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Eigenfunctions and Eigendifferentials 

 

Let H be a (infinite dimensional) Hilbert space with inner product().,. , the norm ...  and A

be a linear selfadjoint, positive definite operator, but we omit the additional assumption, that 
1-A compact. Then the operator 1-=AK does not fulfill the properties leading to a discrete 

spectrum.  

We define a set of projections operators onto closed subspaces of H in the following way: 
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The spectrum CA Ë)(s  of the operator A is the support of the spectral measure ldE . 

The set lE  fulfills the following properties: 

i) lE  is a projection operator for all RÍl  
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Proposition: Let lE  be a set of projection operators with the properties i)-iv) having a 

compact support [ ]ba, . Let  [ ] Rbaf ­,:  be a continuous function. Then there exists exactly 

one Hermitian operator HHAf ­:  with 
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one gets 
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The function
 

2
:)( xElls =  is called the spectral function of A  for the vector x . It has the 

properties of a distribution function. 

It hold the following eigenpair relations 
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The lj  are no elements of the Hilbert space. The so-called Eigen-differentials, which play a 

key role in quantum mechanics, are built as superposition of such Eigen-functions.  

Let I be the interval covering the continuous spectrum of A . We note the following 
representations: 
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Example: The location operator 
xQ  

and the momentum operator 
xP  both have only a 

continuous spectrum. For positive energies 0²l  the Schrödinger equation 

)()( xxH ll ljj =  

delivers no element of the Hilbert space H , but linear, bounded functional with an underlying 

domain HM Ë which is dense in H . Only if one builds wave packages out of )(xlj it results 

into elements of H . The practical way to find Eigen-differentials is looking for solutions of a 
distribution equation. 
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Hermitian Operator and Physical Observabales  

 

The spectrum of a hermitian, positive definite operator  

HADA ­)(:
 

with domain )(AD in a complex-valued Hilbert space H is discrete. This property enables 

an axiomatic building of the quantum mechanics, whereby, roughly speaking, physical states 

are modeled by the elements of the Hilbert space, observables of states by the operator A 

and the mean value of the observable A at the state y with y  is given by 

yy,A  . 

 In other words, the expectation value of an operator AĔ is given by  
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and all physical observables are represented by such expectation values. Obviously, the 

value of a physical observable such as energy or density must be real, so itôs required A  to 

be real. This means that it must be 
*

AA = , or  
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Operators , which satisfy this condition are called Hermitian. One can also show that for a 

Hermitian operator,  
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for any two states  
1y  and  
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For the eigenvalue problem of a self-adjoint, positive operator A  

ljj=A  

the eigenvalues {}l are the discrete spectrum nl with either finite or countable infinite set of 

values  
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In this case the mean value of A is given by 
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Let nw  the probability, that the eigenvalue occurs of a measurement of the observables A 

then it holds for the mean value of  A 
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The general solution of the Schrödinger equation is given by 
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In case the operator A is only hermitian (without being positive definite) Hilbert, von 

Neumann and Dirac developed a corresponding spectral theory. This leads to a continuous 

spectrum )(nl , indexed by a continuous n. In this case );( ny x  denotes an eigen function to 

the eigen value )(nl . The norm of this function is infinite, i.e. the function is not an element 

of the Hilbert space. An approximation to this function with finite norm is given (with suffiently 

small nD ) by the eigen differential  
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All for the Hilbert space related properties are valid for the eigen differentials, but not for the 

eigen function itself. The scalar product of the eigenfunction is normed to a Diracd-function:  
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The norm of the eigen differentials is given by: 
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The integral is 1 for nn ¡=   (with appropriate norm factor) and 0 if  nnn D>¡- .  

In case if   is a momentum the eigen differential gives a wave package with finite distance  

nD  in the momentum space and therefore with finite distance 
nD

ºD
1

x
  in the particle space. 

Such a package can normed to the value 1 (1 particle). xD  (and correspondingly nD ) has to 

be larger than all other typical distances of the problem. In this sense eigen differentials 

correspond to the formalism of wave package modelling. 

The eigen functions of the discrete and continuous spectrum build an extended Hilbert sapce 

to ensure that for every y it holds 
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It holds the Parceval identity:  
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and the eigen differential are orthogonal wave packages. 

If for every function 
2LÍ such a representation is possible, one call the system. {}f  a 

complete orthogonal system. Such a complete orthogonal system is not uniquely defined. 

There is always the degree of freedom 

- to choose arbitrarily the phase of each eigen function  

- the set of the non-standard eigenvalues can be orthogonalized on different ways 

- to replace the index n of the continuous spectrum by an index )(nm with -)(nm

differentiable, monotone function of n. Then  
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For not all hermitian operators there exist a complete orthogonal system of eigen functions. 

For all operators, which represent physical observables, there exist a complete orthogonal 

system. 
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Black-body radiation 

 

A famous usage of Dirichletôs series is in the context of Planckôs black-body radiation 

function  
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This describes the total radiation and its spectral density at the same time, i.e. 
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The weak formulation (and the positive Berry conjecture answer) should enable an 

alternative model for the total radiation and its spectral density. 
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The Helmholtz Free Energy 

 
 

In this chapter we recall the mathematical background of the Helmholtz free energy of a 

quantum harmonic oscillator. Its link to the Zeta function and the basic ideas of §1 and §2 is 

the fact, that due to convergence issues the ground state energy is neglected, when 

calculating the free energy normalization factor. Even if this per definition very small it seems 

to be a problem of mathematics, which has to be solved, instead of dropping it out of the 

physical model itself.  

Concerning the notations and the analysis of Hilbert scales we refer to [KBr2]. Our proposal 

is to move current quantum theory models from a -2L  based to a --1H  based Hilbert space 

environment, applying spectral theory for Hermitian operator.  
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in combination with the relations (see e.g. [JNe]) 
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We recall that the spectrum for a self-adjoint operator is real and closed. If the operator is 

additionally compact, then the spectrum is discrete. In case the operator is not compact, but 

bounded (continuous), there is a spectral representation built on Riemann-Stieltjes integral 

over projection operator valued step functions (see also [KBr2], Lommel polynomials). In 

case of unbounded operators the closed graph theorem can be applied to build bounded 

operators with respect to the graph norm. The below indicates to analyze the graph norm for 

the momentum operator for those physical states, represented by the elements out of 
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Remark: The equivalent norm 
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is proposed to be used to model spin effects. 
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Remark: For ^Í 0Hy  it holds    

0),(),(),()),(( ==-@¡@ù
ú

ø
é
ê

è

µ

µ
-

µ

µ
jyjyjyjy HHA

x
xx

x        
for all

 
0HÍj  . 

 

Remark: We note that e.g. in case of the harmonic quantum oscillator it holds in the -2L  

framework 
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which leads to the concept/requirement of ñre-normalizationò to ensure the existence of 

bounded hermitian operators renormH , with  
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Remark: For the commutator [ ]QP,  it holds 

[ ]( )( ) ( )( )cycy ,,, cQP =        for all  
1-ÍHc  . 

Therefore for the Ritz projection ([KBr3])  
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Remark: We recall the concepts of logarithmic capacity of sets and convergence of Fourier 

series ([A. Zygmund] V-11) to functions with 
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It describes the energy of the harmonic continuation )(jE=h

 

to the boundary is given.  

The theorem of Levi and the Douglas-functional provides the foundation for the related 

minimal surfaces theory ([RCo]). We note that solutions of the Plateau problem are very 

much depending on the dimension, i.e. in case of 4²n branch points (i.e. at those points the 

parametrisation can become singular) are inevitable; for 3=n  see [ROs]. For 2=n  this is 

the Riemann mapping theorem. In case of 4²n the singular behavior fits well to the black 

hole phenomena. 
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Wavelets 

A wavelet transform is similar as a Fourier transform, which delivers the frequency spectrum 

of a timely signal f(t) without any loss of information, although the Fourier transform itself 

gives the frequencies without any information about the points in time, when the frequencies 

occur. The wavelet transform delivers this sort of information in a better distinguishing form: 

one gets both the frequency analysis and the points in time, when those frequencies happen, 

similar like the written notes, which results into the music of an orchestra, which are 

described in form of a wavelet transform on a 2-dimensional paper ([23] M. du Sautoy: ñthe 

primes have music in themò) 

A wavelet is a function )()( 2 RLx Íy  with a Fourier transform which fulfills  
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The continuous wavelet transform is known in pure mathematics as Calder·nôs reproducing 

formula, i.e. for )()( 1

nRLx Íy  real and radial with vanishing mean, i.e.   
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Remark: It holds for )(
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Classical Hilbert spaces in complex analysis are examples of wavelets, like Hardy space of 

2L  functions on the unit circle with analytical continuation inside the unit disk. 

We note that )( 2xj¡  has a similar structure than the Mexican hut, which is a continuous 

wavelet function (see remark 1.16 below)  
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Remark: The Dirac function 
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can be interpreted as density function of particles to build the bridge between continuum 

physics and particle (quantum) physics. We note that for the space dimension n
 
it holds 

ed --Í 2/nH  (Sobolev space), i.e. its regularity is depending from n . In the current case 1=n  

the regularity of the Dirac function is by the factor e less regular than the Energy Hilbert 

space concerning the Operator A resp. the ñweakò regularity of 
1)( -ÍHxHj . Applying the 

concepts of logarithmic capacity of sets and convergence of Fourier series ([A. Zygmund] V-

11) to functions with 
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where )(ydm is a mass distribution concentrated in an open set )2,0( pËO  . 
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Remark: We note that in harmonic analysis by 
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the energy of the harmonic continuation )(jE=h

 

to the boundary is given. The theorem of 

Levi and the Douglas-functional provides the foundation for the related minimal surfaces 

theory ([RCo]).
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Remark:  The ñkernelò function )(xHj  (see also appendix) is linked to the Gamma function by 

([CBe] 8, entry 17(iv))  
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The following characterization of the Gamma constant ([NNi] chapter II, §33) is given 
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The ground state energy 

 

A. Einstein developed his quantum/photon concept motivated by the question: Ăif one moves 

exactly in parallel to a light signal (a photon or a wave?), how the light signal looks like? In 

principle it should be that the signal of light is a sequence of stationary waves, which are 

fixed in the time, i.e. the light signal should look like without any movement. If one follows it, it 

looks like a non-moving, oscillating, electromagnetic field. But something like this seems to 

be not existed neither caused by observation, nor by the Maxwell-equations model. The later 

ones exclude the existence of stationary, inelastic waves. Based on the Maxwell equations 

the electrons would have to loose its energy within nearly no time. 

In any relativistic theory the vacuum, the state of lowest energy, if it exists in Ărealityñ, has to 

have the energy zero. 

In the same way for any free particle with momentum p
C

 
and mass m the energy has to be 

2242 cpcmE
C
+= .  

In the literature the ground state energy of the harmonic operator is mostly defined by w>
2

1  . 

Already M. Planck knew that this cannot be, when deriving his radiation formula: he assigned 

states with nphotons the energy w>n
 
, but not the value  

w>)
2

1
( +n   , 

which is not compatible with the relativistic co-variant description of photons.  

 

The ground state energy is not measurable. Its chosen value is therefore arbitrarily, triggered 

only by the fact, to keep calculations as easily as possible, and, mainly, to ensure convergent 

integrals/series. Energies of freely composed systems should be additive. For photons in a 

box section (cavity) there are infinite numbers of frequencies 
iw . If one assigns any 

frequency a ground state energy value 2/iw> , then the ground state energy without photons 

has the infinite energy  
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The miss understanding, that the ground state energy is fixed and uniquely defined, 

starts already in the classical physics: The definition of the Hamiltonian 

VTx
m

p
H +=+= :
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defines the non-measurable ground state energy in that way, that the state of lowest energy, 

the point )0,0( == px  in the phase space, that the energy is zero: 

the kinetic energy of strings with mass r are given by 
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The internal forces of strings (being looked at as mechanical systems) are built on strains, 

depending proportionally from its lengths: 
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For small displacements this is replaced by 
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Correspondingly the potential energy )(xV is approximately defined by 
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as ñtensionò or ñstrain constantò, the choice  
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simplifies the algebraic term for the potential energy V  in the form:   
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Putting the ñstring velocityò  
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then, for example, the wave equation of strings is given by 

02 =- xxstt ucu . 
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Alternatively to )(xV  in case of the harmonic oscillator one could have chosen instead e.g.  
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)( 22 ww >-= xxV     

or (with reference to the theory of minimal surfaces, using  xx 22 coshsinh1 =+ )   

    xxV cosh)(1 k=+ . 

For a single particle in a potential energy ),( txV  the Schrödinger equation is ([RFe] 4-1) 
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With respect to our proposal above we note 
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Remark: The analogue to the physical state of a particle 
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resp. to the a priori representation of a Hermitian operator in the form 

0EHH renorm+=  

can be interpreted as ñideal numberò or ñnon-standard numberò as analogue to a real number 

r  represented in the form ir+  , whereby i denotes an infinitely small, finite non-real number, 

which is not eqaul zero, but smaller than any positive real number +ÍRe  . 

The negative-scaled inner product might enable an alternative for current wave package 

model to ñbridgeò the gap caused by particle and field dualism to model e.g. scattering 

phenomena. 

In the mathematical world non-zero infinitesimal small numbers exist, as well. Ordered fields 

(like the real numbers) that have infinitesimal small elements do not fulfill the Archimedean 

principle. Such fields are called non-Archimedean. The Non-Archimedean extention of real 

numbers are the Hyperreals (monads, ideal points) and the related analysis is the 

Nonstandard Analysis [ARo1/2]. 
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The existence of non-standard models of arithmetic was discovered by Th. Skolem in 

1938/1938, one year after Heidegger´s publication of ĂThe Age of the Worldñ, where we took 

the following quotation from: 

"é modern physics is called mathematical because, in a remarkable way, it makes use of a 

quite specific mathematics.  But it can proceed mathematically in this way only because, in a 

deeper sense, it is already itself mathematical. ..." 

Some other related quotations are: 

". . . we observe that the non standard analysis is presented naturally, within the framework 

of contemporary mathematics, and thus appears to affirm the existence of all sorts of 

infinitely entities. . . . it appears to us today that the infinitely small and infinitely large 

numbers of a non-standard model of Analysis are neither more nor less real than, for 

example, the standard irrational numbers..."  (A. Robinson, 1966) 

 ñ..."We may say a thing is at rest when it has not changed its position between now and 

then, but there is no óthenô in ónowô, so there is no being at rest. Both motion and rest, then, 

must necessarily occupy time...." Aristotle, 350 BC 

"...It is probably the last remaining task of the theoretical physics to show us how the term 

"force" is completely absorbed in the term "number"..." ([RTa]). 
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THE function 

 

)sinh(2log:)( xxL -=  

 plays a key role in the context of free energy, vacuum energy of electromagnetic fields, the 

density matrix for a one-dimensional harmonic oscillator and the Planck black body radiation 

law (concerning the notations we refer to [RFe]):  

the exact value of the free energy F of a linear system of harmonic oscillators is given by 

ä
¤
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=
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k

kLF blb         with  TkB=:
1

b
 and  

2
: k

k

w
l

>
=  

with the related probability values in the form           
)( F

k
kea
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=
lb

. 

Due to convergence issues in order to calculate a normalization factor Z  the ground state 

zero term 
0blis omitted and F  is replaced by  
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leading to                    kk e
Z
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*
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k
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¤

=

jj . 

We propose the shift from the underlying Hilbert space  
0H  into 

1-H while keeping the 

information about the ground state term as part of the physical models, but applying the 

analysis of this paper to e.g. 

kk e
Z

ea
F

k

bllb ---
==

1)(   and     
1

1

: -

¤

=

Í=ä Ha
k

kkjj  and  j=:Z . 

 

Remark: We recall from [KBr2]: In [CBe] 8, Entry17 (iv) itôs mentioned: ñRamanujan informs 

us to note that 

)cot(
2

1
)2sin(

1

xx ppn=ä
¤

 , 

which also is devoid of meaning ....  may be formally established by differentiating the well 

known equalityò 

)sin(2log
2cos

1

x
x

p
n

pn
-=ä

¤

   

. 

In this context we refer to Ä2 and the concept of ñlogarithmic capacityò of sets and 

convergence of Fourier series ([AZy], 13.11) with the example 

)sin(2log
2cos

)(
1

x
x

x p
n

pn
l -=ºä

¤
  with ([SGr] 4.384)

     
0

2
sin2log

2

0

=ñ
p
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y  . 
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Remark: We give some further background and analysis of the even function 

2
sin2log:

2
sin2ln:)(

xx
xk -=-=

  . 

Consider the model problem 

0=- UD          in W 

       fU =        on WG µ=:  , 

whereby the area W is simply connected with sufficiently smooth boundary. Let 

( ]1,0)( Í-= ssyy  be a parametrization of the boundary Wµ  . Then for fixed z  the functions 

zxxU --= log)(

 

Are solutions of the Lapace equation and for any -µ )(1 WL  integrable function )(tuu=  the 

function 

dttuxxAu ñ
µ

-=
W

)(log:))((

 

is a solution of the model problem. In an appropriate Hilbert space H  this defines an integral 

operator ,which is coercive for certain areas  W and which fulfills the Garding inequality for 

general areas W . We give the Fourier coefficient analysis in case of  )(*

2 GLH =  with 

)(: 21 RS=G , i.e. Gis the boundary of the unit sphere. Let ))sin(),(cos(:)( sssx =  be a 

parametrization of )(: 21 RS=G  then it holds 

2
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and therefore 
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The Fourier coefficients nk  of the kernel )(xk  are calculated as follows 
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Remark: The polynomial system to build the
0H are the Hermite polynomials. We sketch the 

building of a polynomial system for 
1-H : 

Let {}
kx denote the zeros of )(1 xpn+

. Then the theory of distributions of Stieltjes type with its 

relation to orthogonal polynomial systems and distribution )(xda provide a decomposition into 

partial fractions ([GSz] theorem 3.3.5) in the form 
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We propose to apply the Lommel polynomials )(1. xgn +n  as corresponding polynomial 

orthogonal system framework to build the (negatively scaled) Hilbert space. D. Dickinsonôs 

proof ([DDi]) of the orthogonality of the modified Lommel polynomials is built on a properly 

defined Riemann-Stieltjes integral, enabled by the density function   

dx
xJx

xJ
d
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n
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which is analytic outside any circle that contains the finite zeros of )/1( xJn . The prize to be 

paid to build the orthogonality relation is an only stepwise density (bounded variation) 

function 
nyd . 

 In [JGr] a (Mittag-Leffler) decomposition into fractions is given in the form 
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The zeros of continued fraction functions of Stieltjes type are analyzed in [OPe] §69, thm 5. 
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The stepwise density (bounded variation/fluctuation) function 
0: yy dd =  , whereby 

¤<ñ
¤

0

)(xdy  

and all ñmomentsò 
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0

1 )()(: xdxc k

k y

     

for 

 

,....3,2,1=k  

do exist. This leads to the following orthogonal relations (whereby the ka  denote the zeros of 

)2(0 xJ ) 

                          (*)
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The polynomial system defines a (Distribution) Hilbert space, which is less regular than 

20 LH = .  

Remark: Favardsôs theorem (([TCh] 7, II, theorem  6.4) implies that the Lommel polynomials 

are orthogonal polynomials with respect to a positive weighted, bounded variation measure 

function. We recall from [DDi] 
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With the relations above it follows 

Proposition: For the Lommel polynomials the following orthogonality relation holds true 
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The proof of the orthogonality of the modified Lommel polynomials is built on a properly 

defined Riemann-Stieltjes integral [DDi], enabled by the term   
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which is analytic outside any circle that contains the finite zeros of )/1(0 xJ . Hence it 

possesses a Laurent expansion about the origin that converges uniformly on and in any 

annulus, whose inside boundary has the finite zeros of )/1(0 xJ  in its interior: Let C  be the 

contour that encircles the origin in a positive direction and that lies within the annulus.  

 

Then it holds [DDi]   
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Let )(xa  the non-decreasing step function having increase of  
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Remark: We sketch the link between Riemann-Stieltjes integral densities and hyper 
functions and distributions: 

 Let 
2

:)( xElls =  in ),( ¤-¤Íl  be a bounded variation spectral function, which builds 

according to the Green function 
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the two holomorph Cauchy-Riemann representation in 0)Re( >s , 0)Re( <s by 
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Then the Stieltjes inverse formula is valid for continuous points aandb , i.e. 
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If there exists a spectral density functions )(ls¡ , it holds 
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In the one-dimensional case any complex-analytical function, as any distribution f on R , can 

be realized as the ñjumpò across the real axis of the corresponding in RC-  holomorphic 

Cauchy integral function  
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Remark: The Hilbert space [ ]1,02L  is built on the Friedrichs extension of the regular operator 

),()(: 2 dxRLLDL +­  

                 [ ] )()( xgxgL ¡¡-=
    

,  { }0)1()0(,:)( 2 ==Í= ggCggLD  . 

For   

lyy=L  , CÍl , 

all eigenvalues are real and the eigenfunctions to different eigenvalues are orthogonal. In the 

case above those eigenvalues and eigenfunctions are 

22pl kk =      )sin()( xkxk py =  . 

 

 The domain of the Friedrichs self adjoint extension of the singular Bessel operator 

),()(: 2 dxRLLDL +­  
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requires an additional condition ([WBu]) in the form 
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Remark: For a more detailed analysis of the Hamiltonian 

         )(
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We note that for any real functions )(,Ĕ 2 RLÍjj  it holds 0),Ĕ( =jj  . We further mention that any 

real function )(tj  and its Hilbert transform )(Ĕtj  are orthogonal, if 1))((),( LtHt Íjj  and the 

Fourier  transform 1))(( LtF Íj

 

. This is due to the relation 
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whereby 2
))(( wjF  is an even function. We further note that with )/(1: mwa=  it holds
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Putting 

),(:
~

yy AAA -=

 

,

  

),(: yyy BB-=

 
the variances of the Hermitian operators BA,

 

are defined by 

)
~

,(:)( 2 yy AA =D ,

  

)
~

,(:)( 2 yyBB =D  . 

Let { }BA,  be the anti-commutator and let [ ]BA,  denote the commutator. Putting 

{ } RBAc Í= )
~~
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1
: yy

  

,

 
[ ] RBA

i
d Í-= )

~~
,(

2

1
: yy  

then                                                idcBABA +=² )
~~

,())(( yyDD  . 

This leads to the Heissenberg uncertainty inequality in the form 

2222
22 )

~~
,()()( cdcBABA ²+=² yyDD      . 

 

Corollary: Let the harmonic (quantum) oscillator model be defined (only!) as (Hilbert 

transformed) distributions equation in the form 

[ ]
02/1 ),

~
(),

~
( yyyy amiltonianamiltonian HAH =-

  

Then (note that [ ] [ ])()(2 xuTFxuxFT ¡¡-= ) the corresponding weak commutator fulfills 

[ ] 0),,( =yyxx QP   

and the anti-communicator is self-adjoint. 
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Hypersurface 

 

From H. Flanders, ñDifferential Forms with Applications to the Physical Scienceò  we recall 

some studies of surfaces of higher dimension than 1, which is about an m-dimensional 

manifolds M embedded in 
1+mR , which is called a hypersurface M. 

A moving point on M is denoted by x and a definite unit normal at each point x  of M is 

denoted by n. The map  nx­  is a smooth map on M into 
mS . If M is orientable this can be 

done globally on a hypersurface M). The tangent space at x is an n-dimensional Euclidean 

space (let ie  its ONS). Thus at x , the vectors neee n ,....., 21   make up an orthogonal basis of 

1+mR . Since dx is in the tangent space it holds 

mmeexd ss ++= .......11
 

where 
mss,....,1

 are 1-forms on M. From the relations 

ikki ee d=    ,   0=nei   ,   1=nn  

one deduces that 

0=+ kiki edeeed    ,  0=+ ndened ii  ,  1=ndn  

and so 

need ijiji
ww -=ä    ,  ii end ä= w  

where ijw , iw  are 1-forms on M and 

0=+ jiij ww  . 

From the matrix mjiij ,....1,)(: ==wW  one defines a skew-symmetric matrix of 2-form 

2

,..1,)(: WWX -== = dmjiijq  

By taking exterior derivatives ( 0)( =xdd ) (omitting the symbol  Ø) one obtains integrability 

conditions 

ijiid wss ä=      ,   0=+ jiij ww   ,   ä =0iiws   ,  ä= ijiid www   ,  0=+ jiij wwq  . 

The 
mss,....,1

 form a basis for 1-forms on M, hence we have relations 

ä= jiji bsw  . 

Because  ä =0iiws  the ijb   must be symmetric, i.e. jiij bb =  . 

The mean curvature H and Gaussian curvature K are defined by 
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ä= iib
m

H
1

 

,

   

ijbK =    . 

How does an observer constrained to M observe the motion of ä= ii ecv  ? 

A vector function for which the equations 

0=+ä ijii cdc w  

are valid is said to move by parallel displacement. 

The elements 
ijq  of the curvature matrix  X are curvature forms. One may write 

lkijklij R ssq ä=2  

defining the Riemann curvature tensor ijklR  of the hypersurface. Because of the relation 

0=+ jiij wwq  

and 

lkjkiljliklkjlikji bbbbbb ssssww ää -== )(22  

we have 

0=+
jljk

ilik

ijkl bb

bb
R   . 

Algebraic consequences of these formulas are the following: 

0=+ ijlkijkl RR  , 0=+ jiklijkl RR  , 0=++ iljkikljijkl RRR  ,  klijijkl RR =  . 

The Riemann tensor is independed of how M is embedded in 
1+mR  so that these relations 

are particularly interesting, connecting the intrinsic Riemann tensor with the quantities ijb , 

which clearly depend on the embedding. 

 

We recall that a semi-Riemannian manifold is torsion-free. 
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Infinitesimals and Hyperreals 

 

Do infinitesimals and even hyperreals ñexistò?  Is a ñir-rationalò number p more ñrealò than a 

ñhyper-realò number ir+  ? 

... perhaps only in the minds of certain mathematicians (but then with the same rational as p 

or complex numbers). Nevertheless, they are a fascinating concept. But first, a brief look at 

the history and structure of the real numbers.  Today we think of this set as equivalent to the 

set of points of the real line - a sort of ruler extending endlessly in both directions from the 

point corresponding to zero.  To the ancient Greeks, there were only points corresponding to 

rational numbers (ratios of whole numbers, e.g., 2/5) and between any two points on a line 

there were only a finite number of such rational "points". When irrational numbers were 

discovered, they were deemed "incommensurable", meaning they could not be expressed as 

such ratios and, in a sense, were non-measurable.  

 

As mathematical sophistication increased during the next two centuries, the ideas of Cauchy, 

Weierstrass and others took hold, and monads and moments - in their original guise - faded 

away. In the Standard Analysis that derived from their work, all real numbers were either 

rational or irrational, and "infinitesimal" came to mean simply very, very small, but real.   

There is an effective limit to the measurability of distances between points that are extremely 

close together. So, in a sense, there are "spaces" around points in which infinitesimals might 

reside. Perhaps aspects of logic break down, as they seem to in quantum mechanics, when 

dealing with microcosmic worlds.  

 

Rules for combining reals and non-traditional reals include:   

(A) the sum of two infinitesimals is infinitesimal, as is the product;  

(B)  the product of a finite real number and an infinitesimal is an infinitesimal;  

(C) the product of an infinitesimal and an infinite number may be finite or infinite, 

depending upon the numbers involved,  etc. We can also write  baº  ("a 

approximates b")  if ba-  is an infinitesimal. Hence, an infinitesimal 0ºe .   

Abraham Robinson (1966):  ". . . we observe that the non standard analysis is presented 
naturally, within the framework of contemporary mathematics, and thus appears to affirm the 
existence of all sorts of infinitely entities. . . . it appears to us today that the infinitely small 
and infinitely large numbers of a non-standard model of Analysis are neither more nor less 
real than, for example, the standard irrational numbers."  
 

There have been philosophical speculations about whether infinitesimals do actually 

correspond to points on a line (or in the complex plane). A point is dimensionless, so perhaps 

there are "positions" for both standard and non-standard real numbers on our ruler. After all, 

irrational numbers are never used in measurements by empirical scientists - all 

measurements are ultimately rational. One simple arithmetic operation involving the decimal 

forms of true irrational numbers would take an infinite amount of time to complete - even on 

the hypothetically best computers. It would take an eternity to even fully and completely 
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describe the decimal forms. So, are the irrationals as abstract and strange as infinitesimals? 

Not quite, but there's more to them than one normally thinks. 

 

Nowadays, we think of the real numbers as composed of both 

rationals and irrationals, "filling up" the real line.  Between any two 

real numbers, a and b, are both a rational and an irrational, and, 

therefore, and infinite number of each in the interval [a,b]. Whereas 

the rationals can be shown to be "countable" (a discrete scheme for 

counting them can be devised), the irrationals are known to be 

"uncountable" (no such scheme can, in principle, exist).  

 

A famous mathematician once compared the stars in the night sky to 

be like the rational numbers, and the blackness between them, the 

irrational numbers. Together they constitute the entirety of the 

numbers we use in the every-day world.  In terms of familiar decimal 

representations, the rationals are all either terminating (e.g., 2/5 = .4) 

or non-terminating but repeating (e.g., 3/11 = .27272727. . .). Those 

decimal expansions that neither terminate nor repeat represent 

irrationals (e.g., .....14159.3=p ) 
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Let us call this new expanded real number system R*
.  A  function  in R*

 is a set (finite or 

infinite) of ordered pairs of numbers such that no two pairs have the same 1st element, but 

different 2nd elements.  Note that in *R, we might have, e.g.,   

{ }),1(),,(),,3(),7,1( ¤+¤= eepF  

Assuming that x and a are in the domain of a bounded function G and that a is a standard 

real number, we can say that  G  is continuous at a  provided  G(a) å G(x)  whenever  x å 

a.  The area under a positive, continuous curve, given by f(x) on the interval  [a,b], can be 

defined as the infinite sum of areas of rectangles constructed by subdividing [a,b] into an 

infinite number of subintervals, each of which is of infinitesimal width, and height the value of 

f(x) for some x in that subinterval. This is similar to the definition of an integral given in a 

calculus course, except that the thin rectangles are now very thin indeed!  

 

Suppose f(x) is a real valued function defined on the interval (a,b), with a and b standard 

reals. Let  ɕ , a standard real, be in the interior of (a,b). Then the derivative of f(x) at x = 

ɕ  may be expressed as   

e

zez )()( ff -+ , 

for all infinitesimals Ů.   

For example, let 2)( xxf =   .  Then   
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Summary and geometrical interpretation of Hyper-reals:  

),*,,(* ¢+R  ist ein angeordneter Körper mit RR *Ë  und RR *¸  . Es sind ¢+,*,  in R*
 

Fortsetzungen von ¢+,*,  in R . R*
 enthält unendliche Elemente und von Null verschiedene 

infinitesimale Elemente. Endliche Elemente von   sind infinitesimal benachbart zu einer 

reellen Zahl.  

Ähnlich wie man sich R  als Zahlengerade vorstellt, gibt es ein geometrisches Bild von R*
 . 

R*
 besteht aus endlichen und unendlichen Elementen. Da R*

 total geordnet ist, ist ein 

unendliches Elemente entweder  0¢  oder 0²  . Im ersten Fall liegt es dann links jeder 

negativen reellen Zahl, in zweiterem Fall recht jeder positiven reellen Zahl. R*
 zerfällt damit 

in folgende drei disjunkte Bereiche: negativ unendliche Elemente, endliche Elemente, positiv 

unendliche Elemente. Der Bereich der endlichen Elemente von R*
 zerfällt weiter in die 

disjunkten Bereiche der zu den verschiedenen reellen Zahlen infinitesimal benachbarten 

Elementen, in die sogenannten Monaden 

{ }00:)( º¢°= eerrm  , RrÍ  . 



 30 

Das ist eine sinnvolle Definition, weil zwei verschiedene reelle Zahlen nie infinitesimal 

benachbart sein können! Es ist, als ob sich der Punkt RrÍ , wie durch ein Mikroskop mit 

unendlichem Auflösungsvermögen betrachtet, in R*
 zu einer Monade )(rm vergrössert. 

Hierbei besitzt die Monade )(rm der unendlich nahe bei r  liegenden Elemente kein 

kleinstes und kein grösstes Element, da mit  0ºe  auch 02 ºe  ist. Ferner enthält )(rm  mit 

zwei Elementen auch sämtliches dazwischen liegende Element. Sind  
21,rr  zwei reelle 

Zahlen mit
21 rr < , so liegt die gesamte Monade )( 1rm  links von der gesamten Monade 

)( 2rm  . Da )(rm  für jedes RrÍ  durch Verschiebung um r  aus der Monade )0(m der 

infinitesimalen Elemente hervorgeht, bieten die Monaden bei der Betrachtung durch das 

Mikroskop alle dasselbe Bild. 

Then, in the early 1960s, Abraham Robinson and others demonstrated that there exists a 

kind of extension of the real number system that includes non-traditional "real" 

elements:  infinitesimals,e,  where r<e , for all positive real numbers, r .  Robinson 

showed that all the rules of arithmetic and algebra apply to this new, enlarged system, which 

includes, as well,  numbers that are infinite, i.e., numbers of the form  w, where for each 

such w,  n>w  for all standard integers n . The normal rules for inequalities hold, so that  

Ð+1 > Ð, and so on.  It follows that  w/1  is an infinitesimal, and 1/Ů is infinite (except that 

division by 0 is not allowed).  Robinson resurrects the word monad (of x) to mean all real 

numbers infinitely close to x ; i.e., of the form e+x . Other authors use pleasing terms like 

"mist" or "cloud" or "halo" to describe this concept. 

Mathematicians who explore these strange worlds are frequently specialists in mathematical 

logic and set theory. And they have had some success at conceiving and describing 

infinitesimals and infinities in the context of Hyperreal Numbers. To the layman (even the 

non-specialist mathematician) often these results seem a bit contrived and don't coincide 

with intuition - but then intuition doesn't necessarily lead one to reality, whatever that is! 

 

One way of constructing a system incorporating non-standard reals is to define "numbers" as 

infinite sequences of reals (or equivalence classes thereof). For example, let the number 

3.27 be interpreted as  (3.27, 3.27, 3.27, . . .) ad infinitum. Each real number is expressed as 

a constant, infinite sequence. Thus a "number"   

),,,,2.....2,2,2,2,2( 43210 n------

 

is non-real. If one further defines various operations and relations on these new numbers, 

corresponding to the operations and relations we are familiar with, it's possible to exhibit 

infinitesimals. E.g. , define "<" to mean that for "most" terms of two sequences, this order 

exists between corresponding elements; then we have   

,.....),....,,(),,,,2.....2,2,2,2,2(,.....)0,....0,0,0( 43210 realrealrealrealn << ------  

for all positive reals - showing that the middle "number" is indeed "infinitesimal". There's 
much more to this, of course, and proper constructions require the use of ultra filters and 
other tools of set theory. But you get the idea. 
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Is the Line Segment  [0,1]  Infinite?  

 

Consider the sequence of functions: 

{ })(xfn    where  )sin(
10

1
:)( xn

n
xfn p=  

Each defined on [0,1].  The graphics above show functions with   n = 2, n = 10, and n = 100. 
It is easy to prove that  the sequence converges uniformly to the straight line segment 
[0,1].  It is also straightforward to demonstrate that  the length of each curve is 

¤­>
5

)(
n

xLn
   as   ¤­n  

At any fixed degree of magnification, there is an n so large that the nth curve appears as a 
straight line. (Mathematicians routinely dismiss this sort of seeming paradox by simply citing 
"length" as a feature that is not preserved under uniform convergence.) 

Note, that for each n the maximum distance of the curve from the line segment [0,1] is 
1/10ãn .  So for any positive real number  r  there is an  n  such that 0 < 1/10ãn < r .  As we 
pass from the finite to the infinite, entering the strange world of  *R, the resulting object is an 
infinite line of no thickness - trapped in the interval [0,1] and having a "cloud" of infinitesimal 
points cloaking it, above and below.   

In the complex plane, infinitesimals may be of the form  iba+  , or ba, ,  where a and b are 

real infinitesimals.  The "halo" or "complex monad" of a standard z becomes two 
dimensional. 
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A valid Dirac FUNCTION within Non-Standard analysis 

 

Die Nichtstandard-Analysis ermöglicht es, die Dirac-ĂFunktionñ RR­:d  , die als solche nicht 

existiert, aber als lineares Funktional über einem geeigneten Raum stetiger Funktionen 

definiert werden kann, als Funktionen von RR *­  einzuführen, die beliebig oft -*  

differenzierbar sind und die das -*  Integral 1 besitzen: 

 Definition: ( Funktionen-d  als Abbildung von RR *­ ) Eine Funktion )(* RCÍd  mit 0²d  

heisst Funktion-d  , falls gilt: 

i)    ñ =1)(
*

dxxd  

ii)    ñ
-

º

e

e

d 1)(

*

dxx  für ein infinitesimales 0>e  

 

Lemma: (Erzeugung von Funktionen-d  aus stetigen Funktionen) Sei  )(RCf Í  mit 0²f  

und ñ =1)( dxxf  . Dann gilt für jedes NNh -Í* :   

)(:)( hxhfx =d  ,  Rx *Í  ist eine   Funktion-d  

und es ist )()(* RC kÍd  , falls )()( RCf kÍ  ist für {}¤ÇÍNk  .  

 

Lemma: (Zentrale Eigenschaft von Funktionen-d )  

Sei  RR *: ­d  eine Funktion-d  und )()(

0 RC ¤Íj  . Dann gilt: 

ñ º )0()()(
*

jjd dxxx  . 

Consider the Dirac Delta Function, ŭ(x), using *R.  This "function" is not really a function at 

all, and it can be described as a distribution in standard analysis, or as a  measure, but 

roughly speaking, 

0

00
)(

=

¸

í
ì
ë

¤
=

x

x

for

for
xd      and          1)( =ñ

¤

¤-

dxxd  

 

 That is to say, the function is "so infinite" at 0=x  that the "area" it encompasses above the x-

axis is exactly 1. 
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This is a "working function" used in physics and engineering, but it clearly makes little sense 

in R, the standard reals.  However, there is a simple and playful  heuristic description in *R 

that is appealing: 

e

e

e

d
¢

>

îí

î
ì

ë
=

x

x

for

for
x

2

1
0

)(                   where  Ů  is some positive infinitesimal. 

The "area" under the curve, above the x-axis, is  1)2)(
2

1
( =e
e

. Lots of luck, however, trying to 

visualize this rectangle with infinitesimal width and infinite height!  
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Hyperfunctions  

 

We recall from [BPe] Petersen B.E., chapter 1, §15:  

Let  
zgz­  be a function defined on a open subset CUË  with values in the distribution 

space.  Then 
zg  is called a holomorphic in CUË (or 

zgzg =:)(  is called holomorphic in 

CUË   in the distribution sense), if for each  ¤Í cCj  the function   ),( jsgz­  is holomorphic 

in CUË   in the usual sense.  

Hyperfunctions are distributions, allowing to treat ñfunctionsò by Fourier transform, which can 

transmit unexpected (non-analytic!) signals, represented by a Laurent-series description with 

vanishing constant ñFourier termò ([RPe] R. Penrose, 9.2). In the one-dimensional case 

hyper-functions are the distributions of the dual space 
w-C  of the real-analytical functions of 

a real variable 
wC , defined on some connected segment RË  ([RPe] R. Penrose, 9.7, [  ] B. 

E. Petersen, 1.16) and appendix). This gives the link of our approach to Penroseôs thoughts 

and ideas moving forward ñthe road to realityò. In the one-dimensional case the concept of 

hyperfunctions enables a link between distributions and a holomorphic, i.e. a complex-

analytical function, as any distribution f on R  can be realized as the ñjumpò of the 

corresponding in RC-  holomorphic Cauchy integral function  

ñ-
=

xt

dttf

i
xF

)(

2

1
:)(
p

 

across the real axis, given by 

dxxiyxFiyxFf )())()(lim),( jj ñ
¤

¤-

--+=     for +­0y  . 

The principle value )/1.(. xvP
 
of the not locally integrable function x/1  is the distribution g  

defined by ([BPe] B. E. Petersen, 1.7) 

ññ
¤

¤-²

¡== dxxx
x

dx
xg

x

)(log)(lim:),( jjj
e

       for each ¤Í cCj  . 

The relation of this specific principle value to the Fourier transform is given by ([BPe] B. E. 

Petersen, 2.9) 

)sgn()
1

.(. si
x

vP p-=ù
ú

ø
é
ê

è
Ø

   and    )
1

.(.2)
1

.(.
x

vP
x

vP p-=ù
ú

ø
é
ê

è
ØØ

. 

In the one-dimensional case hyperfunctions are the distributions of the dual space 
w-C  of 

the real-analytical functions of a real variable 
wC , defined on some connected segment RË

.  Any real-analytical function is 
¤ÍC , but not every function 

¤ÍC is analytical, e.g. it holds 
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¤

-

Í
îí

î
ì

ë

=

>
= C

x

x
exe

x

0

0

0

:)(
2

1

 but  
wCxe Î)(  .   

From 0)0()( =ne  for all n  for the Taylor series it follows 0
!

0

0

=ä
¤

nx
n

, whatôs different to )(xe  

except at 0=x  , i.e. 
wCxe Î)( is not an analytical function. The situation is different in case 

of complex-analytical functions, which are holomophic and analytical at the same time.  

 

In the one-dimensional case the concept of hyperfunctions (see e.g. [BPe] B. E. Petersen, 

1.16) enables a link between distributions and a holomorphic, i.e. a complex-analytical 

function, as any distribution f on R  can be realized as the ñjumpò of the corresponding in 

RC-  holomorphic Cauchy integral function  

ñ-
==

xt

dttf

i
xFxf

)(

2

1
:)(:)(
p

%
 

across the real axis, given by 

dxxiyxFiyxFf )())()(lim),( jj ñ
¤

¤-

--+=     for +­0y  . 

This means that the dual (distribution) space 
w-C  of the space of the real-analytical functions 

wC  characterizes the so-called hyperfunctions  [[  ] R. Penrose, [  ] B. E. Petersen). 

A hyperfunction of one variable )(xf on an open set RËW  is a formal expression of the 

form   )0()0( ixFixF --+ -+
, where )(zF° is a function holomorphic on the upper, 

respectively lower, half-neighborhood { }0)Im( >Æ=° zzUU , for a complex neighborhood 

WÈU    satisfying W=ÆRU . The expression )(xf is identified with 0 if and only if )(zF°

agrees on W as a holomorphic function. 

If the limits exist in distribution sense, the formula gives the natural imbedding of the space of 

distributions into that of hyperfunctions. Hyperfunctions can be defined on real-analytic 

manifolds. Fourier series are typical examples of hyperfunctions on a manifold:  

(*)  ä
ÍZ

xiea
n

n
n

converges as a hyperfunction    if and only if   )(
ne

n eOa =   for all 0>e . 

Some examples of generalized functions interpreted as hyper functions are 

a. Diracôs delta function          ñ
¤

-=ù
ú

ø
é
ê

è

-
-

+
-=

0

coslim
0

1

0

1

2

1
)( kxdke

ixixi
x akp

p
d  , 0­a  

b. Heavisideôs function           [ ] )log(
2

1
)0log()0log(

2

1
)( z

i
ixix

i
xY --=+-----=

pp
 .           

The Heaviside function can be characterized ([BPe] B. E. Petersen, 1.16) by 
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Yixiyx Ĕlog)log(lim p+=+   for +­0y   and  )()(Ĕ xYxY -=  

c.                                        
pl

l
l

sin2

)(

i

z
x

@°
=°

               for ZÎl  

)ln()(
2

1
zz

i
x mm @@

p
°=°     for ZmÍ=l  

d. the Feynmann propagator (Greenôs function) is the solution  )(
2

1 ØÙ-SS
ip  

of the distribution wave equation 

                                                  )()(),()(
2

2

xtxtS
t

mdd=D-
µ

µ
   

with                  ññ ----
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+-
Ø

))((
),()2(2

ewew
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dkde
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ewew

w
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 37 

Analytic Theory of Continued Fractions 

 
As an example of expansion into a CF of an analytic function, consider: )arctan()( zzF =  . 

From  Continued Fractions: Analytic Theory and Applications, by W. Jones and W. Thron 
(1980), we have the following (written using a common format for CFs):   

...7

3

5

2

3

1

1
)arctan(

222222

++++
=

zzzz
z

 

Valid nearly everywhere in the complex plane as the single-valued branch of the analytic 
function with branch points at  iz= and iz -= and branch lines north of  i ,  and south of   -i 

.  To compute  )1arctan(4/ =p  to seven decimal places requires merely going out to the 9th 

convergent of the CF. Whereas, using the standard power series expansion: 

.....
753

)arctan(
753

+-+-=
zzz

zz                 1¢z     iiz -¸,  

Valid only within the unit disc, one needs to employ (approximately) the first 500,000 terms of 
the series. Thus this example demonstrates the two previously stated reasons for using Cfs 
as functional expansions: greater speed of convergence  and  enhanced region of 
convergence.   

 

 
The speed of convergence of the CF expansion of Arctan(z), showing results for the 15th 
convergent vs the 30th convergent. Graph is centered at the origin, extending 10 units right 
and left ; branch lines above iz= and below  iz -=  are clearly shown. The convergent is, of 
course, a rational function approximation to the Arctangent, and poles are illuminated along 
the branch lines. Dark areas indicate rapid convergence of the CF. 
A CF expansion of the function   )1ln()( zzF --=  
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-------
=--=

7

3

6

3

5

2

4

2

3

1

2

1

1
)1ln()(

222222 zzzzzzz
zzF  

 
converges and represents a single-valued branch of the function in the complex plane, with 
branch cut along the real axis to the right of  1=z .  The speed of convergence is displayed 
in the following graphic, where we compare the 10th convergent to the 30th. As usual, dark = 
rapid, light = slow. Since any convergent is merely a rational approximation to the function, 
poles are seen illuminated along the branch cut. The scope of the figure is |x|, |y| < 10. 

 

 

 
As we have seen before, the power series expansion of this function about  1=z fails to 
even converge outside of the unit disc. 
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Vectorial vs. analytical mechanics 

 

Descartes discovered that geometry may be treated as analytically. His geometry assumed 

the Euclidean structure of space. Riemannôs geometry is based on one single differential 

quantity called ñline elementò. 

The significance of this quantity is the distance between two neighboring points of ñspaceò, 

expressed in term of the coordinates and their differentials. The quantity 2ds  has an 

absolute significance because the distance between two points does not change, no matter 

what coordinates are employed. It is an ñabsoluteò or ñinvariantò quantity which is 

independent of any special reference system.  

The science of mechanics has developed along two main lines. One branch starts directly 

from NewtonËs law of motion and is called Ăvectorial mechanicsñ. All forces are acting on any 

given particle; its motion is uniquely determined by known forces acting on it at every 

instance. The basis concern of vectorial mechanics is the analysis and synthesis of forces 

and velocity. The underlying mechanics is called Ăvectorial mechanicsñ. The action of a force 

is measured by the momentum produced by that force. 

Concerning infinitesimals, Newton, in 1669, defines the moment of x to be an "infinitesimal" 

increase in the value of a real number, x.  It appears to be indivisible, and thus something of 

an enigma. Leibniz, in the late 1600s, speaks of monads, ultimate infinitesimal particles from 

which nature arises. He used this idea in his mathematics, alluding to what we nowadays call 

the differential dx as being not 0  but smaller than any finite quantity.  In parallel Leibniz 

developed infinitesimal calculus, already giving non trivial differential calculus in the form 

dydxyxd +=+ )(                 ydxxdydxdyydxxdyxyd +=++=)(  . 

 

In standard analysis the term  dxdy  is neglected as infinitely small of second order (!). This 

might be an opportunity, when extending k-forms into a non standard framework. 
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Transformation between Lagrange and Hamiltonian formalism 

Lagrange --> Hamilton:       ),(),(
dy

dL
xHyxL ­  

The Legendre transformation of ),( yxf  is defined by    

),(),(:),(: yxfyxyfyyxgg -=-== yy  

Putting   
y

yxf
yx

µ

µ
==

),(
:),(: yy   the differential of ),( yxf  gives   

dydx
x

f
dy

y

f
dx

x

f
df y+

µ

µ
=

µ

µ
+

µ

µ
=  

As holds     
[ ]

y
yxy
=

µ

µ

y

y ),(
 and  dyyddy

y

y
d

y
yd yy

y
y

y

y
y +=

µ

µ
+

µ

µ
=

)()(
)(    

It follows              )()()( dyddx
x

f
yddydx

x

f
dyyddfydgd yyyyyy +

µ

µ
-=ù

ú

ø
é
ê

è
+

µ

µ
-+=-=  . 

 

The product  dydy  is neglected to be zero in the standard theory as infinitesimal small of 

second order compared to dx. If one would neglected this and calculate in a non-standard 

way it would result into 

dx
x

f
ddyygd

µ

µ
-+= y)()(  . 

Question: Does this change the equivalence of Lagrange and Hamilton formalism in that 

way, that now the Hamilton integral requires some non-standard variation calculus, which 

enables modeling also reactive forces (forces of constraints or Zwangskräfte). Zwangskräfte 

leisten keine Arbeit leisten (zumindest im Standard-Sinne!!) und stehen senkrecht auf der 

Fläche, auf der sich der Massepunkt bewegen soll ( 0=µrZ
CC

), d.h. die virtuelle Verrückung r
C
µ  

steht senkrecht bzgl Z
C

. Zwangskräfte halten einen Massepunkt auf der durch die (holonem-

skeleronomen) Nebenbedingungen vorgeschriebenen Bahn; z.B. 

rollende Billardkugeln auf einem waagrechten Tisch;  

ZFrm
CC

##C +=  . 

Nur eingeprägte Kräfte (impressed forces) F
C

 können zu echten Beschleunigungen führen. 

 

Leibniz advocated another quantity, replacing NewtonËs Ămomentumñ as the proper gauge 

for the dynamical action of a force, which apart from a factor 2 today is called Ăkinetic 

energyñ. At the same time he replaced the Ăforceñby the Ăwork of the forceñ(or Ăwork 

functionñ). The underlying mechanics is called Ăanalytical mechanicsñ. The basis concern of 
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analytical mechanics is the analysis and synthesis of equilibrium and motion on two 

fundamental scalar quantities, which are Ăkinetic energyñand Ăpotential energyñ. 

A tensor is defined by the components of an invariant differential form.  

A differential form of the first order defines a tensor of first order 

nndxFdxFdxFdW +++= ...2211  . 

The vector  iF  is called the ñgeneralized forceò. A differential form of the second order 

defines a tensor of second order, e.g. the special tensor ijg  , which is called the ñmetric 

tensorò, is given by 

ä=
ji

jiij dxdxgds
,

2  . 

 

1. There are forces which maintain the given kinematical conditions.  

Let  W  denote the work,  dtvsd
CC
=  and the momentum (Impulse) vmp

CC
=  . The work of 

forces to a body is the same as the increase of body´s kinetic energy: 

dTdtpdtvmv
m

ddtvdvmdtvdFsdFdW :)()
2

())(()( 2 =======
CCCC#CCCCC

 

resp. 

21

2

1

2

2 )(
2

2

1

TTvv
m

sdFW

t

t

-=-==ñ
CCCC  

I.e. W  gives all work, which all forces act in the time interval  [ ]21,tt  .  

The analytical treatment of mechanics does not require knowledge of these forces. 

 

2. There are forces which come from an external field or from the mutual interaction of 

particles  

The quantity of prime importance for the analytical treatment of mechanics is not a force, but 

the work done by impressed forces for arbitrary infinitesimal displacements. They are 

analytically defined as the coefficients of an invariant differential from of the first order, which 

gives the total work of all the impressed forces for an arbitrary infinitesimal change of the 

position of the system. The forces acting on a mechanical system fall automatically into two 

categories: 
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A. it is possible that all one can say about the work dW  is that it is a differential form of the 

first order 

B. it is possible that  dW  turns out to be a true differential of a certain ñwork functionò 

),...,( 21 nqqqUU =  (which is the usual one in analytical problems), i.e. dUdW= with 

i

i
q

U
F

µ

µ
-= . 

There are forces in the nature which are derivable from a time-dependent work function 

),...,( 21 nqqqUU = , i.e. the generalized force possesses a work function without being 

conservative. An electronically charged particle revolving in a cyclotron returns to the same 

point with increased kinetic energy, so that energy is not conserved. This is not because the 

work does not exist, but because the work function is time-dependent. On the other hand, a 

generalized force may have no work function and still satisfy the conservation of energy, as 

for example the force which maintains rolling. 

There are two distinctive names for forces which are derivable from a scalar quantity, 

irrespective of whether they are conservative or not. The name ñmonogenicò (which means 

ñsingle-generatedò) for the category of forces, while forces which are not derivable from a 

scalar product, such as a friction, are called ñpolygenicò. The work function associated with a 

monogenic force is in the most general case a function of the coordinates and the velocities: 

);,...,;,...,( 2121 tqqqqqqUU nn
###=  

For example the electro-magnetic force of Lorentz, which acts on a charged particle in the 

presence of an electronic and magnetic field, is derivable from a work function of this kind. 

Such forces are still susceptible to the variation treatment. 
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Variational Principle 

The principle of virtual work for reversible displacements 

A particle is in equilibrium if the resulting force acting on that particle is zero: this form of 

mechanics isolates the particle and replaces all constraints by forces. The inconvenience of 

this procedure is obvious if one thinks of such a simple problem as the equilibrium of a lever, 

which is composed of infinity of particles and infinity of inner forces acting between them. 

The analytical treatment can dispense with all these forces and take only the external force 

into account (in the case of the lever the force of gravity. This is accomplished by performing 

only such virtual displacements as are in harmony with the given constraints. In variational 

treatment of mechanics the Ăforces of constraintsñ (Zwangskrªfte, reactive forces; e.g. 

Billiardtisch gegenüber rollender Billiardkugel auf waagrechtem Tisch)), which maintain 

certain given kinematical conditions are neglected. Only the work of the Ăimpressed forcesñ 

needs to be taken into account. One may eliminate the action of the inner forces, since the 

virtual displacements applied to the system are in harmony with the given kinematical 

conditions. 

The principle of virtual work demands that for the state of equilibrium the work of the 

impressed forces is zero for any infinitesimal variation of the configuration of the system 

which is in harmony with the given kinematical constraints. For monogenic forces, this leads 

to the condition that, for equilibrium, the potential energy shall be stationary with respect to 

all kinematical permissible variations. 

The general kinematical possibilities of a rigid body are translation and rotation. The 

possibility of translation requires the sum of all forces to vanish, and the possibilities of 

rotation require the sum of all moments to vanish for equilibrium. 

DóAlembertËs principle introduces a new force, the force of inertia, defined as the negative of 

the product of mass timeôs acceleration. If this force is added to the impressed forces we 

have equilibrium, which means that the principle of virtual work is satisfied. The principle of 

virtual work is thus extended from the realm of static to the realm of dynamics. 

DóAlembertËs principle requires a polygenic quantity in forming the virtual work of the forces 

of inertia; hence it cannot provide the same facilities in the analytical use of curvilinear 

coordinates as the principle of action. However, in problems which involve the use of 

kinematical variables (non-holonomic velocities) and the transformation to moving reference 

systems, dóAlembertËs principle is eminently useful. 

In order to make the reference to the philosophy of Leibniz we recall: 

- ñworkò is no property of the body, the ñworkò is related to the interval [ ]21,tt  

- ñkinetic energyò 2/: 2vmT
C

=  is a property of the body, which characterizes its actual 

momentum. 
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Lagrange and Hamiltonian Principle 

 

Euler and Lagrange discovered the principle of Ăleast actionñ. In the Lagrange formulation itôs 

about an analysis of the position and the velocity of a particle, i.e. itôs about equations of 

motions. The Hamiltonian formulation of this principle asserts that the actual motion realized 

in nature is that particular motion, for which this action assumes its smallest value. Its 

fundamental objects are the position and the momentum of a particle. The Noether theorem 

states, that if there is a continuous symmetry transformation, which keeps the action integral 

invariant, then there exists conservation variable. 

Lagrange formalism  ª  Hamiltonian formalism 

(*)    Equation of motions  ª  Action principle 

Causal  ª    purpose 

The equivalence of (*) breaks down at the quantum level. Quantum mechanically, there is a 

fundamental difference between the two, with the equations of motion being only an 

approximation to the actual quantum behavior of matter. Thus the action principle is the only 

acceptable framework for quantum mechanics: classical mechanics assumes that a particle 

executes just one path between two points based either on the equation of motion or on the 

minimization of the action. By contrast, quantum mechanics sums the contributions of 

probability functions (based on action) for all possible paths between two points. Although 

the classical path is the one most favored, in principle all possible paths contribute to the 

path integral. Thus, the action principle is more fundamental than the equations of motion at 

the quantum level. 

The formalism of path integrals is so versatile that it can accommodate both first quantized 

point particles and second quantized gauge fields with equal ease. 

The mathematical problem of minimizing an integral is dealt with in a special branch of the 

calculus, called Ăcalculus of variationñ. The variational theory, founded on Euler and 

Lagrange, bases everything on the two scalar quantities, Ăkinetic energyñ and Ăpotential 

energyñ. The variational approach assumes that the acting forces are derivable from a scalar 

quantity, the Ăwork functionñ. Forces of frictional nature, which have no work function, are 

outside the realm of variational principles. 

[]ñ=
2

1

)),(),((

t

t

dtttqtqLqW #         ª       [] [ ]ñ -=
2

1

)),(),(()()(

t

t

dtttqtqLtqtqqW ##  

A variation means an infinitesimal change, in analogy with the d-process of ordinary calculus. 

However, contrary to the ordinary d-process, this infinitesimal change is not caused by the 

actual change of an independent variable, but is imposed on a set of variables as a kind of 

mathematical experiment. The term Ăvirtualñ indicates that a displacement was intentionally 

made in any kinematic ally admissible manner. Such a virtual and infinitesimal change of 

position is called a Ăvariationñ of the position.  A variation of the position is at disposal, but the 

corresponding change of the function (e.g. potential energy), which is called the Ăvariation of 

the functionñ is not at disposal. 
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The principle of virtual work demands that for the state of equilibrium the work of the 

impressed forces is zero for any infinitesimal variation of configuration of the system which is 

in harmony with the given kinematical constraints. For monogenic forces, this leads to the 

condition that, for equilibrium, the potential energy shall be stationary with respect to all 

kinematic ally permissible variations. 

Since in problems involving the variation of definite integrals both types of change (dand d ) 

have to be considered simultaneously, the distinction is of vital importance. 
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The Divergence 

The concept of divergence is especially important in those areas concerned with the 

behavior of vector fields. The divergence of the energy-stress tensor is zero, which plays a 

key role, when defining Einsteinôs gravitation equation. The divergence theorem (the flux of a 

vector field through a closed surface S  is equal to the integral of the divergence of that field 

over a volume V  for which S  is a boundary) plays a key role within the Maxwell equations.  

Positive divergence is associated with the ñflowò of electric field lines away from positive 

charges. Flux is defined over an area, while divergence applies to individual points. In case 

of a fluid, the divergence at any point is a measure of the tendency of the flow vectors to 

diverge from that point; i.e. to carry out more ñmaterialò away from it than is brought towards 

to it. Those points of positive divergence are sources, while points of negative divergence are 

sinks.  

In case of a point charge at the origin, the flux through an infinitesimally small surface is 

nonzero only if that surface contains the point charge. Everything else, the flux into and out 

of that tiny surface must be the same, and the divergence of the electric field must be zero. 

The mathematical definition of divergence may be understood by considering the flux 

through an infinitesimal surface surrounding the point of interest. If you were to form the ratio 

of the flux of a vector field E
C

 through a surface S  to the volume enclosed by that surface as 

the volume shrinks towards zero, one would have the divergence of  E
C

 : 

ñ=
S

danE
V

Ediv
C
A
CC

D

1
lim  . 

This definition also states the relation between flux and divergence. Vector fields with zero 

divergence are called ñsolenoidalò fields. 

The Maxwell equations produce the wave equation, which is the basis for the 

electromagnetic theory of light. A phenomena of the Maxwell equations is the electromotive 

force (emf), involving movement of a charged particle through a magnetic field, defined by 

ñ-=
S

danB
dt

d
emf

C
A
C

:  . 

The negative right hand side plays a key role in Lenzôs law, which is about the direction of 

the current induced by changing magnetic flux (flow always in the direction so as to oppose 

the change in flux). 

The flux (=ònumber of field linesò) of a vector field E
C

, which represents a ñfluid flow/stream 

model to ñwhich placesò the fluid flow transports a particle along an integral curve g 

(characterized by  ))(()( tEt gg
C

=¡   during a certain time span ( )at ,0Í ). For a point )0(g=P this 

is mathematically described as bundle of functions  

)()( tPt g=F  . 
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In differential geometry, the Ricci flow is an intrinsic geometric flowða process which 

deforms the metric of a Riemannian manifoldðin this case in a manner formally analogous 

to the diffusion of heat, thereby smoothing out irregularities in the metric. It plays an 

important role in the proof of the Poincaré conjecture.  

Given a Riemannian manifold with metric tensor ijg the Riemann curvature (3,1) tensor can 

be expressed in terms of the second derivatives of the metric; in local geodesic normal 

coordinate system at a given point, the components of the Riemann tensor are given by  

)(
2

1
jkliilkjikljjlki

k

ikj ggggR µµ-µµ-µµ+µµ-=  

The Ricci (curvature) tensor in local coordinates is given by 

ä==
k

k

ikjij RRRic : ,   

so that Ricci is a trace of the Riemann tensor, i.e. it collects averages of sectional curvatures 

into a kind of "trace" of the Riemann curvature tensor. It is a symmetric bilinear form, as it is 

the metric. Beside multiples of the metric itself, it is the only such form depending on at most 

the second derivatives of the metric, and invariant under coordinate changes, i.e. a (2,0) 

tensor formed from the metric. 

If we consider the metric tensor (and the associated Ricci tensor) to be functions of a 

variable which is usually called "time" (but which may have nothing to do with any physical 

time), then the Ricci flow )(tg may be defined by the geometric evolution equation 

)(2)( tgRictg
dt

d
-=  . 

In suitable local coordinate system, thsi equation has a very natural form. Thus, at the ñtimeò 

t, choose local harmonic coordinates so that the coordinate functions are locally defined 

harmonic functions in the metric )(tg . Then the ñevolutionò equation takes the form 

),( ggQgg
dt

d
ijijij µ+=D  , 

where D is the Laplace-Beltrami operator on functions with respect to the metric )(tgg=   

and Q  is a lower-order term quadratic in  and its first-order partial derivatives. This is a non-

linear heat-type equation for ijg (see also section 9). 

With respect to the Poincare conjecture and the Ricci flow we recall 

Grisha Perelman: the entropy formula for the Ricci flow and its geometric applications, 

(submitted on 11 Nov, 2002) 

Abstract: We present a monotonic expression for the Ricci flow, valid in all dimensions and without 

curvature assumptions. It is interpreted as entropy for a certain canonical ensemble. Several 

geometric applications are given. In particular, (1) Ricci flow, considered on the space of riemannian 

metrics modulo diffeomorphism and scaling, has no nontrivial periodic orbits (that is, other than fixed 

points); (2) In a region, where singularity is forming in finite time, the injectivity radius is controlled by 

http://en.wikipedia.org/wiki/Geometric_flow
http://en.wikipedia.org/wiki/Riemannian_manifold
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the curvature; (3) Ricci flow can not quickly turn an almost euclidean region into a very curved one, no 

matter what happens far away. We also verify several assertions related to Richard Hamilton's 

program for the proof of Thurston geometrization conjecture for closed three-manifolds, and give a 

sketch of an eclectic proof of this conjecture, making use of earlier results on collapsing with local 

lower curvature bound. 

Some key terminologies from the Ricci calculus (physical view) and the differential forms 

(mathematical view) might be worth to highlight by a few examples. As partial derivatives of 

tensors are no longer tensor and alternative differential concept is required. This leads to the 

somehow variable conceptional piece of the space-time structure, the concept of (affine) 

connexions, putting euclidian tangential spaces at different space-time points of the 

riemannian space into relation. This is mainly about finding a coordinate independent 

method, to analyze if and how a tensor is changing moving from one point to another. 

It is possible to introduce an invariant type of differentiation on a manifold called covariant 

differentiation, and when this is done the manifold is said to have an affine connexions or to 

be affinely connected. An affine connexion can be obtainedquite naturally from a semi-

riemannian structure, or from other special structures such as a parallelization or as an atlas 

of affinely related coordinates. Sometimes it is convinient to choose an affine connexion to 

use as a tool. However, there is no unique affine connexion on a manifold. 

Affine connections arose historically as an abstraction of the structure of a riemannian space. 

The name may be due to the idea that nearby tangent spaces are connected together by 

linear transformations, so that differences between vectors in different spaces may be 

formed and the limit of difference quotients taken to give derivatives. Originally the operation 

of covariant differentiation was conceived of as a modification of partial differentiation by 

adding in corrective terms to make the result invariant under change of coordinates.  
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Affine Connections 

 

The affine connexions can be introduced also axiomatically in a somwaht broader context 

than is done classically. This additional generality is required to make covariant derivatives of 

vector fields along curves sensible. A preliminary discussion of vector fields over maps 

follows. A vector field along a curve is the special case, in which the map is a curve. 

Ricci calculus  Differential forms 

mv      contravariant vector there is a vector field     ä µ=
k

vv
1

m

m  

alternating (skew-symmetric) contravariant 

tensor kmmmw ...21  of degree k 
there is a dual k-form  

k

k

k

m

mmm

m

mmmw µØØµä
<<

...
...

...

21

1

21  

ma    covariant vector 
there is a 1-form          ä=

k

dxa
1

m

mw  

An alternating (i.e. skew symmetric) 

covariant tensor 
kmmmw ...21

 of degree k 

there is a dual k-form 

k

k

k
dxdx
m

mmm

m

mmmw ØØä
<<

....
...

...

21

1

21

 

A skew symmetric, twofold covariant field 

tensor mnF  

there is a 2-from  n

nm

m

mn dxdxF
k

Øä
<
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Let V
C

 be a vector fields of a manifold
nM  and 

nMba ­),(:g  an integral curve of  V
C

 with 

tangential vector ))(()( tVt gg
C

# = . Therefore there exists to every initial point nMxÍ   an 

integral curce n

xxx Mba ­),(:g  with xx =)0(g  . For  { }
xx

n

V
btaRxMxt <<Í= ),(:CS  

the mapping   

n

V
M­CSF:  

)(:),(:)( txtxt xg==FF  

Is called the flow of the vector field V
C

.  

 

If V
C

 is a  
¤C vector field, then V

C
 operates on 

¤C  scalar fields to give 
¤C  scalar fields. The 

Lie derivation 
V

LCwith respect to V
C

 is an extension of this operation to an operator on all   

tensor fields which preserves type of tensor fields, i.e. 
V

LC is a tensor field of the same type 

asV
C

.  

 

The Lie derivation of a differential k-form 
kw  by a related vector field is defined as follows: 

tdt

d
L

kk

t

t
t

k

t

k

V

ww
ww

-
==
­

=

)(
lim))(()(

*

0
0

* F
FC

  
. 

 

The Lie derivation of a k-form 
kw  can be calculated by the Cartan derivative, i.e. 

))(()()( k

V

k

V

k

V
iddiL www CCC +=  , 

whereby ),......,(:),......)(( 1111 -- = k

k

k

k

V
WWVWWi

C
C ww  is the inner product of V

C
 and 

kw  . 

 

The divergence of a vector field 
nMAË  vanishes if and only if its flow consists of volume 

conserving diffoeorphisms. 
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Some first steps into Maxwell and Einstein equations 

 

Basically the mathematical program B seems to be about a non-standard tensor analysis on 

manifolds. A first assessment might start with the Gauss and Stokes laws (in its integral 

forms) to model flux out of a monad triggered by a certain energy density ñwithinò it: 

ñ =
S

encq
danE

0e

C
A
C

 , 

whereby 
Vm

C12

0 10*8541878176.8 -=e  is the di-electricity constant, giving the permittivity of free 

space, 
encq  the enclosed charge, ñS danE

C
A
C

 the electric flux through a closed surface S, which 

is the number of filed lines of the (electric) vector field E
C

 penetrating the surface S. To 

include the weak forces and ending to the graviton it further needs a link to other physical 

constants, like the Planckôs action constant Js3410*0545727.1 -=> , the speed c of a photon and 

the absolute temperature T , Stefan-Boltzmann constant 
42

810*67051.5
Km

W-=s  which all 

should be realized somehow when crossing the border from hyper real into real state.  

 

We mention the relation 

ñ=
S

danE
V

Ediv
C
A
CC

D

1
lim  ,    0­VD  , 

ñ=
C

sdB
S

Bcurl
C

A
CC

D

1
lim  ,    0­SD , 

being B
C

 a field around a closed path. The magnetic field circulation is modelled by   

ñ= C
sdB
C

A
C

. Faradayôs law states that a circulating field is produced by a magnetic field that 

changes with time, i.e. 

t

B
Ecurl

µ

µ
-=

C

 . 

The divergence operates on a vector field and produces a scalar result that indicates the 

tendency of the field to flow away from a point: 

z

E

y

E

x

E
Ediv zyx

µ

µ
+

µ

µ
+

µ

µ
=
C

 . 

The curl operates on a vector filed and produces a vector result that indicates the tendency 

of the filed to circulate around a point and the direction of the axis of greatest circulation: 

k
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Helmholtzôs theorem says that an arbitrary vector field u
C

 (assumed to be continuous and 

differentiable) can be resolved into the sum of gradient of a scalar field (ñsolenoidal fieldò) 

and the curl of a vector field (ñvortex fieldò). This resolution is given in the entire space: 

(*)     Acurlgradu
CC

+= f  , 

where the vortex field A
C

 can be restricted by the condition  

.0=Adiv
C

 

Taking the divergence resp. the curl of (*) one obtains 

udiv
C

=Ðf2    , ucurlA
CC

=Ð- 2  . 

Both ñPoissonôsò potential equations with a given right side have a unique solution provided 

that  u
C

 vanishes at infinity faster than 
1-r . 

Let MkW be the vector space of differential forms of order k (k-forms), ([1] Bishop R., 

Goldberg S.), A
C

 a differentiable vector field, M  a boundary manifold (
3RXM Ë= ), 

)(XCf ¤Í then the vector valued line-, vector valued area- and scalar volume elements are 

given by differential forms 

M

dx

dx
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=
C  ,  MdxdxdxdV 3321 WÍØØ=  

and the following relations are fulfilled 

sgradfddf
C

=  ,  adAcurlsdAd
CCCC

=)( ,  dVAdivadAd
CCC

=)(  . 

The Gauss law (divergence theorem) and Stokes theorem are given by 

ññ
µ

=
33 MM

adAdVAdiv
CCC

   ,    ññ
µ

=
22 MM

sdAadAcurl
CCCC

 . 

The circulation of a vector field over a closed path  
2Mµ  is equal to the integral of the normal 

component of the curl of that field over a surface  
2M  for which 

2Mµ   is a boundary. 

The classical electrodynamic is modelled by the Maxwell equations 

                            (1)             j
c

txBcurltxE
tc

CCCCC p4
),(),(

1
-=-

µ

µ
 ,  pr4),( =txEdiv
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                             (2)             0),(),(
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µ

µ
txEcurltxB
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 ,          0),( =txBdiv
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 . 
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Multiplying equation (1) with E
C

 and equation (2) with B
C

 leads to 

)(
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The Polynting vector is defined by  
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Its absolute value S
C

 gives the intensity (Leistungsdichte) of a wave or the momentum 

density of a wave multiplied by  2c .  

Using the relation 

[ ] BcurlEEcurlBBEdiv
CCCCCC

-=³   

is leading to 

SdivEj
BE

t
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--=ù
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ø
é
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è +

µ

µ

p8

22

 . 

(just as a comment: at this point the quantum mechanics integrates by time dt  and/or by 

volume dV to model e.g. energy density or the flux through the surface of the volume, if itôs 

not the whole space; why not doing this integrated within a 4-dim. (Riemann) manifold, 

building on the Poincare conjecture and its positive answer?). 

Let ( )
ikFF =

CC
 be the Faraday tensor, defined by 
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and its corresponding Hodge-star tensor ( )
ikFF *=*

CC
, which is the Maxwell tensor, given by 
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Then for the Maxwell equations (1) and (2) the folowing equivalent formulations are valid: 

(1)  Ú    IFd p4*=*
CC

   ,     (2)   Ú   0=Fd
CC

 . 
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We note the two Poicare lemmata: 

1. Poincare lemma: for each differential form F  it holds  0)( =dFd  

2. Poincare lemma: for each differential form F  with  0=dF  for an open domain of a point P  

there exists a differential form G  with  FdG=  . 

 

From the second Maxwell equations (2) it follows the existence of a scalar potential ),( txf  

and a vector potential ),( txA
C

 fulfilling 

                                 (*)      ),( txAcurlB
CCC

=  and  ),(
1

),( txA
tc

txgradE
CCC

µ

µ
--= f  . 

The movement of particles in an electromagnetic field is described by 

                                 (**)     [ ]Acurlv
c

e
egradtxA

tc

e

dt

pd CCCC
C

+-
µ

µ
-= f),(  . 

A field is characterized by the action it takes to the movement of charges. But the 

ñmovementò equationò (**) depends from the field forces E
C

  and B
C

, i.e. fields are physically 

identical in case of identical vectors E
C

  and B
C

. In case the potentials ),( txf  and ),( txA
C

 are 

given, the fields E
C

  and B
C

are determined. But to a given field there are different potentials, 

i.e. the relations (*) do not determine uniquely the potentials ),( txf  and ),( txA
C

 as for an 

arbitrary function  ),( txf  the (Eich-) transforms (of second kind) 

),(
1

txf
tc

C

µ

µ
+=¡­ fff  ,   ),( txgradfAAA

CCCC
-=¡­  

keeps both fields E
C

  and B
C

 unchanged. This leads to the additional physical request of ñEich 

invarianceò, i.e. in a model like the above using potentials to describe observables all 

projections about those observables have to be invariant under such transforms. This 

degree of freedom might be used to define appropriately the monadôs vacuum density 

that it produces the key physical constants above.  

The Maxwell equations determine the electrical and magnetic fields E
C

  and B
C

 as vector-

valued functions on 
3R b y a given distribution of an electrical charge density r and electrical 

current density j
C

 . The underlying laws to which this electrical charge density r and 

electrical current density j
C

 are following are unknown.  
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The Maxwell equations are about two distinct phenomena: 

              - magnetic induction, involving a changing magnetic field 

              - electromotive force (emf), involving movement of a charged particle through a  

                 magnetical field 

ñ-=
S

danB
dt

d
emf

C
A
C

:  . 

Changing magnetic flux through a surface induces an emf in any boundary path of that 

surrface, and a changing magnetic field induces a circulating electrical field. 

The energy density, giving the distribution of energy, is a tensor being known only outside 

the assumed electromagnetical ñparticlesò. The energic factors, which give the structure of 

electricity of electronical particles with given size and charge, are not known.  

One standard assumption is: ñMatter consists of ñrealò ñparticlesòò 

Based on Maxwellôs equations those particles cannot be considered as 

electromagnetic fields without any singularities. Based on the assumptions of ñrealò 

particles it requires additional ñenergicalò terms, which ensure that particles with same sort of 

charge keep together, although there is a ñpush offò action between them. Poincare assumes 

a sort of ñnegative pressureò inside those particles, which compensates push off forces. The 

standard models assume that this pressure cannot vanish outside of the particles, which e.g. 

lead to an additional ñpressureò term in the stress-energy tensor (A. Einstein, Grundzüge der 

Relativitätstheorie, p. 106): 

pg
ds

dx

ds

dx
ggT ikkiik -=

ba
ba s  . 

The Poincare lemma transforms the Maxwell field as gauge curvature ([9] Penrose R., 19.4): 

If a formr-  a satisfy   0=ad , then locally there is always an formr --)1(  b for which it 

holds ba d= . Moreover, in a region with Euclidian topology, this local result extends to a 

global one. 

The energy-stress tensor ikT  is a function of the Faraday tensor 
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The energy-stress tensor ikT is divergence free. According to Einsteinôs graviation theory 

ñmatter tells space how to curve, and space tells matter how to moveò, i.e. Einsteinôs 

gravitation tensor has to fulfill 

ikik cTG =  . 

The fact is that the energy-stress tensor is divergence free. This is not true for the Ricci 

tensor, which leads to Einsteinôs field equations for the tensor field in the form 

ikikik TWeylRicciRgRG k-=+=-=
2

1
:         

with     gcmGc /10*86.18 272 -º=pk  . 

 

The corresponding movement equations of a particle for the curve )(txx mm= are given in the 

form 

tttt

ba

n

ab
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nm
µ

µ

µ

µ

µ
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g
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d
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1
,

 . 

This is now about 

- 10 equations with 10 potentials 
ikF   

- a non-linear relation of the potentials, i.e. the gravitation potential is not the total of 

single gravitations. 

This is a circular structure, i.e. )( ikik Tf=F  and )( ikfstructuretimespace F=-- . The ikT  is 

measurable, which reflect the principle of energy-momentum conservation.  
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The  4¢n  condition within calculus analysis 

The solutions of a system of non-standard hyperbolic partial differential equations are 

expected to provide ñshericalò non-standard (hyper-real) waves, solving a still unproven 

conjecture (see [CoHi] Courant R., Hilbert D., Methoden der Mathematischen Physik, II, 

chapter VI, §10) that sherical waves for arbitrary time-like lines do exist only in case of 

space-time dimension 2=n or 4=n  and only then, if the underlying differential equation is 

of type of the wave equation. This would characterize the 4 dimensional space-time 

continuum compared to all other dimensions. This might give arguments not too early 

increase the number of the space-time dimension (just to ensure model consistence between 

the two (SU(2),SU(3)) forces), while still struggling to integrate the last force, ñexplainingò the 

graviton by a ñstringò (which is nothing else than a solution of a wave equation (describing 

again a field!), ñactingò in the very small, i.e. 1810-  environment). 

I.M. Singer, J. Thorpe (the curvature of 4-dimensional Einstein spaces, Global analysis, 

papers in honour of K. Kodaira, p. 355-365, Princepton Iniv. Press 1969) discovered a result 

of A. Einstein related to especially duality of 4 dimensional manifolds: 

Let  ),( gM  a  4  dimensional oriented Riemann manifold, * the self adjoint Hodge operator 

and  R  the (self adjoint) Riemann curvature tensor, then it holds   

),( gM  is an Einstein space Ú         *=* AA RR    . 

 

The  4¢n  condition within algebra 

Just searching for other mathematical areas, where  4¢n  and 4>n  give some 

chracterisation, leads to the Galois theory.It provides a connection between field theory and 

group theory. Applying Galois theory certain problems in field theory can be reduced to group 

theory, which is in some sense simpler and better understood. 

Originally Galois used permutation groups to describe how the various roots of a given 

polynomial equation are related to each other. The modern approach to the Galois theory, 

developed byR. Dedekind, L.Kronecker and Emil Artin, among others, involve studying 

automorhphisms and field extensions. 

Emil Artin, (1998). Galois Theory.  Dover Publications. ISBN 0-486-62342-4, 

Reprinting of second revised edition of 1944, The University of Notre Dame Press, Indiana, USA, 1948); Galois 

Theorie, Verlag Harri Deutsch, Thun, Frankfurt a.M., 1988. 

If we are given a polynomial, it may happen that some of the roots of the polynomial are 
connected by various algebraic equations. For example, it may turn out that for two of the 

roots, say A  and B , the equation 75 32 =+ BA  holds. The central idea of the Galois theory is 

considering permutations (or rearrangements) of the roots having the property that any 
algebraic equation satisfied by the roots is still satisfied after the roots have been permuted. 
An important proviso is that one restricts to algebraic equations whose coefficients are 
rational numbers.  
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These permutations together form a permutation group 
nS , also called the Galois group of 

the polynomial (over the rational numbers).  

The notion of a solvable group in group theory allows one to determine whether a polynomial 
is solvable in the radicals, depending on whether its Galois group has the property of 

solvability. One starts with a field extension KL /  (read: L over K), and examines the group 

of field automorphisms of KL /  (these are mappings LL­:a  with xx =)(a  for all x  in K ). 

The coefficients of the polynomial in question should be chosen from the base field K. The 
top field L should be the field obtained by adjoining the roots of the polynomial in question to 
the base field. Any permutation of the roots which respects algebraic equations as described 

above gives rise to an automorphism of KL / , and vice versa. 

In essence, each field extension KL /  corresponds to a factor group in a composition series 

of the Galois group. If a factor group in the composition series is cyclic of order n, then if the 
corresponding field extension is an extension of a field containing a primitive root of unity, 
then it is a radical extension, and the elements of L  can then be expressed using the nth 
root of some element of K . 

If all the factor groups in its composition series are cyclic, the Galois group is called solvable, 
and all of the elements of the corresponding field can be found by repeatedly taking roots, 
products, and sums of elements from the base field (usually Q). 

One of the great triumphs of Galois Theory was the proof that for every 4>n , there exist 

polynomials of degree n  which are not solvable by radicals. This is due to the fact that for 

4>n  the symmetric group 
nS  , which is the corresponding Galois group 

{ }KxxxKAutGS nn ),...,( 21==   

containing a simple, non-cyclic, normal subgroup, which is basically defined by an arbitrary 
three-cycle permutation: 

. acba ­­­  . 

The underlying theorem, from which Abelôs impossiblity theorem follows, is 

Theorem: If G  is a subgroup of the symmetric group  
nS  for 4>n  containing all three-

cycles, that is, all cyclic permutations of the form acba ­­­  of three distinct elements  

cba ,,  and if  N is a normal subgroup of G  with comutative quotient group NG / , then this 

normal subgroup also contains all the three-cycles. 

On the basis of the theorem above it now can be deduced step by step that every group in 
an ascending chain corresponding to a solution of the symmetric group 

nS  
must contain all 

three-cycles. The chain can therefore not end up in the trivial group containing a single 
element, and so the symmetric group cannot be solvable. 

We additionally note that a n-dimension Riemannian manifold can be embedded locally into 
a N-dimensional Euclidean space, if 

2

)1( +
²

nn
N
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If a proper n-dimensional manifold has to be embedded into a 2n-Euclidean 

Lagrange/Hamiltonian (particle-momentum) framwork this leads to the condition 3=n . 

Finally we note a theorem from minimal surface theory and the related Plateau problem: 

Let 

{ }1),(: 2 <@Í== zCRvuzD

 

be the open unit circle and D  its closure.  

 

Theorem:  

For 2²n

 

let nRËG  be a simple, closed curve of the class 1C . Then there is a continuous 

function 
nEDX ­:  which is 

¤ÍC  fulfilling the following properties: 

1.  DX  is weak conform, i.e. vu XX =  and vu XX ^  , whereby ñweakò means, that zeros 

of uX  are allowed, 

2.  DX  is harmonic, i.e. 0=DX  , 

3.  X  maps Dµ  homöomorph onto G . 

The set of inner branch points { }0: =µ=Í= zXDzV  lies isolated in D and VDX -  is a 

conform minimal surface with a parametrization.  Minimizes the area as variation over all 

continuous maps    
nRDX ­:

~
 which are  )(1 DCÍ , mapping Dµ  homöomorph onto G . 

 

Remark: For  2²n  this is the Riemann mapping theorem. 
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Distribution solution of the 1D wave equation 

 

The  Ăvibration stringñ equation 

02 =- xxtt uku  

has a solution )(),( ktxftxu -=  for any function of one variable f , which has the physical 

interpretation of a Ătraveling waveñ with Ăshapeñ )(xf  moving at velocity k . 

There is no physical reason for the ñshapeò to be differentiable, but if it is not, the differential 

equation is not satisfied at some points. In order to not through away physically meaningful 

solutions because of technicalities, the concept of distributions can be applied. 

If the equation above is also meaningful, if u is a distribution, then u is called a weak solution 

of it. If u is twice continuously differentiable and the equation holds, one calls u a strong or 

classical  solution. Each classical solution is a weak solution. In case of the equation above 

itôs also the other way around. The same is NOT TRUE for the elliptic Laplace equation 

(counter example is the classical solution )log(:).( 22 yxyxu += , but not a weak solution as it 

holds there pd4)log( 22 =+D yx ). In order to see this we show that for )()(:).( 21 RLktxfyxu locÍ-=  

it holds 

(*)                                                  0),( 2 =- jxxtt uku  . 

From the following identities 

i)                dxdttkxfuu tttttt jjj ññ -== )(),(),(

 

ii)              dxdttkxfuu xxxxxx jjj ññ -== )(),(),(

 

it follows 

[ ]dxdtktkxfuku xxttxxtt jjj 22 )(),( --=- ññ  . 

Substituting the variable in the form ktxy -=  and ktxz +=  means 
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 and dydzkdxdt=2  .

 

From this it follows 

ñ ñññ
¤-

¤

¤-

-=-=- dydzyfkdzdyyfkuku yzyzxxtt ))((2)(2),( 2 jjj . 

As  0==
¤=

-¤=

¤

¤-

ñ
z

zyyzdz jj this proves (*) above.  
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Why Strings? 

While the Standard Model has been very successful in describing most of the phenomemon 

that we can experimentally investigate with the current generation of particle acceleraters, it 

leaves many unanswered questions about the fundamental nature of the universe. The goal 

of modern theoretical physics has been to find a "unified" description of the universe. This 

has historically been a very fruitful approach. For example Einstein-Maxwell theory unifies 

the forces of electricity and magnetism into the electromagnetic force. The Nobel prize 

winning work of Glashow, Salam, and Weinberg successfully showed that the 

electromagnetic and weak forces can be unified into a single electroweak force. There is 

actually some pretty strong evidence that the forces of the Standard Model should all unify as 

well. When we examine how the relative strengths of the strong force and electroweak force 

behave as we go to higher and higher energies, we find that they become the same at an 

energy of about GeV1610 . In addition the gravitational force should become equally 

important at an energy of about GeV1910 .  

 

 
 

The goal of string theory is to explain the "?" in the above diagram. 

 

The characteristic energy scale for quantum gravity is called the Planck Mass, and is given in 

terms of Planck constant, the speed of light, and Newton's constant,  

219 /10*22.1/ cGeVGcM Npl == >  

Physics at this high energy scale describes the universe as it existed during the first 

moments of the Big Bang. These high energy scales are completely beyond the range which 

can be created in the particle accelerators we currently have (or will have in the foreseeable 

future.) Most of the physical theories that we use to understand the universe that we live in 

also break down at the Planck scale. However, string theory shows unique promise in being 

able to describe the physics of the Planck scale and the Big Bang. 

In its final form string theory should be able to provide answers to answer questions like:  

¶ Where do the four forces that we see come from?  

¶ Why do we see the various types of particles that we do?  

¶ Why do particles have the masses and charges that we see?  

¶ Why do we live in 4 space-time dimensions?  

¶ What is the nature of space-time and gravity?  

http://www.sukidog.com/jpierre/strings/glossary.htm#standard
http://www.sukidog.com/jpierre/strings/glossary.htm#electro
http://www.sukidog.com/jpierre/strings/glossary.htm#ew
http://www.sukidog.com/jpierre/strings/glossary.htm#strong


 65 

String Basics 

We are used to thinking of fundamental particles (like electrons) as point-like 0-dimensional 

objects. A generalization of this is fundamental strings which are 1-dimensional objects. 

They have no thickness but do have a length, typically 10-33 cm. This is very small 

compared to the length scales that we can reasonably measure, so these strings are so 

small that they practically look like point particles. However their stringy nature has important 

implications as we will see.  

 

Strings can be open or closed. As they move through space-time they sweep out an 

imaginary surface called a world-sheet.  

 

These strings have certain vibrational modes which can be characterized by various 

quantum numbers such as mass, spin, etc. The basic idea is that each mode carries a set of 

quantum numbers that correspond to a distinct type of fundamental particle. This is the 

ultimate unification: all the fundamental particles we know can be described by one object, a 

string!. A very loose analogy can be made with say, a violin string. The vibrational modes are 

like the harmonics or notes of the violin string, and each type of particle corresponds to one 

of these notes. 

As an example let's consider a closed string mode which looks like:  

 

This mode is characteristic of a spin-2 massless graviton (the particle that mediates the 

force of gravity). This is one of the most attractive features of string theory. It naturally and 

inevitably includes gravity as one of the fundamental interactions.  

Strings interact by splitting and joining. For example the anihilation of two closed strings into 

a single closed string occurs with a interaction that looks like:  
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Notice that the worldsheet of the interaction is a smooth surface. This essentially accounts 

for another nice property of string theory. It is not plagued by infinities in the way that point 

particle quantum field theories are. The analogous Feynman diagram in a point particle field 

theory is:  

 

Notice that the interaction point occurs at a topological singularity in the diagram (where the 

3 world-lines intersect). This leads to a break down of the point particle theory at high 

energies.  

If we glue two of the basic closed string interactions together, we get a process by which two 

closed strings interact by joining into an intermediate closed string which splits apart into two 

closed strings again:  

 

 

 
This is the leading contribution to this process and is called a tree level interaction.  To 
compute quantum mechanical amplitudes using perturbation theory we add contributions 
from higher order quantum processes.  Perturbation theory provides good answers as long 
as the contributions get smaller and smaller as we go to higher and higher orders.  Then we 
only need to compute the first few diagrams to get accurate results.  In string theory, higher 
order diagrams correspond to the number of holes (or handles) in the world sheet. 

 

 

 

The nice thing about this is that at each order in perturbation theory there is only one 
diagram.  In point particle field theories the number of diagrams grows exponentially at 
higher orders. The bad news is that extracting answers from diagrams with more than about 
two handles is very difficult due to the complexity of the mathematics involved in dealing with 
these surfaces.  Perturbation theory is a very useful tool for studying the physics at weak 
coupling, and most of our current understanding of particle physics and string theory is based 
on it.  However it is far from complete.  The answers to many of the deepest questions will 
only be found once we have a complete non-perturbative description of the theory. 

 



 67 

D-branes 

Strings can have various kinds of boundary conditions. For example closed strings have 
periodic boundary conditions (the string comes back onto itself). Open strings can have two 
different kinds of boundary conditions called Neumann and Dirichlet boundary conditions. 
With Neumann boundary conditions the endpoint is free to move about but no momentum 
flows out. With Dirichlet boundary conditions the endpoint is fixed to move only on some 
manifold. This manifold is called a D-brane or Dp-brane ('p' is an integer which is the number 
of spatial dimensions of the manifold). For example we see open strings with one or both 
endpoints fixed on a 2-dimensional D-brane or D2-brane:  

 

D-branes can have dimensions ranging from -1 to the number of spatial dimensions in our 
spacetime. For example superstrings live in a 10-dimensional spacetime which has 9 spatial 
dimensions and one time dimension. Therefore the D9-brane is the upper limit in superstring 
theory. Notice that in this case the endpoints are fixed on a manifold that fills all of space so it 
is really free to move anywhere and this is just a Neumann boundary condition! The case p= 
-1 is when all the space and time coordinates are fixed, this is called an instanton or D-
instanton. When p=0 all the spatial coordinates are fixed so the endpoint must live at a single 
point in space, therefore the D0-brane is also called a D-particle. Likewise the D1-brane is 
also called a D-string. Incidently the suffix 'brane' is borrowed from the word 'membrane' 
which is reserved for 2-dimensional manifolds or 2-branes!  

D-branes are actually dynamical objects which have fluctuations and can move around. This 
was first shown by physicist Joseph Polchinski. For example they interact with gravity. In the 
diagram below we see one way in which an closed string (graviton) can interact with a D2-
brane. Notice how the closed string becomes an open string with endpoints on the D-brane 
at the intermediate point in the interaction.  

 

 
We now see that string theory is more than just a theory of strings! 
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Supersymmetric Strings 

 
There are two types of particles in nature - fermions and bosons. A fundamental theory of 
nature must contain both of these types. When we include fermions in the worldsheet theory 
of the string, we automatically get a new type of symmetry called supersymmetry which 
relates bosons and fermions. Fermions and bosons are grouped together into 
supermultiplets which are related under the symmetry. This is the reason for the "super" in 
"superstrings".  
A consistent quantum field theory of superstrings exists only in 10 spacetime dimensions! 
Otherwise there are quantum effects which render the theory inconsistent or 'anomalous'. In 
10 spacetime dimensions the effects can precisely cancel leaving the theory anomaly free. It 
may seem to be a problem to have 10 spacetime dimensions instead of the 4 spacetime 
dimensions that we observe, but we will see that in getting from 10 to 4 we actually find some 
interesting physics.  
In terms of weak coupling perturbation theory there appear to be only five different 
consistent superstring theories known as Type I SO(32), Type IIA, Type IIB, SO(32) 
Heterotic and E8 x E8 Heterotic.  

   

 
Type 

IIB  
Type IIA  

E8 x E8 

Heterotic 

SO(32) 

Heterotic 

Type I 

SO(32) 

String Type Closed Closed Closed Closed 
Open   

(& closed) 

10d 

Supersymmetry 

N=2   

(chiral) 

N=2   

(non-
chiral) 

N=1 N=1 N=1 

10d Gauge groups none none E8 x E8 SO(32) SO(32) 

D-branes 
-

1,1,3,5,7 
0,2,4,6,8 none none 1,5,9 

   
Type I SO(32):  
This is a theory which contains open superstrings. It has one (N=1) supersymmetry in 10 
dimensions. Open strings can carry gauge degrees of freedom at their endpoints, and 
cancellation of anomalies uniquely constrains the gauge group to be SO(32). It contains D-
branes with 1, 5, and 9 spatial dimensions.  
   
Type IIA:  
This is a theory of closed superstrings which has two (N=2) supersymmetries in ten 
dimensions. The two gravitini (superpartners to the graviton) move in opposite directions on 
the closed string world sheet and have opposite chiralities under the 10 dimensional Lorentz 
group, so this is a non-chiral theory. There is no gauge group. It contains D-branes with 0, 2, 
4, 6, and 8 spatial dimensions.  
   
Type IIB:  
This is also a closed superstring theory with N=2 supersymmetry. However in this case the 
two gravitini have the same chiralities under the 10 dimensional Lorentz group, so this is a 
chiral theory. Again there is no gauge group, but it contains D-branes with -1, 1, 3, 5, and 7 
spatial dimensions.  
   
SO(32) Heterotic:  
This is a closed string theory with worldsheet fields moving in one direction on the world 
sheet which have a supersymmetry and fields moving in the opposite direction which have 
no supersymmetry. The result is N=1 supersymmetry in 10 dimensions. The non-
supersymmetric fields contribute massless vector bosons to the spectrum which by anomaly 
cancellation are required to have an SO(32) gauge symmetry.  
   

http://www.sukidog.com/jpierre/strings/glossary.htm#fermions
http://www.sukidog.com/jpierre/strings/glossary.htm#bosons
http://www.sukidog.com/jpierre/strings/glossary.htm#supersym
http://www.sukidog.com/jpierre/strings/glossary.htm#gauge theory
http://www.sukidog.com/jpierre/strings/glossary.htm#SO(N)
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E8 x E8 Heterotic:  
This theory is identical to the SO(32) Heterotic string, except that the gauge group is E8 X E8 
which is the only other gauge group allowed by anomaly cancellation. 
We see that the Heterotic theories don't contain D-branes. They do however contain a 
fivebrane soliton which is not a D-brane. The IIA and IIB theories also contain this fivebrane 
soliton in addition to the D-branes. This fivebrane is usually called the "Neveu-Schwarz 
fivebrane" or "NS fivebrane".  
 

It is worthwhile to note that the E8 x E8 Heterotic string has historically been considered to 
be the most promising string theory for describing the physics beyond the Standard Model.  It 
was discovered in 1987 by Gross, Harvey, Martinec, and Rohm and for a long time it was 
thought to be the only string theory relevant for describing our universe.  This is because the 
SU(3) x SU(2) x U(1) gauge group of the standard model can fit quite nicely within one of the 
E8 gauge groups.  The matter under the other E8 would not interact except through gravity, 
and might provide a answer to the Dark Matter problem in astrophysics.  Due to our lack of a 
full understanding of string theory, answers to questions such as how is supersymmetry 
broken and why are there only 3 generations of particles in the Standard Model have 
remained unanswered.  Most of these questions are related to the issue of compactification 
(discussed on the next page).  What we have learned is that string theory contains all the 
essential elements to be a successful unified theory of particle interactions, and it is virtually 
the only candidate which does so.  However, we don't yet know how these elements 
specifically come together to describe the physics that we currently observe.  
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Extra Dimensions 
 
 
Superstrings live in a 10-dimensional spacetime, but we observe a 4-dimensional spacetime. 
Somehow we need to link the two if superstrings are to describe our universe. To do this we 
curl up the extra 6 dimensions into a small compact space. If the size of the compact space 
is of order the string scale (10-33 cm) we wouldn't be able to detect the presence of these 
extra dimensions directly - they're just too small. The end result is that we get back to our 
familiar (3+1)-dimensional world, but there is a tiny "ball" of 6-dimensional space associated 
with every point in our 4-dimensional universe. This is shown in an extremely schematic way 
in the following illustration:  

 

This is actually a very old idea dating back to the 1920's and the work of Kaluza and Klein. 
This mechanism is often called Kaluza-Klein theory or compactification. In the original work 
of Kaluza it was shown that if we start with a theory of general relativity in 5-spacetime 
dimensions and then curl up one of the dimensions into a circle we end up with a 4-
dimensional theory of general relativity plus electromagnetism! The reason why this works is 
that electromagnetism is a U(1) gauge theory, and U(1) is just the group of rotations around 
a circle. If we assume that the electron has a degree of freedom corresponding to point on a 
circle, and that this point is free to vary on the circle as we move around in spacetime, we 
find that the theory must contain the photon and that the electron obeys the equations of 
motion of electromagnetism (namely Maxwell's equations). The Kaluza-Klein mechanism 
simply gives a geometrical explanation for this circle: it comes from an actual fifth dimension 
that has been curled up. In this simple example we see that even though the compact 
dimensions maybe too small to detect directly, they still can have profound physical 
implications. Incidentally the work of Kaluza and Klein leaked over into the popular culture 
launching all kinds of fantasies about the "Fifth dimension"! 
 
How would we ever really know if there were extra dimensions and how could we detect 
them if we had particle accelerators with high enough energies? From quantum mechanics 
we know that if a spatial dimension is periodic the momentum in that dimension is quantized, 
p = n / R (n=0,1,2,3,....), whereas if a spatial dimension is unconstrained the momentum can 
take on a continuum of values. As the radius of the compact dimension decreases (the circle 
becomes very small) then the gap between the allowed momentum values becomes very 
wide. Thus we have a Kaluza Klein tower of momentum states.  

 

http://www.sukidog.com/jpierre/strings/glossary.htm#spacetime


 71 

If we take the radius of the circle to be very large (the dimension is de-compactifying) then 
the allowed values of the momentum become very closely spaced and begin to form a 
continuum. These Kaluza-Klein momentum states will show up in the mass spectrum of the 
uncompactifed world. In particular, a massless state in the higher dimensional theory will 
show up in the lower dimensional theory as a tower of equally spaced massive states just as 
in the picture shown above. A particle accelerator would then observe a set of particles with 
masses equally spaced from each other. Unfortunately, we'd need a very high energy 
accelerator to see even the lightest massive particle.  
 
Strings have a fascinating extra property when compactified: they can wind around a 
compact dimension which leads to winding modes in the mass spectrum. A closed string can 
wind around a periodic dimension an integral number of times. Similar to the Kaluza-Klein 
case they contribute a momentum which goes as p = w R (w=0,1,2,...). The crucial difference 
here is that this goes the other way with respect to the radius of the compact dimension, R. 
So now as the compact dimension becomes very small these winding modes are becoming 
very light!  

 

 
Now to make contact with our 4-dimensional world we need to compactify the 10-
dimensional superstring theory on a 6-dimensional compact manifold. Needless to say, the 
Kaluza Klein picture described above becomes a bit more complicated. One way could 
simply be to put the extra 6 dimensions on 6 circles, which is just a 6-dimensional Torus. As 
it turns out this would preserve too much supersymmetry. It is believed that some 
supersymmetry exists in our 4-dimensional world at an energy scale above 1 TeV (this is the 
focus of much of the current and future research at the highest energy accelerators around 
the word!). To preserve the minimal amount of supersymmetry, N=1 in 4 dimensions, we 
need to compactify on a special kind of 6-manifold called a Calabi-Yau manifold.  
The properties of the Calabi-Yau manifold can have important implications for low energy 
physics such as the types of particles observed, their masses and quantum numbers, and 
the number of generations.  One of the outstanding problems in the field has been the fact 
that there are many many Calabi-Yau manifolds (thousands upon thousands?) and we have 
no way of knowing which one to use.  In a sense we started with a virtually unique 10-
dimensional string theory and have found that possibilities for 4-dimensional physics are far 
from unique, at least at the level of our current (and incomplete) understanding. The long-
standing hope of string theorists is that a detailed knowledge of the full non-perturbative 
structure of the theory, will lead us to an explanation of how and why our universe flowed 
from the 10-dimensional physics that probably existed during the high energy phase of the 
Big Bang, down to the low energy 4-dimensional physics that we observe today. Possibly we 
will find a unique Calabi-Yau manifold that does the trick. Some important work of Andrew 
Strominger has shown that Calabi-Yau manifolds can be continuously connected to one 
another through conifold transitions and that we can move between different Calabi-Yau 
manifolds by varying parameters in the theory.  This suggests the possibility that the various 
4-dimensional theories arising from different Calabi-Yau manifolds might actually be different 
phases of an single underlying theory. 
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String Duality 
 
The five superstring theories appear to be very different when viewed in terms of their 
descriptions in weakly coupled perturbation theory. In fact they are all related to each other 
by various string dualities. We say two theories are dual when they both describe the same 
physics.  
The first kind of duality that we will discuss is called T-duality. This duality relates a theory 
which is compactified on a circle with radius R, to another theory compactified on a circle 
with radius 1/R. Therefore when one theory has a dimension curled up into a small circle, the 
other theory has a dimension which is on a very large circle (it is barely compactified at all) 
but they both describe the same physics! The Type IIA and Type IIB superstring theories are 
related by T-duality and the SO(32) Heterotic and E8 x E8 Heterotic theories are also related 
by T-duality.  
The next duality that we will consider is called S-duality. Simply put, this duality relates the 
strong coupling limit of one theory to the weak coupling limit of another theory. (Note that the 
weak coupling descriptions of both theories can be quite different though.) For example the 
SO(32) Heterotic string and the Type I string theories are S-dual in 10 dimensions. These 
means that the strong coupling limit of the SO(32) Heterotic string is the weakly coupled 
Type I string and visa versa. One way to find evidence for a duality between strong and weak 
coupling is to compare the spectrum of light states in each picture and see if they agree. For 
example the Type I string theory has a D-string state that is heavy at weak coupling, but light 
at strong coupling. This D-string carries the same light fields as the worldsheet of the SO(32) 
Heterotic string, so when the Type I theory is very strongly coupled this D-string is becomes 
very light and we see the weakly coupled Heterotic string description emerging. The other S-
duality in 10 dimensions is the self duality of the IIB string: the strong coupling limit of the IIB 
string is another weakly coupled IIB string theory. The IIB theory also has a D-string (with 
more supersymmetry than the Type I D-string and hence different physics) which becomes a 
light state at strong coupling, but this D-string looks like another fundamental Type IIB string.  

 

In 1995, physicist and mathematician Edward Witten pioneered the idea that Type IIA and E8 
x E8 string theories are related to each other through a new 11-dimensional theory which he 
called "M-theory". This revelation provided the missing link that related all of the superstring 
theories through a chain of dualities. The dualities between the various string theories 
provide strong evidence that they are simply different descriptions of the same underlying 
theory. Each description has its own regime of validity, and in certain limits another 
description takes over just when the original one is breaks down.   
 
What is this "M-theory" shown above?   
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M-theory 
 
 
M-theory is described at low energies by an effective theory called 11-dimensional 
supergravity. This theory has a membrane and 5-branes as solitons, but no strings. How can 
we get the strings that we've come to know and love from this theory? We can compactify the 
11-dimensional M-theory on a small circle to get a 10-dimensional theory. If we take a 
membrane with the topology of a torus and wrap one of its dimensions on this compact 
circle, the membrane will become a closed string! In the limit where the circle becomes very 
small we recover the Type IIA superstring.  

 

How do we know that M-theory on a circle gives the IIA superstring, and not the IIB or 
Heterotic superstrings? The answer to this question comes from a careful analysis of the 
massless fields that we get upon compactification of 11-dimensional supergravity on a circle. 
Another easy check is that we can find an M-theory origin for the D-brane states unique to 
the IIA theory. Recall that the IIA theory contains D0,D2,D4,D6,D8-branes as well as the NS 
fivebrane. The following table summarizes the situation:  
   

M-theory on circle IIA in 10 dimensions 

Wrap membrane on circle IIA superstring 

Shrink membrane to zero size D0-brane 

Unwrapped membrane D2-brane 

Wrap fivebrane on circle D4-brane 

Unwrapped fivebrane NS fivebrane 

 
The two that have been left out are the D6 and D8-branes. The D6-brane can be interpreted 
as a "Kaluza Klein Monopole" which is a special kind of solution to 11-dimensional 
supergravity when it's compactified on a circle. The D8-brane doesn't really have clear 
interpretation in terms of M-theory at this point in time; that's a topic for current research!  
 
We can also get a consistent 10-dimensional theory if we compactify M-theory on a small line 
segment. That is, take one dimension (the 11-th dimension) to have a finite length. The 
endpoints of the line segment define boundaries with 9 spatial dimensions. An open 
membrane can end on these boundaries. Since the intersection of the membrane and a 
boundary is a string, we see that the 9+1 dimensional worldvolume of the each boundary can 
contain strings which come from the ends of membranes. As it turns out, in order for 
anomalies to cancel in the supergravity theory, we also need each boundary to carry an E8 
gauge group. Therefore as we take the space between the boundaries to be very small we're 
left with a 10-dimensional theory with strings and an E8 x E8 gauge group. This is the E8 x 
E8 heterotic string!  
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So given this new phase 11-dimensional phase of string theory, and the various dualities 
between string theories, we're led to the very exciting prospect that there is only a single 
fundamental underlying theory -- M-theory.  The five superstring theories and 11-D 
Supergravity can be thought of as classical limits.  Previously, we've tried to deduce their 
quantum theories by expanding around these classical limits using perturbation 
theory.  Perturbation has its limits, so by studying non-perturbative aspects of these theories 
using dualities, supersymmetry, etc. we've come to the conclusion that there only seems to 
be one unique quantum theory behind it all.  This uniqueness is very appealing, and much of 
the work in this field will be directed toward formulating the full quantum M-theory.  
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Black Holes 

 

The classical description of gravity known as General Relativity, contains solutions which are 
called "black holes". There are many different kinds of black hole solutions but they share 
some common characteristics. The event horizon is a surface in spacetime which, loosely 
speaking, divides the inside of the black hole from the outside. The gravitational attraction of 
a black hole is so strong that any object that crosses the event horizon, including light, can 
never escape out of the black hole. Classical black holes are therefore relatively featureless, 
but they can be described by a set of observable parameters such as mass, charge, and 
angular momentum.  

 

A Penrose Diagram shows the global causal structure of a space-time.  It is a space-time 
diagram in which all light rays travel in 45 degree angles. Therefore massive particles must 
travel on trajectories that lie within the light cone which sits at every point in the diagram.  In 
the following diagram the causal structure of a spherically symmetric "Schwarzschild" type 
black hole is shown.  Only radial and time directions are represented while angular directions 
are suppressed.  Once inside the event horizon, the only way for a trajectory to escape to 
future infinity is if it travelled faster than light which is not possible according to the laws of 
special relativity.  Therefore all physical trajectories inevitably lead to the singularity.  
 
A Penrose diagram is not meant to accurately portray distances, only causal structure. 

Black holes turn out to be important "laboratories" in which to test string theory, because the 
effects of quantum gravity turn out to be important even for large macroscopic holes. Black 
holes aren't really "black" since they radiate! Using semi-classical reasoning, Stephen 
Hawking showed black holes emit a thermal spectrum of radiation at their event horizon. 
Since string theory is, among other things, a theory of quantum gravity, it should be able to 
describe black holes in a consistent way. In fact there are black hole solutions which satisfy 
the string equations of motion. These equations of motion resemble the equations of general 
relativity with some extra matter fields coming from string theory. Superstring theories also 
have some special black hole solutions which are themselves super-symmetric, in that they 
preserve some super-symmetry.  
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One of the most dramatic recent results in string theory is the derivation of the Bekenstein-
Hawking entropy formula for black holes obtained by counting the microscopic string states 
which form a black hole. Bekenstein noted that black holes obey an "area law", dM = K dA, 
where 'A' is the area of the event horizon and 'K' is a constant of proportionality. Since the 
total mass 'M' of a black hole is just its rest energy, Bekenstein realized that this is similar to 
the thermodynamic law for entropy, dE = T dS. Hawking later performed a semi-classical 
calculation to show that the temperature of a black hole is given by T = 4 k [where k is a 
constant called the "surface gravity"].  Therefore the entropy of a black hole should be written 
as S = A/4.  Physicists Andrew Strominger and Cumrin Vafa, showed that this exact entropy 
formula can be derived microscopically (including the factor of 1/4) by counting the 
degeneracy of quantum states of configurations of strings and D-branes which correspond to 
black holes in string theory.  This is compelling evidence that D-branes can provide a short 
distance weak coupling description of certain black holes!  For example, the class of black 
holes studied by Strominger and Vafa are described by 5-branes, 1-branes and open strings 
traveling down the 1-brane all wrapped on a 5-dimensional torus, which gives an effective 
one dimensional object -- a black hole.  

 
 

Hawking radiation can also be understood in terms of the same configuration, but with open 
strings traveling in both directions. The open strings interact, and radiation is emitted in the 
form of closed strings. The system decays into the configuration shown above. 

 

 

Explicit calculations show that for certain types of supersymmetric black holes, the string 
theory answer agrees with the semi-classical supergravity answer including non-trivial 
frequency dependent corrections called greybody factors. This is more evidence that string 
theory is a consistent and accurate fundamental theory of quantum gravity. 
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Summary 

 

Superstring theory is a very exciting area of study because it has the serious potential to be 
the right theory for describing the fundamental nature of our universe.  All the elements are in 
there: quantum physics, bosons, fermions, gauge groups, and gravity.  In the last several 
years there has been great progress in understanding the overall structure of the theory 
including D-branes and string duality.  String theory has been applied with great success to 
the study of black hole physics and quantum gravity. However, there is much work yet to be 
done. 

The ñbirthdayò of the Superstring theory happened in 1968, when Gabriel Veneziano and 

Mahiko Suzuki came across using the Euler beta function to describe interactions of 

elementary particles: 

Consider an elastic scattering process with 2 incoming spinless particles of transverse 

momenta 
21, pp , outgoing particles of momenta 43, pp -- . With a metric with signature 

{ }++++- ,...,,,  the mass squared of a particle is 
22 pm -= . The conventional Mandelstam 

variables are defined as 

2

21 )( pps +-=  , 
2

32 )( ppt +-= ,   
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31 )( ppu +-=  . 

which obey the one identity 

ä=++ imuts  . 

The largest )(sJ a=  value at given s with 22 )2( pms ==  the square of the energy in the center 

of mass frame and the angular momentum pr
r

pJ ==
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2  formed the so-called ñleading 

trajectoryò. Experimentally, it was discovered that the leading trajectories were almost linear 

in s. 

In the field theory of the weak interactions the simplest model amplitude ),( tsA is 

constructed as a sum of s-channel & t-channel input diagrams in the form 
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that shows poles, where the resonance of the leading (Regge) trajectories )(sa  is necessarily 

linear in s, i.e. )0()( aaa -¡= xx  with the ñdaughter trajectoriesònss --¡= )0()( aaa , (postulated 
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                      )0()( aaa -¡= xx                             linear Regge trajectory. 

A resonance occurs at those s values where )(sa  is a nonnegative integer (mesons) or a 

nonnegative integer plus ½ (baryons).   

                                                            Ns Í)(a  mesons 

                                                            Ns Í+ 2/1)(a  baryons 

which gives some relation to our 
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Huygensô Principle  

 

In 1678 the great Dutch physicist Christian Huygens (1629-1695) wrote a treatise called 

Traite de la Lumiere on the wave theory of light, and in this work he stated that the wave 

front of a propagating wave of light at any instant conforms to the envelope of spherical 

wavelets emanating from every point on the wave front at the prior instant (with the 

understanding that the wavelets have the same speed as the overall wave).  An illustration of 

this idea, now known as Huygens' Principle, is shown below 

 

This drawing depicts the propagation of the wave ñfrontò, but Huygensô Principle is 

understood to apply equally to any locus of constant phase (not just the leading edge of the 

disturbance), all propagating at the same characteristic wave speed. This implies that a wave 

doesn't get "thicker" as it propagates, i.e., there is no diffusion of waves. For example, if we 

turn on a light bulb for one second, someone viewing the bulb from a mile away will see it 

"on" for precisely one second, and no longer. Similarly, the fact that we see sharp images of 

distant stars and galaxies is due to Huygensô Principle. However, itôs worth noting that this 

principle is valid only in spaces with an odd number of dimensions. (See below for a detailed 

explanation of why this is so.) If we drop a pebble in a calm pond, a circular wave on the two-

dimensional surface of the pond will emanate outward, and if Huygens' Principle was valid in 

two dimensions, we would expect the surface of the pond to be perfectly quiet both outside 

and inside the expanding spherical wave. But in fact the surface of the pond inside the 

expanding wave (in this two-dimensional space) is not perfectly calm, its state continues to 

differ slightly from its quiescent state even after the main wave has passed through. This 

excited state will persist indefinitely, although the magnitude rapidly becomes extremely 

small. The same occurs in a space with any even number of dimensions. Of course, the 

leading edge of a wave always propagates at the characteristic speed c, regardless of 

whether Huygens' Principle is true or not. In a sense, Huygens' Principle is more significant 

for what it says about what happens behind the leading edge of the disturbance. Essentially 

it just says that all the phases propagate at the same speed. 

From this simple principle Huygens was able to derive the laws of reflection and refraction, 

but the principle is deficient in that it fails to account for the directionality of the wave 

propagation in time, i.e., it doesn't explain why the wave front at time tt D+  in the above 

figure is the upper rather than the lower envelope of the secondary wavelets.  Why does an 

expanding spherical wave continue to expand outward from its source, rather than re-

converging inward back toward the source? Also, the principle originally stated by Huygens 

does not account for diffraction.  Subsequently, Augustin Fresnel (1788-1827) elaborated on 

Huygens' Principle by stating that the amplitude of the wave at any given point equals the 

superposition of the amplitudes of all the secondary wavelets at that point (with the 

understanding that the wavelets have the same frequency as the original wave).  The 

Huygens-Fresnel Principle is adequate to account for a wide range of optical phenomena, 

and it was later shown by Gustav Kirchoff (1824-1887) how this principle can be deduced 

from Maxwell's equations.  Nevertheless (and despite statements to the contrary in the 
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literature), it does not actually resolve the question about "backward" propagation of waves, 

because Maxwell's equations themselves theoretically allow for advanced as well as retarded 

potentials.  It's customary to simply discount the advanced waves as "unrealistic", and to 

treat the retarded wave as if it was the unique solution, although there have occasionally 

been interesting proposals, such as the Feynman-Wheeler theory, that make use of both 

solutions.. 

Incidentally , as an undergraduate, Feynman gave a seminar on this "new idea" at 

Princeton.  Among the several "monster minds" (as Feynman called them) in attendance was 

Einstein, to whom the idea was not so new, because 30 years earlier Einstein had debated 

the significance of the advanced potentials with Walther Ritz. In any case, the Huygens-

Fresnel Principle has been very useful and influential in the field of optics, although there is a 

wide range of opinion as to its scientific merit.  Many people regard it as a truly inspired 

insight, and a fore-runner of modern quantum electro-dynamics, whereas others dismiss it as 

nothing more than a naive guess that sometimes happens to work.  For example, in his 

excellent "Principles of Electrodynamics", Melvin Schwartz wrote: 

Huygens' principle tells us to consider each point on a wave front as a new source of radiation and add the 

"radiation" from all of the new "sources" together.  Physically this makes no sense at all.  Light does not emit light; 

only accelerating charges emit light.  Thus we will begin by throwing out Huygens' principle completely; later we 

will see that it actually does give the right answer for the wrong reasons. 

Whether we have now actually found the true "reason" for the behavior of light is debatable, 

and ultimately every theory is based on some fundamental principle(s), but it's interesting 

how widely the opinions on various principles differ.  (I'm reminded of the history of Fermat's 

Principle, and of Planck's reverence for the Principle of Least Action.) It could be argued that 

the ñpath integralò approach to quantum field theory ï according to which every trajectory 

through every point in space is treated equivalently as part of a possible path of the system ï 

is an expression of Huygensô Principle. Itôs also worth reflecting on the fact that the quantum 

concept of a photon necessitates Huygensô Principle, so evidently quantum mechanics can 

work only in space with an odd number of dimensions. 

Setting aside these weighty considerations, it's interesting to review the mathematical 

content of Huygens' original principle.  The usual wave equation for a scalar field 
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We've chosen units of time and space so that the wave velocity is 1.) If we consider a 

spherically symmetrical wave we have ),( rxyy=  where  22
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for every index j  from 1 to n. It follows that 
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Returning to the basic wave equation, and assuming y is strictly a function of r  and t , we 

have the following partial derivatives with respect to each of the space variables: 
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Since partial differentiation is commutative, the second factor in the last term of the right- 

hand equation can be written as 

2

2222

)()(
rx

r

xr

r

rx

r

rrxrxrrx jjjjjj µ

µ

µ

µ
+

µµ

µ

µ

µ
=

µ

µ

µ

µ

µ

µ
=

µ

µ

µ

µ
=

µµ

µ
=

µµ

µ yyyyyy
 

Now, since 
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the preceding mixed partial is simply 
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Substituting back into the expression for the second partial derivative of y with respect to 

jx , we have 
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Summing all these partials for j = 1 to n gives 
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Hence the spherically symmetrical wave equation in n spatial dimensions can be written as 
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Now suppose we define a new scalar field by the relation ),(),( trrtr kyf = , where k is some 

fixed constant.  The partial derivative of this scalar field with respect to r are 
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Notice that if we set 2/)1( -=nk , and if we divide through this second partial by 
kr , we 

have 
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This is nearly the same as the left-hand side of the spherically symmetrical wave equation, 

except for the last term.  Hence we can write the wave equation in the form 
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Furthermore, we can multiply through by 
2/)1( -= nk rr  to put this in the equivalent form 
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If n equals 1, meaning that we have just a single space dimension, then 
1xr =  and yf= , 

so we expect the second term on the left hand side to vanish identically, as indeed it does, 

leaving us with just the original one-dimensional wave equation, with the well-known general 

solution 

)()(),( trgtrftr ++-=y
 

for arbitrary functions f and g.  However, we might not have anticipated that the second term 

in the transformed wave equation also vanishes if n equals 3, i.e., in the case of three spatial 

dimensions.  In this case the spherically symmetrical wave equation once again reduces to a 

one-dimensional wave equation, although in the modified wave function  yf r=  . Hence 

the general solution in three space dimensions is 
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The fact that this solution is divided by r signifies that the magnitude of the wave tends to 

drop as r increases (unlike the one-dimensional case, in which a wave would theoretical 

propagate forever with undiminished strength).   Focusing on just the "retarded" component 

of the wave, 
r

trf )( -
, the fact that the time parameter  t  appears only in the difference tr-  

implies that the (attenuated) wave propagates in time with a phase velocity of precisely 1, 

because for any fixed phase b we have b=-tr  and so 
dt

dr
 for this phase point is 

1.  Consequently if  f  is a single pulse, it will propagate outward in a spherical shell at 

precisely the speed 1, i.e., on the light cone.  Conversely, it can be shown that the wave 

function at any point in space and time is fully determined by the values and derivatives of 

that function on the past light cone of the point.  Any wave equation for which this is true (i.e., 

for which disturbances propagate at a single precise speed) is said to satisfy Huygens' 

Principle.  The connection with Huygens' original statement about secondary wavelets is that 

each wavelet - with the same speed as the original wave - represents a tiny light cone at that 

point, and Huygens' principle asserts that light is confined to those light cones. 
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It's worth noting that in the above derivation we were able to reduce the polar wave equation 

to a simple one-dimensional equation by taking advantage of the fact that an unwanted term 

vanished when the number of space dimensions is 3=n  (or 1=n ).  For the case of two 

dimensional space this doesn't work (nor would it work with four space dimensions).  We can 

still solve the wave equation, but the solution is not just a simple spherical wave propagating 

with unit velocity.  Instead, we find that there are effectively infinitely many velocities, in the 

sense that a single pulse disturbance at the origin will propagate outward on infinitely many 

"light cones" (and sub-cones) with speeds ranging from the maximum down to zero.  Hence if 

we lived in a universe with two spatial dimensions (instead of three), an observer at a fixed 

location from the origin of a single pulse would "see" an initial flash but then the disturbance 

"afterglow" would persist, becoming less and less intense, but continuing forever, as slower 

and slower subsidiary branches arrive.   

It's interesting to compare and contrast this "afterglow" with the cosmic microwave 

background radiation that we actually do observe in our 3+1 dimensional universe. Could this 

glow be interpreted as evidence of an additional, perhaps compactified, spatial dimension? 

What would be the spectrum of the glow in a non-Huygensian universe? Does curvature of 

the spatial manifold affect Huygensô principle? 

It turns out that Huygens' Principle applies only with one time dimension and n = 3, 5, 7.., or 

any odd number of space dimensions, but not for any even number of space dimensions. 

(The case n = 1 is degenerate, because a pulse has only one path to take.)  To see why, let's 

return to the general spherically symmetrical wave equation in n space dimensions 
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and consider a solution of the form )()(),( tgrftr =y . (Naturally not all solutions are 

separable in this way, but since the wave equation is linear, we can construct more general 

solutions by summing a sufficient number of solutions of the separable form )()( tgrf

)  Inserting this into the wave equation and expanding the derivatives by the product rule 

gives 

2

2

22
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c
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n
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Dividing through by fg  gives 
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Notice that the left hand side is strictly a function of r, and the right hand side is strictly a 

function of t.  Since r and t are independent variables, the left and right sides must both equal 

a constant, which we will denote by k.  Hence we have two separate ordinary differential 

equations 

k=
-

+
dr

df

r

n

fdr

fd

f

)1(11
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2

2

1

dt

gd
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If k is positive or zero the right hand equation gives ñrun-awayò solutions for )(tg , whereas if 

k is negative we can choose scaling so that 1-=k  and then )(tg  satisfies the simple 

harmonic equation, whose solutions include functions of the form )sin(ct  and )cos(ct . The 

left hand equation can be re-written in the form 

0)1(
2

2

=+-+ rf
dr

df
n

dr

fd
r

 

If we multiplied this through by r , it would be in the form of what is called Bessel's equation, 

named after Friedrich Wilhelm Bessel (1784-1846), the German astronomer who 

(incidentally) was the first person to determine the distance to a star (other than the Sun).  In 

1838 he determined the distance to the star called "61 Cygni" based on the parallax as 

viewed from the Earth at six-month intervals.  Bessel functions are solutions of a standard 

Bessel equation, just as the ordinary trigonometric functions, sine and cosine, are solutions 

of the differential equation 0=+¡¡ yy . 

To solve the above equation we can assume a series solution of the form 

.....)( 2

2

1

10 +++= ++ qqq rcrcrcrf
 

for some integer q (which may be positive, negative, or zero) such that 0c  is non-zero.  The 

derivatives of this function are 

.....)2()1( 1

21

1

0 +++++= +- qqq rcqrcqrqc
dr

df

 

.....)1)(2()1()1( 2

1

1

2

02

2

++++++-= -- qqq rcqqrqcqrcqq
dr

fd

 

Substituting these into the differential equation, and collecting terms by powers of r , we get 

[ ] [ ] { }[ ] +++-+++++-+++-+-= +- 1

021

1

0 )2)(1()1)(2()1)(1()1()1()1(0 qqq rccqnqqrqnqqcrqnqqc
 

                                                                 { }[ ] ....)3)(1()2)(3( 2

13 +++-++++ +qrccqnqq  

The coefficient of each power of r must vanish, and since 0c  is non-zero, the expression for 

the first coefficient implies 0)2( =+- nqq  .  This is called the indicial equation, because it 

determines the acceptable value(s) of  
q

.  In this case we must have either 0=q or else 

nq -=2 .  If 0=q  then the coefficient of 
qr  equals )1(1 -nc , so either n = 1 or else 01 =c

.  On the other hand, if nq -=2 , then the coefficient of 
qr equals )3(1 nc - , so either 3=n

or else again 01 =c .  We've already seen that the original differential equation has a 

particularly simple analytical solution when n (the number of space dimensions) equals either 

1 or 3, so we need not consider them here.  For all other value of n , we must have 01 =c

.  (Of course, even with 1=n or 3=n , we are free to set 01 =c .) 

Now, examining the coefficients of the higher powers of r , we see that in general the 

coefficient of 
mqr +

 is of the form 



 85 

{ }[ ]
11)1)(1())(1( -++++-++++ mm ccmqnmqmq  

Inserting 0=q , setting the overall coefficient to zero, and solving for 1+mc  gives 
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for ...3,2,1,0=m  .  Since 0c  is, by definition, the first non-zero coefficient, it follows that 
1-c  is 

zero, and therefore 01=c .  Moreover, applying the above formula recursively, we see that all 

the jc  coefficients for odd indices j must vanish.  On the other hand, the coefficients with 

even indices are given recursively by 
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and so on.  Notice that if n = 1 the denominators are 1*2, 3*4, 5*6, ..., etc., so the general 

non-zero coefficient of the solution can be written simply as 

)!2(

)1(
02

j
cc

j

j

-
=

 

giving the solution 
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1
1()( 42

0 -+-= rrcrf
 

Hence the solution is simply )cos()( 0 rcrf = .  Recall that )(tg has solutions of the form 

)cos(ct and )sin(ct , and we can create a solution given by the sum of two separable 

solutions, so, for example, one solution is 

)cos()sin()sin()cos()cos()()()()(),( 2211 ctrctrctrctgrfctgrftr -=+=+=y
 

Similarly if 3=n the denominators of the recursive formulas are ,....7*6,5*4,3*2 etc., so the 

general non-zero coefficient is 
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giving the solution 
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1
()( 530
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c
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so in this case we have rtcrf /)sin()( 0= .  Combining this with suitable solutions for )(tg as in 

the case of 1=n , we can arrive at overall solutions such as rctrtr /)cos(),( -=y .  This 

shows (again) that the cases of 1 and 3 spatial dimensions lead to especially simple 

solutions. 
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In general, for arbitrary positive integer n, the coefficient jc2  is of the form 

[ ]))1(2).....(2)(()2)......(6)(4)(2(
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jnnnj
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Notice that for 1=n  the factors in the square brackets are consecutive odd integers, and 

they can be interleaved between the consecutive even integers to give a pure factorial 

product.  Likewise for 3=n the odd and even factors can be interleaved to give a pure 

factorial product.  For higher odd integers we can interleave the factors in the same way, 

although there will be a fixed number of leading even factors and the same number of trailing 

odd factors that don't overlap.  For example, with 7=n   the coefficient 
12c  is as shown 

below, after re-arranging the six even and six odd factors in the denominator 

[ ] )17)(15()13)(12)(11)(10)(9)(8).7)(6()4)(2(
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Taking advantage of this interleaving, we can express the general coefficient (for sufficiently 

large j ) with odd 3>n  in the form 

)!12(
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)22)....(52)(32(
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For any fixed n, the first factor on the right is just a constant, and the second factor is just one 

over a polynomial of degree 2/)3( -n  in the index j.  Therefore, after some number of terms, 

the series solution goes over to a simple factorial form with a polynomial divisor.  It can be 

shown that the resulting function f(r) is such that Huygens' Principle is satisfied, so this 

implies that the principle is satisfied for any odd number of space dimensions. This gives a 

relation to spherical waves in higher dimensions. 

In contrast, if the number of space dimensions is even, we do not have interleaving of the 

factors in the denominator of the coefficients.  In this case we can only re-write (1) in the form 

j

j
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For example, in the case 2=n  (i.e., two spatial dimensions) we have the coefficients 
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This gives the function 
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This is the Bessel function of order zero, often denoted as 0J . A plot of this function is 

shown below. 

 

For positive arguments r , the Bessel function )(0 rJ can be expressed as 

ñ
¤

=
0

0 ))sin(cosh(
2

)( JJ
p

drrJ
 

Multiplying through by the temporal solution )sin()( cttg =  gives 

[ ]ñ
¤

+--=
0

)cos(cosh)cos(cosh(
1

),( JJJ
p

y dctrctrtr
 

Hence, instead of the solution being purely a function of ctr°  as in the case of odd 

dimensions, we find that it is an integral of functions of  ctr°Jcosh . Each value of J 

corresponds to a propagation speed of  Jcosh/c , so the speeds vary from c  down to zero. 

This signifies that the wave function at any event is correlated not just with the wave function 

on its ñlight coneò, but with the wave function at every event inside its light cone. (However, 

as discussed in another note, we must be cautious about inferring causality relations from 

such formulas.) 

It would be interesting to work out the connections between Huygens' Principle and the zeta 

function (whose value can only be given in simple closed form for even arguments) and the 

Bernoulli numbers (which are non-zero only for even indices).  It's also interesting to note the 

analogy between Huygens' spherical wavelets centered on the boundary of the wave front 

and the technique of analytic continuation, by which we expand the boundary of an analytic 

region by means of disks of convergence centered on or near the boundary of the existing 

analytic region. 

Paul Dirac (1902-1984) gave an interesting general argument for a much stronger version of 

Huygens' Principle in the context of quantum mechanics.  In his "Principles of Quantum 

Mechanics" he noted that a measurement of a component of the instantaneous velocity of a 

free electron must give the value c° , which implies that electrons (and massive particles in 

general) always propagate along null intervals, i.e., on the local light cone.  At first this may 

seem to contradict the fact that we observe massive objects to move at speeds much less 

than the speed of light, but Dirac points out that observed velocities are always average 
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velocities over appreciable time intervals, whereas the equations of motion of the particle 

show that its velocity oscillates between c+ and c-  in such a way that the mean value 

agrees with the average value.  He argues that this must be the case in any relativistic theory 

that incorporates the uncertainty principle, because in order to measure the velocity of a 

particle we must measure its position at two different times, and then divide the change in 

position by the elapsed time.  To approximate as closely as possible to the instantaneous 

velocity, the time interval must go to zero, which implies that the position measurements 

must approach infinite precision.  However, according to the uncertainty principle, the 

extreme precision of the position measurement implies an approach to infinite indeterminacy 

in the momentum, which means that almost all values of momentum - from zero to infinity - 

become equally probable.  Hence the momentum is almost certainly infinite, which 

corresponds to a speed of c° .  This is obviously a very general argument, and applies to all 

massive particles (not just fermions). 
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Spherical Waves and the Telegraph Equation  

 

The propagation of the spherical electromagnetic (or sound) wave has been given in a 

system  by the following equation  

0. 22222 =-++ tczyx  

The Ăvibration stringñ equation with a solution in the form  )(),( 22 ktxftxu -= , 1)0( =f for any 

function of one variable f has the from 

uuku xxtt

22 l=-

 

For the telegraph equation 

[] ).(: yxgcuuuL xy =+=

 

the corresponding Riemann function is given by 

))((4),;,( 0 hxhx --= yxcJyxv  . 
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Wellenausbreitung in drei Dimensionen  

 

Wir betrachten zuerst den Fall 3-dimensionaler Wellenausbreitung, da die 2D-Greenfunktion 

im Zeitbereich leicht aus der 3D-Greenfunktion abgeleitet werden kann. Im 3D-Fall lautet die 

Wellengleichung  

r
a

),(
),(),( 2 txF

txGtxGtt

C
CC
=D-

 

Wir betrachten einen Vollraum mit einer Punktquelle im Ursprung. Zur Darstellung der 

Punktquelle benötigen wir eine Definition der Deltafunktion in drei Dimensionen. Die 

Selektionseigenschaft der Deltafunktion soll nun lauten  

ññ =- )()()( 00 rhdVrrrh
V

CCCC
d  

Wir suchen wieder die Greensche Funktion, d. h. die Lösung der Gleichung  

)()(
1),( 2
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rtqG
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trG C
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a =D-
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mit 0)0( =<tq und den Anfangsbedingungen 0)0,,()0,,( 00 == rrGrrG
CC#CC

. Um wieder eine 

alternative Formulierung des Problems zu finden, wird über eine Kugel mit Radius 

integriert. Dabei kommt uns zugute, daß )( GG ÐÐ=D , und der Gaußsche Satz angewendet 

werden kann. Unter der Voraussetzung, daß das Volumenintegral über 
2

2 ),(

t

trG

µ

µ
C

 

verschwindet, erhält man  

ñ +Ð=
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)(0
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r
S

tqdSnG
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Die alternative Problemstellung ist demnach: 

0
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Wir haben es jetzt nicht wie im 1D-Fall mit einer Unstetigkeit der Ableitung der Greenschen 

Funktion zu tun, sondern mit einer Singularität der Greensche Funktion im Ursprung, die so 

geartet ist, daß obiges Oberflächenintegral einen endlichen Wert hat.  

Da die Welle sich kugelförmig vom Herd ausbreitet, hängt die Greensche Funktion nur vom 

Abstand von der Quelle ab. Man arbeitet daher am besten in Kugelkoordinaten. Der Laplace-

Operator lautet in Kugelkoordinaten  
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sodaß unser Problem nun lautet:  
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Mit der neuen Variable rG=G  erhält man daraus für 0>r  die 1D-Wellengleichung  
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und die Bedingung  
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Das dreidimensionale Problem ist auf ein eindimensionales reduziert worden. Allerdings 

sieht die Zusatzbedingung an der Quelle völlig anders aus als im 1D-Fall. Wir werden 

deshalb auch eine völlig andere Lösung bekommen.  

Da die Quelle im Ursprung liegt, kommen nur auslaufende Wellen in Frage. Wir machen den 

Ansatz  

)(),( trftr a-=G  

Die Zusatzbedingung liefert  
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woraus folgt  
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Die Greensche Funktion lautet demgemäß ganz einfach  
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r
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r
trG -=  . 

Erstaunlicherweise erhält man die einfachste Lösung im 3D-Fall. Das Signal ist identisch 

mit der Quellfunktion, während es im 1D-Fall eine integrierte Version des Quellsignals war. 

Die Kausalität ist offensichtlich, da für tr a> das Argument von q negativ ist und somit   

0=q . Eine Besonderheit ist der Amplitudenabfall mit r-1. Man nennt diesen Faktor auch 

das geometrische Spreading. Geht man davon aus, daß der Energiefluß durch eine 
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Kugelschale proportional zum Quadrat der Amplitude ist, so folgert man aus der 

Energieerhaltung  

tconstrG tan),(4 22 =pra  

woraus folgt, daß G  mit 1-r abfallen muß.  

Interessant ist, daß im 3D-Fall die Impulsantwort keine Sprungfunktion sondern eine 

Deltafunktion ist;  
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Das heißt, ein Impuls, der bei 0=t abgeschickt wird, kommt zurzeit 
a

t
r

=  unverändert am 

Empfänger an.  

Die Greensche Funktion im Frequenzbereich erhalten wir einfach durch Fouriertrans-

formation der Greensche Funktion im Zeitbereich  
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man sich den Zeitfaktor 
tie w-
 hinzu, sieht man, daß wir es wie erwartet mit einer 

auslaufenden, harmonischen Kugelwelle zu tun haben. 

 

Sphärische Wellen (Kugelwellen) sind Lösungen der Gleichung 
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Mittel dem Ansatz )( ctrfrE °=  ergibt sich 
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Zylinderwellen sind Lösungen der Gleichung 
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Es ergibt sich 
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The Helmholtz equation with space dimension n

 

is given by  
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where iD represents the Dirac delta function at the source point i corresponding to the 

fundamental solution. The domain W can be unbounded or bounded with or without 

boundary conditions; x denotes the n-dimensional coordinate variable and 
kk xxr -=:

 

The kernel wavelet basis functions are
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where nh  comply with the divergence (conservation) theorem 
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and nh  satisfy the Sommerfeld radiation condition at infinity 
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The link to the density function (2.1) below is given by     
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With reference to fractional mathematics we note that 
4

1
:=n  in (2.1) would correspond to a 

fractional dimension of space of 5.2=n . 

Using the Hankel functions  
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Putting )(:)(
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With reference to Hankel functions we mention 
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       with 
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which might motivate an alternative or additional ñpolarò coordinate transformation in the 

context of Riemann manifolds. 
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Spherical waves, Cauchy and radiation problem, Huygens 

principle in space dimension m=3 

 

This section is referring to Courant-Hilbert, Methods of mathematical physics II, chapter VI, 

§5.6, §10.3. being m  die space dimension and 1+=mn .  

Huygens principle is valid for odd m  under the same condition as both, Cauchyôs initial 

value problem and the radiation problem, which we recall in the following, whereby we 

restrict to 3=m : 
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 the differentiation in the direction of the external normal. With the 

abbreviation 
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being )(tg the intensity of the radiation. 

The solution of this radiation problem is spherical waves of order 
2

1-n  with the wave form 
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for 3²m , m  odd. 

 

There is an unproven hypothesis in the following sense: 

Spherical wave are characterized by both, for any time like lines only existing for 

21=+=mn  or 41=+=mn  and only for wave equation like differential equations. 
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Fourier analysis for the wave equation 

 

The solution of the distribution equation 

)()(),(),( xtxtSxtS m
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is called Greenôs function (or propagator in physics). Using the Fourier transform 
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leads to an algebraic equation in the form
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which first requires an analysis of the integral for fixed k? 
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In den Fällen  0>t  und  0<t  fällt der Integrand exponentiell ab falls  0)Im( >w  

nach   ¤-  bzw.  ¤ strebt.  Man kann das -w  Integral in der unteren bzw. in der 

oberen komplexen Halbebene schliessen. Damit erhält man ein geschlossenes 

Konturintegral, das mit Hilfe des Residuensatzes gelöst werden kann. Allerdings 

sind die Pole des Integranten reell und liegen damit genau auf dem Kontur, d.h. 

folgendes: wählt man unterschiedliche Pole um die Pole herum, so ändert sich 

der Wert des Integrals um ein Vielfaches der Residuen bei k°=w  . Damit wird 

das Integral (*) um einen Beitrag 

ikxtkiikxtki
ecec

++-
+ 21  

mit komplexen Koeffizienten 2/1c   abgeändert, which are plane waves and 

solutions- of the homogene wave equation, heisst sie fallen heraus aus der 

obigen Distributionsgleichung. This means that the Green function is not unique. 

To get specific solutions one chooses specific contours around the poles. The 

technique doing is, is to shift the pole by an e and let get  0­e  . The way how 

making this infinite shift determines different Green functions. The Green 

functions of special interest are avancierte bzw. Retardierte Greenôsche 

Funktionen, i.e. 
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resp.
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whereby )(tq  is the Heaviside function, i.e. 
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Magical Lagrange and Hamilton analytical mechanics 

 

Lagrange vs. Hamiltonian formalism are the two sides of the same coin, same underlying 

calculus concept to handle infinitesimal actual (!) ñdistancesò dx to model momentum and 

action. Impressed forces are accepted, but within the calculus of variation those forces get 

irrelevant, as they trigger no action (Hamilton) resp. they compensate each other (Lagrange). 

From that point of view they can be neglected resp. ignored in our current ñirrationalò world. 

In  Leibnizôs philosophy the ñforceò (impressed force only?) is equivalent to an ñactive 

substanceò=òmonadò, which is at the same time a ñsubstanceò in Platoôs ideal world, with no 

extension, i.e. an ñexisting point in spaceò (Penrose 3.3), where from a physical point of view, 

there is no evidence for its existence. Point particles, path integrals, gauges theory, Leibniz 

assumes that the whole of mathematics is found inside us. 

In the one-dimensional case the concept of hyperfunctions enables a link between 

distributions and a holomorphic, i.e. a complex-analytical function, as any distribution f on R  

can be realized as the ñjumpò of the corresponding in RC-  holomorphic Cauchy integral 

function  

 

across the real axis, given by 

dxxiyxFiyxFf )())()(lim),( jj ñ
¤

¤-

--+=     for +­0y  . 

The Hilbert transform gives a Cauchy principle-valued function with Fourier terms  

 . 

The study of the Hilbert transform and the study of operational calculus for non-commuting 

operators in quantum mechanics (e.g. the Weyl operator) contain some of the basic 

ingredients of the theory of pseudo differential operators ([BPe] B. E. Petersen, 3.1). 

Freeding the Hilbert transform from its too intimate link connection with complex variables 

techniques Calderon and Zygmund introduced the algebra of singular integral operators 

(modulo compact operators) based on salient features of the Hilbert transform ([BPe] B. E. 

Petersen, 2.9). This also stimulated the study of the algebra generated by singular differential 

operators and partial differential operators ([BPe] B. E. Petersen, 4.1ff), which all leads into 

the concept of pseudo differential operator. 

The Hilbert transform, which is a classical Pseudo differential operator, transforms the 

Gauss-Weierstrass density function into a ñP.v. distributionò ([24] B. E. Petersen, 1.7, ) in the 

form 

(*)                                               with    


