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ABSTRACT 

We discuss in this paper the numerical solution of boundary 
value problems for partial differential equations by methods rely
ing on compactly supported wavelet approximations. After defining 
compactly supported wavelets and stating their main properties we 
discuss their application to boundary value problems for partial dif
ferential equations, giving a particular attention to the treatment of 
the boundary conditions. Finally, we discuss application of wavelets 
to the solution ofthe Navier-Stokes equations for incompressible vis
cous fluids. 

Introduction 

Wavelets is a generic term denoting various mathematical objects 
which have been introduced mostly during the last decade. It is a 
topic in full evolution at the moment leading to a very active research 
effort, in the Mathematical and Electrical Engineering communities 
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particularly. The limitations that we see concerning wavelet popu
larity in the Computation Fluid Dynamics community are essentially 
the following two: 

(i) To enter the wavelet world requires a serious mathematical in
vestment. Wavelets are considerably more complicated than 
finite element, finite difference, finite volume and spectral ap
proximations. 

(ii) A substantial effort has to be done to solve boundary value 
problems with complicated boundaries and/or boundary con
ditions. Indeed this difficulty is not specific to wavelets since 
we already encountered it for spectral approximations. 

The content of this article is the following: 
In Section 1 we define compactly supported wavelets a. la 

Daubechies and state their basic properties. In Section 2 we briefly 
discuss some further properties of wavelet approximations which may 
be of interest for Scientific Computing. In Section 3 we briefly discuss 
the wavelet solution of boundary value problems for partial differen
tial equations; a particular attention is given to the treatment of 
boundary conditions. Finally, we discuss in Section 4 the wavelet 
solution of the Navier-Stokes equations for incompressible viscous 
fluids. 

1. Definition and Basic Properties of Compactly Supported 
Wavelets 

1.1 Generalities 

An inconvenient of traditional Fourier methods is that the sine 
and cosine functions have an unbounded support and even worst they 
do not vanish at infinity. On the other hand their spectra are very 
local consisting of a finite sum of Dirac measures. Conversely, if one 
uses approximations based on finite sum of Dirac measures such as 
(in one space dimension) 

L:ajo(x - Xj), (1.1) 
jeJ 

the spectrum of the basis "functions" o(x - Xj), namely 
s ~ exp(2i1rxjs) does not vanish at infinity in the frequency do-
main. 
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On the basis of the above observations it is then reasonable to 
look for orthonormal basis of L2(JR), constructed from a unique gen
erating function cp (the scaling junction), via translation, dilation 
and linear combinations. We also want cp to be localized in x (space 
variable) and s (Fourier variable). 

Example: Suppose that cp( x) = e-:ril; concerning the Fourier trans
form tj:; of cp, we have then tj:;( s) = e-1r282 ; both functions vanish 
quickly for large values of their respective argument. Indeed wavelet 
families based on the above function cp are discussed in [1], [2]. 0 

More recently 1. Daubechies has introduced in [3] wavelet families 
based on scaling functions cp such that: 

(i) cp has a bounded support, 

(ii) tj:;( s) -+ 0 quickly when lsi -+ +00. 

In the following parts of this paper the only wavelets that we shall 
consider are the Daubechies' ones. For an introduction to wavelets, 
intended for applied mathematicians and engineers we highly recom
mend [4]. 

1.2 The Daubechies Wavelets 

Following [3] we require the scaling junction cp to satisfy (N being 
a positive integer) 

2N-I 

cp( x) = E akCP(2x - k), 'Vx E JR, (1.2) 
k=O 

k cp(x)dx = 1, (1.3) 

k cp(x -1)cp(x - m)dx = 0, 'VI, mE'll, I =J m. (1.4) 

Relations (1.2) - (1.4) clearly imply 

2N-I 

L ak = 2, 
k=O 

(1.5) 
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2N-l 

E akak-2m = 0, 'rim E 7J." m 1:- O. (1.6) 
k=O 

If the above relations hold, then the set 

+00 
U U<Pjl (with <Pjl(X) = 2j /2<p(2i x-l)) (1.7) 
j=O Ie:': 

is an orthogonal basis of L2(lR)j also, the fact that the set of the 
coefficients, i.e. {akH~o\ is finite implies that <P has a compact 
support. 

Example: Take N = 1 and ao = al = 1. We then have <P defined by 

<p(x) = 1 if ° ~ x ~ 1, <p(x) = ° elsewhere. (1.8) 

The corresponding family (1.7) (namely the Haar functions fam
ilyj cf. [5]) is an orthogonal basis of lRj its elements however are 
discontinuous. 0 

To "force" the smoothness of the scaling function <p we may re
quire, for example, the monomials 1, x, ... xN - l to be linear combi
nation of the <p(x -/)j this implies the additional relations 

2N-l 

I: (-l)kkm ak = 0, m = O,l, ... ,N -1. (1.9) 
k=O 

From the coefficients ak we can use the Fast Fourier Trans
form (FFT) to construct <p via cj; (see, e.g., [6] for this construc
tion). Indeed, since supp(<p) = [0,2N -1], it suffices to know <p at 
0,1, ... ,2N - 1 and use the scaling relation (1.2) to compute <p at 
the dyadic values of x (in practice everywhere since the set of the 
dyadic numbers is dense in lR). 

Once the coefficients ak are known, we define the wavelet function 
"p by 

1 

"p(x) = I: (-1)ka1 _k<P(2x - k), (1.10) 
k=2-2N 

and then the functions "pil by 

"pil(X) = 2j /2"p(2i x -I). (1.11) 
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Let us denote by Vn (resp. Wn ) the closure of the vector space 
span by {<t'n'}'ez (resp. {.,pn'}'ez); we have then the following prop
erties 

Vn C Vn+1, 

closure (U Vn ) = L2(JR), 
n 

{<t'n'}'ez is an orthogonal basis for Vn, 

{.,pn'}'ez is an orthogonal basis for Wn, 

the orthogonal of Wn in Vn+1 is Vn. 

(1.12) 

(1.13) 

(1.14) 

(1.15) 

(1.16) 

The functions i.pnl and .,pnl have compact supports; they also verify 

r <t'nl( x )dx = 2-n/2 , r .,pnl( x )dx = O. JR JR ' (1.17) 

Finally we have for L2(JR) the following decomposition properties 

L2(JR) = Vn €I) (ffi Wj) = Yo €I) (ffi Wj). (1.18) 
j~n j~O 

The potential of wavelets for multiscale analysis is related to re
lation (1.18). 

2. Further Properties of Wavelets and Generalizations 

From the following decomposition property 

(2.1) 

we can expect wavelets to be well suited to multilevel solution method
ologies and to the implementation of methods such as nonlinear 
Galerkin's (see [7]). 

Remark 2.1: Several authors (see, e.g., [8]) have introduced hierar
chical finite element bases leading to decomposition properties close 
to those mentioned above. These bases are well suited to adaptive 
mesh refinement. 0 

The wavelet functions considered so far are single variable func
tions. Concerning generalization to JRd, with d ~ 2, we see at the 
moment the two following options: 
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(i) Use tensor products of one variable wavelet function spaces. 

(ii) Use nonfactorable wavelets; such object exist, unfortunately 
they are not easy to handle (the support of the scaling function 
can be a region of JR d with a fractral boundary; see [9] for more 
details ). 

Finally, it can be shown that if f is sufficiently smooth then one 
has the following approximation property 

where Pn : L2(JR) -+ Vn is the orthogonal projector from L2(JR) into 
Vn • 

On Figure 2.1, we have shown the graphs of the scaling and 
wavelet functions corresponding to N = 3. These graphs suggest 
that <p and t/J are close to piecewise linear functions; in fact, it can 
be shown that for N = 3, <p and t/J are C1 functions. We observe the 
asymmetry of the graphs of <p and t/J. 

0.06r--------~---__, 0.'" 

0.05 0.06 

0.0< 
0.0< 

O.OJ 
0.02 

0.02 

0.01 \ 
-0.02 \ 
-0.0< 
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Daubechies-3 scaling function Daubechies-3 wavelet 

Figure 2.1 
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Remark 2.2: Independently of the hierarchical structure of wavelet 
spaces, their double localization property (in the physical and Fourier 
spaces) make wavelets interesting for the solution of partial differen
tial equations. 0 

3. Application to the Solution of Boundary Value Problems 
for Partial Differential Equations 

3.1 Generalities 

Wavelet based Galerkin methods have been applied, in [6], to 
the solution of boundary and initial/boundary value problems for 
linear and nonlinear elliptic, parabolic and hyperbolic equations in 
one space variable, with Dirichlet, Neumann and periodic boundary 
conditions. Indeed, as shown in [6] and [10], wavelet based Galerkin 
methods have proved quite efficient to solve the Burgers equation 

lJu lJu lJ2u 
lJt + u lJx - V lJx2 = 0, (3.1) 

with v ~ O. 
Concerning multidimensional applications, let us make the fol

lowing statement: Everything you can do with (standard) spectral 
methods for periodic boundary conditions you can do better, for the 
same cost, with wavelet methods. This (strong) statement is sup
ported by the calculations, and comparisons to spectral methods, 
done by J. Weiss (see ref. [11]) for the incompressible Euler and 
N avier-Stokes equations, with periodic boundary conditions; wavelet 
based methods give in particular an excellent resolution of shear lay
ers. 

Concerning more general domains and/or boundary conditions 
the following approaches can be considered: 

(i) Use boundary fitted wavelets as in [12]; their practical imple
mentation seems quite complicated. 

(ii) Use geometrical transformations to transform the multidimen
sional region in a box shaped region (or in a patch of such 
boxes). Indeed non periodic boundary conditions are compli
cated to implement even for a box shaped domain. 
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(iii) Extend to wavelet approximations the domain imbedding meth
ods discussed in, e.g., [13] - [15]. 

Some domain imbedding methods will be discussed in Sections 3.2 
(for Dirichlet boundary conditions) and 3.3 (for Neumann boundary 
conditions)j we have chosen to discuss the solution of Dirichlet and 
Neumann problems since these problems are basic to many issues of 
Mechanics and Physics. 

3.2 Domain Embedding Treatment of Dirichlet Boundary Conditions 

3.2.1 Problem formulation 

For simplicity, we shall concentrate on a simple Dirichlet problem, 
namely 

au - V2u = f in w, u = g on" (3.2) 

where, in (3.2), a is a positive number, w is a bounded open con
nected region of lR,d (d ~ 1), , is the boundary of wand V = 

{ aa . }~ j both functions f and g are given. We imbed w in 0, 
x, 1=1 

where 0 is a box shaped domain, as shown in Figure 3.1, below, 
where n denotes the unit outward normal vector at ,. 

r 

Figure 3.1 
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Two classical ways to implement the domain imbedding concept 
are penalty and the use of a Lagrange multiplier, respectively. 

to 
Both approaches rely on the fact that problem (3.2) is equivalent 

{
Find ii E Wg such that 

(3.3) fo (aiiv + Vii· Vv)dx = fo jvdx, 'Vv E W o , 

where, in (3.3), j is an extension of f to 0, and where Wg and Wo 
are defined by 

Wg = {vi v E V,v = 9 on "Y}, Wo = {vlv E V,v = 0 on "Y}; (3.4) 

in (3.4), V is either Hl(O) or H;(O), or HMO) (the space of the 
functions of Hl(O), periodic at r). If 9 E Hl/2("Y), then Wg is a 
closed nonempty affine subspace of V, implying that problem (3.3) 
has a unique solution; this solution clearly coincides with u on w, 
justifying therefore the imbedding approach. 

3.2.2 A penalty method 

From now on we drop the '" in it and j. We approximate then 
problem (3.3) by 

{ 
Find u~ E V such that, 'Vv E V, we have 

r (auev + VUe' Vv)dx + ~ 1 uevd"Y = r fvdx + ~ 1 gvd"Y, ' 
in c "'I in c "'I 

(3.5) 
where, in (3.5), c is a positive parameter. It can be easily shown 
(see, e.g., Appendix 1 in [16]) that 

(3.6) 

where u is the solution of (3.3). 
From a practical point of view we shall have to replace V by a 

finite dimensional subspace of it; also, in order to handle the integrals 
over "Y, we have found convenient to proceed as follows: 

Suppose that we want to evaluate J"'I gvd"Y, then 

(i) Introduce G defined over 0 such that 9 = G . non "Y. 
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(li) Observe that from the divergence theorem we have 

L gvd, = L G . nvd, = LV. (vG)dx = 10 xw V . (vG)dx, 

(3.7) 
where Xw is the characteristic function of w, Le., Xw(x) = 1 if 
X€w, Xw(x) = 0 elsewhere. 

(iii) Approximate XW by X!, where X! is differentiable over n and 
substitute to Xw in the last integral of (3.7). We have then 
(assuming that x!lr = 0 which is reasonable) 

Concerning the approximate characteristic function X!, numeri
cal experiments done at Rice University suggest the following rule of 
thumb: To approximate Xw by X! use a "grid" four times finer than 
the one which will be used to compute u. 

3.2.3 A Lagrange multiplier method 

Following [17], [18], we associate to the relation u = g on , a 
Lagrange multiplier). defined over ,. Solving problem (3.3) is then 
equivalent to find a pair {ii,).} such that 

1 1o(aiiv + Vii· Vv)dx = 10 jvdx + i ).vd" "Iv E v, 
(3.9) i ( ii - g )I'd, = 0, VI' E A; ii E V, ). E A. 

For sufficiently smooth data, we can take A = L2(,); however, 
the natural choice for A is H-1/2(,). Incidentally the multiplier). in 
(3.9) is nothing but the jump of the normal derivative ~: at ,. 

The conjugate gradient solution of problem (3.9), together with 
the description of a finite element implementation is discussed in [17], 
[18]; numerical experiments show the validity of this approach; its 
wavelet implementation is currently taking place. 

Remark 3.1: In principle one can combine the penalty and Lagrange 
multiplier methods via an Augmented Lagrangian approach, as shown 
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in, e.g., [19], [20]. This new methodology still has to be investigated 
when applied to the solution of problem (3.3) (for multidimensional 
problems, at least, since we have already applied it in [6] for the 
wavelet solution of elliptic boundary value problems in one variable). 

3.3 Domain Embedding Treatment of Neumann Boundary Conditions 

3.3.1 Problem formulation 

We keep the notation of Section 3.3. The problem that we con
sider is defined by 

au - V 2U = f in w, :: = g on ,. (3.10) 

Problem (3.10) has the following variational formulation: 

{ 
u E Hl(W)j 

L (auv + Vu· Vv)dx = L fvdx + L gvd" 'Vv E Hl(W). 

(3.11) 
The embedding methods to be described here are variants of those 

used for solving the Dirichlet problemj they are based on regulariza
tion and Lagrange multiplier, respectively. 

Both methods rely on the following result: 
With o,r, and V as in Section 3.2.1, consider the variational 

problem defined by 

{ 
u E W, 

k(auv + VU· Vv)dx = 0, 'Vv E Wo , 

(3.12) 

where 

W = {vlv E V, 1 (avw+Vv'Vw)dx-l fwdx-l gwd, = 0, 'VW€V}, 

(3.13h 
and 

Wo = {vlv E V, 1 (avw + Vv· Vw)dx = 0, 'VW€V}j (3.13h 
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problem (3.12) has clearly a unique solution and it coincides with 
the solution U of (3.10), (3.11) over w. In fact, u is the extension of 
U over 0 which minimizes Jo(o:v2 + IVvI2)dx. 

3.3.2 A regularization method 

Let e be a positive number and consider the following variational 
problem 

Ue E V;Vv E V one has 

e In (o:uev + VUe' Vv)dx + L (o:u(v + Vu( . Vv)dx 

= L fvdx + i gvd,. 

It can be shown that 

(3.14) 

(3.15) 

where U is the solution of (3.12). The wavelet implementation of the 
above regularization method is under investigation. 

3.3.3 A Lagrange multiplier method 

We associate to (3.11) a Lagrange multiplier A defined over O. In
deed, solving problem (3.12) (and therefore problem (3.11)) is equiv
alent to find a pair {u, A} E V x V such that 

lin (o:uv + Vii· Vv)dx = L (O:AV + VA' Vv)dx, Vv E V, 

(3.16) 

L (O:UJ-L + Vii· VJ-L)dx = L fJ-Ldx + i gJ-Ld" VJ-L E V. 

The conjugate gradient solution of problem (3.16), together with 
the description of finite element and wavelet implementations will be 
described elsewhere. Remark 3.1 still holds here, i.e., we can combine 
the regularization and Lagrange multiplier methods. 



271 

4. Application to the Solution of the Incompressible Navier
Stokes Equation 

4.1 Generalities 

The N avier-Stokes equations that we consider are 

~; - vV2u + (u· V)u + Vp = 0 in n 

V· u = 0 in n 
completed by initial and boundary conditions. 

(4.1) 

(4.2) 

Concerning the wavelet solution of the above N avier-Stokes equa
tions, we see immediately three sources of potential difficulties, namely: 

(i) The treatment of the incompressibility condition V . u = O. 

(ii) The treatment of the boundary conditions. 

(iii) The simulation of flow at large Reynolds numbers. 

In this section we shall focus on (i); however, the two other issues 
deserve some comments: 

Concerning boundary conditions, the periodic case is quite easy 
to implement; on the other hand, other boundary conditions such 
as Dirichlet and Neumann yield serious difficulties, the main reasons 
being that in a wavelet expansion the coefficients are not pointwise 
values of the function or of its derivatives, as it is the case with finite 
elements or finite differences. Among the possible cures let us men
tion boundary fitted wavelets like the ones developed by S. Jaffard 
and Y. Meyer in [12], or fictitious domain methods, in the spirit of 
Section 3; we are currently investigating the second approach. An
other possibility is to couple wavelet approximations (used away from 
the boundary) with finite elements (used in the neighborhood of the 
boundary), but the matching problems (at least for nonoverlapping 
couplings) are essentially as difficult to implement as are boundary 
conditions. 

Concerning now the simulation of flow at large Reynold's num
bers we can predict, on the basis of preliminary numerical exper
iments done with the Daubechies wavelets, that for an equivalent 
amount of computational work, wavelet based methods are more 
stable and accurate than finite element, finite difference and spectral 
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methods. The above experiments involved the solution of the Burg
ers equation Ut + U:/::/: = VU:/::/: (cf. [6], [10]) and of the Navier-Stokes 
equations with periodic boundary conditions (cf. [11]). A key prop
erty of wavelet based solution methods is that they seem to require 
much less (if not at all) artificial viscosity for highly advective flow; 
a possible explanation of this behavior is that it is a consequence 
of the orthogonality of the basis functions and of their localization 
properties in the spatial and spectral domains. 

The treatment of the incompressibility seems to be eventually 
fairly simple and will be addressed in the next paragraph. 

4.2 Wavelet Treatment of the Incompressibility Condition 

Operator splitting techniques applied to the solution of the N avier
Stokes equations (4.1), (4.2) lead to the following Stokes equations 

au - v~u + Vp = f in 0, 

V·u = 0 in O. 

We suppose that the boundary conditions are defined by 

1.1 = 9 on r(with k9 ' ndr = 0), 

i.e. are of the Dirichlet type. 

(4.3) 

(4.4) 

(4.5) 

A variational formulation of problem (4.3) - (4.5) is given by 

{ 
u E Vgi "Iv E Yo we have 

k(au,v+vVU'Vv)dX- kpV.vdX= k f . vdx , 
(4.6) 

(4.7) 

In (4.6), (4.7), we have v . w = Et=l vi wi , "Iv = {Vdt=l' w = 
{Wi}t=l;Vv,VW = Et=lE1=1~~;VO = (HJ(O»d and Vg = 

{vlv E (Hl(O»d,v = 9 on r}. 
It follows from (4.6), (4.7) that the two fundamental spaces in 

the variational formulation of (4.3), (4.4) are L2(0) (for the pres
sure) and (Hl(O»d (for the velocity). We discuss now the wavelet 
approximation of the variational problem (4.6), (4.7): 
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From now on we shall denote by tpN the scaling function associ
ated to the positive integer N (the precise definition of the scaling 
function has been given in Section 1.2); the parameter N plays clearly 
the role of a polynomial degree. We define next tpf, and ~~ (IR) by 

tpf, (x) = 2i/2tpN (2j x - I), 'ix E IR, 

~~(IR) = closure of the linear space span by {tp~hEZ' 

respectively. 
In order to apply wavelets to the solution of multidimensional 

problems an obvious approach is to use tensor products of one vari
able function spaces to define the multidimensional ones. We define 
therefore the spaces V: (IR d) and VnN (IR d) by 

d 

V~(IRd) = 0~~(IRxi)' 
i=1 

respectively. 
By restricting to 0 the elements of the two above spaces, we 

obtain V: (0) and V,{" (0); if 0 is bounded, these two spaces are 
finite dimensional. On the basis of the analysis done in [21], con
cerning the finite difference and finite element approximations of the 
Stokes/Dirichlet problem (4.3) - (4.5) we shall approximate the ve
locity spaces Yo and vg by appropriate subspaces of VnN(O) (taking 
into account, in some way or another, the boundary conditions v = 0 
and v = g, respectively), and then the pressure space by Vn~1 (0); 
in order to have V,{" (0) C Hl(O), we have to take N ~ 3 (cf., e.g., 
[3], [6] for this result). We then substitute to Yo, vg and L2(O), 
their wavelet analogues in (4.6), (4.7) to obtain a wavelet/Galerkin 
approximation of the Stokes problem (4.3) - (4.5). 

Conclusion 

On the basis of few experiments we can expect compactly sup
ported wavelets to have a most interesting potential for the numerical 
solution of fluid flow problems. However the practical implementa
tion of this new kind of approximation gives rise to highly nontrivial 
difficulties which have to be successfully addressed if one wishes to 
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see wavelet-based approximations successfully competing with finite 
difference and finite element approximations. 
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