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In a nutshell 
 
 

About 95% of the universe is about the phenomenon „vacuum“. The same proportion applies to the 
emptyness between a proton and an electron. The remaining 5% of universe’s vacuum consists 
roughly of 5% matter, of 25% dark matter, and of 70% dark energy. Nearly all (about 99%) of the 5% 
matter in the universe is in "plasma state". A presumed physical concept of „dark matter“ „explains“ the 
phenomenon of the spiral shapes in the universe. A presumed physical concept of „dark energy“ 
expains the phenomenon of the cosmic microwave background (CMP). 
 

The dominance of the vacuum (in the macro case, as well as in the micro case) in opposite to the 
small amount of matter is addressed by an appropriate Hilbert scale based definition of an 
„ether/ground state energy“ space, which is „orthogonal“ to a „kinematical energy“ Hilbert space. 
 

In this model the phenomenon of spiral shapes is a consequence of the MHD-based balance law of 
angular momentum. The phenomenon of CMP is a consequence of the MHD-based balance law of 
linear momentum. 
 

The tool box of the proposed unified plasma, quantum und gravity field theory consists of: 
 

- Hilbert scale decompositions in the form 𝐻 = 𝐻1 ⊗ 𝐻2  
- Potential operators defined by indefinite inner products 
- Krein spaces in a quarternionic setting, (AlD) 
- variational (approximation) methods in Hilbert scales 
- the complex Lorentz group and its two connected components 
- classical & quantum tensor theory 
- quantum (two-component) spinor theory 
- two-component Magnetohydrodynamics. 

 

The proposed „two-component“ resp. „one-component“ Hilbert scale decompositions are given by 
 

𝐻1/2 = 𝐻1 ⊗ 𝐻1
⊥ = 𝐻(−) ⊗ 𝐻(+) ⊗ 𝐻1

⊥ resp.  𝐻1/2 = 𝐻1 ⊗ 𝐻1
⊥ = 𝐻2 ⊗ 𝐻2

⊥ ⊗ 𝐻1
⊥. 

 

The Hilbert space 𝐻1 denotes the kinematical sub-Hilbert space and 𝐻1
⊥ denotes the orthogonal closed 

"ground state" energy sub-space of 𝐻1/2. The kinematical Hilbert space 𝐻1 is governed by a countable 

orthogonal Riesz basis enabled by the eigen-pairs of a (kinematical) selfadjoint, positive definite 
operator with domain 𝐻1. Geometrically speaking, the kinematical Hilbert space 𝐻1 builds a coarse-

grained embedded Hilbert sub-spaces of 𝐻1/2. Its related closed (ground state energy) sub-space 𝐻1
⊥ 

of 𝐻1/2 is governed by a continuous spectrum. The „one-component“, classical kinematical Hilbert 

space decomposition of 𝐻1 is given by 𝐻1 = 𝐻2 ⊗ 𝐻2
⊥. The „two-component-plasma“ kinematical Hilbert 

space decomposition of 𝐻1 is given by 𝐻1 = 𝐻(−) ⊗ 𝐻(+)
(*). 

 

In CPT (Charge-Parity-Time) the PT transformations are geometric transformations, while the C 
transformation is not. The CPT theorem becomes a purely geometric PT theorem if one restricts to 
classical tensor theory, quantum tensor theory and quantum spinor theory. The fact that it holds for 
quantum field theories suggests that space-time has neither a temporal orientation nor a spatial 
handedness (**), (appendix). 
 
(*) This proposed new „conceptual elements“ match to the "unconventional features of the mathematical formalism" mentioned in (HeW). 
(**) The group of restricted real Lorentz transformations has the same structure as the group of 2𝑥2 complex matrices of determinant one, 

𝑆𝐿(2, 𝐶). This restricted Lorentz group contains the 1-transformation. Its connected component contains the space-time inversion. The other pair of 
connected components of the Lorentz group contains the space inversion resp. the time inversion. The group of proper (complex) Lorentz 
transformations has the same structure as 𝑆𝐿(2, 𝐶) × 𝑆𝐿(2, 𝐶). The classical real Klein-Gordon field is a real field, whose field values are invariant 

under the restricted Lorentz transformation. The full group of (real) Lorentz transformations is the group of transformations that leaves the 
Minkowski metric invariant. In quantum field theory particle states correspond to „positive frequency“ solutions of the corresponding classical field 
theory, while anti-particle states correspond to „negative frequency“ solutions. Therefore, the PT transformation in quantum field theory turns 
particles into anti-particles and any quantum tensor Lagrangian is invariant under the PT transformation. In classical two-component spinor theory 
one can construct Lagragians that are not invariant under PT. Miraculously, this problem goes away, when one goes to spinor quantum field 
theory, which again is invariant under the PT transformation. In the context of the concepts “spin”, “dual turns”, line geometry & kinematic, and 
“quaternions” we refer to Study’s “movement indicator”, (BlW) §58. 
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Conceptual design elements 
 
The underlying indefinite inner product of a Hilbert space decomposition in the form 𝐻 = 𝐻1 ⊗ 𝐻2 

enables the definition of projection operators 𝑃1 and 𝑃2, a „potential function“ on 𝐻, and a related 
„potential operator“ for any 𝑥 being an element of 𝐻, (appendix). 
 
This tool is applied to define appropriately potential functions and related potential operators 
accompanied with related potential barrier constants governing the „boundary layers“ between 
 

i) the kinematical & ground state energy spaces 𝐻1/2 = 𝐻1 ⊗ 𝐻1
⊥ 

ii) either a „one-component“ or a „two-component“ kinematical Hilbert space 𝐻1. 
 

Nearly all of the matter in the universe consists of "plasma". The more specific two-component“ 
kinematical Hilbert space decomposition supports the specifics of „plasma particle field interactions", 
(*). Therefore, the proposed „two-component“ Hilbert scale decomposition is given by 
 

𝐻1/2 = 𝐻1 ⊗ 𝐻1
⊥ = 𝐻(−) ⊗ 𝐻(+) ⊗ 𝐻1

⊥. 

 
The requirements that the numbers of positively and negatively charged kinematical particles per 
considered volume element need to be approximately identical modelling of the more specific two-
component“ kinematical Hilbert space is supported by the fact that the Hilbert space 𝐻1 is governed by 
a countable orthogonal Riesz basis. This enables a decomposition 𝐻1 = 𝐻(−) ⊗ 𝐻(+) into two orthogonal 

sub-spaces 𝐻(−) and 𝐻(+) with same "cardinality" (**).  
 
The underlying indefinite inner product of the decomposition 𝐻1 = 𝐻(−) ⊗ 𝐻(+) enables the definition of 

projection operators 𝑃1 and 𝑃2, a „potential function“ on 𝐻1, and a related „potential operator“ for any 𝑥 
being an element of 𝐻1. More specifically, the "potential function“ is about an indefinite metric 𝑚(𝑥) 
with a related potential operator 𝑊(𝑥). The concepts allow to build hyperbolids, conical regions 𝑉0 and 

its boundary 𝐾, and ellipsoids, where the manifold 𝐾 is an asymptotic conical manifold for the 
hyperboloid 𝑚(𝑥) = 𝑐 (appendix).  
 
The constants 𝑐 defining the hyperboloids 𝑚(𝑥) = 𝑐  of the several „boundary layers“ between the 
proposed decomposed sub-spaces provides a modelling tool of related physical coupling constants. 
Their building principles are governed by the energy resp. the action minimization laws.  
 
The closest „boundary layer“ to the „Nature“ world is between the two granular Hilbert spaces 𝐻1, 𝐻2, 
building the „one-component“ decomposition 𝐻1 = 𝐻2 ⊗ 𝐻2

⊥. This decomposition joins the modelling 
stage, when the „two-components“ fields of the plasma field interaction model 𝐻1 = 𝐻(−) ⊗ 𝐻(+) 

collapses to a „one-component“ field governed by a classical kinematical operator with domain 
𝐻1 = 𝐻2. The constant 𝑐 defining the corresponding hyperboloid is an obvious candidate for the 
fine structure constant, (***), (UnA1) pp. 200, 203, 212, 222, 280, 289. 
 
The collapsing process may be considered as a model for the beta decay. It goes together with a 
collapse of the space-time structure into a temporal orientation („arrow of time“) and the spatial 
handedness of the Euclian space (****). Physically speaking this is about the observation of stationary 
states over time, e.g. related to thermostatistics. Instead of asking „what will the state of the system be 
at time t?“ one could ask, „what is the probability that at a time t the state of the system will belong to a 
specified subset of phase space?“ and „what will (probably) happen to the system as t tends to 
infinity?“ Those kind of questions are addressed by ergodic theory, (HaP), (HoE). 
 
 
 
 
 
(*) (CaF) 1.1:plasma particle field interactions is about kinematical electromagnetic interactions between positively and negatively charged 
particles, whereby the number of the positively and negatively charged kinematical particles per considered volume element may be arbitrarily 
small oder arbitrarily large, but both numbers need to be approximately identical. Thereby the number of neutral particles (atomes or molecules) is 

irrelevant for kinematical two-type plasma particle field interactions. 
(**) This is achieved in the following way: the set of the orthogonal basis elements of 𝐻1 is first decomposed into odd and even basis elements, and, 
secondly, the even elements are replaced by the Riesz transforms of the odd basis elements. We note that the inner product of a basis element 
and its Riesz transform vanishes. We further note that the Snirelman density of of both sets is 1/2. 

(***) (UnA) pp. 94, 96: The definition of the fine structure constant implies that 1/α ≈ 137 is the ratio of speed of light to the electron’s velocity on 
the innermost orbit of the hydrogen atom. 
(****) We also note the nonlinear gravitational stability of the geometric Minkowski space in classical gravity field theory, (ChD). 
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The MHD-based integrated plasma field model  
 
Nearly all of the matter in the universe consists of "plasma". The proposed MHD-based integrated 
plasma field model deals with a two-type kinematical quantum element concept (*).  
 
MHD is concerned with the motion of electrically conducting fluids in the presence of electric or 
magnetic fields. In MHD one does not consider velocity distributions. It is about notions like number 
density, flow velocity and pressure. 
 
The proposed unified field theory is built on an extended MHD model anticipating the physical 
modelling requirement of „plasma particle field interaction", where two mathematical types of 
elementary/quantum particles/elements are considered.  
 
The MHD equations are derived from continuum theory of non-polar fluids with three kinds of balance 
laws, (**): 
 

1. conservation of mass   
2. balance of angular momentum (Ampere law and Faraday law, Maxwell equations)    
3. balance of linear momentum. 

 
The additional conceptual ingredients of an enhanced MHD-based model for the integrated 
mathematical-physical plasma, gravity and quantum field model are... 
 

1. ... there are two moving electric and magnetic (kinematical) quantum elements of 𝐻0 in the 
presence of electric and magnetic fields 

2. two types of plasma particles with complementary charges 
3.  ... their corresponding „wave“ energies are element of 𝐻1 = 𝐻(−) ⊗ 𝐻(+)

(**). 

 
The related variational PDE are governed by the two connected components 𝐿(±)  of the complex 

Lorentz group, which plays the key role proving the CPT (Charge-Parity-Time) theorem, (StR) p. 13. 
As PT in quantum field theory turns particles into anti-particles we quote the following tentative 
conclusions as provided in (ArF) pp. 639, 646: 
 

„Whether a particle has positive or negative charge is determined by the temporal direction in which the four-momentum of 
particle points.  … The CPT theorem should be called the PT-theorem. … the fact that it holds for quantum field theories 

suggests that space-time has neither a temporal orientation than nor a spatial handedness“. 

 
The mathematical plasma type classification, (***), is supported by two underlying fundamental physical 
theories, (CaF) p. 20, 
 

1. Magnetohydrodynamics (MHD) 
2. Hydrodynamics 

a. with (single type) particle collisions (e.g. Vlasov equation) 
b. w/o (single type) particle collisions (e.g. Fokker-Planck equation). 

 
 
 
 
 
 

(*) Similar to the notion „elementary particle“, there is no unique mathematical-physical definition of the notion „plasma particle“. The key 
differentiator between plasma to neutral gas or neutral fluid is the fact that its electrically positively and negatively charged kinematical particles 
are strongly influenced by electric and magnetic fields, while neutral gas is not. Conceptually, „plasma particles“ need to fulfill the following two 
pre-requisites, (CaF) p. 1: 
 

(1) there must be electromagnetic interactions between charged particles 
(2) the number of positively and negatively charged particles per considered volume element may be arbitrarily small oder arbitrarily 
large, but both numbers need to be approximately identical. The number of neutral particles (atomes or molecules) is irrelevant for the 
definition of a plasma. 
 

(**) Regarding the balance laws 2. and 3. (angular and linear momentum) we quote from H. A. Lorentz, (1) and A. Einstein, (2), (EiA): (1): „It is 
only essential, that next to the observable objects there is another to be viewed as a real but not imperceptible object to accept the acceleration 
resp. the rotation as something real“, (2): „light speed is caused by the movements of bodies through the ether“. 
 

(***) in the mathematical modelling world there are different plasma phenomena considered, where the related physical experimental situations 
anticipate appropriately defined critical parameters of the correspondingly defined PDE (e.g. Vlasov equation or Landau equation). Then, those 
model input parameters result in different kinds of plasma waves leading to notions like cold, warm, hot and ideal plasma or Vlasov- and MHD-
plasma. Regarding nonlinear wave motions in the theory governing interaction of magnetic fields with conducting compressible fluids in (FrK1) it is 
shown that the basic equations governing the magneto-hydrodynamics have essentially the same mathematical character as those governing gas 
dynamics and that, consequently, essentially the same mathematical methods that have proved successful in gas dynamics can be employed. In 
(FrK), (FrK1) it is pointed out that it is possible to build up a theory of shock waves and simple waves to magnetodynamics flows parallel to that of 
conventional gas dynamics. Based on (FrK) in (GuR) a method is presented for discussing weakly non-isentropic quaisi-one-dimensional flows of 
an ideal, inviscid, perfectly conducting compressible fluid subjected to a transverse magnetic field. 
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The „two-component“ quantum element concept leads to extended variational representations of 
Maxwell-Mie equations and correspondingly adapted (SRT extended) Einstein field equations. 
 
With respect to an appropriate modelling of Mie's "electric pressure" we note that the related pressure 

𝑝 of the NSE can be expressed in terms of the velocity 𝑢 by the formula  
 

𝑝 = ∑ 𝑅𝑗𝑅𝑘(𝑢𝑗𝑢𝑘)
3
𝑗,𝑘=1 , 

 

where 𝑹 ≔ (𝑅1, 𝑅2, 𝑅3) is the Riesz transform and 𝒖 ⊗ 𝒖 = (𝑢𝑗𝑢𝑘) is a 3𝑥3 matrix. It enables a 

representation of the sum of the non-linear NSE term and the negativ pressure in the form 𝑷∇ ∙ (𝒖 ⊗ 𝒖), 

where 𝑷 denotes the Helmholtz-Weyl projection operator and ∇ ∙ represents the column vector with 

each component being the divergence of the row vectors of the matrix 𝒖 ⊗ 𝒖, e.g. (CuS). We further 
note that the Riesz transform 𝑹 commutes with translations, dilations, rotations, and anticommutes 
with reflections. In terms of the corresponding modelling in a Hilbert scale framework we refer to (SoH) 
p. 153 ff. For the vorticity-stream formulation of the 3D-NSE flow we refer to (MaA). 
 
In the context of correspondingly adapted Maxwell-Mie-Ehrenhaft equations and Einstein's field 
equations we also refer to (TaM), where it is found that an electromagnetic field can be coupled to a 
gravitoelectric and gravitomagnetic field. 
 
The „two-component“ quantum element model puts the spot on: 
 

(a) Mie's physical modelling concept of an electric pressure, (WeH):  
 

"G. Mie in 1912 pointed out a way of modifying the Maxwell equations in such a manner that 
they might possibly solve the problem of matter, by explaining why the field possesses a 
granular structure and why the knots of energy remain intact in spite of the back-and-forth flux 
of energy and momentum." 
 

(b) Ehrenhaft's experimentally validated concept of photophoresis, (EhF), (BrJ) p. 31:  
 

"I have discovered that in a ray of light physically and chemically similar matter particles move 
in direction of the propagation of light and in the opposite direction. In case the light direction 
is reversed, then those movements are reversed. I call this phenomenon photophoresis". 

 
(c) Leedskalnin's view of the magnetic current phenomenon, (LeE): 

 

„Magnetic current is not one current, they are two currents, one current is composed of North 
Pole individual magnets in concentrated streams and the other is composed of South Pole 
individual magnets in concentrated streams, and they are running one stream against the 
other stream in whirling, screwlike fashion, and with high speed“. 
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The proposed three A-C world layer models 
 
In the context of writing an equation for life R. Feynman stated (1964), (FrU) p. 1: 
 

„Often, people in some unjustified fear of physics say you can’t write an equation for life. 
Well, perhaps we can. As a matter of fact, we very possibly already have the equation to 
a sufficient approximation when we write the equation of quantum mechanics“. 

 
From U. Frisch (FrU) we further quote: 
 

„Of course, if we only had this equation, without detailed observation of biological 
phenomena, we would be unable to reconstruct them.“ 

 
The three kinds of balance laws of the MHD equations are re-interpreted as governing laws for the 
following a three layer world model A-C: 
 

A. The overall mathematical A-world, governed by the principle of 𝐻1/2 energy minimization 

modelling the overall „conservation of energy law“ of the plasma, quantum and gravity field 
model 
 

B. The mathematical-physical B-world, governed by two „angular, (B2-world) and linear, (B3-
world) momentum balance laws“ modelled by underlying kinematical mathematical-physical 
models and accompanied by parameters/variables like space-time, space and time variables, 
volume, area, force and pressure 

 

C. The chemical-biological C-world accompanied by parameters like duration, distance, the 
concepts of "moving form/shape". 

 
The mathematical-physical B-world provides the modelling framework for the above „reconstruction of 
specific physical observation“ situations modelled in corresponding physical theories.  
 
The B2-world is is governed by a (new) principle of (angular momentum based) „order potential of 
energy“, concerned with ectropia and the physical notions of space-time and „time points“. The B3-
world is governed by the principle of action minimation and concerned with the physical concepts of 
entropy and Planck’s related quantum action constant. 
 
The mathematical-physical concepts of „potential functions“ and „potential operators“ are related to the 
physical concept of „potential“ and the concept of „potential energy“, measured by the norm of the 
corresponding potential operator of this PDE model. The new notion in C-world is a "moving 
form/shape", which can be interpreted as an approximation to the finer granulated B-world. 
 
The several conceptual flavors of the B-world’s notion „time“ put the spot on the 
 

(A) mathematical „action differential“ variable, (Heisenberg) 
(B) mathematical-physical „space-time“ and „time“ variable 
(C) biological-chemical „time duration“ and „space distance“ concepts. 
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The distinction between the mathematical-physical world and the chemical-biological world puts the 
spot on 
 

(a) Schrödinger's concepts of a "consciousness differential" and a "biological potential of living 
cells", (ScE1) 
 

(b) Heidegger’s distinction between mathematical-physical science and humanistic sciences, 
(HeM) 

 

(c) Bergson’s distinction between "time" and "duration", where the physical-mathematical time is 
not measurable by any objective standard, and his concept of an „élan vital“. 

 
 

According to H. Bergson the physical notion of "time" is accompanied with attribues like quantitative, 
mechanical, geometric, measurable, while „time of life“ is essentially qualitative („living time“), (BeH); 
life is always and on each level development, renovation, change. Plants, animals and people are 
different kinds of manifestations of an „élan vital“ (life swing), (BeH2). It does not overcome dead 
matter in the sense of a gradual advancement, but fits to each possible development opportunities. 
 
We note that the (true) mathematical-statistical formulation of Bergson's claim is the following:  
 

the probability to pick a rational physical-mathematical "point in time" from the real "time 
arrow" axis is zero, as the set of rational numbers is a zero (sub-) set of the set of real 
numbers with respect to the Lebesgue integral concept. 
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Layer A-C model cases 
 

Einstein's field equations 
 

The "geometry" of space-time of the GRT in modelled as a pair (𝑀, 𝑔), where 𝑀 is a (3 + 1)-
dimensional manifold and 𝑔 is an Einstein metric on 𝑀, that is, a non-degenerated, 2-covariant tensor 
field with the property that at each point one can choose (3 + 1) vectors 𝑒0, 𝑒1, 𝑒2, 𝑒3, such that 

𝑔(𝑒𝛼𝑒𝛽) = 𝐸(𝛼, 𝛽); 𝛼, 𝛽 = 0,1,2,3, where 𝐸(𝛼, 𝛽) is the diagonal matrix with entries −1,1,1,1. In other 

words, Einstein's "geometry" of space-time (𝑀, 𝑔) has no intrinsic geometric structure. There are only 

the following eight 3-dimensional geometries: either the constant curvature spaces 𝐸3, 𝐻3, 𝑆3, the 

products 𝐻2 × 𝑅, 𝑆2 × 𝑅, or the twistered products 𝑆�̃�(2, 𝑅), 𝑁𝑖𝑙, or 𝑆𝑜𝑙.  
 
With respect to the Sobolev space based Hilbert space scales we note that the Sobolev embedding 
theorems for 𝑅𝑛 and for compact manifolds are basically identical, (HeE). 
 
Einstein's equivalence principle is the following: "a pure local (infinitesimal) gravity force is equivalent 
to acceleration of the considered elementrary mass particle in the corresponding local Euclidian 
reference system". 
 
In the Einstein field equations the Riemann tensor is decomposed into "Riemann = Ricci + Weyl". The 
Ricci tensor includes all data about energy, pressure, the momentum of matter particles, and the 
electromagnetic field. Specifically, the "pressure" energy part of the Ricci tensor is related to the 
second tensor of the Einstein field equation, the Weyl tensor. 
 

We note that the energy-momentum 𝑇𝑖,𝑗 in Einstein's theory is analogous to the charge-current vector 

𝐽𝑖⃗⃗  of Maxwell theory. The quantity of 𝑇𝑖,𝑗 may be regarded as describing the source of gravitation, in 

the same way as 𝐽𝑖⃗⃗ , is the source of electromagnetism, (PeR) p. 464. 
 
In the classical B-world the Ricci tensor describes the inwards directed acceleration of all mass 
particles inside a considered mass ball with a given 3D volume, (PeR1). In other words, in the B-world 

the Weyl (or conformal) tensor is the appropriate analogue of the Maxwell field tensor 𝐹𝑖,𝑗 describing 

the gravitational degrees of freedom, in case of a not pure locally valid equivalence principle, (PeR1). 
 
We note that the notion "not purely locally" is additionally required in the GRT (the crucial extension of 
the SRT) to model the equivalence principle; an only infinitesimal existing Minkowski-Lorentz geometry 
is not sufficient to model "acceleration". This means that the Weyl tensor is not relevant for layer A, but 
it is required to link the quantum tensor calculus with the classical tensor claculus reflecting the "tidal 
effect" phenomenon, (PeR1). 
 
 

Hydrodynamics 
 

Regarding the nine-teenth century view of the world in terms of „elementary particles of a fluid“ in the 
context of the physical layer B vs. the term „shape of a fluid“ and any change to it in the context of the 
biological/chemical layer C we recall from (AcJ) p. 43: 
 
„In his paper Stokes (1845) obtains his equations by first examining the kinetic conditions governing 
the relative fluid motion about a point, from which he deduces that   „… the most general 
instantaneous motion of an elementary portion of a fluid is compounded of a motion of translation, a 
motion of rotation, a motion of uniform dilatation, and two motions of shifting …,“ (these last motions 
later be identified as the rates of strain). In this respect Stokes here confirms the general conclusions 
stated by Cauchy (1843) to the effect that any change of shape of a material element can be 
decomposed into strains and rotation.“ 
 
The B2 related "angular" energy norm term of the variational representation of the non-linear, non-
stationary 3D Navier-Stokes equations vanishes in the standard variational 𝐿2 framework, (TeR) 
(2.34). Physically speaking, there exists no „order potential“ avoiding "time bomb" solutions in the 
standard variational 𝐿2 framework case, while the (variational) 3D NSE in the 𝐻−1/2 framework the 

corresponding term is bounded. 
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Ehrenhaft's photophoresis 
 
We further refer to the obervations of F. Ehrenhaft, (reported in (AlO) S.223 with reference to (EhF1), 
(EhF2)), which might enable an explanation of the fine structure constant as the ratio of the linear 
momentum and the angular momentum. In other words, the fine structure constant might be show up 
as borderline marker between the physical B world and the chemical/biological C world. 
 
Spiral phenomena, "big bang", and other related model cases 
 
Regarding the several observable "spiral" phenomena in the Nature "C-world" including spiral nebula 
in the universe we note that a spriral movement is the overlay of a linear and a rotational movement. 
This indicates to revisit 

 

(A) Gödel's type of cosmological solutions of Einstein's field equations 
(B) Prandtl’s rigid airfoil theory 
(C) Schauberger's view of the world 
(D) Heidegger's view of the world 
(E) Khun Dee's view of the world. 

 
(A) (GöK): "All cosmological solutions with non-vanishing density of matter ...have the common 

property, that… they contain an absolute time coordinate, owing to the fact that there exists a 
one-parametric system of three-spaces everywhere orthogonal on the world lines of matter. It 
is easily seen that the non-existence of such a system is equivalent with a rotation of matter 
relative to the compass of inertial. The four dimensional space 𝑆, which this solution defines, 
has further properties:  
 

(a) 𝑆 is homogeneous 
(b) any two world lines in 𝑆 are equivalent 

(c) 𝑆 has rotational symmetry 
(d) a positive direction of time can consistently be introduced in the whole solution" 

 
(B) The today's B-world aerodynamics model is based on Prandtl’s rigid airfoil theory: 

 

a. on the one hand side this theory simplifies the full Navier-Stokes equations by 
basically excluding the critical viscous flow ouside a critical layer in the context of the 
Reynolds number 

b. on the other hand side the Prandtl model focus on the pressure (resp. the uplift force) 
throughout the boundary layer in the direction of the normal to the airfoil surface. 

 
The underlying mathematical concepts of the Prandtl model are "single and double layer 
integrals", „circulation“ and „normal derivative“. The mathematical definition of „circulation“ is 
based on the Stokes theorem, where the circulation around a closed curve is the total sum of 
all enclosed vortex forces. In case of the Prandtl model this is about enclosed vortex forces 
within an airfoil, which is without any relevance for the B and C world. Fortunately the 
underlying mathematical baseline concepts are the 2D-Cauchy-Riemann differential equations 
(i.e. the correponding physical velocity fields are solutions of the potential equation) and the 
physical relevant fact, that the circulation in a non-viscous, barotropic fluid is constant, (HaW). 
 
The essential concept integrating double layer integrals into a Hilbert space framework is 
about the Riesz transforms, which commutes with translations, dilations, rotations, and 
anticommutes with reflections. 
 
In (RuC) appropriately modified 3D-Cauchy-Riemann differential equations are considered, 
which additional allow vortex streams. The direction of the related vortex lines is rectified to 
the direction of the velocity or opposite to it. For a related mathematical theory linking back to 
harmonic analysis we refer to (StE), (StE1), (StE2). 
 
An appropriate interpretation of the Stokes theorem based proof of an "airfoil layer caused 
uplift force" is enabled by Plemelj's mathematical concepts of a mass element (replacing a 
mass density of a double or single layer integral) and a related purely surface domain based 
definition of a flow on/through a surface (replacing a normal derivative): 
 

www.navier-stokes-equations.com 

http://www.navier-stokes-equations.com/
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Physically speaking, the Plemelj flow on a surface is the proposed B world model of the 
Prandtl uplift force "flow vector" on a airfoil layer. 
 
In (HaG) a 2D viscous and incompressible fluid dynamics PDE model is provided. Its solutions 
are satisfied by not physically relevant potential flow based movements (i.e. all solutions of the 
potential equation), as viscous fluids adhere to solid walls. One known other exact physical 
relevant solutionis the Poiseuille laminar movement, but this solution is disregarding the 
quadratic terms of the PDE. Exact solutions taking into account the quadratic terms of the 
PDE are movements in spiral streamlines. Regarding the considered two-plasma-particles 
model we note that in fluid mechanics when two liquid flows flow together the most natural 
phenomenon at the separation surfaces is the formation of vortices. 
 

(C) Transforming Schauberger's ideas concerning Nature's basic principles (e.g. explaining vortex 
movements, energy storage and energy conversion) into a mathematical model lead to the 
concept of a hyperbolic cone, (RaC) S. 24. 
 
In the context of the above A-C worlds we note the amazing similarity of the underlying C2 
based action principles of Schauberger's "trout turbine", (AlO) S. 135, with the Tesla turbine, 
(FeF). 
 
Schauberger's explanation how the "trout turbine" works is built on the appropriately 
construction morphology of the gills (the „layer“) of a trout, drawing energy from the streaming 
water by giving the water a strong curling motion. 
 
The C-world related counterpart of Schauberger's trout in aerodynamics is about insect and 
bird flights accompanied with a related instationary uplift force creation enabled by three kinds 
of construction morphologies: fast flyers, swiling flyers, and permanent flyers, (NaW). For the 
aerodynamics of insects and birds there are basically no related B-world models existing, 
(DuR). This may join in the most comprehensive definition of the quality of investigations in 
natural sciences (e.g. chemistry or biology), which is a "moving form"; it means a certain form 
actively notifies its surroundings, while a mathematical model can only investigate "frozen 
forms", (RaC) S. 10. 
 

(D) From a philosophical view on the above hierarchical mathematical-physical-biological 
structure we quote from M. Heidegger, (HeM): 
 
(72) „Modern physics is called mathematical because, in a remarkable way, it makes use of a quite 
specific mathematics. But it can proceed mathematically in this way only because, in a deeper sense, it 
is already itself mathematical.“   
 
(73) „The rigor of mathematical physical science is exactitude. Here all events, if they are to enter at all 
into representation as events of nature, must be defined beforehand as spatiotemporal magnitudes of 
motion. Such defining is accomplished through measuring, with the help of number and calculation. But 
mathematical research into nature is not exact because it calculates with precision; rather it must 
calculate in this way because its adherence to its object-sphere has the character of exactitude. The 
humanistic sciences, in contrast, indeed all the sciences concerned with life, must necessarily be inexact 
just in order to remain rigorous. A living thing can indeed also be grasped as spatiotemporal magnitude 
of motion, but then it is no longer apprehended as living. The inexactitude of the historical humanistic 
sciences is not a deficiency, but is only the fulfillment of a demand essential to this type of research. It is 
true, also, that the projecting and securing of the object-sphere of the historical sciences is not only of 
another kind, but is much more difficult of execution than is the achieving of rigor in the exact sciences.“ 
 
(E) Khun Dee's view of the world is about an implosion theory, alternatively to the big bang 
explosion theory, (StB). The implosion concept also plays a key role in (C), Schauberger's 
view of the C world. 
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Appendix 
 

Extracts 
 

from 
  

(StR) p. 9 ff., (UnA) p. 152 ff., (CoR) p. 763 
 

with comments from the author in italic 

 
 

The real Lorentz transform 
 
 
(StR): A Lorentz transformation is a linear transformation Λ mapping space-time onto space-time 

which preserves the scalar product (Λx⃗ , Λy⃗ ) = (x⃗ , y⃗ ), where 
 

(x⃗ , y⃗ ) ≔ (𝑥0, 𝑦0) − [(𝑥1, 𝑦1) + (𝑥2, 𝑦2) + (𝑥3, 𝑦3)] = 𝑥𝜇𝑔𝜇𝜈𝑥
𝜈 = 𝑥𝜇𝑦𝜇. 

 

If (Λ𝑥)𝜇 = Λ
𝜇

𝜈𝑥
𝜈, the (real) matrix Λ

𝜇
𝜈 of the transformation must satisfy 

 

                                                                     Λ
𝜅
𝜇Λ𝜅𝜈 = 𝑔𝜇𝜈 or  Λ

𝑇𝐺Λ = 𝐺,                  (1-5) 

 

where the transpose Λ
𝑇
 of Λ is defined by (Λ𝑇)𝜇

𝜈
= Λ

𝜇
𝜈 and indices on Λ are lowered according to 

 

Λ𝜅𝜈 = 𝑔𝜅𝜎Λ
𝜎

𝜈 = (𝐺Λ)𝜅𝜈. 
 

If  Λ and M satisfy (1-5), so do ΛM and Λ
−1

. Here 
 

(ΛM)𝜇
𝜈
= Λ

𝜇
𝜈 M𝜅

𝜈    (Λ−1)𝜇
𝜈
Λ

𝜅
𝜈 = g𝜇

𝜈
= {

0
1

𝜇≠𝜈
𝜇=𝜈

, 

 
so the (real) Lorentz transformations form a group, the Lorentz group 𝐿. 
 

Two Lorentz transformations  Λ and M are defined to be close to one another if the numbers Λ
𝜇

𝜈  and 

M𝜇
𝜈 are close for all 𝜇, 𝜈 = 0,1,2,3 . Clearly, with this definition, Λ

−1
 and ΛM are continuous functions of 

Λ and  M, respectively. Furthermore, it make sense to say that two (real) Lorentz transformations can 
be connected to one another by a continuous curve of Lorentz transformations. 
 
The Lorentz group 𝐿 has four components, each of which is connected in the sense that any point can 
be connected to any other, but no Lorentz transformation in one component can be connected to 
another in another component.  
 
One of this components is the restricted Lorentz group, which is the group of 2𝑥2 complex matrices of 
determinant one, 𝑆𝐿(2, 𝐶). It is isomophic to the symmetry group 𝑆𝑈(2), containing as elements the 
complex-valued rotations, which can be written as a complex-valued matrix of type 
 

(
𝑎 + 𝑖𝑏 𝑐 + 𝑖𝑑
−𝑐 + 𝑖𝑑 𝑎 − 𝑖𝑏

)   with determinant one. 

 
It is important in describing the transformation properties of spinors. In SMEP the group 𝑆𝑈(2) 
describes the weak force interaction with 3 bosons 𝑊+, 𝑊−, 𝑍. 
 
This restricted Lorentz group contains the 1-transformation. Its connected component contains the 
space-time inversion. The other pair of connected components of the Lorentz group contains the 
space inversion resp. the time inversion. 
 
The Lorentz group has also three important subgroups, which are 
 

- the orthochronous Lorentz group 
- the proper Lorentz group 
- the orthochorous Lorentz group. 
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The complex Lorentz transform 
 
 
Another group associated with the Lorentz group 𝐿 is the complex Lorentz group, which we shall 
denote by 𝐿(𝐶). It is essential in the proof of the PCT theorem as we shall see. It is composed of all 
complex matrices satisfying  
 

Λ
𝜅
𝜇Λ𝜅𝜈 = 𝑔𝜇𝜈 or  Λ

𝑇𝐺Λ = 𝐺,                  (1-5). 

 
It has just two connected components, 𝐿+(𝐶) and 𝐿−(𝐶) according to the sign of det(Λ). The 

transformations 1 and -1, which are disconnected in 𝐿 are connected in 𝐿(𝐶). In other words, the 
complex Lorentz transformation connects  
 

- the two components containing the 1-transformation and space-time inversion, i.e. the pair 
 

{det(Λ) = +1 , det (Λ0
0
= +1)}, {det(Λ) = +1 , det (Λ0

0
= −1)}, 

 
- the two components containing the space inversion and the time inversion, i.e. the pair 

  

{det(Λ) = −1 , det (Λ0
0
= +1)}, {det(Λ) = −1 , det (Λ0

0
= −1)}. 

 
 

Summary:  
 

While two (real) Lorentz transformations need to be connected to one another by an 
appropriately defined continuous curve of Lorentz transformations, there are two pairs of 
components of the complex Lorentz transform, which are both already connected by 
definition.  

 
 
Just as the restricted Lorentz group is associated with 𝑆𝐿(2, 𝐶), the complex Lorentz group is 

associated with 𝑆𝐿(2, 𝐶) ⊗ 𝑆𝐿(2, 𝐶). The latter group is the set of all pairs of 2𝑥2 matrices of 
determinants one with the multiplication law 
 

{𝐴1, 𝐵1} ∙ {𝐴2, 𝐵2} = {𝐴1𝐴2, 𝐵1𝐵2}. 
 
Is is easy to see that only matrix pairs which yield a given Λ(A, B) are (±A,±B). In particular,  
 

Λ(−1,1) = Λ(1, −1) = −1. 
 
The corresponding complex Poincare group admits complex translation but also the multiplication law  
 

{𝑎1, Λ1} ∙ {𝑎2, Λ2} = {𝑎1 + Λ1𝑎2, Λ1Λ2}. 
 
It has two components P±(𝐶), which are distinguished by det(Λ) and a corresponding inhomogeneous 

group to 𝑆𝐿(2, 𝐶). 
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Quaternions 
 
 
(UnA): The multiplication rule for quarternions reads as follows: 
 
(𝑎1, 𝑏1, 𝑐1, 𝑑1) ∙ (𝑎2, 𝑏2, 𝑐2, 𝑑2) = (𝑎1𝑎2 − 𝑏1𝑏2 − 𝑐1𝑐2 − 𝑑1𝑑2, 𝑎1𝑏2 + 𝑏1𝑎2 + 𝑐1𝑑2 + 𝑑1𝑐2, 𝑎1𝑐2 − 𝑏1𝑑2 +
𝑐1𝑎2 + 𝑑1𝑏2, 𝑎1𝑑2 + 𝑏1𝑐2 − 𝑐1𝑏2 + 𝑑1𝑎2). 
 
Quaternions constitute a skew field, that means 𝑎 ∙ 𝑏 = −𝑏 ∙ 𝑎. Unit quaternions are equivalent to the 

3D unit sphere 𝑆3. 
 
The quaternions product can also be written using the scalar and cross products known from vector 
analysis. If unit quarternion (𝑎, 𝑏, 𝑐, 𝑑) is decomposed into a real part a and a vector �⃗� = (𝑏, 𝑐, 𝑑). Then 
we get: 
 

(𝑎1, �⃗� 1) ∙ (𝑎2, �⃗� 2) = (𝑎2𝑎2 − �⃗� 1 ∙ �⃗� 2, 𝑎1�⃗� 2 + 𝑎2�⃗� 1 − �⃗� 1𝑥�⃗� 2). 
 
In vector analysis, both the scalar product (also called „dot product“) and the vector product (also 
called „cross product“) are of significant importance and are widely used in most areas of modern 
physics. One may combine these products with the symbol of a spatial derivative ∇, and generate the 
differential operators divergence and curl, indicating the source and the vorticity of a vector field, 
respectively. Maxwell’s equations represent the most prominent example of how fundamental laws can 
be formulated in an elegant vectorial form. … Just to illustrate the close relation between quarternion 
algebra and vector analysis, consider the quaternionic multiplication of a spatiotemporal derivative 
vector with electromagnetic potential: 
 

(
𝜕

𝜕𝑡
, �⃗� ) × (𝜑, 𝐴 ) =

𝜕𝜑

𝜕𝑡
− �⃗� ∙ 𝐴 

𝜕𝐴 

𝜕𝑡
+ �⃗� 𝜑 + �⃗� × 𝐴  . 

 

The last two terms precisely match the known expressions for the electric and magnetic fields �⃗�  and 

�⃗� . 
 

Comment:  
 

The two connected components of the complex Lorentz transformations provide the link 
to the proposed two type plasma spinor quantum field model with the related symmetry 
group 𝑆𝐿(2, 𝐶) ⊗ 𝑆𝐿(2, 𝐶). We note that the space-time concept shows up on stage by 
linking the inner product of quaternions and the scalar product defining the Lorentz 
transformation property. 
 

We further note, that the one type spinor field in current quantum field theory becomes 
already a first approximation to this finest degree of physical accuracy. In this context we 
also note, that from a mathematical perspective the Sobolev Hilbert spaces are the 
appropriate framework for elliptic PDE, e.g. providing „optimal“ shift theorems, while the 
appropriate framework for hyperbolic PDE is still an open question. A proof of a related 
„space-time“ problem, the Courant hypothesis, is still missing (CoR) p. 763: 

 

Families of spherical waves for arbitrary time-like lines Λ exits only in the case of two and 
four variables, and then only if the differential equation is equivalent to the wave equation. 
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Extracts  
 

from  
 

(VaM) chapter IV 
 
 

Let 𝐵 be a self-djoint operator defined on all of the Hilbert space 𝐻. Then this operator induces a 

decomposition of 𝐻 into a direct sum of two sub-spaces 𝐻 = 𝐻1 ⊗ 𝐻2. Both sub-spaces are no Hilbert 

spaces. However, the orthogonal projection operators 𝑃1 and 𝑃2 enable the definition of the indefinite 
metric 
 

𝜑(𝑥) ≔ ((𝑥))
2
: = ‖𝑃1𝑥‖2 − ‖𝑃2𝑥‖2  

 

Thus, putting 𝑥1 ≔ 𝑃1𝑥, 𝑥2 ≔ 𝑃2𝑥 the operator 𝐵 generates a hyperboloid and a related ellipsoid  
 

i) Hyperboloid:  𝜑(𝑥1 + 𝑥2) = ‖𝑥1‖
2 − ‖𝑥2‖

2 = 𝑐 > 0 

 

ii) Ellipsoid: 
 ‖𝑥1‖2

𝑎1
2 +

‖𝑥2‖2

𝑎2
2 = 1 ; elliptical region: 𝐸𝑐 ≔ {𝑥 ∈ 𝐻|

 ‖𝑥1‖2

𝑎1
2 +

‖𝑥2‖2

𝑎2
2 ≤ 𝑐, 𝑐 > 0}. 

 
The indefinite metric 𝜑(𝑥) can be interpreted as a „potential“ accompanied with the gradient of the 

potential 𝜑(𝑥) defined by 

 

𝑔𝑟𝑎𝑑𝜑(𝑥) = grad((𝑥))
2
= 2𝑃1𝑥 − 2𝑃2𝑥.  

 

The corresponding potential operator is then given by 

 

𝑾(𝑥):=
1

2
𝑔𝑟𝑎𝑑((𝑥))

2
= 𝑃1𝑥 − 𝑃2𝑥.  

 

The fundamental properties of the potential operator 𝑾(𝑥) are completeness, invertibility, (𝑾 = 𝑾−1) 

isometry, and symmetry. Thus, the bilinear form (x, y)W ≔ (𝐖(x), y) defines an inner product, (BoJ) p. 

52. 

 

From  physical modelling perspective we note that the model enables the definition of a PDE specific 

potential criterion (e.g. the famous coupling constants) accompanied with related hyperbolic and 

conical region  𝑉𝑐 and 𝑉0, whose points satisfy the corresponding potential barrier conditions. Evidently 

𝑉𝑐 is a subspace of 𝑉0.  

 

We remark that if 𝑥 is an exterior point of the conical region 𝑉0, i.e. 

 

√‖𝑃1𝑥‖2 − ‖𝑃2𝑥‖2 = 𝛼 > 0,  

 

then those points of the ray 𝑡𝑥, 𝑡 ∈ [0,∞) for which 𝑡 ≥ 𝑐/𝑎 belong to the hyperbolic region 𝑉𝑐, and those 

for which 0 ≤ 𝑡 < 𝑐/𝑎 do not belong to 𝑉𝑐. If 𝑥 is not an element of 𝑉0, then the ray 𝑡𝑥, 𝑡 ∈ [0,∞) does not 

have any point in common with 𝑉𝑐. Thus, every interior ray of the conical region 𝑉0 intersects the 

hyperbolid ((𝑥)) = 𝑐 > 0 in a single point. We denote by 𝐾 the boundary of the conical region 𝑉0. The 

manifold 𝐾 is defined by the condition ((𝑥)) = 0. If we look at the unit sphere 𝑆1 (‖𝑥‖2 = 1), then those 

points of 𝑆1 for which ‖𝑃1𝑥‖ = ‖𝑃2𝑥‖ belong to 𝐾, and those points of 𝑆1 for which ‖𝑃1𝑥‖ > ‖𝑃2𝑥‖ 

intersect the hyperboloid ((𝑥)) = 𝑐 > 0 at the point whose distance from 𝜃 is given by   

 

𝑡 = c(‖𝑃1𝑥‖2 − ‖𝑃2𝑥‖2 )−1/2. 

 

From this it is seen that 𝑡 → ∞ if ‖𝑃1𝑥‖2 − ‖𝑃2𝑥‖2 → 0, i.e. the manifold 𝐾 is an asymptotic conical 

manifold for the hyperboloid ((𝑥)) = 𝑐 > 0. 
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Further Extracts 
 

from 
 

(AnM), (CaM), (ChH), (HaR), (PeG), (PeR1), (ScP), (ThP) 
 

for the Einstein-Hilbert functional and Hamilton‘s Ricci flow equation we refer to (MüR) 
for further references we refer to (BeR), (ChJ) 

 
 

Three dimensional geometries 
 
 

Regarding the geometrization of the three manifolds the baseline result is the following, (ScP), (ThP): 
 
 „there are only the following eight 3-dimensional geometries: either the constant (Euclidian, 

hyperbolic, spherical curvature spaces 𝐸3, 𝐻3, 𝑆3 with the curvatures 0,−1,+1, the products 𝐻2 × 𝑅, 

𝑆2 × 𝑅, or the twistered products 𝑆�̃�(2, 𝑅), 𝑁𝑖𝑙, or 𝑆𝑜𝑙. Of those eight 3-dimensional geometries, seven 
are very well understood. In particular, one can classify all the 3-manifolds which possess a geometric 
structure of one of these seven types. For six of those geometries all the closed manifolds are Seifert 
fibre spaces“. 
 

In other words, the most difficult geometry is that of hyperbolic space 𝐻3. 
 

The constant curvature spaces 𝐸3, 𝐻3, 𝑆3 are simply connected spaces.  
 
The geometric structure of a simply connected space 𝑋 is a homogenous space structure on 𝑋, that is, 

a transitive action of a Lie group 𝐺 on 𝑋. Thus, 𝑋 is given by 𝐺/𝐻, for 𝐻 a closed subgroup of 𝐺. In 
order to avoid redundancy, it is assumed that the identity component 𝐻0 of the stabilizer 𝐻 is a 

compact subgroup of 𝐺, and that 𝐺 is maximal. Further, 𝐺 is assumed to be unimodular; this is 

equivalent to the existence of compact quotients of 𝑋, (AnM). 
 

„The geometry 𝑆3 arises from three distinct pairs (𝐺, 𝐻) where 𝐺 is a Lie group, 𝐻 is a compact 
subgroup and 𝐺/𝐻 is a simply connected 3-manifold, namely (𝑆3, 𝑒), (𝑈(2), 𝑆𝑂(2)) and (𝑆(4), 𝑆(3))“, 
(ScP). 
 

The groups 𝑆3 are 𝑃𝑆𝐿(2, 𝐶), 𝑅3 × 𝑆𝑂(3), 𝑆𝑂(4). In all cases, 𝐻0 = 𝑆𝑂(3), (AnM). 
 

„The three-sphere 𝑆3 has the structure of a group: the group of unit quaternions. Therefore 𝑆3 × 𝑆3 

acts on 𝑆3 by the formula 𝑥 → 𝑔𝑥ℎ−1. The kernel of this action is 𝑍/2, (where 𝑍 denotes the positive 
and negative integers) generated by (−1,1) in quaternionic notation, and this produces an incredible 
isomorphism 𝑆3𝑥𝑆3 /𝑍/2 = 𝑆𝑂(4)“, (ThP1) p. 368. 
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Thurston’s geometrization conjecture and the Ricci flow 

 
"If the Riemannian manifold 𝑀/𝐺 is a quotient of a Riemannian manifold 𝑀 by a group of isometries 𝐺 
at the start, it will remain so under the Ricci Flow. This is because the Ricci Flow on M preserves the 
isometry group", (HaR). 
 
In his 2002 paper G. Perelman sketched his proof of Thurston‘s geometrization conjecture. The central 
tool is the theory of Ricci flows regarded as gradient flows, (PeG).  
 
„The Ricci flow has also been discussed in quantum field theory, as an approximation to the 
renormalization group flow for the two-dimensional non-linear sigma-model“, (GaK) §3.  
 
In this context Perelman's speculation is on the Wilsonian piciture of the renormalization group flow, 
(PeG). 
 
In the Einstein field equations the Riemann tensor is decomposed into, (PeR1)  
 

"RIEMANN = RICCI + WEYL". 
 
The Ricci tensor includes all data about energy, pressure, the momentum of matter particles, and the 
electromagnetic field. The Weyl (or conformal) tensor is the appropriate analogue of the Maxwell field 
tensor 𝐹𝑖,𝑗 describing the gravitational degrees of freedom, in case of a not pure locally valid 

equivalence principle (see below). This "pressure" energy part of the Ricci tensor is related to the Weyl 
tensor. In this context we also recall the "electric pressure" concept of Mie's theory. 
 
The (time-dependent) Ricci flow is an intrinsic geometric flow. It can be looked at a process which 
"deforms" the metric of a Riemannian manifold in a positive way, that it smooths out irregularities in 
this metric. 
 
If the Riemannian manifold 𝑀/𝐺 is a quotient of a Riemannian manifold 𝑀 by a group of isometries 𝐺 
at the start, it will remain so under the Ricci Flow. This is because the Ricci Flow on M preserves the 
isometry group, (HaR). 
 

Homogeneous metrics 
 
Since the Ricci Flow is invariant under the full diffeomorphism group, any isometry in the initial metric 
will persist as isometries in each subsequent metric. A metric is homogeneous when the isometry 
group is preserved; hence if we start with a homogeneous metric the metric will stay homogeneous. 
For a given isometry group there is only a finite dimensional space of homogeneous metrics, and the 
Ricci Flow can be written for these metrics as a system of a finite number of ordinary differential 
equations. In three dimensions there are eight distinct homogeneous geometries; in (CaM) the Ricci 
Flow has been worked out on each.  
 
One example of the typical phenomena that occur is the Berger spheres, which are homogeneous 

metrics on 𝑆2 which respect the Hopf fibration over 𝑆2 with fibre 𝑆1. Under the Ricci Flow the metrics 

on 𝑆2 and on 𝑆1 shrink to points in a finite time, but in such a way that the ratio of their radii goes to 1. 
 
A symmetric bilinear form is called 2-positive if the sum of its two smallest eigenvalues is positive. In 
(ChH) it has observed that two-positive curvature operator is also preserved by the Ricci Flow. 
 
From (CaM) we recall the: 
 

Abstract: Hamilton's Ricci flow convergence theorems generally deal with metrics whose 
Ricci curvature is positive semidefinite. Here, we exhibit a non-trivial class of three-
dimensional Riemannian metrics with Ricci curvature of indefinite sign for which the Ricci 
flow converge. 

 
(PeG): On the other hand, Hamilton (HaR1) discovered a remarkable property of solutions with 
nonnegative curvature operator in arbitrary dimension, called a differential Harnack inequality, which 
allows, in particular, to compare the curvatures of the solution at different points and different times. 
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From (PeG) 13.1, we recall the: 
 

„Let 𝑔𝑖𝑗(𝑡) be a smooth solution to the Ricci flow on 𝑀 × [1,∞[, where 𝑀 is a closed oriented three-

manifold. 
 

… for sufficiently large times 𝑡 the manifold 𝑀 admits a thick-thin decomposition. 

 

… either 𝑀𝑡ℎ𝑖𝑐𝑘 is empty for large 𝑡, or, for an appropriate sequence of 𝑡 → ∞ and 𝑤 → ∞, it 

converges to a (possibly, disconnected) complete hyperbolic manifold of finite volume, whose cusps (if 
there are any) are incompressible in 𝑀.  
 
On the other hand, collapsing with lower curvature bound in dimension three is understood well 
enough to claim that, for sufficiently small 𝑤 > 0, 𝑀𝑡ℎ𝑖𝑛 is homeomorphic to a graph manifold. 
 
The natural questions that remain open are whether the normalized curvatures must stay bounded as 

𝑡 → ∞, and whether reducible manifolds and manifolds with finite fundamental group can have metrics 

which evolve smoothly by the Ricci flow on the infinite time interval. 
 
Now suppose that 𝑔𝑖𝑗(𝑡) is defined on 𝑀 × [1,∞[, 𝑇 < ∞, and goes singular as 𝑡 → 𝑇. Then using 12.1 

we see that, as 𝑡 → 𝑇, either the curvature goes to infinity everywhere, and then 𝑀 is a quotient of 

either 𝑆3 or 𝑆2 × 𝑅, or the region of high curvature in 𝑔𝑖𝑗(𝑡) is the union of several necks and capped 

necks, which in the limit turn into horns (the horns most likely have finite diameter, but at the moment I 
don’t have a proof of that). Then at the time 𝑇 we can replace the tips of the horns by smooth caps 
and continue running the Ricci flow until the solution goes singular for the next time, e.t.c. It turns out 
that those tips can be chosen in such a way that the need for the surgery will arise only finite number 
of times on every finite time interval. 
 
Another differential-geometric approach to the geometrization concecture is being developed by 
Anderson, (AnM); he studies the elliptic equations, arising as Euler-Lagrange equations for certain 
functionals of the riemannian metric, perturbing the total scalar curvature functional, and one can 
observe certain parallelism between his work and that of Hamilton, especially taking into account that, 
as we have shown in 1.1, Ricci flow is the gradient flow for a functional, that closely resembles the 
total scalar curvature.“ 
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