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Plasma is the fourth state of matter, where from general relativity and quantum theory it is 

known that all of them are fakes resp. interim specific mathematical model items. An 

adequate model needs to take into account the axiom of (quantum) state (physical states 

are described by vectors of a separable Hilbert space H) and the axiom of observables (each 
physical observable A is represented as a linear Hermitian operator 𝐴 of the state Hilbert 

space). The corresponding mathematical model and its solutions are governed by the 

Heisenberg uncertainty inequality. As the observable space needs to support statistical 

analysis the 𝐿2 −Hilbert space, this Hilbert space needs to be at least a subspace of H. At 

the same point in time, if plasma is considered as sufficiently collisional, then it can be well-

described by fluid-mechanical equations. There is a hierarchy of such hydrodynamic models, 

where the magnetic field lines (or magneto-vortex lines) at the limit of infinite conductivity 

is “frozen-in” to the plasma. The “mother of all hydrodynamic models is the continuity 

equation treating observations with macroscopic character, where fluids and gases are 

considered as continua. The corresponding infinitesimal volume “element” is a volume, 

which is small compared to the considered overall (volume) space, and large compared to 

the distances of the molecules. The displacement of such a volume (a fluid particle) then is 

a not a displacement of a molecule, but the whole volume element containing multiple 

molecules, whereby in hydrodynamics this fluid is interpreted as a mathematical point. 

Our approach below is based on the common Hilbert space framework and the proposed 

alternative Schrödinger momentum operator (see [BrK] and the references cited there) 

given by 
 

𝑢(𝑥) → 𝑃∗[𝑢](𝑥) ≔ −𝑖
𝑑

𝑑𝑥
𝐻[𝑢](𝑥): = −𝑖

𝑑

𝑑𝑥
𝐻𝑥 [𝑢](𝑥) = −𝑖𝐻[𝑢𝑥](𝑥) 

 

with domain 𝐻1/2 = 𝐻1 + 𝐻1
¬ and corresponding quantum state Hilbert space 𝐻−1/2 = 𝐻0 + 𝐻0

¬. 

The Hilbert transform is related to the Laplace equation by the concept of conjugate 

functions. The corresponding generalization with respect to the Yukawan potential is 

provided in [DuR]. 
 

In quantum mechanics, a boson is a “particle” that follows the Bose-Einstein statistics 

(“photon gases”). A characteristic of bosons is that their statistics do not restrict the 

number of them that occupy the same quantum state. All bosons can be brought into the 

energetically lowest quantum state, where they show the same “collective” behavior. Unlike 

bosons, two identical fermions cannot occupy the same quantum state. Fermions follow the 

Fermi statistics (e.g. [AnJ]). With respect to the above extended domain of the Schrödinger 
momentum operator, we propose to identify  𝐻0 as quantum state space for the fermions 

(which is compactly embedded into 𝐻−1/2), and 𝐻0
¬ as quantum state space for the bosons. 

The “fermions quantum state” Hilbert space 𝐻0 is dense in 𝐻−1/2 with respect to the 

𝐻−1/2 −norm, while the (orthogonal) “bosons quantum state” Hilbert space 𝐻0
¬ is a closed 

subspace of 𝐻−1/2, resp. the “mass/energy fermions” Hilbert space 𝐻1 is dense in 𝐻1/2 with 

respect to the 𝐻1/2 −norm, while the “mass/energy bosons” Hilbert space is a closed 

subspace of 𝐻1/2. The concept of “vacuons” (i.e. the vacuum expectation values of scalar 

fields) in the context of “spontaneous” breakdown of symmetry [HiP] then corresponds to 

the orthogonal projection 𝐻1/2 → 𝐻1.  
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In ([BrK]) a distributional variational Hilbert space framework for Landau type 

equations is provided being enriched by an additional norm with an “exponential 

decay” behavior in the form (𝑡 > 0) (in line with the statistics above) given by  
 

(𝑥, 𝑦)𝛼.(𝑡) = ∑ 𝜎𝑘
𝛼𝑒−√𝜎𝑘𝑡(𝑥, 𝜑𝑘)(𝑦, 𝜑𝑘)𝑘    ,   ‖𝑥‖𝛼.(𝑡)

2 ≔ (𝑥, 𝑥)𝛼.(𝑡). 
 

It is based on appropriately defined eigen-pair solutions of a problem adequate linear 

operator 𝐴 with the properties (1) 𝐴 selfadjoint, positive definite, (2) 𝐴−1 compact. 
  

An element  𝑥 = 𝑥0 + 𝑥0
¬ ∈ 𝐻−1/2 = 𝐻0 + 𝐻0

¬ with ‖𝑥0‖0 = 1 is governed by the norm of its 

(observation) subspace H0 in combination with the norm  |‖𝑥‖|(𝑡)
2 ≔ (𝑥, 𝑥)(𝑡) in the form 

 

‖𝑥‖−1/2
2 ≤ 𝜃‖𝑥‖0

2 + ∑ 𝑒1−√𝜎𝑘𝜃𝑥𝑘
2∞

𝑘=1      with   𝜃 ≔ ‖𝑥0
¬‖−1/2

2  , 
 

which is a special case of the general inequality (𝛼 > 0 be fixed) 
 

‖𝑥‖−𝛼
2 ≤ 𝛿2𝛼‖𝑥‖0

2 + 𝑒𝑡/𝛿‖𝑥‖(𝑡)
2 . 

 

Plasma is an ionized gas consisting of approximately equal numbers of positively charged 

ions and negatively charged electrons. One of the key differentiator to neutral gas is the 

fact that its electrically charged particles are strongly influenced by electric and magnetic 

fields, while neutral gas is not. The continuity equation of ideal magneto-hydrodynamics is 

given by ([DeR] (4.1)) 
 

𝜕

𝜕𝑡
𝜌 + ∇ ∙ (𝜌𝒗) = 0 

 

with 𝜌 = 𝜌(𝑥, 𝑡) denoting the mass density of the fluid and 𝒗 denoting the bulk velocity of 

the macroscopic motion of the fluid. The corresponding microscopic kinetic description of 

plasma fluids leads to a continuity equation of a system of (plasma) “particles” in a phase 

space (𝒙, 𝒗) (where 𝜌(𝒙, 𝑡) is replaced by a function 𝑓(𝒙, 𝒗, 𝑡)) given by ([DeR] (5.1)) 
 

𝜕

𝜕𝑡
𝑓 + 𝑣 ∙ ∇𝑥𝑓 +

𝑑𝑣

𝑑𝑡
∙ ∇𝑣𝑓 + 𝑓

𝜕

𝜕𝑣
∙

𝑑𝑣

𝑑𝑡
= 0 . 

 

In case of a Lorentz force the last term is zero, leading to the so-called collisions-less 

(kinetic) Vlasov equation ([ShF] (28.1.2)).  
 

In fluid description of plasmas (MHD) one does not consider velocity distributions (e.g. 

[GuR]). It is about number density, flow velocity and pressure. This is about moment 

or fluid equations (as NSE and Boltzmann/Landau equations). In [EyG] it is proven 

that smooth solutions of non-ideal (viscous and resistive) incompressible magneto-

hydrodynamic (plasma fluid) equations satisfy a stochastic (conservation) law of flux. 

It is shown that the magnetic flux through the fixed surface is equal to the average of 

the magnetic fluxes through the ensemble of surfaces at earlier times for any (unit or 

general) value of the magnetic Prandtl number. For divergence-free 𝑧 = (u⃗⃗, 𝐵⃗⃗) ∈

𝐶([𝑡0, 𝑡𝑓], 𝐶𝑘.𝛼), (u⃗⃗(0), 𝐵⃗⃗(0)) ∈ 𝐶𝑘.𝛼 the key inequalities are given by 
 

- unit magnetic Prandtl number:  
 

𝑒−2𝛾(𝑡𝑓−𝑡0)‖𝑧(𝑡𝑓)‖
2

2
+ 2 ∫ 𝑒−2𝛾(𝑡−𝑡0)[𝜀‖𝑧(𝑡)‖2

2 + 𝜇‖∇𝑧(𝑡)‖2
2]𝑑𝑡 ≤

𝑡𝑓

𝑡0

‖𝑧(0)‖2
2 

- general magnetic Prandtl number ( stochastic Lundquist formula):  
 

𝑒−2𝛾(𝑡𝑓−𝑡0)‖𝐵⃗⃗(𝑡𝑓)‖
2

2
+ 2 ∫ 𝑒−2𝛾(𝑡−𝑡0) [𝜀‖𝐵⃗⃗(𝑡)‖

2

2
+ 𝜇‖∇B⃗⃗⃗(𝑡)‖

2

2
] 𝑑𝑡 ≤

𝑡𝑓

𝑡0
‖𝐵⃗⃗(0)‖

2

2
 . 
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The corresponding situation of the fluid flux of an incompressible viscous fluid leads to the 

Navier-Stokes equations. They are derived from continuum theory of non-polar fluids with 

three kinds of balance laws: (1) conservation of mass, (2) balance of linear momentum, (3) 

balance of angular momentum ([GaG]). Usually the momentum balance conditions are 

expressed on problem adequate “force” formula derived from the Newton formula = 𝑚 ∙
𝑑𝑣

𝑑𝑡
 . 

For getting any well-posed (evolution equation) system is it necessary to define its 

corresponding initial-boundary value conditions. 
 

The NSE are derived from the (Cauchy) stress tensor (resp. the shear viscosity tensor) 

leading to liquid pressure force  
𝜕𝑝

𝜕𝑥𝑖
= −

𝜕𝑇𝑗𝑖

𝜕𝑥𝑗
+ 𝜇∆𝑣𝑖. In electrodynamics & kinetic plasma physics 

the linear resp. the angular momentum laws are linked to the electrostatic (mass 

“particles”, collision, static, quantum mechanics, displacement related; “fermions”) Coulomb 

potential resp. to the magnetic (mass-less “particles”, collision-less, dynamic, quantum 

dynamics, rotation related; “bosons”) Lorentz potential. 
 

In [PlJ] a mathematical mass element concept is considered, which replaces the 
mathematical “mass” object 𝑥 (real number) by a “differential” object 𝑑𝑥. It leads to 

alternative unit outer normal derivative definition enabling a Newton potential, where a 

density function is replaced by its differential. This goes along with Plemelj’s definition of a 

double layer potential. From a mathematical point in view this means that a Lebesgue 

integral is replaced by a Stieltjes integral. This goes along with Plemelj’s double layer 

potential definition. From a physical interpretation perspective it means that Newton’s “long 

distance test particle” defining a potential function is influenced by the enclosed mass 

elements and no longer by their corresponding density function, only.  
 

When one wants to treat the time-harmonic Maxwell equations with variational methods, 

one has to face the problem that the natural bilinear form is not coercive on the whole 

Sobolev space 𝐻1 ([KiA]). On can, however, make it coercive by adding a certain bilinear 

form on the boundary of the domain (vanishing on a subspace of 𝐻1), which causes a 

change in the natural boundary conditions ([CoM]).  
 

The mathematical tool to distinguish between unperturbed cold and hot plasma is about the 

Debye length and Debye sphere ([DeR]). The corresponding interaction (Coulomb) potential 

of the non-linear Landau damping model is based on the (Poisson) potential equation with 

corresponding boundary conditions. A combined electro-magnetic plasma field model needs 

to enable “interaction” of cold and hot plasma “particles”, which indicates Neumann problem 

boundary conditions. The corresponding double layer (hyper-singular integral) potential 

operator of the Neumann problem is the Prandtl operator P, fulfilling the following properties 

([LiI] Theorems 4.2.1, 4.2.2, 4.3.2): 
 

i) the Prandtl operator P: Hr → Ĥr−1 is bounded for 0 ≤ r ≤ 1 
 

ii) the Prandtl operator P: Hr → Ĥr−1 is Noetherian for 0 < r < 1 
 

iii) for 1/2 ≤ r < 1, the exterior Neumann problem admits one and only one 

generalized solution. 
 

Therefore, the Prandtl operator enables a combined (conservation of mass & (linear & 

angular) momentum balances) integral equations system, where the two momentum 

balances systems are modelled by corresponding momentum operator equations with 
corresponding domains according to 𝐻1/2 = 𝐻1 × 𝐻1

¬. For a correspondingly considered 

variational representation (e.g. for the (Neumann) potential equation or the corresponding 

Stokes equation) it requires a less regular Hilbert space framework than in standard theory. 

Basically, domain 𝐻1of the standard (Dirichlet integral based) “energy” (semi) inner product 

a(u, v) = (∇𝑢, ∇𝑣) is extended to 𝐻1/2 with a corresponding alternative (semi) inner product in the 
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form a(u, v) = (∇𝑢, ∇𝑣)−1/2 = (𝑢, 𝑣)1/2 . It enables e.g. the method of Noble ([VeW] 6.2.4), [ArA] 

4.2), which is about two properly defined operator equations, to analyze (nonlinear) 

complementary extremal problems. The Noble method leads to a “Hamiltonian” function 
W(∙,∙) which combines the pair of underlying operator equations (based on the “Gateaux 

derivative” concept) 
 

𝑇𝑢 =
𝜕𝑊(𝑢́,𝑢)

𝜕𝑢́
  ,  𝑇∗𝑢́ =

𝜕𝑊(𝑢́,𝑢)

𝜕𝑢
   𝑢 ∈ 𝐸 = 𝐻1/2  ,  𝑢́ ∈ 𝐸́ = 𝐻−1/2. 

 

The proposed (Hilbert space based) model provides a truly infinitesimal geometry. 

Variational integrators were originally developed for geometric time integration, particularly 

to simulate dynamical systems in Lagrange mechanics. In [StA] the concept of 

(electromagnetic) “variational integrators for the Maxwell equations with sources”, including 

free sources of charge and current in non-dissipative media, is provided in the framework of 

differential form. For the correspondence of the inner products of the distributional Hilbert 

spaces 𝐻−1/2 , 𝐻−1 in the context of a proper ground state energy model we refer to the 

references cited in [BrK]. 
 

The alternative Hilbert space framework can also be applied for correspondingly modified 

Maxwell equations, which govern the electromagnetic field for given distributions of the 

electric charges and currents. The laws how those charges and currents behave are 

unknown. What’s known, is, that electricity exists within the elementary particles (electron, 

positron), but the appropriate mathematical model, which is consistent with the Maxwell 

equations and the related Einstein field equations, is still missing. Only the energy tensor of 

electromagnetic fields outside of elementary particles is known. Modelling the elementary 

particles as singularities should be considered as interim “solution”, only, as well as applying 

hydrodynamic equations (the classical mechanics approach) to describe “matter” by terms 

like the density of the ponderable substance (and the corresponding “Ruhemasse”) and 

hydrodynamic pressure forces (area forces). The alternative Hilbert space framework 

preserves the electrostatics and magnetostatics equations ([ArA] 3.6, 3.7), while replacing 

Maxwell’s electromagnetic “mass density / flux/flow” density concept (enabled by the 

Maxwell displacement current (density) concept to extend the Ampere law to the Ampere-

Maxwell law) by Plemelj’s “mass element / flux/flow strength” concept ([PlJ] §8). The latter 

one is enabled by Plemelj’s alternative normal derivative concept ([PlJ] §5: space dimension 

n=2 & logarithmic potential), where 𝑑𝑢/𝑑𝑛 is replaced by 𝑢̅(𝜎) ≔ − ∫
𝑑𝑢

𝑑𝑛
𝑑𝑠

𝜎

𝜎0
 (𝑢̅(𝜎) denotes the 

conjugate potential to 𝑢). The latter one might be well defined, while the standard normal 

derivative might not be defined. We emphasis that 𝑢̅(𝜎) is defined with purely boundary 

values, i.e. it requires no information about the interior or exterior domain of a related 

vector field. For the generalization of the Cauchy-Riemann equations to space dimension 

n=3 and related translation or rotation groups we refer to [StE2]. The corresponding physical 

interpretations are about “source density” or “invertebrate density/rotation” with its related 

mathematical formulas 𝑟𝑜𝑡(𝑢) = 𝑟𝑜𝑡(±𝑔𝑟𝑎𝑑𝜑) = 0 or 𝑑𝑖𝑣(𝑟𝑜𝑡(𝑢)) = 0 (which are the 3-space 

interpretations of the Poincare lemma 𝑑(𝑑𝜔)) = 0). With respect to the below we also 

mention that the replacement of the displacement current concept avoids to “calibration 

(Eichung)” need to ensure well-posed PDE systems. As Plemelj’s flow strength definition 

requires only information from the boundary/surface it can be applied to both, the Gaussian 

law (based on normal directions to the surface) and the Stokes law (based on tangential 

directions to the surface). This enables a new “double layer potentials” concept with two 

different potentials on each side of the double layer of the boundary/surface. The 

corresponding electrostatic and magnetostatic systems are linked by common flow strength 

values at each point of the surface. 
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In [CoM] a coercive bilinear form of the Maxwell equations in combination with appropriate 

boundary conditions is provided. The underlying “energy” inner product is based on the 

standard (energy) Hilbert space 𝐻1𝑥𝐻1. We propose the extended domain 𝐻1/2𝑥𝐻1/2 in 

combination with a “boundary bilinear form” (based on the Prandtl operator𝑇 above with 

𝑟 = 1/2) in the form 
 

𝑎(𝑢, 𝑣): = (𝑑𝑖𝑣𝑢, 𝑑𝑖𝑣𝑣)−1/2 + 〈P̅𝑢, P̅𝑣〉−1/2+(𝑐𝑢𝑟𝑙𝑢, 𝑐𝑢𝑟𝑙𝑣)−1/2  ∀u, v ∈ 𝐻1/2
°  

  

In [BrK] the Leray-Hopf (Helmholtz-Weyl) operator 𝑃 ∶ 𝐻𝛽 → 𝐻𝛽
𝜎 is considered (whereby 𝐻𝛽

𝜎 

denotes the divergence-free (solenoidal) 𝐻𝛽). It is linked to the tensor product of the Riesz 

operators 𝑄 ≔ 𝑅𝑥𝑅 (which is selfadjoint and a projection operator, i.e.  𝑄 = 𝑄2) and the curl 

operator by the following identities ([LeN]): 𝑃 + 𝑄 = 𝐼𝑑, 𝑐𝑢𝑟𝑙 = 𝑐𝑢𝑟𝑙∗, 𝑐𝑢𝑟𝑙2 = −∆𝑃, 
[𝑃, 𝑐𝑢𝑟𝑙]=0, 𝑃𝑐𝑢𝑟𝑙 = 𝑐𝑢𝑟𝑙𝑃 = 𝑐𝑢𝑟𝑙, and 𝑃 is also a projection operator (i.e.  𝑃 = 𝑃2), if 𝑑𝑖𝑣𝑢 = 0. 
 

The physical interpretation is as follows: The “energy” space 𝐻1/2
° = H1 × H1

¬ is built on the 

“charged electrical particles” Hilbert space H1 and its related distributions (which is dense in 

H1/2 with respect to the 𝐻1/2
° − norm), and the “orthogonal” Hilbert space H1

¬ generating 

those “charged electrical particles” (which is a closed subspace of H1/2). The Hilbert space H1
¬ 

“acts” on the “particles” in H1 (governed by the Prandtl operator), but also “binary collisions” 

in H1 acts on H1
¬, giving “back” energy into the Hilbert space H1

¬, w/o affecting corresponding 

(statistical) distribution function in H1. Without additional energy from “outside” the 

“system” the probability, that two “particles” collide, is zero.  
 

The modified Maxwell equations are proposed as non-standard model of elementary 

particles (NMEP). Electromagnetic waves propagation in vacuum can be described by the 

source-free Maxwell equations w/o specifying anything about charges or currents that might 

have produced them. It provides an alternative model for spontaneous symmetry 

breakdown with massless bosons ([HiP]). In [WeP], [WeP1], self-adjoint extensions and 

spectral properties of the Laplace operator with respect to electric and magnetic boundary 

conditions are provided. 
 

The (“Pythagoras”) split of the newly proposed energy norm ‖𝑥‖1/2
2 = ‖𝑥0‖𝐻0

2 + ‖𝑥0
¬‖𝐻0

¬
2  goes 

along with two corresponding groups of transformations, the group of translations and the 

group of rotations.  The corresponding theory of generalized Cauchy-Riemann equations are 

given in [StE1] III, 4.2, and [StE2]. There are basically two characterizations of all possible 

generalizations of the Cauchy-Riemann equations: (1) the existence of a harmonic function 

𝐻 on 𝑅+
𝑛+1 so that 𝑢𝑗 =

𝜕

𝜕𝑥𝑗
𝐻, 𝑗 = 0,1,2, … 𝑛; (2) rotation group theory based, building on the 

(complex unitary) vector space of symmetric tensors of 2𝑥2 matrices. The latter one 

includes the “electron equation of Dirac” in the case w/o external forces, with zero mass, 

and independent of time ([StE2]). 
 

The same (extended Maxwell equations, combined transformation group for kinetic and 

potential energy interaction) concept as above can be applied to the Einstein field 

equations. In this context we note that the gravity “force” is an only attractive one. At the 

same point in time the magnetic field of the earth is the result of the gravity “force”.  The 

electromagnetic waves propagation in vacuum of the Maxwell equations corresponds to the 

Weyl (curvature) tensor, while the Ricci flow equation governs the evolution of a given 

metric to an Einstein metric ([AnM]). The Einstein vacuum field equations allow wave 

solutions describing a propagating gravitation field in a geometrical Minkowski space. The 

wave front of this gravitation field, which is the boundary of the curved and the plane space 

propagates with light speed. 
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The distributional Hilbert space framework above is also proposed as an appropriate 

framework for Wheeler’s geometrodynamics ([WhJ]), which is about the attempt to describe 

space-time and associated phenomena completely in terms of geometry. It especially would 

enable a consistent model for “graviton” quanta dynamics regarding gravitation waves in 

Einstein’s vacuum field equations and corresponding “graviton” quanta properties in 

quantum field theory. 
 

A Hilbert space based variational representation of the Einstein field equations goes along 

with a geometric structure on a 3-manifold, which is a complete, locally homogeneous 

Riemannian metric 𝑔.  

 

A geometric 3-manifold (i.e. a 3-manifold admitting a geometric structure) admits eight 
simply connected geometries with compact quotients 𝐺/𝐻. Those eight geometric structures 

are rigid in that there are no geometries which interpolate continuously between them. 

Among them the constant curvature geometries 𝐻3 and 𝑆3 are by far the most important to 

understand (in terms of characterizing which manifolds are geometric). The stationary 

points of the volume-normalized Ricci flow are exactly the class of Einstein metrics, i.e. 

metrics of constant Ricci curvature. Einstein metrics are of constant curvature and so give 

the geometries 𝐻3, 𝑅3 and 𝑆3 geometries. The Ricci flow is a non-linear heat-type equation 

for 𝑔𝑖𝑗 ([AnM]). 
 

The Ricci curvature is a symmetric bilinear form, as it is the metric. In [GöK] a 4-D space 𝑆 

is provided, where matter everywhere rotates relative to the compass of inertia with the 
angular velocity with the properties: (1) 𝑆 is homogeneous, (2) there exists a one-

parametric group of transformations of 𝑆 into itself which carries each world line of matter 

into itself, so that any two world lines of matter are equidistant, (3) 𝑆 has rotational 

symmetry, (4) a positive direction of time can consistently be introduced in the whole 

solution. 

 

With respect to long term stability questions we note, that both, Euler and NS equations, 

with smooth initial data possess unique solutions which stay smooth forever in case of space 

dimension n=2. For 3D-NSE the question of global existence of smooth solution vs. finite 

time blow up is one of the Clay Institute Millennium problems. Having in mind the setting 

𝑦(𝑡) ≔ ‖𝑣(𝑡)‖2 the ODE  
𝜕

𝜕𝑡
𝑦(𝑡) = 𝑦2(𝑡), 𝑦(0) = 𝑦0, shows the solution 𝑦(𝑡) =

𝑦0

1−𝑡∙𝑦0
, which, for 

some initial data 𝑦0 > 0, becomes infinite in finite times. An 𝐻−1/2 inner product based 

variational representation of the 3D-NSE enjoys a corresponding (evolution) ODE in the 

form 
𝜕

𝜕𝑡
𝑦(𝑡) = 𝑐‖𝑣(𝑡)‖1

∙ 𝑦1/2(𝑡) ([BrK4]).  

 
We note that for an initial value function 𝑎0 ∈ 𝐿∞(𝑅𝑛) there is an unique local in time solution 

for the NSE with 
 

𝑝 = ∑ 𝑅𝑖𝑅𝑗𝑣𝑖𝑣𝑗
𝑛
𝑖,𝑗=1   ,  𝑅𝑖 denotes the Riesz operator. 

 

In [GiY] it is shown that in 𝑅2 this solution can be extended globally in time.  
 

In [HeJ] it is shown for existing solutions of the NSE, for which the Dirichlet norm a(v, v) =

(∇𝑣, ∇𝑣) with domain 𝐻1 of the velocity is continuous as 𝑡 = 0, this is not the case for the 

corresponding normalized 𝐿2norm of the pressure. At the same point in time, the pressure can 

be characterized as solution of a Neumann problem by formally operating with “div” on both 

sides of the NSE ([GaG]). If follows that the prescription of the pressure 𝑝 at the bounding 

walls or at the initial time independently of 𝒗, could be incompatible with the initial-

boundary data from the NSE system, and, therefore, could render the problem ill-posed. 
Both cases above supports the proposed extended Dirichlet norm of the Hilbert space 𝐻1/2.   



7 
 

Nonlinear evolution equations are also analyzed in a Schauder/Lipschitz function space 

framework. The space of Lipschitz continuous functions is defined by the norm ([StE] 

V.4, proposition 6) 
 

|⌊𝑓⌋|𝛼 ≔ ‖𝑓‖𝐿∞
+ 𝑠𝑢𝑝|𝑡|>0

‖𝑓(𝑥+𝑡)−𝑓(𝑥)‖𝐿∞

|𝑡|𝛼   (0 < 𝛼 < 1). 

 

Proposition 6: Every Lipschitz continuous function may be modified on a set of 

measure zero so that it becomes continuous.  
 

We note that the spaces 𝐶𝑘.𝛼 are compactly embedded on 𝐶0 and there is a general 

principle bounding the norm in 𝐶𝑘.𝛼 of a linear projection operator by means of the 

norm of in 𝐶0 ([NiJ], [NiJ1]). Hölder- resp. Lipschitz spaces are the adequate ones in 

treating nonlinear elliptic problems ([NiJ]). Hölder space based Cauchy problem 

solution(s) of nonlinear evolutions equations are considered in [HöK].  Integral 

inequalities for the Hilbert transform applied to a nonlocal transport equation are 

provided in [CoA].   
 

The Gromov compactness theorem (in the context of the study of the deformation and 

degeneration of general Riemann metrics with merely bounded curvature in place of 
constant curvature) is based on 𝐶1.𝛼 topology ([AnM]). 
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