
ON ADDITIVE ARITHMETICAL FUNCTIONS AND
APPLICATIONS OF PROBABILITY TO NUMBER THEORY

P. ERDÖS

The main topic of this lecture will be the study of the distribution function
of additive arithmetical functions . Before proceeding with the subject I want
to call attention to the excellent review of Kac 13 on this subject, were a very
clear and detailed discussion of the interplay of probability and number theory
is given . In the present review I try to emphasize those results which were not
treated in detail by Kac .

A real valued function /(n), n = 1, 2 . . . . is called additive if

/(mm) = f (m) + /(n) whenever (m,n) = 1 .

The function g(n) n = 1, 2 . . . . is called multiplicative if

g(m.n) = g(m) .g(n) whenever (m,n) = 1 .

Additive and multiplicative functions are thus completely determined if one
knows their values for all powers of primes p" .

Examples for additive functions are log n, v(n) (the number of distinct
prime factors of n) ; examples for multiplicative functions are n, Euler's
function q?(n), and b(n) (the sum of divisors of n) .

Let h(n) be any real valued function defined for n = 1, 2, . . . . We say
that h(n) has a distribution function p(c) if for every c the density of integers
satisfying h(n) < c exists . Denoting this density by y(c) we further must have
V (-co)=1,y(+00)=+1.

The question whether an arithmetic function has a distribution function
received considerable attention . As far as I know the first result in this direction
is due to Schoenberg 15 who proved that q)(n)/n has a distribution function.
A little later almost simultaneously Davenport 2 , Behrend and Chowla proved
that a(n)/n also has a distribution function . This result was especially interest-
ing since for c = 2 we abtain the so called deficient numbers . (If 6(n) < 2n, n
is called deficient, with 6(n) > 2n, n is called abundant and with a(n) = 2n, n
is called perfect) .

All these papers used the theory of Fourier transforms . I attacked the
problem in a somewhat different way . An integer u is called primitive abundant
if it is abundant and all its divisors are deficient . Clearly we obtain all abundant
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numbers by considering the set of all multiples of all the primitive abundant
numbers. Thus if we can show that the sum of the reciprocals of the primitive
abundant numbers converges, it will follow by a simple argument that the
density of the abundant numbers exists . Denote by N(n) the number of
primitive abundant numbers not exceeding n, then I proved that"5
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(1) easily implies that the sum of the reciprocals of the primitive abundant
numbers converges and thus the density of the abundant numbers exists .

Unfortunately this method can be applied only in very special cases .
Define n to be primitive a-abundant if 0(n) > an but for all divisors d of n
a(d) < ad . It is not hard to prove that for almost all a the sum of the reciprocals
of the primitive a-abundant numbers converges, but it is also easy to show that
every interval contains c a - s for which the sum of the reciprocals of the
primitive a-abundant numbers diverges (these results are unpublished) .
Further Besicovitch constructed a sequence of integers a 1 < a 2 < . . . so that
the set of their multiples does not have a density . Thus it is clear that the above
method does not lead to general results .

In a subsequent paper Schoenberg 14 deduced the existence of the dis-
tribution function of additive functions under very general conditions . Since
the logarithm of a multiplicative function is additive it usually will suffice to
consider additive functions .

Generalising several previous results 15,1 I proved that the convergence
of the two series
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is a sufficient condition for the existence of the distribution function . In a
subsequent paper Wintner and 17) proved that the convergence of (2) is the
necessary and sufficient condition for the existence of the distribution function
of f (n) .

Our principal tool was the following theorem of Kac 8 ) and myself :
Let /(n) be additive . Put
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Assume that

( 5 )

	

B.. - oo, f(P) = 0(1) .

Denote by K,, (c )) the number of integers m,1 < m < n for which

(5 )

	

f(m) < Am + wBj.

Then

(6)

(7 )
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Our proof of this result uses a combination of probabilistic and number
theoretic methods, we use the central limit theorem and Brun's method . As
stated in the introduction Kac gives a more detailed discussion of the connec-
tions between probability and number theory . As far as I know Kac and
Wintner were the first who called attention to the probabi listic nature of
these theorems . I also omit here the connection of these results with those of
Hardy-Ramanujan and Turan since Kac discusses them in detail . Recently
new proofs were given to our theorem with Kac by Delange 1 ) and Halberstam
which avoid both the central limit theorem and Brun's method but uses instead
the method of moments .

A simple argument shows that (6) indeed implies that Bn - oo is in-
compatible with the existence of the distribution function . The fact that the

f(pconvergence of ) is also necessary for the existence of the distribution

function requires some new and complicated arguments .
Using Brun's method and the estimates of Cramer and Berry on the error

term in the central limit theorem I 9 ) proved the following result :
Let /(n) be additive .

B,,, --> oo, f(P) --> 0.

Then the density of integers for which

0 < f (m) < c(mod 1)

equals c, and is thus independent of the function /(n) .
Let us now assume that the series in (2) converges . It follows from a result

of Paul Levy that the necessary and sufficient condition for the continuity of
the distribution function is that

f(v)~A 0

I obtained for this result a direct number-theoretical proof . In a subsequent
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paper I extended this result considerably, in fact I proved the following
theorem : 9 )

Let f (n) be any additive function which satisfies (7) . Then to every e there
exists a 6 so that if x is sufficiently large and if a1 < a2 < . . . < a t < x is a
sequence of integers satisfying

I f(aa) - f(a,) I <

then t < ex . A slichtly inaccurate but suggestive formulation of this result is
that the distribution function tries to be continuous even if it does not exist .

The above result is a consequence of the following one :
An additive function is said to be finitely distributed if there exist two

constants cl and c 2 and a sequence n 1 < n2 < . . . tending to infinity so that
for every i there exists a sequence

a(i)

	

M < . . . < (z)

	

i

satisfying
~f(a') - f(a') I < c1, t i > c2n i ( 1 < r, s < t ) .

If f (n) has a distribution function it is clearly finitely distributed, also log n is
finitely distributed.

The necessary and sufficient condition that /(n) should be finitely dis-
tributed is that there should exist a constant c and an additive function g(n) so
that

(&
)) 2

(8)

	

f(n) = c log n + g(n),
	 <

00 .

The proof that (8) is sufficient is not difficult, but the proof of the necessity is
rather involved .

(7) gives the necessary and sufficient condition for the continuity of the
distribution function, it would be of interest to obtain necessary and sufficient
conditions for the absolute sontinuity of the distribution function . Here 1 10 )

I
proved using results of Jessen and Wintner that if I f ( f~)

< a
for some a > 0

and (7) holds, then the distribution function is continuous but purely singular .
On the other hand I gave examples of absolutely continuous distribution
functions, in fact if

/(P a ) _ (- 1)(p-1>%2 (loglog p)-3/4

the distribution function is an entire function . It does not seem easy to give a
necessary and sufficient condition for the absolute continuity of the distribution
function . Another difficult problem seems to be to decide which distribution
functions can be the distribution functions of additive functions . It is not hard
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to prove that the distribution function V (x) = 0 for - co < x < 0, V (x) = x
for 0 < x < 1, V(x) = 1 for 1 < x < oo, can not be the distribution function
of an additive function .

Some time ago Chowla conjectured that the density of the integers for
which d (n + 1) > d (n) is 2 . It is not difficult to deduce from the results of
Kac and myself 1 ) that if I /(p) I < c (7) is satisfied, the density of integers
satisfying /(n + 1) > /(n) is 2 . It would be of interest to find out to what
extent the condition f (~) < c can be weakened. The additive function
f (n) = log n shows that it can not entirely be omitted . If f (p) = ( log p)",
a zA 1, a > 0 or f (p) = p it presumably is true that the density of integers for
which 1(n + 1) > J (n) is 2, but I am unable to prove these conjectures .
The conjecture for the case P is easily seen to be equivalent with the
following conjecture : The density of integers n for which the greatest prime
factor of n + 1 is greater than the greatest prime factor of n is 2 . Leveque 14 )

f+
(1

proved that if I J (P) I < c and    diverges f (n) and f(n + 1) are statisti-

cally independent . It would be interesting to know to what extent the condition
I f (p) I < c can be omitted here, again f (n) = log n shows that it is not entirely

(f+ )) 2superfluous (the condition	 = n can not be omitted) .

and

P

The proof of all these conjectures seems to present great difficulties . The
methods used here by Kac, Wintner and myself and some other investigators
which combine the central limit theorem with Brun's method works very well
if the effect of the very large primes (the primes greater than nE ) on the value
of f (n) is negligible . But if this condition is not satisfied (like e .g . for f (p) = p)
our method fails completely .

Some further problems . 1 9 ) proved that if f (n + 1) - f (n) -* 0, then
f (n) = c log n . Let us now only assume that I f (n + 1) - f (n) I < c. I
conjecture then that /(n) = cl log n + g(n), I (gn) < c 2 .

Is it true that almost all integers n have two divisors d1 and d2
satisfying

(9)

	

d1 < d2 < 2d1 (or more generally dl < d 2 < (1 + s)d1)?

1 11 ) proved that the density of integers satisfying (9) exists, but I can not
prove that it is 1 .

Let g (n) be a multiplicative function for which

D
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(g(p) -1 ) 2
p

P

n

k=1
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n

g (k)

exists and is different from 0 and 00 12) . Does the limit (12) still exist if we
only assume the convergence of (10)?

It might be remarked that the method used to prove the existence of the
distribution function of additive functions often can be used to prove the
existence of the distribution function of non additive functions e .g. Shapiro
and I proved that (will be published in the Canadian Journal of Math .)

p(k)

	

6
- - 1/1

k ,

	

ac2

has a continuous and steadily increasing distribution function . Also

1
(14)

	

f(a) =

	

kl,,(k)

where h(k) is the exponent of a(mod k), has a distribution function .
Many aspects of this subject were not considered in this short note e .g .

the interesting results of Van Kampen, Wintner, Kac and de Bruijn on con-
nections between the theory of almost periodic functions and additive and
multiplicative functions, perhaps I gave an undue amount of place to my own
papers, but I may be excused since not unnaturally I am best acquainted with
them . The references to the litterature are not complete and again I refer to the
review article by Kac quoted above .

In closing I would like to call attention to a few other applications of
probability to number theory . First of all Cramer used probability theory to
make plausible conjectures about primes . Further Rényi by using probabilistic
methods considerably strengthened the large sieve of Linnik . He himself
derived from these results that every integer is the sum of a prime and an
integer having a bounded number of prime factors . His results have several
other applications . Finally I would like to call attention to the fact that one
often can prove the existence of sequences with certain properties by probability
methods . In fact one then proves that almost all sequences have the required
property, perhaps without being able to construct a single sequence having the
property .
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