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Abstract: The key purpose of this paper is to open up the concepts of the sum of four squares and the algebra of quaternions into the 
attempts of factoring semiprimes, the product of two prime numbers. However, the application of these concepts here has been 
clumsy, and would be better explored by those with a more rigorous mathematical background. There may be real immediate 
implications on some RSA numbers that are slightly larger than a perfect square. 
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Nomenclature 

p, q: prime factors 

n: semiprime pq, the product of two primes 

P: quaternion with norm p 

a, b, c, d: components of a quaternion 

1. Introduction 

We assume that the reader know the RSA 

cryptosystem [1]. Notably, the ability to factorise a 

random and large semiprime n (the product of two 

prime numbers  p  and  q ) efficiently can completely 

break RSA, which is integral to many cryptographic 

systems worldwide. We also assume that the reader is 

familiar with the state-of-the-art factoring methods [2], 

although its knowledge is not required to understand 

our ideas in this paper, but is useful to judge the novelty 

of our work. 

1.1 Outline of the Paper 

The Euler factorisation method is introduced in 

Section 2, while our probably new pathway to the 

solution with the Gaussian integers is explained in 

Section 2.2, after the introduction to Gaussian integers 

in Section 2.1. Then we state the limitations of the 

Euler factorisation method and address one of the 

work previously done to make Euler factorisation 

method workable. 
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In Section 3, we extend the Euler factoring method 

to one using the sum of four squares and the algebra 

of quaternions. We comment on the development of 

the mathematics in Section 3.1, and introduce the 

integral quaternions in Section 3.2, and its relationship 

with the sum of four squares in Section 3.3. In Section 

3.4, we mention an algorithm to generate the sum of 

four squares.  

In Section 4, we propose the usage of concepts of 

the algebra of quaternions into the factorisation of 

semiprimes. The method in Section 2.2 using 

Gaussian integers is brought into Section 4.1. Then we 

subsequently loosen one of its constrains in Section 

4.2. We will also show the Euclidean algorithm for 

quaternions. Then we propose an alternative method 

in Section 4.3, the one which we feel has better 

potential to contribute to the research on the integer 

factorisation problem. 

Finally we discuss the results in Section 5 and 

conclude in Section 6.  

1.2 Contributions of the Paper 

The main contribution of this paper is to open up 

the concepts of sum of four squares in quaternions 

into the attempts of factoring semiprimes. Sections 2.1, 

4.1 and 4.2 are adapted from standard mathematical 

texts. Expressing the Euler’s factoring method with 

Gaussian integers has not been specifically published 

on, so content in Section 2.2 may be new. To the 
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author’s knowledge, quaternions has never been 

employed in integer factorisation, so works from 

Section 4 onwards are original. 

2. The Euler Factorisation Method 

We will now look at the much neglected Euler 

factorisation method [3]. In essence, it instantly 

obtains the factors of a semiprime when it is written as 

a sum of two square in two distinct ways. 

pq n a b c d  

2.1 The Gaussian Integers 

The Gaussian integersare described in this section so 

that the reader can draw parallels with the algebra of 

quaternions, where the main ideas are built on. 

Gaussian integers are complex numbers with 

rational integers as coefficients for its real and 

imaginary components [4]: 

i α a bi a, b  

Similar to complex numbers, Gaussian integers has 

its conjugate: 

α a bi 

The norm of any Gaussian integeris defined as: 

Nm α αα a bi a bi a b  

For Gaussian integers, the product of the norm is 

equal to the norm of its product: 

Nm α Nm β αα ββ αββα αβαβ 

Nm αβ  

A Gaussian prime cannot be expressed in terms of 

two Gaussian integers that each has a smaller norm [5]. 

Hence, any prime number p congruent to 1 mod 4 is 

not a Gaussian prime, as it is factorable into:  

p ρρ r si r si  

2.2 A Complex Approach 

The Euler factorisation method can be done with 

Gaussian integers. We have independently derived this 

relationship, although we expect one to have made this 

minor result. However, to the author’s knowledge, 

nothing is specifically published on this concept. 

An alert reader would have noticed that norm of a 

Gaussian integer is a sum of two squares, which is the 

basis of the Euler factorisation method. The 

explanation will be illustrated by a numerical example 

that is first factored by Euler: 

pq n a b c d  

1000009 1000 3 972 235  

The sum of two squares can be factorised into 

Gaussian integers: 

pq a bi a bi c di c di  

1000009 1000  3i 1000 3i  

 972 235i 972 235i  

The Gaussian integers can be further factorised. The 

two forms of the semiprime are actually 

re-arrangements of each other: 

pq r si t ui t ui r si  

      r si t ui t ui r si  

where p r si r si   and  q t ui t ui  

The norm of one of the terms is one of the factors. 

The term is obtained by the Euclidean algorithm, which 

works for complex numbers [6]. The only difference 

from the algorithm forrational integersis is that the 

remainder can be negative, so that the size of the 

remainder can be continually reduced.  

1000 3i 1 972 235i 28 232i  

972 235i 1 4i 28 232i

72 109i  

28 232i 2 i 72 109i 7 58i  

72 109i 2 i 7 58i 0  

The norm of the greatest common divisor Nm 7

58i 3413 is a prime factor. 

2.3 Evaluation of the Method 

The Euler factorisation method works only when 

both prime factors is congruent to 1 mod 4, because 

only such semiprimes have the two representations [7]. 

More importantly, there has not been a feasible way to 

find the two representations of sum of two squares for 

large semiprimes.  

However, in our literature review, we came across a 

work that made the Euler factorisation method 

feasible [8]. The result was an algorithm that factorises 
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in O n /  time. Our proposal focuses on quaternions 

and the sum of four squares which should be totally 

different from his ideas. 

3. Extending to Quaternions 

Extending the concept of the Euler factorisation 

method beyond Gaussian integers, we subsequently 

explore the quaternions, and the sum of four squares. 

Here is our justification why this may be novel. 

3.1 Comment on Mathematical Development 

Much rigorous work has already been done on the 

separate topics. RSA was patented in 1977, and the 

RSA factoring challenge was put up on 1991. Attention 

on factorising large semiprimes with factors of similar 

length, only then, has been emphasized. Before that, 

factorisation is acknowledged as difficult, and it is only 

interested in special probable prime numbers like the 

Fermat numbers and the Mersenne prime candidates. 

On the other hand, the theory of integral quaternions 

and octonions are developed before the 1930s by 

Lipchitz and Hurwitz [9]. Modern usage on 

quaternions only centres on rotation manipulation. 

This may well explain and support the lack of usage of 

quaternions on the integer factorisation problem. 

3.2 Quaternions 

We begin by defining integral quaternions [10], so 

as to draw parallels between them and Gaussian 

integers. 

Quaternions has three instead of one imaginary 

component: 

A a bi cj dk a, b, c, d  

Multiplication of quaternions is non-commutative, 

with the following properties: 

i j k ijk 1 

More specifically: 

 ij ji k 

jk kj i 

ki ik j 

The multiplication of two quaternions is thus: 

a b i c j d k a b i c j d k  

a a b b c c d d  

a b b a c d d c i 

 a c b d c a d b j 

   a d b c c b d a k 

The conjugate of a quaternion has its imaginary 

components negated: 

P a bi cj dk 

Our focus is on quaternions with integral 

coefficients, called a Lipchitz quaternion: 

P a bi cj dk a, b, c, d  

The concept of the norm is applicable to 

quaternions: 

Nm P a b c d  

3.3 Sum of Four Squares 

The norm of the product of the quaternions is equal 

to the product of the norm of the quaternions: 

Nm PQ PQPQ PQQP P · Nm Q · P

PP · Nm Q Nm P · Nm Q  

The result is the Euler’s four-square identity [11]: 

pq Nm P · Nm Q  

      a b c d a b c d  

      a a b b c c d d  

          a b b a c d d c  

          a c b d c a d b  

          a d b c c b d a  

      Nm PQ n 

After knowing this set of information, the author 

feels that the algebra of quaternions can be applied 

into the problem of integer factorisation. 

In this paper, we denote a quaternion by an 

upper-case letter, and the norm of the quaternion the 

corresponding lower case. So quaternion  P  has a 

norm of  p . Different subscripts distinguishes each 

quaternion with the same norm. 

The Jacobi’s Theorem of Four Squares [7] specifies 

the number of distinct representations of a number as 

a sum of four squares, which is equivalent to the 

number of quaternions with the same norm - the 

number of ways to represent  n  as the sum of four 
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squares is eight times the sum of the divisors of n if n 

is odd, and 24 times the sum of the odd divisors of n 

if n is even. Therefore, there are 8 pq p q 1  

quaternions of norm pq, and 8 p 1  quaternions of 

norm p. 

3.4 Finding a Quaternion  

Finding any quaternion P Q of norm  n pq is 

equivalent to expressing the semiprime n as a sum of 

four squares, a result derived from the integer norm of 

any quaternion and its conjugate. 

n P Q P Q a b c d  

The methods of finding a set of representation as a 

sum of four squares has been published and covered [12]. 

We will include an outline here.  

The first two squares   a  and   b is first chosen, 

which may be tailored according to specifications. 

Then the remainder  n a b  is checked on 

whether it is expressible as a sum of two squares with 

its complete factorisation [7]. There is an algorithm [13] 

which efficiently express each prime factor congruent 

to 1 mod 4 into a sum of two squares. After which the 

Brahmagupta–Fibonacci identity is used to obtain the 

full set of representation of n a b  as a sum of 

two squares, and pq is now expressed as a sum of four 

squares in various ways.  

4. Proposed Directions 

The key purpose of this paper is to open up the 

concepts of sum of four squares and quaternions into 

the attempts of factoring semiprimes. This may be an 

interesting insight, but our applications were rather 

clumsy. 

4.1 Direct Extension of the Method 

Firstly, we will logically extend the method 

mentioned in Section 2.2. When the semiprime is 

factorised into quaternions: 

pq PQ QP PQ QP  

When one found a pair of quaternions PQ and PQ, 

factorisation can be done, similarly with Euclidean 

algorithm (explained in the following section).  

However, there does not seem to be an easy method 

to find the set of quaternions PQ and PQ. Moreover, 

it seems to be unnecessary restrictive to specify 

quaternion Q to be the conjugate of each other. 

4.2 With a Slight Modification 

For the Euclidean algorithm to generate the result, a 

common left or right divisor is already sufficient. 

Hence any pair of  Q will suffice. 

If we happen to find two quaternions and that has 

the same left ( P Q  and  P Q ) or right ( Q P  

and Q P ) divisor, factorisation can be done by taking 

the greatest (left/right) common divisor. For 

quaternions, multiplication is non-commutative. We 

have to note if it is a left or right divisor. 

We show the resulting factorisation when a pair with 

a common left divisor  P  is found. Firstly, we 

introduce the division of a quaternion: 

AB A BB B  

AB/Nm B  a b i c j d k 

One first finds a quotient λ that is integral, and the 

remainder is evaluated accordingly: 

λ AB/Nm B a b i c j d k 
We now show that the semiprime can be factored 

when a pair P Q  and P Q  is found: 

P Q  996 30i 62j 57k  

P Q  962 10i 247j 116k  

Here is a Euclidean algorithm for quaternions [6]:   

996 30i 62j 57k  

962 10i 247j 116k 1 0i 0j 0k  

 34 20i 185j 59k  

962 10i 247j 116k  

34 20i 185j 59k 1 0i 5j 1k  

 12 80i 88j 77k  

34 20i 185j 59k  

12 80i 88j 77k 1 1i 0j 1k  

  19 0i 60j 58k  

12 80i 88j 77k  

19 0i 60j 58k 0 1i 1j 1k  

    10 19i 11j 2k  
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19 0i 60j 58k  

10 19i 11j 2k 1 2i 1j 3k  

  4 4i 6j 15k  

10 19i 11j 2k  

4 4i 6j 15k 0 1i 1j 0k  

 0 0i 0j 0k  

The author has no remedy to find out the sum of 

two squares in the first place. To hit upon one pair at 

random, it requires an infeasible amount of 

computations in the order of  pq / ; the above 

example was in fact generated with the factorisation of 

the semiprime in mind. Nevertheless, unless proven 

otherwise, there may be a muchmore efficient method 

to finding such a pair. 

4.3 A More Likely Method 

The reader may be perplexed on the need to find a 

pair of quaternions. The author highly doubts that the 

direct factorisation of a quaternion P Q  with a 

norm  n pq  will ever have an efficient method. 

Works focused on the factorisation of quaternions 

merely stated [9] and reiterated [14] that factorisations 

of quaternions are equivalent - they can be permutated 

from one form to another through a series of 

meta-commutation, recombination and unit-migration. 

Once again, they gave minimal or zero comment on its 

application on the integer factorisation problem. 

However, here is a method that uses the same 

quaternion factors P  and Q . The author believes that 

this approach may well have the greatest potential 

among this set of clumsily proposed directions. 

The pair is P Q  and Q P . As multiplication of 

quaternions is non-commutative, they are usually 

different. However, they have the same real part (a 

subscript to the components is added to distinguish 

between the components from the different 

quaternionic factors): 

a a b b c c d d  

The search for quaternions with norm pq should 

start with the largest real part first, thus there are few 

combinations to represent the smaller remaining part 

as a sum of three squares. Elaboration on finding such 

as quaternions has been done in Section 3.4. Among 

the quaternions with the same real part, there are pairs 

of the quaternions P Q  and Q P . Just any one of 

them is sufficient for the factorisation of the 

semiprime. 

We sketch a method to factor the semiprime when a 

pair of P Q  and Q P  is found: 

P Q 996 30i 62j 57k  

Q P 996 6i 6j 89k  

Finding the pair of quaternions is equivalent to 

generating this set of 7  bilinear equations of  8 

unknowns and the solutions produces P and Q: 

a a b b c c d d w 

a b b a c d d c x  

a b b a c d d c x  

a c b d c a d b y  

a c b d c a d b y  

a d b c c b d a z  

a d b c c b d a z  

To the author’s knowledge, there is no general 

solution to bilinear equations. Assuming the 

components are non-zero and distinct, the author could 

only use Gaussian elimination to reduce the set of 

equations into: 

w a a b b c c d d  

a
z z
x x

c
y y
x x

d  

a
z z
x x

c
y y
x x

d  

b
y y
x x

c
z z
x x

d  

b
y y
x x

c
z z
x x

d  

Solving the reduced set of solution will still require a 

certain amount of brute force. The author would 

appreciate if someone could come out with a much 

more efficient solution to the set of bilinear equations, 

and also for a general one that take into account of 

zeroes in the components of the pair P Q  and Q P  

and its quaternionic factors. 
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5. Discussion 

5.1 Possible Immediate Implications  

Semiprimes that are just slightly larger a perfect 

square may be vulnerable to our method with P Q  

and Q P . After subtracting the largest perfect squarea  

from the semiprime, one is left with a small 

number n a . The list of representation as a sum of 

three squares will be short. Permuting the order and 

sign of the imaginary components in this short list one 

may easily generate a quaternion pair P Q  and Q P .  

Factorisation is then obtained from solving the set of 

bilinear equations, which however has yet to have an 

efficient method. Moreover, one needs to check 

whether the pair picked are indeed the quaternion 

pair P Q  and Q P , and there is yet to have a shortcut 

in checking them. If these concerns are addressed, then 

our work will truly be of a substantial result, adding to 

the list of criteria that semiprime pq need to satisfy. 

The main idea of our work is that if one can express 

the semiprime into a suitable pair of representations as 

a sum of four squares, then factorisation can be 

achieved. 

5.2 Open Questions 

There are some questions that one would like to 

consider. Firstly, it is on whether these methods are 

worth undertaking - considering the lack of an efficient 

algorithm to determine pairs of suitable quaternions 

that will factorise the corresponding semiprime. Unless 

a proof that show that our approach will be fruitless, 

this leaves possibilities open. 

Secondly, we would like to ask whether it is possible 

to efficiently derive a quaternion Q P given the 

corresponding quaternion  P Q . It may be an 

interesting question by itself.  

5.3 Possible Future Work 

The author is a recent high school graduate, and as of 

yet may not have a sufficiently rigorous mathematical 

background to contribute substantially to these already 

extensively-covered topics mentioned in the paper, and 

further opportunities may yield significant insights to 

the application of quaternions to semiprime 

factorisation. The use of eight-dimensional octonions 

is also a possibility, if justifiable. 

6. Conclusions 

The main motivation of our research is explore new 

approaches to tackle the integer factorisation problem, 

and we are pleased to have managed to apply some 

theorems of quaternions on this problem. Our 

application of quaternions in this paper is brief and 

perhaps trivial in nature. Yet, to our knowledge, we 

believe that our approach of generalising the Euler 

factorisation method is novel and the result is 

accountable - if one is able to find a suitable pair of 

representations of the semiprime as a sum of four 

squares, the semiprime can then be factorised easily. 

The author calls for anyone interested in our 

application of quaternions to factorisation to perform a 

more rigorous analysis of our methods, or devise more 

creative approaches, thereby pushing for greater 

cryptographic standards in view of faster processing 

speeds over time. Ultimately, the integer factorisation 

problem is one of the most notorious, yet most 

elementary unsolved problems in number theory. 
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