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ABSTRACT If f(x) and g(x) are a Fourier cosine transform
pair, then the Poisson summation formula can be written as
227218(n) + g(0) = 237, f(n) + £(0). The concepts of linear
transformation theory lead to the following dual of this classical
relation. Let ¢(x) and y(x) = é(1/x)/x have absolutely
convergent integrals over the positive real line. Let F(x) =
Zp=10(n/x)/x — [edt)dt and G(x) = Z3.,v(m/x)/x —
J&y(0ds. Then F(x) and G(x) are a Fourier cosine transform
pair. We term F(x) the ‘‘discrepancy’’ of ¢ because it is the
error in estimating the integral of ¢ by its Riemann sum with
the constant mesh spacing 1/x.

Section 1. Introduction

Let the Fourier cosine transform of a function f(x) be denoted
by g(x) and defined as

gx) =2 f ® cosQmxt)f(t)dt. [L.1]
0

Poisson discovered the important summation formula, which
can be written in the form:

PRIMAL PoOISSON RELATION. Let f be a function and g its
cosine transform. Then

2. 80/x0/x - ] “ gt

0
- 21 f(nx) — x~! f “fodt for x > 0. [1.2]
n= 0

Since Poisson’s time there has been a steady stream of
literature giving proofs, applications, and generalizations of
this formula under various conditions on the function f (see,
for example, ref. 1).

Since the cosine transform is linear, the relation 1.2 rep-
resents an equation between two linear transformations act-
ing on f. We shall show that the dual of this equation is the
following statement:

DuAL PoissoN RELATION. Let ¢(X) be a function defined
Jor x > 0 and set

y(x) = 6(1/x)/x. [1.3]

Then the functions

F(x) = El é(n/x)/x — f ® p(dt [1.4]
n= 0
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and

G = 3 ¥/x/x - f Tyod 8]

0

form a pair of Fourier cosine transforms.

In Section 2 we give a formal analysis of the sense in which
the above statements are dual. In Section 3 we prove that the
dual relation is valid for an arbitrary integrable function ¢ that
is ‘‘small’’ near zero and infinity.

Section 2. The Concepts of Reversion, Discrepancy, and

Duality

We begin by writing the Poisson relation 1.2 in terms of three

linear transformations 6, &, and R as
DEf(x) = RDf(x). 2.1

Here % is the Fourier cosine transform 1.1. We define the
Reversion as

Re(x) = ¢(1/x)/x [2.2]
and the Discrepancy as
f() = 3, f(n/x)/x - f ® fr. [2.3]
n= 0

The linear transformations 6, ®, and 9 all take classes of
functions defined in (0, ») into functions defined in (0, «). In
addition, R is an involution in the sense that R? is the identity.

We term 9 the discrepancy because 9f is the error in
estimating the infinite integral of f by its Riemann sum with
At = 1/x. Presumably, Riemann would expect the discrep-
ancy to vanish as x — o,

Since the Poisson relation 2.1 holds for a large class of f,
we can think of it as the identity ¢ = R% between linear
transformations. The dual relation is obtained by equating the
adjoints of the two sides of this equation.

We note that for a large class of functions ¢ and o the
change of variables s = 1/t shows that

f " ()R (Odt = f "R (s)o(s)ds.
0 0

Thus R is its own formal adjoint.
9 is also its own formal adjoint in the sense that

f " s(DAW)d = f “D6(s) S (5)ds.
0 0

To see this make an interchange of summation and integra-
tion, a change of the variable of integration in each term of the
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resulting sum, and another interchange of summation and
integration.

Parseval’s relation shows that the cosine transform € is
also formally self-adjoint. Thus the adjoint of @€ is €% and
the adjoint of R is DR, so that the formal dual of the Poisson

relation 2.1 is
€Dp(x) = DRO(x). [2.4]

The definition 1.3 of y can be written as y = R¢, so Eq. 2.4
is just what we called the Dual Poisson Relation, 6 F = G, in

Section 1.

Now we can state the Poisson summation formula 2.1 in
words as follows:

PRIMAL. The discrepancy of the cosine transform of a
function is equal to the reversion of the discrepancy of the

function.
Similarly, the dual relation 2.4 can be stated as follows:

DuUAL. The cosine transform of the discrepancy of a
function is equal to the discrepancy of the reversion of the

function.
It should be understood that neither the primal relation nor

the dual relation is a universal theorem. Special conditions on
the function f or ¢ are needed.

Section 3. A Dual Poisson Theorem

We now make precise the meaning of being ‘‘small’’ near

zero and infinity.
THEOREM 1. In the dual Poisson relation let the function ¢

satisfy
1
<1 + ;) ¢(x) € Ly(0, »). [3.1]

Then the series in functions 1.4 and 1.5 converge almost
everywhere and also in the L, norm on finite intervals. The
functions F(x) and G(x), so defined, are a pair of cosine
transforms in the sense that

d w sin(2mwxt)
G(x) = — f — F(t)dt [3.2]
dx J, rt
and
d « sinQwxt)
F(x) = — f — G(t)dt [3.3]
dx J, t

almost everywhere.
Proof: We begin by establishing the relation 1.2 for a

special family of functions f,(x). For any A > 0 the cosine
transform of

sin2wAx

mX

LHlx) = is ga(x) = h(x/A). [3.4]

Here A is the cut-off function defined as

1
h(x)=1ifx<1, h(1)=5, h(x) =0if x> 1.

Then by the definitions of R and &

1 /& siml2manx 1
R (x) = - (E _ -) (3.5)
x \n=1 Tn 2

and by the definition of @
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ki 1
Dg,\(x) = 21 hnfxh) =A== (] - A0 [3.6]

The symbol [7] is defined as the nearest integer below ¢ when
t is not an integer and as ¢ — %2 when ¢ is an integer.
LEMMA 1. The special Poisson relation

Dg)(x) = RDf(x) 3.7

holds for all positive A and x. Moreover, the partial sums of
the series for XRAf,(x) are uniformly bounded.

Proof: The Fourier series for the 1l-periodic sawtooth
function [f] — ¢ is easily found to be

sin2wnt 1

mn 2

[t]-t=§1

Because this sawtooth function is piecewise continuously
differentiable, and because it is equal to the average of its left
and right limits at its jump points, the series converges to the
function for all ¢, and its partial sums are uniformly bounded
(see, e.g., section 18 of ref. 2).

Setting t = Ax, dividing both sides of this equation by x, and
using Eqgs. 3.5 and 3.6 yields the statements of Lemma 1.

To prove Theorem I we shall show that we may multiply
both sides of relation 3.7 by ¢ and integrate and that we can
justify the interchanges of summation and integration needed
to derive the dual relation

f " 2o(0dt = f " aRe()fdt. [3.8]
0 0

Eq. 3.2 will then follow from differentiation with respect to
Al

We see from Eq. 3.6 that the function |2 g,| is bounded and
that the sequence of partial sums of the series for 9g, is
nondecreasing. Since ¢ is absolutely integrable, the Lebes-
gue dominated convergence theorem shows that

f " 6(Dgr()dt = > f " $(Oh(n/tA)/1 dt — A f " ()t
0 m=tJo 0

= 21 f ' d(n/&)/EdE— A f ) o(1)dr. [3.9]
n=1Jo

0

Here we have introduced the new variable £ = n/t and used
the cut-off property of & to obtain the second line. The
following lemma will permit us to interchange summation and
integration in this line.

LEMMA 2. For every positive A the series in the definition
of D¢ converges, (i) in Ly(0, A) norm and (ii) almost every-
where.

Proof: First suppose that ¢ = 0. Formula 3.6 gives 9g, <
0. Then Eq. 3.9 shows that

> f " $(n/8)/€ d — A f " $(0)dr =<0
n=1Jo 0

Thus part i follows from the Lebesgue dominated conver-
gence theorem, while part ii follows from the Lebesgue
monotone convergence theorem.

If ¢ changes sign, applying this argument to |¢| is seen to
finish the proof.

We use part i of Lemma 2 to interchange summation and
integration in the second line of Eq. 3.9 to obtain
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@ A
f $()Dg(dt = f D(r)ds.
0 0
By relation 3.7 we can write this equation in the form
A 0
f DP(t)dt = f SRS \(t)dr. [3.10]
0 0

Thus we have an expression for the left-hand side of
relation 3.8. We need the following lemma in order to treat the
right-hand side.

LEMMA 3. If (1 + Y%)@(x) € L(0, »), the same is true if ¢
is replaced by R¢, and

© 1 o 1
f (1 + —) |Re()|dt = f (l + -) |¢(s)|ds.
0 t 0 s

Proof: This result follows from definition 2.2 of R¢ when
the variable of integration s is replaced by ¢ = 1/s.

By combining Lemmas 2 and 3 we see that the series for
DRP converges in the Ly(0, u) norm for any u > 0. The
function f, defined by Eq. 3.4 is bounded, and hence

f g RS (), (x)dx = 21 f * o(x/n)/n fi(x)dx
0 n=tJo

- f " b0/t dr f * fidx
0 0

-2 f " $0x/n)/n F(Oh(x/ wdx — f " o0/t dt f * fiodx
n=1Jo 0 0

-2 ® SO (nt)h(nt/wydt — ] " o)/t dt f * fiwdr.
n=1Jo 0 0
[3.11]

In order to interchange integration and summation in the
last line we first consider a partial sum. Because ¢ is
absolutely integrable and f,(n?)h(nt/u) is bounded, we have

N ©
gl &)\ (nt)h(nt/pw)dt

0

o0 N i 2
_ )/t 2 sin2wAnt
n=1 ld

0

" h(nt/w)dt. [3.12]

We see from Eq. 3.5 that for each fixed ¢, u, and N the sum
on the right is a partial sum of the series for tR%f,(r). By
Lemma 1 this sum is bounded, uniformly in ¢, N, and u.

Since ¢(t)/t is absolutely integrable, the Lebesgue domi-
nated convergence theorem permits us to let N approach
infinity in Eq. 3.12, so that Eq. 3.11 becomes

j * 2Re()f(x)dx = f 0 2, filnt)h(nt/u)ds
0 0 n=

- f " o)/t dt f " rode. B3]
0 0
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Next we let u approach infinity. The partial sums of the
series are still bounded, and h(nt/u) converges to 1. There-
fore the dominated convergence theorem shows that this limit
exists and that

f ® IRS)f, (X)dx
0

= f ) ¢(t){ > filnt) =71 f ’ ﬂ(x)dx}dt.
0 n=0 0

By the definition of R, this is the duality relation
f " ARG (W) dx = f " $ORDf(dr.  [3.14]
0 0
We substitute this into Eq. 3.10 to get
f * D (i)dt = f ” ARG (x)dx [3.15]
0 0

for all A > 0.

Because @¢ is integrable on every bounded interval, the
left side has the derivative @¢(A) almost everywhere. We
differentiate both sides of Eq. 3.14, replace A by x, and recall
that by definition R¢(x) = y(x), so that F(x) = 9R¢(x) and
G(x) = D¢p(x), to obtain the desired relation 3.2 of Theorem
1

Lemma 3 permits us to replace ¢ by y = R¢ in this relation.
Then Ry = R%¢p = ¢, and we obtain relation 3.3.

The convergence statements of Theorem 1 follow directly
from Lemmas 2 and 3.

Example: Because the function ¢(x) = x/(1 + x°) satisfies
the conditions of Theorem 1 and because R¢p = ¢, we find
that the function

nx

-3y
nB+x

F(x) = nzl

is its own Fourier cosine transform.
Section 4. Discussion

Poisson’s formula, as expressed by Eq. 1.2, has been studied
by Wintner (3). He related it to the Euler—Maclaurin sum. In
particular, he analyzed how rapidly the sum on the left of Eq.
1.2 approaches the integral as x — .

Analogs of Theorem 1 for the sine transform have been
obtained by Duffin (4—6). Analogs for the Hankel transform
have been obtained by Weinberger (7). Boas (8) has shown
that Duffin’s relation and a relation similar to our dual
Poisson relation can be obtained by a formal interchange of
summation and integration in the Poisson relation 1.2.

The fact that such relations arise as duals of the Poisson
relation was not recognized in these previous studies.
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