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ABSTRACT Iff(x) and g(x) are a Fourier cosine transform
pair, then the Poisson summation formula can be written as
2X,71g(n) + g(O) = 2x:,_=f(n) + f(O). The concepts of linear
transformation theory lead to the following dual ofthis classical
relation. Let +(x) and v(x) = *(l/x)/x have absolutely
convergent integrals over the positive real line. Let F(x) =
Y:,, 0(nlx)lx -- f#(t)dt and G(x) = l: sl(n/x)/x -
fy(t)dt. Then F(x) and G(x) are a Fourier cosine transform
pair. We term F(x) the "discrepancy" of # because it is the
error in estimating the integral of # by its Riemann sum with
the constant mesh spacing 1/x.

Section l. Introduction

Let the Fourier cosine transform ofa functionf(x) be denoted
by g(x) and defined as

and

00 00

G(x) = 2 'y(n/x)/x- y(t)dt
n=l

[1.5]

form a pair ofFourier cosine transforms.
In Section 2 we give a formal analysis ofthe sense in which

the above statements are dual. In Section 3 we prove that the
dual relation is valid for an arbitrary integrable function 0 that
is "small" near zero and infinity.

Section 2. The Concepts of Reversion, Discrepancy, and
Duality

We begin by writing the Poisson relation 1.2 in terms of three
linear transformations %, X, and At as

@%f(x) = gtaf(x). [2.1]
g(x) = 2 cos(27rxt)f(t)dt. [1.11

Poisson discovered the important summation formula, which
can be written in the form:
PRIMAL POISSON RELATION. Let f be a function and g its

cosine transform. Then

00 r0
E g(n/x)/x - | g(t)dt
n=1 J

00 P00
= 2 f(nx) - x-1 f(t)dtfor x > 0.

n=1 n
[1.2]

Since Poisson's time there has been a steady stream of
literature giving proofs, applications, and generalizations of
this formula under various conditions on the functionf (see,
for example, ref. 1).

Since the cosine transform is linear, the relation 1.2 rep-
resents an equation between two linear transformations act-
ing on f. We shall show that the dual of this equation is the
following statement:
DUAL POISSON RELATION. Let +6(x) be a function defined

for x > 0 and set

y(X) = 0(1/x)/x.
Then the functions

00 00

F(x) = Z 4(n/x)/x - | 4(t)dt
n=l

Here % is the Fourier cosine transform 1.1. We define the
Reversion as

ROt(x) = 0(1/x)/x [2.21

and the Discrepancy as

f(x) = Y, fl(n/x)/x - f(t)dt.
n=l

[2.3]

The linear transformations %, t, and 6 all take classes of
functions defined in (0, mo) into functions defined in (0,o.). In
addition, &t is an involution in the sense that at2 is the identity.
We term a the discrepancy because af is the error in

estimating the infinite integral offby its Riemann sum with
At = 1/x. Presumably, Riemann would expect the discrep-
ancy to vanish as x -+ oo.

Since the Poisson relation 2.1 holds for a large class off,
we can think of it as the identity a% = &a between linear
transformations. The dual relation is obtained by equating the
adjoints of the two sides of this equation.
We note that for a large class of functions 4 and or the

change of variables s = 1/t shows that

f00 cm0

| (t)%off(t)dt= | 5R(s)o~s)ds.[1.3]

[1.4]

Thus It is its own formal adjoint.
26 is also its own formal adjoint in the sense that

f00(t)ft)dt = f0 (s)f(s)ds.

To see this make an interchange of summation and integra-
tion, a change ofthe variable ofintegration in each term ofthe
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resulting sum, and another interchange of summation and
integration.

Parseval's relation shows that the cosine transform % is
also formally self-adjoint. Thus the adjoint ofat is %2 and
the adjoint ofgta is 2R, so that the formal dual ofthe Poisson
relation 2.1 is

x0 1

egA(x) = I h(n/xA) - A = - ([Ax] - Ax).
n=l x

[3.6]

The symbol [t] is defined as the nearest integer below t when
t is not an integer and as t - l/2 when t is an integer.
LEMMA 1. The special Poisson relation

t4)(x) = @aO(x). [2.4]

The definition 1.3 of y can be written as y = &tO, so Eq. 2.4
is just what we called the Dual Poisson Relation, %F = G, in
Section 1.
Now we can state the Poisson summation formula 2.1 in

words as follows:
PRIMAL. The discrepancy of the cosine transform of a

function is equal to the reversion of the discrepancy of the
function.

Similarly, the dual relation 2.4 can be stated as follows:
DUAL. The cosine transform of the discrepancy of a

function is equal to the discrepancy of the reversion of the
function.

It should be understood that neither the primal relation nor
the dual relation is a universal theorem. Special conditions on
the function f or 4 are needed.

Section 3. A Dual Poisson Theorem

We now make precise the meaning of being "small" near
zero and infinity.
THEOREM 1. In the dual Poisson relation let thefunction 4

satisfy

(1 + )(X) E Li(O, o). [3.1]

Then the series in functions 1.4 and 1.5 converge almost
everywhere and also in the L1 norm on finite intervals. The
functions F(x) and G(x), so defined, are a pair of cosine
transforms in the sense that

d -o sin(2trxt)
G(x) =

dx
J F(t)dt [3.2]

and

d sin(2vrxt)
F(x) = lx G(t)dt [3.3]

almost everywhere.
Proof: We begin by establishing the relation 1.2 for a

special family of functions fA(x). For any A > 0 the cosine
transform of

sin2irAx
fA(x) = is gA(X) = h(x/A). [3.4]

Here h is the cut-off function defined as

1

h(x) = 1 if x < 1, h(1) = -, h(x) = O if x > 1.
2

Then by the definitions of At and 6

1 /Xsin2vrAnx 1\R fA(x) =- [3.5]
Xan=nd n 2

and by the definition of 26

2gA(X) = WfA(X) [3.71

holdsfor all positive A and x. Moreover, the partial sums of
the series for xtafA(x) are uniformly bounded.
Proof: The Fourier series for the 1-periodic sawtooth

function [t] - t is easily found to be

- sin2irnt 1
Wt-t= E

n=1 irn 2

Because this sawtooth function is piecewise continuously
differentiable, and because it is equal to the average of its left
and right limits at itsjump points, the series converges to the
function for all t, and its partial sums are uniformly bounded
(see, e.g., section 18 of ref. 2).

Setting t = Ax, dividing both sides ofthis equation by x, and
using Eqs. 3.5 and 3.6 yields the statements of Lemma 1.
To prove Theorem 1 we shall show that we may multiply

both sides of relation 3.7 by 4 and integrate and that we can
justify the interchanges of summation and integration needed
to derive the dual relation

IA (x
+ )(t)dt== 26to(t~fkdt.

0o Jo
[3.8]

Eq. 3.2 will then follow from differentiation with respect to
A.
We see from Eq. 3.6 that the function 19gAI is bounded and

that the sequence of partial sums of the series for 9gA is
nondecreasing. Since 4 is absolutely integrable, the Lebes-
gue dominated convergence theorem shows that

J 4(t)agA(t)dt = >1 f 4(t)h(n/tA)/t dt - AJ (t)dt
O n~~l On=

- a, f 4(n/)/f df - A I (t)dt. [3.9]n=1OJ

Here we have introduced the new variable f = nit and used
the cut-off property of h to obtain the second line. The
following lemma will permit us to interchange summation and
integration in this line.
LEMMA 2. For every positive A the series in the definition

of a) converges, (i) in L1(O, A) norm and (ii) almost every-
where.
Proof: First suppose that 4 2 0. Formula 3.6 gives 2gA <

0. Then Eq. 3.9 shows that

iJA| (n/f)/f de- A | )(t)dt<O.

Thus part i follows from the Lebesgue dominated conver-
gence theorem, while part ii follows from the Lebesgue
monotone convergence theorem.

If 4 changes sign, applying this argument to 14)1 is seen to
finish the proof.
We use part i of Lemma 2 to interchange summation and

integration in the second line of Eq. 3.9 to obtain
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f (t)agA(t)dt = | O(t)dt.

By relation 3.7 we can write this equation in the form

JA 00

£14(t)dt = 0 4(t)ItfA(t)dt.
o Jo

[3.10]

Thus we have an expression for the left-hand side of
relation 3.8. We need the following lemma in order to treat the
right-hand side.
LEMMA 3. If (1 + '/x)+(x) E L1(O, oo), the same is true if 4

is replaced by JiR, and

j (1 + - 19(t)I= jA (1 + 10(s)lds
Proof: This result follows from definition 2.2 of RtO when

the variable of integration s is replaced by t = 1/s.
By combining Lemmas 2 and 3 we see that the series for

2AJ converges in the L1(0, p.) norm for any pu > 0. The
function f defined by Eq. 3.4 is bounded, and hence

9I 4)5(x)fA(x)dx = 4)(x/n)In fA(x)dx

- f 4)(t)/t dtffA(x)dx

= >, f 4(x/n)/n fA(x)h(x/lu)dx - f 4(t)/t dtf' fA(X)dx

= k £ 4)(t)fA(nt)h(nt/l)dt - f 4(t)/t dtf fA(x)dx.

[3.11]

In order to interchange integration and summation in the
last line we first consider a partial sum. Because 4 is
absolutely integrable and fA(nt)h(nt/l) is bounded, we have

N fn t
E | (t~fA(nt)h(nt/,u)dt
n=1 J

I00 N sin2irAnt
= I4)(t)/t E h(nt/lg)dt.0o n=l in

[3.12]

We see from Eq. 3.5 that for each fixed t, p., andN the sum
on the right is a partial sum of the series for R6fA(t). By
Lemma I this sum is bounded, uniformly in t, N, and ,.

Since 4(t)/t is absolutely integrable, the Lebesgue domi-
nated convergence theorem permits us to let N approach
infinity in Eq. 3.12, so that Eq. 3.11 becomes

f 9JWt4(x)fA(x)dx = f +(t) Z fk(nt)(nt/u)dt
- f ()dfn=o

- O(t)lt dt
IL

fA(x)dx. [3.13]

Next we let 1L approach infinity. The partial sums of the
series are still bounded, and h(ntlu) converges to 1. There-
fore the dominated convergence theorem shows that this limit
exists and that

rX
%O(xKfA(x)dx

= f 4)(t){ >. fA(nt) -,' ffA(x)dx dt.

By the definition of 58X, this is the duality relation

| (x(xfdA(x)dx = 0| (t)%2fA(t)dt.

We substitute this into Eq. 3.10 to get

(A =fw
260+(t)dt= I 6&0t(xfffA(x)dx

[3.14]

[3.15]

for all A > 0.
Because 26) is integrable on every bounded interval, the

left side has the derivative @+0(A) almost everywhere. We
differentiate both sides of Eq. 3.14, replace A by x, and recall
that by definition Rft(x) = y(x), so that F(x) = 2t4)(x) and
G(x) = @+(x), to obtain the desired relation 3.2 of Theorem
1.
Lemma 3 permits us to replace 4 by y = sty in this relation.

Then sty = 5t20 = 4, and we obtain relation 3.3.
The convergence statements of Theorem I follow directly

from Lemmas 2 and 3.
Example: Because the function +(x) = x/(1 + x3) satisfies

the conditions of Theorem I and because st4 = 4, we find
that the function

F(x) Z
3 X3

- 3-3/22i.
n=1 n +X

is its own Fourier cosine transform.

Section 4. Discussion

Poisson's formula, as expressed by Eq. 1.2, has been studied
by Wintner (3). He related it to the Euler-Maclaurin sum. In
particular, he analyzed how rapidly the sum on the left of Eq.
1.2 approaches the integral as x -A oo.
Analogs of Theorem I for the sine transform have been

obtained by Duffin (4-6). Analogs for the Hankel transform
have been obtained by Weinberger (7). Boas (8) has shown
that Duffin's relation and a relation similar to our dual
Poisson relation can be obtained by a formal interchange of
summation and integration in the Poisson relation 1.2.
The fact that such relations arise as duals of the Poisson

relation was not recognized in these previous studies.
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