been proposed.
These include a p-adic analogue of Euler’s constant introduced by J. Diamond [72] in
1977 (see also Koblitz [181] and Cohen [62, Sect. 11.5]) and q-analogues of Euler’s con-
stant formulated by Kurokawa and Wakayama [188] in 2004. A topic of perennial interest
is the search for new expansions and representations for Euler’s constant. For example
1917 work of Ramanujan [254] was extended in 1994 by Brent [43]. Some new expan-
sions involve accelerated convergence of known expansions, e.g. Elsner [85], K. and T.
Hessami Pilehrood [161], and Prévost [250]. Recent developments of the Dickman func-
tion led to the study of new constants involving Euler’s constant and polylogarithms, cf.
Broadhurst [48] and Soundararajan [284].

All these studies, investigations of irrationality, connections with the Riemann hy-
pothesis, possible interpretation as a (non)-period, and formulating generalizations of
Euler’s constant, may together lead to a better understanding of the place of Euler’s
constant γ in mathematics.
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[5] Y. André, G-fonctions et transcendance, J. reine Angew. Math. 476 (1996), 95–125. [3.16]
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[7] Y. André, Séries Gevrey de type arithmétique, II. Transcendance sans transcendance, Ann. Math.

151 (2000), No. 2, 741–756. [3.16]
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[87] H. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Higher Transcendental Functions,
Vol. I, McGraw-Hill, New York 1953. [3.1], [3.15]

[88] The Euler Archive: The works of Leonhard Euler online, http://www.eulerarchive.org [2.0]
[89] L. Euler, De progressionibus transcendentibus seu quarum termini generales algebraice dari nequent,

Comment. acad. sci. Petrop. 5 (1738), 36–57. (Presented Nov. 8, 1729) (Opera Omnia, Series 1, Vol.
14, pp. 1–24) [E19] [2.3]

[90] L. Euler, De summatione innumerabilium progressionum, Comment. acad. sci. Petrop. 5 (1738),
91–105. (presented March 5, 1731) (Opera Omnia, Series 1, Vol. 14, pp. 25–41). [E20] [2.2, 2.4]

[91] L. Euler, Methodus generalis summandi progressiones, Comment. acad sci. Petrop. 6 (1738), 68–97.
(Presented June 20, 1732) (Opera Omnia, Series 1, Vol. 14, pp. 42–72) [E25] [2.2, 2.4]

[92] L. Euler, De summis serierum reciprocarum, Comment. acad sci. Petrop. 7 (1740), 123–134. (Read
Dec. 5, 1735). (Opera Omnia, Series 1, Vol. 14, pp. 73–86.) [E41] [2.4]

http://www.eulerarchive.org


EULER’S CONSTANT: EULER’S WORK AND MODERN DEVELOPMENTS 85

[93] L. Euler, De progressionibus harmonicis observationes, Comment. acad sci. Petrop. 7 (1740), 150–
161. (Read March 11, 1734, not turned in). (Opera Omnia, Series 1, Vol. 14, pp. 87–100.) [E43]
[2.2]

[94] L. Euler, Inventio summae cuiusque seriei ex dato termino generali, Commentariii acad. sci. Petrop.
8 (1741), 9–22 (Presented Oct. 13, 1735). (Opera Omnia, Series I, Vol. 14, pp. 108–123). [E47] [2.2,
2.4]

[95] L. Euler, De summis serierum reciprocarum ex potestatibus numerorum naturalium ortarum Dis-
sertatio altera, in qua eadem summationes ex fonte maxime diverso derivantur, (Presented Sept. 6,
1742), Miscellanea Berolinensia 7 (1743), 172-192. (Opera Omnia, Series 1, Vol. 14, 138–155.) [E61]
[2.4]

[96] L. Euler, Demonstration de la somme de cette suite 1+1/4+1/9+1/16..., Journal lit. d’Allemagne,
de Suisse et du Nord, 2, No. 1 (1743), 115–127. (Opera Omnia, Series 1, Vol. 14, pp. 177–186.) [E63]
[2.4]

[97] L. Euler, De fractionibus continuis dissertatio, Comment. acad. sci. Petrop. 9 (1744), 98–137. (Opera
Omnia, Series 1, Vol. 14, 187–216) [E71] [1.1, 2.3]

[98] L. Euler, An Essay on Continued Fractions, (Translated by M. F. Wyman and B. F. Wyman),
Math. Systems Theory 18 (1985), 285–328. [E71]. [1.1]

[99] L. Euler, Variae observations circa series infinitas, Comment. acad. sci. Petrop. 9 (1744), 160–188.
(Presented April 25, 1737). (Opera Omnia, Series 1, Vol. 14, pp. 217–244.) [E72] [2.4]

[100] L. Euler, De fractionibus continuis observationes, Comm. acad. sci. Petrop. 11 (1750), pp. 32–81.
(Presented January 22, 1739). (Opera Omnia, Series 1, Vol. 14, pp. 291–349.) [English translation
in: Appendix to [175], pp. 426–465.] [E123] [2.5]

[101] L. Euler, De seriebus quibusdam considerationes, Comment. acad. sci. Petrop. 12 (1750), 53–96.
[Presented Oct. 22, 1739) (Opera Omnia, Series 1, Vol. 14, pp. 407–462.) [E130] [2.4]
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[140] A. Granville, Smooth numbers: computational number theory and beyond, Algorithmic number
theory: lattices, number fields, curves and cryptography, Math. Sci. Res. Inst. Publ. 44, Cambridge
Univ. Press: Cambridge 2008, pp. 267–323. [3.5]

[141] A. Granville, The anatomy of integers and permutations, preprint. [Ack]
[142] A. Granville and K. Soundararajan, The distribution of values of L(1, χd), Geom. Funct. Anal. 13

(2003), no. 5, 992–1028. (Erratum: 14 (2004), no. 1, 245–246.) [3.9]
[143] A. Granville and K. Soundararajan, Extreme values of |ζ(1 + it)|, The Riemann zeta function and

related themes: papers in honour of Professor K. Ramachandra, 65–80, Ramanujan Math. Soc.
Lecture Notes, Ser. 2, Ramanujan Math Soc. , Mysore 2006. [3.9]

[144] R. E. Greenwood, The number of cycles associated with the elements of a permutation group, Amer.
Math. Monthly 60 (1953), 407–409. [3.10]

[145] T. H. Gronwall, Some asymptotic expressions in the theory of numbers, Trans. Amer. Math. Soc.
14 (1913), 113–122. [3.4]

[146] B. Gross (with an appendix by D. E. Rohrlich), On the periods of abelian integrals and a formula
of Chowla and Selberg, Invent. Math. 45 (1978), 193–211. [3.14]

[147] O. Gruder, Zur theorie der Zerlegung von Permutationen in Zyklen, Arkiv för M. 2 (1952), 385–414.
[3.11]

[148] J. Guillera and J. Sondow, Double integrals and infinite products for some classical constants via
analytic continuations of Lerch’s transcendent, Ramanujan J. 16 (2008), 247–270. [4.0]

[149] L. Guo, S. Paycha, B. Xie and B. Zhang, Double shuffle relations and renormalization of multi-
ple zeta values, The Geometry of Algebraic Cycles, Clay Math. Proc., vol. 9, Amer. Math. Soc.:
Providence R. I. 2010, pp. 145–187. [4.0]

[150] L. Guo and B. Zhang, Renormalization of multiple zeta values, J. Algebra 319, no. 9, (2008),
3770–3809. [4.0]

[151] L. Guo and B. Zhang, Differential algebraic Birkhoff decomposition and renormalization of multiple
zeta values, J. Number Theory 128 (2008), 2318–2339. [4.0]

[152] L. A. Gutnik, Irrationality of some quantities that contain ζ(3), Acta Arith. 42(1983), no. 3,
255–264. [3.15]

[153] M. J. Shai Haran, The Mysteries of the Real Prime, London Math. Soc. Monographs (N. S.) No.
25, Clarendon Press: Oxford 2001. [4.0]

[154] G. H. Hardy, Note on Dr. Vacca’s series for γ, Quart. J. Pure. Appl. Math. (Oxford) 43 (1912),
215–216. [3.2]

[155] G. H. Hardy, On Dirichlet’s divisor problem, Proc. London Math. Soc. (2) 15 (1916), 1–25. [3.4]
[156] G. H. Hardy, Divergent Series, Oxford, at the Clarendon Press 1949. (Reprinted 1973). [2.4, 2.5]
[157] G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Sixth Edition. Revised

by D. R. Heath-Brown and J. Silverman. Oxford Univ. Press 2008. [3.3]
[158] J. Havil, Gamma, Princeton University Press: Princeton 2003. [1.0, 2.6]
[159] S. W. Hawking, Zeta function regularization of path integrals in curved spacetime, Comm. Math.

Phys. 55 (1977), 133–148. [3.2]
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[216] C. S. Meijer, Über Wittakersche Bezw. Besslsche Funktionen und deren Produkte, Nieuw. Archief
Wisk. (2) 18 (1936), 10–39. [3.15]

[217] P. Mengoli, Novae Quadraturae Arithmeticae, seu De Additione Fractionum ... Bologna 1650. [2.4]
[218] Nicholas Mercator, Logarithmo-technia, sive Methodus construendi Logarithmos, Nova, accurata
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