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Preface

4

Some of the central questions of mathematical logic are: What is a
mathematical proof? How can proofs be justified? Are there limitations
to provability? To what extent can machines carry out mathematical
proofs?

Only in this century has there been success in obtaining substantial
and satisfactory answers, the most pleasing of which is given by Godel’s
completeness theorem: It is possible to exhibit (in the framework of
first-order languages) a simple list of inference rules which suffices to
carry out all mathematical proofs. ““Negative” results, however, appear
in Godel’s incompleteness theorems. They show, for example, that it is
impossible to prove all true statements of arithmetic, and thus they reveal
principal limitations of the axiomatic method.

This book begins with an introduction to first-order logic and a proof of
Godel’s completeness theorem. There follows a short digression into model
theory which shows that first-order languages have some deficiencies in
expressive power. For example, they do not allow the formulation of
an adequate axiom system for arithmetic or analysis. On the other hand,
this difficulty can be overcome—even in the framework of first-order
logic—by developing mathematics in set-theoretic terms. We explain the
prerequisites from set theory that are necessary for this purpose and then
treat the subtle relation between logic and set theory in a thorough manner.

Godel’s incompleteness theorems are presented in connection with
several related results (such as Trahtenbrot’s theorem) which all exemplify
the limitations of machine oriented proof methods. The notions of com-
putability theory that are relevant to this discussion are given in detail. The
concept of computability is made precise by means of a simple programming
language.
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The development of mathematics in the framework of first-order logic (as
indicated above) makes use of set-theoretic notions to an extent far beyond
that of mathematical practice. As an alternative one can consider logical
systems with more expressive power. We introduce some of these systems,
such as second-order and infinitary logics. In each of these cases we point
out deficiencies contrasting first-order logic. Finally, this empirical fact is
confirmed by Lindstrém’s theorems, which show that there is no logical
system that extends first-order logic and at the same time shares all its
advantages.

The book does not require special mathematical knowledge ; however, it
presupposes an acquaintance with mathematical reasoning as acquired, for
example, in the first year of a mathematics or computer science curriculum.
Exercises enable the reader to test and deepen his understanding of the text.
The references in the bibliography point out essays of historical importance,
further investigations, and related fieids.

The original edition of the book appeared in 1978 under the title
“Einfiihrung in die mathematische Logik.” Some sections have been revised
for the present translation; furthermore, some exercises have been added.
We thank Dr. J. Ward for his assistance in preparing the final English
text. Further thanks go to Springer-Verlag for their friendly cooperation.

Freiburg and Aachen H.-D. EBBINGHAUS
November 1983 J. FLum
W. THOMAS
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CHAPTER I
Introduction

Towards the end of the nineteenth century mathematical logic evolved into
a subject of its own. It was the works of Boole, Frege, Russell, and Hilbert,
among others,! that contributed to its rapid development. Various elements
of the subject can already be found in traditional logic, for example, in the
works of Aristotle or Leibniz. However, while traditional logic can be
considered as part of philosophy, mathematical logic is more closely related
to mathematics. Some aspects of this relation are:

(1) Motivation and Goals. Investigations in mathematical logic arose mainly
from questions concerning the foundations of mathematics. For example,
Frege intended to base mathematics on logical and set-theoretical principles.
Russell tried to eliminate contradictions that arose in Frege’s system.
Hilbert’s goal was to show that “the generally accepted methods of mathe-
matics taken as a whole do not lead to a contradiction” (this is known as
Hilbert’s program).

(2) Methods. In mathematical logic the methods used are primarily
mathematical. This is exemplified by the way in which new concepts are
formed, definitions are given, and arguments are conducted.

(3) Applications in Mathematics. The methods and results obtained in
mathematical logic are not only useful for treating foundational problems;
they also increase the stock of tools available in mathematics itself. There are
applications in many areas of mathematics, such as algebra and topology.

! Aristotle (384-322 Bc.), G. W. Leibniz (1646-1716), G. Boole (1815-1864), G. Frege (1848
1925), D. Hilbert (1862-1943), B. Russell (1872-1970).
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However, these mathematical features do not result in mathematical
logic being of interest solely to mathematicians. For example, the mathe-
matical approach leads to a clarification of concepts and problems that also
are of importance in traditional logic and in other fields, such as epistemology
or the philosophy of science. In this sense the restriction to mathematical
methods turns out to be very fruitful.

In mathematical logic, as in traditional logic, deductions and proofs are
central objects of investigation. However, it is the methods of deduction
and the types of argument as used in mathematical proofs which are con-
sidered in mathematical logic (cf. (1)). In the investigations themselves,
mathematical methods are applied (cf. (2)). This close relationship between
the subject and the method of investigation, particularly in the discussion
of foundational problems, may create the impression that we are in danger
of becoming trapped in a vicious circle. We shall not be able to discuss this
problem in detail until Chapter VII, and we ask the reader who is concerned
about it to bear with us until then.

§1. An Example from Group Theory

In this and the next section we present two simple mathematical proofs.
They serve as illustrations of some of the methods of proof as used by
mathematicians. Guided by these examples we raise some questions which
lead us to the main topics of the book.

We begin with the proof of a theorem from group theory. We therefore
require the axioms of group theory, which we now state. We use o to denote
the group multiplication and e to denote the identity element. The axioms
may then be formulated as follows:

(Gl) Forallx, y,z: (xcy)oz = xo(yo2).
(G2) Forallx: xoe = x.
(G3) Forevery x thereisa y suchthat xcy = e.

A group is a triple (G, -©, %) which satisfies (G1), (G2), and (G3). Here G
is a set, % is an element of G, and - is a binary function on G, i.e., a function
defined on all pairs of elements from G, the values of which are also elements
of G. The variables x, y, z range over elements of G, o refers to ¢, and e
refers to e%.

As an example of a group we mention the additive group of reals (R, +, 0),
where R is the set of real numbers, + is the usual addition, and 0 is the real
number zero. On the other hand, (R, -, 1) is not a group (where - is the usual
multiplication). For example, the real number 0 violates axiom (G3): there
is no real number r such that 0-r = 1.

We call triples such as (R, +,0) or (R, -, 1) structures. In Chapter III we
shall give an exact definition of the notion of structure.
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Now we prove the following simple theorem from group theory:

1.1 Theorem (Existence of a Left Inverse). For every x there is a y such that
yox =e.

PRrOOF. Let x be chosen arbitrarily. From (G3) we know that, for a suitable y,

1) Xoy=e.

Again from (G3) we get, for this y, an element z such that

2) yoz =e.

We can now argue as follows: i
yox =(yex)oe (by (G2))

=(yex)e(yoz) (from(2))
=yeolxo(yoz) (by(Gl)
=yeo((x°y)oz) (by(Gl)

= yo(eoz) (from (1))
=(yce)ez (by (GD))
=yez (by (G2))
=e (from (2)).

Since x was arbitrary, we conclude that for every x there is a y such that
yox =e. |

The proof shows that in every structure where (G1), (G2), and (G3) are
satisfied, i.e., in every group, the theorem on the existence of a left inverse
holds. A mathematician would also describe this situation by saying that the
theorem on the existence of a left inverse follows from, or is a consequence of
the axioms of group theory.

§2. An Example from the Theory of
Equivalence Relations

The theory of equivalence relations is based on the following three axioms
(xRy is to be read “x is equivalent to y™):

(E1) For all x: xRx.
(E2) Forall x and y: If xRy, then yRx.
(E3) For all x, y, z: If xRy and yRz, then xRz.

Let A be a nonempty set, and let R* be a binary relation on A4, ie.,
R4 < A x A.For (a, b) € R* we also write aR“b. The pair (4, R*) is another
example of a structure. We call R* an equivalence relation on A, and the
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structure (4, R*) an equivalence structure if (E1), (E2), and (E3) are satisfied.
For example, (Z, R) is an equivalence structure, where Z is the set of integers
and

R; = {(a,b)|a,be Z and b — a is divisible by 5}.

On the other hand, the binary relation R,, on Z, which holds between two
integers if they are relatively prime, is not an equivalence relation over Z.
For example, 5 and 7 are relatively prime, and 7 and 15 are relatively prime,
but 5 and 15 are not relatively prime; thus (E3) does not hold for R,,,.

We now prove a simple theorem about equivalence relations.

2.1 Theorem. If x and y are both equivalent to a third element, they are
equivalent to the same elements. More formally, for all x and y, if there is a u
such that xRu and yRu, then for all z, xRz if and only if yRz.

PRrROOF. Let x and y be given arbitrarily; suppose that for some u

1) XRu and yRu.
From (E2) we then obtain
2) uRx and uRy.

From xRu and uRy we deduce, using (E3),
3) xRy,

and from yRu and uRx we likewise get (using (E3))

4 yRx.
Now let z be chosen arbitrarily. If
(5) xRz

then, using (E3), we obtain from (4) and (5)

VRz.
On the other hand, if
(6) YRz
then, using (E3), we get from (3) and (6)
xRz.
Thus the claim is proved for all z. O

As in the previous example, this proof shows that every structure (of the
form (A4, R1)) which satisfies the axioms (E1), (E2), and (E3), also satisfies
Theorem 2.1, i.e., that 2.1 follows from (E1), (E2), and (E3).
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§3. A Preliminary Analysis

We sketch some aspects which the two examples just given have in common.
In each case one starts from a system ® of propositions which is taken to be a
system of axioms for the theory in question (group theory, theory of equiv-
alence relations). The mathematician is interested in finding the propositions
which follow from ®, where a proposition y is said to follow from @ if
holds in every structure which satisfies all propositions in @. A proof of ¢
from a system ® of axioms shows that ¢ follows from ®.

When we think about the scope of methods of mathematical proof, we
are led to ask about the converse: y

(%) Isevery proposition ¢ which follows from ® also provable from
®?

For example, is every proposition which holds in all groups also provable
from the group axioms (G1), (G2), and (G3)?

The material developed in Chapters II through V and in Chapter VII
yields an essentially positive answer to (x). Clearly it is necessary to make the
concepts “proposition”, “follows from”, and “provable”, which occur in
(%), more precise. We sketch briefly how we shall do this.

(1) The Concept “Proposition”. Normally the mathematician uses his
everyday language (e.g., English or German) to formulate his propositions.
But since sentences in everyday language are not, in general, completely
unambiguous in their meaning and structure, we cannot specify them by
precise definitions. For this reason we shall introduce a formal language L
which reflects features of mathematical statements. Like programming
languages used today, L will be formed according to fixed rules: Starting
with a set of symbols (an “alphabet™), we obtain so-called formulas as finite
symbol strings built up in a standard way. These formulas correspond to
propositions expressed in everyday language. For example, the symbols of
L will include V (to be read “for all”), A (“and”), — (“if...then”), =

(“equal”), and variables like x, y, and z. Formulas of L will be expressions
like

i
N

Vx x = x, X =Y, x
and

VxVyVzix =y Aay=z)>x = 2).

Although the expressive power of L may at first appear to be limited, we
shall later see that many mathematical propositions can be formulated in L.
We shall even see that L is in principle sufficient for all of mathematics. The
definition of L will be given in Chapter I1.
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(2) The Concept “Follows From” (the Consequence Relation). Axioms
(G1)-(G3) of group theory obtain a meaning when interpreted in structures
of the form (G, <%, €9). In an analogous way we can define the general notion
of an L-formula holding in a structure. This enables us (in Chapter III) to
define the consequence relation: ¥ follows from (is a consequence of) @ if
and only if i holds in every structure where all formulas of @ hold.

(3) The Concept “Proof ”. A mathematical proof of a proposition ¢ from
a system @ of axioms consists of a series of inferences which proceeds from
axioms of @ or propositions that have already been proved to new proposi-
tions, and which finally ends with ¥. At each step of a proof the mathematician
writes something like “From ... and one obtains directly that .,
and he expects it to be clear to anyone that the validity of ... and of
entails the validity of «.

An analysis of examples shows that the grounds for accepting such
inferences are often closely related to the meaning of connectives, such as
“and”, “or”, or “if-then”, and quantifiers, “for all” or “there exists”, which
occur there. For example, this is the case in the first step of the proof of 1.1,
where we deduce from “ for all x there is a y such that x - y = e” that for the
given x there is a y such that x o y = e. Or consider the step from (1) and (2)
to (3) in the proof of 2.1, where from the proposition “xRu and yRu” we
infer the left member of the conjunction, “xRu”, and from “uRx and uRy”
we infer the right member, “uRy”, and then using (E3) we conclude (3).

The formal character of the language L makes it possible to represent these
inferences as formal operations on symbol strings (the L-formulas). Thus,
the inference of “xRu” from “xRu and yRu” mentioned above corresponds
to the passage from the L-formula (xRu A yRu) to xRu. We can view this
as an application of the following rule:

(+) Itispermissible to pass from an L-formula of the form (¢ A ¥)
to the L-formula o.

In Chapter IV we shall give a finite system S of rules which, like (+), corre-
spond to elementary inference steps the mathematician uses in his proofs. A
Jormal proof of the L-formula ¢ from the L-formulas in @ (the “axioms¥)
consists then (by definition) of a sequence of formulas in L which ends with
¥, and in which each L-formula is obtained by application of a rule from S
to the axioms or to preceding formulas in the sequence.

Having introduced the precise notions, one can convince oneself by
examples that mathematical proofs can be imitated by formal proofs in L.
Moreover, in Chapter V we shall return to the question (x) and answer it
positively, showing that if a formula y follows from a set ® of formulas, then
there is a proof of Y from @, even a formal proof. This is the content of the
so-called Gadel completeness theorem.
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§4. Preview

Godel’'s completeness theorem forms a bridge between the notion of proof,
which is formal in character, and the notion of consequence, which refers
to the meaning in structures. In Chapter VI we shall show how this connec-
tion can be used in algebraic investigations.

Once a formal language and an exact notion of proof have been introduced,
we have a precise framework for mathematical investigations concerning,
for instance, the consistency of mathematics or a justification of rules of
inference used in mathematics (Chapters VII and X).

Finally, the formalization of the notion of proof creates the possibility of
using a computer to carry out or check proofs. In Chapter X we shall discuss
the range and the limitations of such machine-oriented methods.

In the formulas of L the variables refer to the elements of a structure, for
example, to the elements of a group or the elements of an equivalence
structure. In a given structure we often call elements of the domain A4 first-
order objects, while subsets of A are called second-order objects. Since L
only has variables for first-order objects (and thus expressions such as
“Vx™ and “Ix” apply only to the elements of a structure), we call L a first-
order language.

Unlike L, the so-called second-order language also has variables which
range over subsets of the domain of a structure. Thus a proposition about a
given group which begins “For all subgroups...” can be directly formulated
in the second-order language. We shall investigate this language and others
in Chapter IX. In Chapter XII we shall be able to show that no language with
more expressive power than L enjoys both an adequate formal concept of
proof and other useful properties of L. From this point of view L is a “best-
possible” language, and so we succeed in justifying the dominant réle which
the first-order language plays in mathematical logic.



CHAPTER I
Syntax of First-Order Languages

In this chapter we introduce the first-order languages. They obey simple,
clear formation rules. In later chapters we shall discuss whether and to what
extent all mathematical propositions can be formalized in such languages.

§1. Alphabets

By an alphabet A we mean a nonempty set of symbols. Examples of alphabets
arethesets A, = {0,1,2,...,9}, A, = {a,b,¢, ..., x, y, z} (the alphabet of
lower-case letters), Ay = {o, [, a,d, x, f,), (}, and A, = {cq, ¢y, 2,...}.

We call finite sequences of symbols from an alphabet A strings or words
over A. A* denotes the set of all strings over A. The length of a string { € A*
is the number of symbols, counting repetitions, occurring in {. The empty
string is also considered to be a word over A. It is denoted by [J, and its
length is zero.

Examples of strings over A, are

softly, xdbxaz.

Examples of strings over A are

ff(x)dx, xojfao.

Suppose A = {|, ||}, that is, A consists of the symbols' a, :=| and a, := |
Then the string || over A can be read three ways: as a,a,a,, as a,a,, and as

! Here we write “a, = |” instead of “a, = |” in order to make it clear that a, is defined by the
right-hand side of the equation.
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a,a,. In the sequel we shall allow only those alphabets A where any string
over A can be read in exactly one way. The alphabets A, ..., A, given above
satisfy this condition.

We now turn to questions concerning the number of strings over a given
alphabet.

We call a set M countable if it is not finite and if there is a surjective map
o of the set of natural numbers N = {0, 1, 2, ...} onto M. We can then
represent M as {ou(n)|n € N} or, if we write the arguments as indices, as
{a,|n e N}. A set M is called at most countable if it is finite or countable.

1.1 Lemma. For a nonempty set M the following are equivalent:

(a) M is at most countable.
(b) There is a surjective map a: N — M.
(c) There is an injective map f: M — N.

PROOF.2 We shall prove (b) from (a), (c) from (b), and (a) from (c).

(b) from (a): Let M be at most countable. If M is countable (b) holds by
definition. For finite M, say M = {a,, ..., a,} (M is nonempty), we define
a: N - M by

. a; fo<i<n,
a(i) = .
a, otherwise.

a is clearly surjective.
(c) from (b): Let a: N - M be surjective. We define an injective map
B: M — N by setting, fora e M,

B(a) = the least i such that a(i) = a.

(@) from (c): Let B: M — N be injective and suppose M is not finite. We
must show that M is countable. To do this we define a surjective map
a: N — M inductively as follows:

a(0) := the a € M with the smallest image under fin N,
a(n + 1) :==the a € M with the smallest image under § greater

than S(x(0)), ..., Bla(n)).

Since the images under § are not bounded in N, « is defined for all ne N,
and clearly every a € M belongs to the image of a. |

Every subset of an at most countable set is at most countable. If M, and
M, are at most countable, then so is M, U M,. The set R of real numbers
is neither finite nor countable: it is uncountable.

2 The goal of our investigations is, among other things, a discussion of the notion of proof.
Therefore the reader may be surprised that we use proofs before we have made precise what a
mathematical proof is. As already mentioned in Chapter 1, we shall return to this apparent
circularity in Chapter VIIL.
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We shall later show that finite alphabets suffice for representing mathe-
matical statements. Moreover, the symbols may be chosen as “concrete”
objects such that they can be included on the keyboard of a typewriter.
Often, however, one can improve the transparency of an argument by using
a countable alphabet such as A, and we shall do this frequently. For some
mathematical applications of methods of mathematical logic it is also
useful to consider uncountable alphabets. The set {c,|r € R}, which contains
a symbol ¢, for every real number r, is an example of an uncountable alphabet.
We shall justify the use of such alphabets in VIL4.

1.2 Lemma. If A is an at most countable alphabet, then the set A* of strings
over A is countable.

PRrROOF. Let p, be the nth prime number: p, = 2, p; = 3, p, = 5, and so on.
If A is finite, say A = {aq, ..., a,}, where aq, ..., a, are pairwise distinct,
or if A is countable, say A = {a,, a,, a,, ...}, where the a; are pairwise
distinct, we can define the map f: A* - N by

BO)y =1, p@,...a)=p5" " -...-p L.

Clearly f is injective and thus (cf. 1.1{c)) A* is at most countable. Since
ag,d0dg,d0000,, . . - areallin A* it cannot be finite; hence it is countable. [J

1.3 Exercise. Let «: N — R be given. For g, b € R such that a < b show that
there is a point ¢ in the interval I = [a, b] such that ¢ ¢ {a(n)|n € N}. Con-
clude from this that I, and hence R also, are uncountable. (Hint: By induction
define a sequence I = I; > I, > ... of closed intervals such that a(n) ¢ I, ,,
and use the fact that (), .y I, # &.)

1.4 Exercise. Show that if M, and M, are countable setsand M, =« M, <
M, then M, is also countable.

1.5 Exercise. (a) Show that if the sets M,, M i, ... are at most countable
then the union ( J;.y M is also,at most countable.
(b) Use (a) to give a different proof of Lemma 1.2.

§2. The Alphabet of a First-Order Language

We wish to construct formal languages in which we can formulate, for
example, the axioms, theorems, and proofs about groups and equivalence
relations which we considered in Chapter L. In that context the connectives,
the quantifiers, and the equality relation played an important role. Therefore,
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we shall include the following symbols in the first-order languages: —1 (for
“not”), A (for “and”), v (for “or”), — (for “if-then™), « (for “if and only
if ), ¥ (for “for all”), 3 (for “there exists”), = (as symbol for equality). To
these we shall add variables (for elements of groups, elements of equivalence
structures, etc.) and finally parentheses as auxiliary symbols. In order to
formulate the axioms for groups we also need certain symbols peculiar to
group theory, e.g., a binary function symbol, say o, to denote the group multi-
plication, and a symbol, say e, to denote the identity element. We call ¢ a
constant symbol, or simply, a constant. For the axioms of the theory of
equivalence relations we need a binary relation symbol, say R.

Thus, in addition to the “logical” symbols such as “1” and “ A ", we
shall need a set S of relation symbols, function symbols, and constants which
varies from theory to theory. Each such set S of symbols determines a
first-order language.

We summarize:

2.1 Definition. The alphabet of a first-order language contains the following
symbols:

(a) vy, vy, Vg, ... (variables);

(b) 1, A, v, =, (not, and, or, if -then, if and only if);
(© v, 13 (for all, there exists);

(d) = (equality symbol);

(e) ) ( (parentheses);,

(f) (1) for every n > 1 a (possibly empty) set of n-ary relation symbols;
(2) for every n > 1 a (possibly empty) set of n-ary function symbols;
(3) a (possibly empty) set of constants.

We shall denote by A the set of symbols listed in (a) through (e), and by
S the set of symbols from (f). S may be empty. The symbols listed under (f)
must, of course, be distinct from each other and from the symbols in A.

S determines a first-order language (cf. §3). We call Ag:=A U S the
alphabet of this language and S its symbol set.

We have already become acquainted with some symbol sets: S, == {o, e}
for group theory and S, := {R} for the theory of equivalence relations. For
the theory of ordered groups we could use {o, e, R}, where the binary relation
symbol R is now taken to represent the ordering relation. In certain theo-
retical investigations we shall use the symbol set S, which contains the
constants ¢g, ¢y, ¢5,..., and for every n > 1 the countably many n-ary
relation symbols Rj, R}, R, ... and n-ary function symbols /7, f%, f3, ... .

Henceforth we shall use the letters P, Q, R, ... to stand for relation
symbols, f, g, h, ... for function symbols, ¢, ¢4, ¢4, ... for constants, and
X, ¥, z, ... for variables.
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§3. Terms and Formulas in First-Order Languages

Given a symbol set S, we call certain strings over Ag formulas of the first-order
language determined by S. For example, if § = S, we want the strings

e =e, eov, = Uy, e =e A vy = 1y)
to be formulas, but not

= Ae, e v e

The formulas ¢ = ¢ and e - v, = v, have the form of equations. Mathe-
maticians call the strings to the left and to the right of the equality symbol
terms. Terms are “meaningful” combinations of function symbols, variables,
and constants (together with commas and parentheses). Clearly, to give a
precise definition of formulas and thus, in particular, of equations, we must
first specify more exactly what we mean by terms. In mathematics terms
are written in different notations, such as x + e, g(x, e), gxe. We choose a
parenthesis-free notation system, as in gxe.

To define the notion of term we give instructions (or rules) which tell us
how to generate the terms. (Such a system of rules is often called a calculus.)
This is more precise than a vague description, and simpler than an explicit
definition.

3.1 Definition. S-terms are precisely those strings in A¥ which can be obtained
by finitely many applications of the following rules:

(T1) Every variable is an S-term.

(T2) Every constant in S is an S-term.

(T3) If the strings ¢4, ..., t,_; are S-terms and f'is an n-ary function symbol
in S, then ft,...t,_ is also an S-term.

We denote the set of S-terms by T5.

If fis a unary and g a binary function symbol and S = {f, g, ¢, R}, then
gvo fguac

is an S-term. First of all, ¢ is an S-term by (T2) and v, and v, are S-terms by
(T1). If we apply (T3) to the S-terms v, and ¢ and to the function symbol g,
we see that gv, c is an S-term. Another application of (T3) to the S-term guv, c
and to the function symbol f shows that fguv,c is an S-term, and a final
application of (T3) to the S-terms v, and fgv, c and to the function symbol
g shows that gv, fgv,c is an S-term.

We say that one can derive the string gv, fguv, ¢ in the calculus of terms
(corresponding to S). The derivation just described can be given schematically
as follows:
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1. ¢ (T2)

2. v, (T1) -
3 v, (TDH)

4. gv,c (T3) applied to 3 and 1 using g

5. fgv,c (T3) applied to 4 using f

6. gvg fgv,c (T3) applied to 2 and 5 using g.

The string directly following the number at the beginning of each line can
be obtained in each case by applying a rule of the calculus of terms; applica-
tions of (T3) use terms obtained in preceding lines. The information at the
end of each line indicates which rules and preceding terms were used. Clearly,
not only the string in the last line, but all strings in preceding lines can be
derived and hence are S-terms.

The reader should show that the strings gxgxfy and gxgfxfy are S-terms
for arbitrary variables x and y. Here we give a derivation to show that the
string oxcey is an §S,,-term.

1. x (TDH)
2.y (TDH
3 e (T2)
4. cey (T3) applied to 3 and 2 using ©
5. oxcey (T3)applied to 1 and 4 using -.

Mathematicians usually write the term in line 4 as e -y, and the term in
line 5 as x o (e o y). For easier reading we shall sometimes write terms in this
way as well.

Using the notion of term we are now able to give the definition of formulas.

3.2 Definition. S-formulas are precisely those strings of A¥ which are obtained
by finitely many applications of the following rules:

(F1) Ifty and t, are S-terms, then ¢, = ¢, is an S- formula.

(F2) Ift4,...,1,_, are S-terms and R is an n-ary relation symbol from S,
then Rt, ... t,_ is an S-formula.

(F3) If ¢ is an S-formula, then —¢ is also an S-formula

(F4) If p and y are S-formulas, then (¢ A ¥), (¢ v ¥), (¢ = ¥),and (¢ & )
are also S-formulas.

(F5) If ¢ is an S-formula and x is a variable, then Vx¢ and 3x¢ are also
S-formulas.

S-formulas derived using (F1) and (F2) are called atomic formulas because
they are not formed by combining other S-formulas. —¢ is called the
negation of @, and (¢ A V), (¢ v ¥), and (¢ — ) are called, respectively,
the conjunction, disjunction, and implication of ¢ and .

We use L® to denote the set of S-formulas. LS is the first-order language
corresponding to the symbol set S (often called the language of first-order
predicate calculus corresponding to S).
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Instead of S-terms and S-formulas, we often speak simply of terms and
formulas when the reference to § is either clear or unimportant. For terms
we use the letters 1, tq, 4, . . ., and for formulas the letters ¢, ¥, ... .

We now give some examples. Let S = S, = {R}. We can express the
axioms for the theory of equivalence relations by the following formulas:

Y, Rug g,
Voo Vv (Rog v, — Ruyvy),
Yug Vo, Yu,((Rvgvy A Ruyv,) = Rugv,).

One can verify that these strings really are formulas by giving appropriate
derivations (as was done above for terms) in the calculus of S, -formulas.
For the first two formulas we have, for example,

(D) 1. Rogy, (F2)
2. Yuy Rugv, (F5) applied to 1 using V, vg.
(2) 1. Ryyv, (F2)
2. Rv v, (F2)
3. (Rugv, = Ruvy) (F4) applied to 1 and 2 using —
4. Vv, (Rvgv; = Ru vg) (F5) applied to 3 using v, v,
5. Vg Yu (Rvyv, = Ruyvy) (FS) applied to 4 using V, v,.

In a similar way the reader should convince himself that, for unary f, binary g,
unary P, ternary Q, and variables x, y, and z, the following strings are
{f. g, P, Q}-formulas:

(1) Vy(Pz - Qxxz);
(2) (Pgxfy = Ix(x = x A X = X));
(3) Vz ¥z 3z Qxyz.

In spite of its rigor the calculus of formulas has “liberal” aspects: we can
quantify over a variable which does not actually occur in the formula in
question (as in (1)), we can join two identical formulas by means of a .con-
junction (as in (2)), or we can quantify several times over the same variable
(asin (3)).

For the sake of clarity we shall frequently use an abbreviated or modified
notation for terms and formulas. For example, we shall write the S, -formula
Ruv,v, as vgRu, (compare this with the notation 2 < 3). Moreover, we shall
often omit parentheses if they are not essential in order to avoid ambiguity,
e.g., the outermost parentheses surrounding conjunctions, disjunctions, etc.
Thus we may write @ A ¥ for (¢ A ). In the case of iterated conjunctions
or disjunctions we shall agree to associate to the left, e.g., @ A ¥ A g will be
understood to mean ((¢ A ¥) A x). The reader should always be aware that
expressions in the abbreviated form are no longer formulas in the sense of
3.2. We emphasize once again that we need an exact definition of formulas
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in order to have a precise notion of mathematical statement in our analysis
of the notion of proof.

Perhaps the following analogy with programming languages will clarify
the situation. When writing a program one must be meticulous in following
the grammatical rules for the programming language, because a computer
can process only a formally correct program. But programmers use an
abbreviated notation when devising or discussing programs in order to
express themselves more quickly and clearly.

We have used = for the equality symbol in first-order languages in
order to make statements of the form ¢ = x = y (“¢ is the formula x = y”)
easier to read.

For future use we note the following:

3.3 Lemma. If S is at most countable, then TS and LS are countable.

PROOE. If S is at most countable, then so is Ag and hence by 1.2 the set A¥.
Since TS and LS are subsets of A¥ they are also at most countable. On the
other hand T* and L9 are infinite because TS contains the variables v, v,
v3, ..., and LS contains the formulas vy, = vy, v, = v, U, = v,,... (even if

S = ). O

With the preceding observations the languages L’ have become the
object of investigations. In these investigations we use another language,
namely everyday English augmented by some mathematical terminology.
In order to emphasize the difference in the present context, the formal
language LS, being discussed, is called the object language; the language
English, in which we discuss, is called the metalanguage. In another context,
for example, in linguistic investigations, everyday English could be an object
language. Similarly, first-order languages can play the réle of metalanguages
in certain set-theoretical investigations (cf. VIL.4.3).

Historical Note. G. Frege [10] developed the first comprehensive formal
language. He used a two-dimensional system of notation which was so
complicated that his language never came into general use. The formal
languages used today are based essentially on those introduced by G. Peano
[22].

§4. Induction in the Calculus of Terms and in
the Calculus of Formulas

Let S be a set of symbols and let Z = A¥ be a set of strings over Ag. In the
case where Z = TS or Z = LS we described the elements of Z by means of a
calculus. Each rule of such a calculus either says that certain strings belong
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to Z (e.g., the rules (T1), (T2), (F1), and (F2)), or else permits the passage
from certain strings {;,...,{,—; to a new string { in the sense that, if
Lo, -5 (s all belong to Z, then { also belongs to Z. The way such rules
work is made clear when we write them schematically, as follows:

CO5'~',Cn—1

By allowing n = 0, the first sort of rule mentioned above (“premise-free”
rules) is included in this scheme.
Now we can write the rules for the calculus of terms as follows:

(T1) —;
X
(T2) —C'—, lfCES,

(13) oot e e S and fis n-ary.

fto. . ta—y
When we define a set Z of strings by means of a calculus C we can then prove
assertions about the elements of Z by means of induction over C. This principle
of proof corresponds to induction over the natural numbers. If one wants to
show that all elements of Z have a certain property P, then it is sufficient to
show that

for every rule

(*) —
M °

of the calculus C, the following holds: whenever {,, ..., {,_,
are derivable in C and have the property P (“induction hypo-
thesis™), then { also has the property P.

Hence in case n = 0 we must show that { has the property P.

This principle of proof is evident: in order to show that all strings de-
rivable in C have the property P, we show that everything derivable by
means of a “premise-free” (i.e., n = 0 in (x)) rule has the property P, and
then that P is preserved under application of the remaining rules. The method
can also be justified using the principle of complete induction for natural
numbers. For this purpose, one defines in the obvious way the length of a
derivation in C (cf. the examples of derivations in §3), and then argues as
follows: If the condition (1) is satisfied for P, one shows by induction on n
that every string which has a derivation of length n has the property P.
Since every element of Z has a derivation of some finite length, P must then
hold for all elements of Z.

In the special case where C is the calculus of terms or the calculus of
formulas, we call the proof procedure outlined above proof by induction on
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terms or on formulas, respectively. In order to show that all S-terms have a
certain property P it is sufficient to show:

(T1) Every variable has the property P.

(T2) Every constant in S has the property P.

(T3) If the S-terms ¢, ..., t,_, have the property P, and if f € S is n-ary,
then ft, ... t,—, also has the property P.

In the case of the calculus of formulas the corresponding conditions are

(F1Y Every S-formula of the form ¢, = t, has the property P.

(F2)" Every S-formula of the form Rt,...t,_, has the property P.

(F3) Ifthe S-formula ¢ has the property P, then ¢ also has the property P.

(F4) If the S-formulas ¢ and ¥ have the property P, then (¢ A ¥), (¢ v ¥),
(¢ = ), and (¢ < ) also have the property P.

(FS5Y If the S-formula ¢ has the property P and if x is a variable, then Vx¢
and Jdx¢ also have the property P.

We now give some applications of this method of proof.

4.1 Lemma. (a) For all symbol sets S the empty string [ is neither an S-term
nor an S-formula.

(b) (1) is not an Sy -term,
(2) cov, is not an Sy-term.

(c) For all symbol sets S, every S-formula contains the same number of right
parentheses “)” as left parentheses “(”.

PROOE. (a) Let P be the property on A¥ which holds for a string { iff { is
nonempty. We show by induction on terms that every S-term has the property
P, and leave the proof for formulas to the reader.

(T1) and (T2)': Terms of the form x or ¢ are nonempty.

(T3Y: Every term formed according to (T3) begins with a function symbol,
and hence is nonempty. (Note that we do not need to use the induction
hypothesis.)

(b) We leave (1) to the reader. To prove (2), let P be the property on
A%,. which holds for a string { over Ag__iff { is distinct from ccv;. We shall
show by induction on terms that every S, -term is distinct from cov;. The
reader will notice that we start using a more informal presentation of in-
ductive proofs.

t = x,t = e: tisdistinct from the string cov,.

t = otyt,: If ot t, were oo, then, by (a), we would havet, = cand t, = v,.
But t; = o contradicts (1).

(c) First one shows by induction on terms that no S-term contains a left
or right parenthesis. Then one considers the property P over A%, which
holds for a string { over Ag iff { has the same number of left parentheses as
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right parentheses, and one shows by induction on formulas that every
S-formula has the property P. We give some cases here as examples:

@ = tq = t, where ty and ¢, are S-terms: By the observation above there
are no parentheses in ¢, thus P holds for ¢.

@ = 1Y, where  has the property P by induction hypothesis: Since ¢
does not contain any parentheses except those in y, ¢ also has the property P.

@ = (Y A y), where P holds for ¢ and yx by induction hypothesis: Since
@ contains one left parenthesis and one right parenthesis in addition to the
parentheses in ¥ and y, the property P also holds for ¢.

@ = Vxy, where  has the property P by induction hypothesis: The proof
here is the same as in the case ¢ = —1. U

Next we want to show that terms and formulas have a unique decomposi-
tion into their constituents. The following two lemmas contain some pre-
liminary results needed for this purpose. We refer to a fixed symbol set S.

4.2 Lemma. (a) For all terms t and t', t is not a proper initial segment of t
(i.e., there is no { distinct from [J such that t{ = t').

(b) For all formulas ¢ and ¢’, ¢ is not a proper initial segment of ¢'.

We confine ourselves to the proof of (a), and consider the property P,
which holds for a string n iff

(*)  forallterms ¢, nis not a proper initial segment of t' and ¢’ is not
a proper initial segment of #.

Using induction on terms, we show that all terms ¢ have the property P.
(a) will then be proved.

t = x: Let ¢’ be an arbitrary term. By 4.1(a), t' cannot be a proper initial
segment of x, for then ' would have to be the empty string [J. On the other
hand, one can easily show by induction on terms that x is the only term which
begins with the variable x. Therefore, t cannot be a proper initial segment of ¢".

t = c¢: The argument is similar.

t = fty...t,_, and (%) holdsfor ¢y, ..., t,_: Let ¢’ be an arbitrary fixed
term. We show that t' cannot be a proper initial segment of r. Otherwise
there would be a { such that

(1 (#0, t=1C

Since ¢’ begins with f (for ¢ begins with /), ¢’ cannot be a variable or a constant,
thus ¢ must have been generated using (T3). Therefore it has the form
fto ... t,_ for suitable terms t; ... t,_ ;. From (1) we have

2 fto---t..—1=ftb~--ti.—1C,
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and from this, cancelling the symbol f, we obtain
3) to oo tyy =1tg .- by_1C.

Therefore t,, is an initial segment of t; or vice versa. Since ¢, satisfies (x) by
induction hypothesis, neither of these can be a proper initial segment of the
other. Thus t, = t5. Cancelling ¢, on both sides of (3) we obtain

4) tiooityey =t oot (L.
Repeatedly applying the argument leading from (3) to (4) we finally obtain
0=

This contradicts (1). Therefore ' cannot be a proper initial segment of ¢.
The proof that t cannot be a proper initial segment of ¢’ is analogous. [

Applying 4.2 one can obtain in a similar way

4.3 Lemma. (a) Ifty, ..., t,_qandty, ...ty areterms,andifty ... t,_, =
tg ... Ly_y,thenn =mandt, = t; fori < n.
®) If ©9,..., Q,—1 and @y, ..., @, are formulas, and if @q... Q-1 =

Qo - P—1, thenn = mand @; = @ fori < n.
Using 4.2 and 4.3 one can then easily prove

4.4 Theorem. (a) Every term is either a variable or a constant or a term of the
Jorm fty...t,_y. In the last case the function symbol f and the terms
tos-- - ta—y are uniquely determined.

(b) Every formula is of the form (1) tq = ty, or Q) Rtg...t,_y, or (3) 719, or
@ (@ AP, or 5) (@ v ), or (6) (¢ = W), or (T) (¢ =), or (8) Vxo, or
(9) Ixq, where the cases (1)-(9) are mutually exclusive and the following
are uniquely determined: the terms to and t in case (1), the relation symbol
R and the terms ty, ..., t,_ in case (2), the formula ¢ in (3), the formulas
@ and y in (4), (5), (6), and (7), and the variable x and the formula ¢ in (8)
and (9). ]

Theorem 4.4 asserts that a term or a formula has a unique decomposition
into its constituents. Thus, as we shall now show, we can give inductive
definitions on terms or formulas. For example, to define a function for all
terms it will be sufficient

(T1)” to assign a value to each variable;
(T2)" to assign a value to each constant;

(T3)" for every n-ary fand for all terms ¢, ..., t,_, to assign a value to the
term ftq ... t,_; assuming that values have already been assigned to
the terms tq, ..., t,_ 1.

Each term is assigned exactly one value by (T1)” through (T3)". We show this
by means of induction on terms as follows.
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t = x: By 4.4(a) t is not a constant and does not begin with a function
symbol. Therefore, it is assigned a value only by an application of (T1)".
Thus ¢ is assigned exactly one value.

= ¢: The argument is analogous to the preceding case.

t= fto...ty—y, and each of the terms tg,...,t,_, has been assigned
exactly one value: To assign a value to t we can only use (T3)", by 4.4(a).
Since, again by 4.4(a), the t; are uniquely determined, ¢ is assigned a unique
value. a

We now give some examples of inductive definitions.
The function var (more precisely, varg), which associates with each
S-term the set of variables occurring in it, can be defined as follows:

4.5 Definition.
var(x) == {x};

var(c) = ;
var(fty ... t,—q)=var(ty) v - U var(t,_ ;).

The function SF, which assigns to each formula the set of its subformulas,
can be defined by induction on formulas as follows:

SF(ty = 1)) = {ty = 1;};
SF(Rtg ...ty 1) ={Rtg... t,—1};
SF(1¢) = {719} U SF(9);’

SF((¢ A~ ¥)) = {(¢ A ¥)} v SF(9) U SF(Y);.
similarly for (¢ v ¥), (¢ — ), and (¢ = );
SF(Vxg) = {Vx¢p} U SF(¢);

similarly for Ix¢.

A means of defining the preceding notions by calculi is indicated in the
following exercise.

4.6 Exercise. (a) Let the calculus C, consist of the following rules:
. y i
x x’ y fto.. . tyot

Show that, for all variables x and all S-terms ¢, xt is derivable in C, iff x € var(¢).
(b) Give a result for SF analogous to the result for var in (a).

if feSisn-aryandi <n.

4.7 Exercise. Alter the calculus of formulas by omitting the parentheses in
3.2(F4),e.g., by writing simply “¢ A y”instead of “(¢ A ¥)”. So, for example,
¥ = vy Pvg A Qu, is a {P, Q}-formula in this new sense. Show that the
analogue of 4.4 no longer holds, and that the corresponding definition of
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SF(x) can yield both SF(y) = {x, Pvy A Quy, Pvy, Quv,} and SF(y) =

(x, Jvg Pvg, Pvgy, Qu,}, so that SF is no longer a well-defined function.
4

4.8 Exercise (Parenthesis-Free, or So-Called Polish Notation for Formulas).
Let S be a symbol set and let A’ be the set of symbols given in 2.1(a)-(d). Let
Ag = A’ U S. Define S-formulas in Polish notation (S — P-formulas) to be
all strings over Ay which can be obtained by finitely many applications of
the rules (F1), (F2), (F3), and (F5) from 3.2, and the rule (F4)":

(F4) If ¢ an ¢ are S — P-formulas then A @y, v oy, -y, and oy are
also § — P-formulas.

Prove the analogues of 4.3(b) and 4.4(b) for S — P-formulas.

§5. Free Variables and Sentences

Let x, y, and z be distinct variables. In the {R}-formula
¢ :=3Ix(Ryz A Vy(My = x v Ryz))

the occurrences of the variables y and z marked with single underlining are
not quantified, i.e.,, not in the scope of a corresponding quantifier. Such
occurrences are called free, and as we shall see later, the variables there act
as parameters. The occurrences of the variables x and y marked with double
underlining shall be called bound occurrences. (Thus y has both free and
bound occurrences in ¢.)

We give a definition by induction on formulas of the set of free variables
in a formula @; we denote this set by free(¢). Again we fix a symbol set S.

5.1 Definition.
free(ty = t,) = var(ty) U var(t,);
free(Pty ... t,_():=var(ty) U -+ U var(t,_,);

free(1¢) := free(e);

free((@ * ¥)) == free(p) U free(y) for+ = A, v, =,
free(Vxg) = free(p) — {x};
free(@xe) == free(p) — {x}.

The reader should use this definition to determine the set of free variables

in the formula ¢ at the beginning of this section (S = {R}). We do this here
for a simpler example. Again let x, y, and z be distinct variables.

free((Ryx — Vy 71y = z)) = free(Ryx) u free(Vy -1y = z)
= {x, y} v (free(my = 2) — {y})
={xypoulyz — O =1{xyz}
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Formulas without free variables (“parameter-free” formulas) are called
sentences. For example, Jv, v, = v, is a sentence.

Finally, we denote by L3 the set of S-formulas in which the variables
occurring free are among vy, ..., v,_;:

LS :=={¢p|@ is an S-formula and free (¢) < {vg,..., vp_1}}.

In particular L3 is the set of L-sentences.

5.2 Exercise. Show that the following calculus C,; permits to derive precisely
those strings of the form x¢ for which ¢ € L’ and for which x does not occur
free in .
———————, ifty, t, € T and x ¢ var(t,) U var(t,);
X tO = tl
, if ReSisn-ary,t,,...,t,_, €T3 and

X Rig...tay ¢ var(toy) U --- U var(t,_,);

x @
X @ x 1/}
x1e  x(o*y)

forx = A, v, -, &

xVx<p; x Axp’

X @
xVyp’

if x # y; fc_y(:;’ if x # y.



CHAPTER 1III
Semantics of First-Order Languages

P

Let R be a binary relation symbol. The {R}-formula

) Yvo Rug v

is, at present, merely a string of symbols to which no meaning is attached.

The situation changes if we specify a domain for the variable v, and if we

interpret the binary relation symbol R as a binary relation over this domain.

There are, of course, many possible choices for such a domain and relation.
For example, suppose we choose N for the domain, take “Vv,” to mean

“for all neN” and interpret R as the divisibility relation R™ on N. Then
clearly (1) becomes the (true) statement

for alln e N, RNnn,
i.e., the statement
every natural number is divisible by itself.
We say that the formula Vv, Rogv, holds in (N, R™). But if we choose the

set Z of integers as the domain and interpret R as the “smaller-than” relation
R% on 7, then (1) becomes the (false) statement

for all a e Z, R%aa,
i.e.. the statement
for every integer a,a < a.

We say that the formula Yvo Rvgv, does not hold in (Z, R%). If we consider
the formula

Jvo(Rv,vy A Rvguy)
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in (Z, R?%), we must also interpret the free variables v, and v, as elements of
Z. If we interpret ¢, as 5 and v, as 8 we obtain the (true) statement

there is an integer a such that 5 < a and a < 8.
If we interpret v, as 5 and v, as 6 we get the (false) statement
there is an integer a such that 5 < a and a < 6.

The central aim of this chapter is to give a rigorous formulation of the
notion of interpretation and to define precisely when an interpretation yields
a true (or false) statement. We shall then be able to define in an exact way
the consequence relation, which was mentioned in Chapter 1.

The definitions of “term”, “formula”, “free occurrence”, etc., given in
Chapter 11, involve only formal (i.e., grammatical) properties of symbol
strings. We call these concepts syntactic. On the other hand the concepts
which we shall introduce in this chapter will depend on the meanings of
symbol strings also (for example, on the meaning in structures, as in the
case above). Such concepts are called semantic concepts.

§1. Structures and Interpretations

If A is a set and n > 1, an n-ary function on A is a map whose domain of
definition is the set A" of n-tuples of elements from A4, and whose values lie
in A. By an n-ary relation Q on A we mean a subset of 4". Instead of writing
(ag,...,a,_,)eQ, we shall often write Qa, ... a,_,, and we shall say that
the relation L holds for ag, ..., a,_,.

According to this definition the relation “smaller-than™ on Z is the set
{(a, b)la,be Z and a < b}.

In the examples given earlier, the structures (N, R™) and (Z, R%) were
determined by the domains N and Z and by the binary relations RN and
RZ as interpretations of the symbol R. We call (N, RY) and (Z, R?) {R}-
structures, thereby specifying the set of interpreted symbols, in this case {R}.

Consider once more the symbol set S, = {c, e} of group theory. If we
take the real numbers R as the domain and interpret - as addition over R
and e as the element 0 of R, then we obtain the S, -structure (R, +, 0). In
general an S-structure U is determined by specifying:

(a) adomain A4,

(b) (1) an n-ary relation on A for every n-ary relation symbol in S,
(2) an n-ary function on A for every n-ary function symbol in S,
(3) an element of 4 for every constant in S.

We combine the separate parts of (b) and give:

1.1 Definition. An S-structure is a pair U = (4, a) with the following prop-
erties:
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(a) A is a nonempty set, the domain or universe of .

(b) ais a map defined on § satisfying:
(1) for every n-ary relation symbol R in S, a(R) is an n-ary relation on 4,
(2) for every n-ary function symbol f'in S, a(f) is an n-ary function on 4,
(3) for every constant ¢ in S, a(c) is an element of 4.

Instead of a(R), a(f), and a(c), we shall frequently write R¥, ¥, and ¢¥
or simply R4, f4, and ¢*. For structures A, B, ... we shall use 4, B, ... to
denote their domains. Instead of writing an S-structure in the form U = (4, a),
we shall often replace a by a list of its values. For example, we write an
{R, f, g}-structure as A = (4, R¥, f¥, g".

In investigations of arithmetic the symbol sets

Sar:={+a .’0’ 1} and S;::{+’.’0’ 19<}

play a special role, where + and - are binary function symbols, 0 and 1 are
constants, and < is a binary relation symbol. Henceforth we shall use 9, to
denote the S, -structure (N, +N,.N OV 1N), where +N and -N are the usual
addition and multiplication on N and Q™ and 1N are the numbers zero and
one, respectively. < := (N, +V, N 0N 1N <), where <™ denotes the
usual ordering on N, is an example of an S,;-structure. Similarly we set
Re=(R, +% & 0% 1®) and R*:=(R, +® B 0% 1% <F). We shall often
omit the superscripts V% from +"™, +% ... 1Y 1% It will, however, be clear
from the context whether, for example, + is intended to denote the function
symbol, the addition on N, or the addition on R.
The interpretation of variables is given by a so-called assignment.

1.2 Definition. An assignment in an S-structure Wisamap f: {v,[ne N} - 4
of the set of variables into the domain A.

Now we can give a precise definition of the notion of interpretation:

1.3 Definition. An S-interpretation 3 is a pair (Y, f) consisting of an S-
structure U and an assignment § in A.

When the particular symbol set S in question is either clear or unim-
portant we shall speak simply of structures and interpretations instead of
S-structures and S-interpretations.

If 8 is an assignment in U, a € 4, and x is a variable, then let 9 be the
X

assignment in ¥ which maps x to a and agrees with § on all variables distinct
from x:

if
ﬂg(W _ {B(y) if y # x,

a ify = x.

. a a
3= @ pletI_ = (QI,B;).
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In the introduction to this chapter we gave some examples showing how
an S-formula can be read in everyday language once an S-interpretation has
been given. It is useful to practice reading formulas under interpretations.

For example, if S = S;, and the interpretation 3 = (U, f) is given by

(%) A=(N, +,-,0,1, <) and pv,) =2n forn =0,

then the formula o,-(v, + v,) =v, (actvally-v, + v,v, =v,) reads
“4-(2 + 4) = 87, and the formula Yvq dv,v, < v, (actually Yvg Jv, < vqvy)
reads “for every natural number there is a larger natural number”.

1.4 Exercise. Let 3 be the interpretation defined above in (*). How do the
following formulas read with this interpretation?

Jvgvy + vy = vy; Jvgty vy = Uy Ao v = 04

Voo dv,00 = vy Voo Vo, do,(vg < 03 A U, < Uy).

1.5 Exercise. Let 4 be a finite nonempty set and S a finite symbol set. Show
that there are only finitely many S-structures with 4 as domain.

1.6 Exercise. For S-structures A = (A4, a) and B = (B, b), let A x B be
the S-structure with domain 4 x B:= {(a, b)|a € A, b € B}, which is deter-
mined by the following conditions:

for n-ary R in S and (ay, by), - .., (@,- 1, b,- 1) € A X B,
R %y, by) ... (a,_1. b,_y) iff (R¥a,...a,_,and R®,...b,_,);
for n-ary fin S and (aq, by), ..., (@,—1, by~ )€ A X B,
S5 (g, bods -+, (s b 1)) = (Hags - s e 1)y S 2Bos- -+ B ));
forcin S,
M B= (", P
Show:

(a) If the S, -structures A and B are groups, then A x B is also a group.

(b) If A and B are equivalence structures, then A x B is also an equivalence
structure,

(¢) If the S, -structures A and B are fields, then A x B is not a field.

§2. Standardization of Connectives

When we define the notion of satisfaction in the next section we shall refer
to the meaning of the connectives “not”, “and”, “or”, “if-then™, and “if and
only if ”. In ordinary language their meanings vary. For example, “or” is
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sometimes used in an inclusive sense and at other times in the exclusive sense
of “either-or”. However, for our purposes it is useful to fix a standard
meaning: We shall always use “or” in the inclusive sense, that is, a compound
proposition whose constituents are connected by “or” is true (has the truth-
value T) iff at least one of the constituents is true; it is false (has the truth-value
F) iff both constituents are false. For example, we specify in 3.2 that a formula
(o Vv ) is assigned the truth-value T under an interpretation J if and only
if @ is assigned the truth-value T under 3 or s is assigned the truth-value T
under 3. On account of our fixed standard meaning we therefore have that
(¢ v Y)isassigned the truth-value T under J if and only if at least one of the
formulas ¢, y is assigned T under 3.

According to our convention the truth-value of a proposition compounded
by “or” depends only on the truth-values of its constituents. Thus we can
use a function

v:{T,F} x {T,F} - {T,F}

to capture the meaning of “or”; the table of values (“truth-table™) is as
follows:

Similarly we proceed with the connectives “and”, “if-then™, “if and only
if 7 and “not”. The truth-tables for the functions A, -, <>, and = are:

|A =]« |
T T|T|T|T T|F
T F|F|F|F FIT
F T|F|T|F
F FIFITIT

These conventions correspond to mathematical practice.

Connectives for which the truth-values of compound propositions depend
only on the truth-values of the constituents are called extensional. Thus we
use the connectives “not”, “and”, “or”, “if-then”, and “if and only if”
extensionally. In colloquial speech, however, these connectives are often
not used extensionally. Consider, for example, “John fell ill and the doctor
gave him a prescription”, and “The doctor gave John a prescription and he
fell i11”. By contrast with the extensional case, the truth-value of these
compound statements also depends on the temporal relation expressed by
the order of the two components (intensional usage).
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When we restrict ourselves to using the connectives extensionally, we
sacrifice certain expressive possibilities of informal language. Experience
shows, however, that this restriction is unimportant as far as the formulation
of mathematical assertions is concerned. Furthermore, we shall see in the
following exercise that all other extensional connectives can be defined from
the connectives we have chosen.

2.1 Exercise. For n > 1 let B, be the alphabet {—1, A, v, =, ), (} U
{Po,---»Pn-1} We define the formulas of the language of propositional
calculus (with the propositional variables py, ..., p,_ ) to be the strings « over
B, which can be obtained by means of the following rules:

— (i<n), 2 and % P

Di Y (o % B)

For an n-tuple s = (s,, ..., s,-) of truth-values T, F, a so-called assignment,
let afs] € {T, F} be defined by induction as follows:

forx = A, v, o, e

plsl = s (i <n);
—afs] = T(afs]);
(x * B)Ls] = #(afs], BLs]) forx = A, v, -, .
afs] is called the rruth-value of o with respect to the assignment s.
(a) Show that for every s = (s, s;) € {T, F}?,

((po A P1) v (Po A Tp))s] = so.

(b) An n-ary truth-function is a map f: {T, F}" — {T, F}. Show that for
every n > 1 there are exactly 22" n-ary truth-functions.

(c) Show that for every n-ary truth-function f there is a formula « in the
propositional calculus in which the symbols A, —, and < do not occur,
such that for all s € {T, F}", f(s) = a[s]. Prove the corresponding result
for v, —, and < instead of A, », and .

(d) Analogously, one defines the language of propositional calculus with
propositional variables p,, p,, p,,..., and considers corresponding
assignments s = (so, 5;. 5», ...) of the truth-values T and F. Show that
if at most the variables p,, py,..., p,—, occur in a formula o of this
language, then afs] depends only on s, ..., s,_;-

§3. The Satisfaction Relation

The satisfaction relation makes precise the notion of a formula being true
under an interpretation. Again we fix a symbol set S. By “term”, “formula™,
or “interpretation” we always mean “S-term”, “S-formula”, or “S-inter-
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pretation”. As a preliminary step we associate with every interpretation
3 = (Y, B) and every term ¢ an element J(¢) from the domain A:

3.1 Definition. (a) For a variable x let 3(x) := f(x).
(b) For a constant c € S, let 3(c) = .
(c) For an n-ary function symbol f€ S and terms t,,..., ¢, let

3(fto .- tamg) = [ S(to)s .-, I(ty-1))-
As an illustration, if § = S, and 3 = (R,, p) with R, = (R, +,0) and
B(vy) =2 and B(v,) = 6, then 3(vge(ecvy)) = I(vg) + I(eov,) =
0 + 6) =8.
Now, using induction on formulas ¢, we give a definition of the relation
3 is a model of @, where 3 is an arbitrary interpretation. If 3 is a model of ¢
we also say that 3 satisfies ¢ or that ¢ holds in 3, and we write 3 &= ¢.
3.2 Definition of the Satisfaction Relation. For all 3 = (2, ) we let
IEeto=t iff 3(t,) = 3(1y),
S Rty... t,_, iff R¥3(t,)...3(,-,) (e, R* holds for
\ S(t())a e 3(tn— 1))
J= e iff not 3= o,
SE(prY) iff 3= gpandI=y,
SE=(e vy ff I=porI =y,
S E=(p—>¥) iff if 3= @ then J &= 4,
I E(pey) iff 3 =g ifand only if 3 =,

3= Vxop  iffforallae 4 Sgt:qo,
x

3 = Ixe iff there is an a € 4 such that 32 = Q.
X

(For the definition of 3 < see §1.)
X

Given a set @ of S-formulas, we say that 3 is a model of ® and write
JE= @if 3= ¢ holds for all g € @.

By going through the individual steps of definition 3.2 the reader should
convince himself that 3 = ¢ if ¢ becomes a true statement under the inter-
pretation 3. The steps in 3.2 involving quantifiers are illustrated by the
following example. Again let S = S, and 3 = (R,, f) with R, = (R, +,0)
and f(x) = 9 for all x. Then we have

Squovooezvo iffforallreR, 3 r:vooe_vo,

iff forallre R, r+0—r
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3.3 Exercise. Let P be a unary relation symbol and f be a binary function
symbol. For each of the formulas Vv, fogv, = vy, Jvg Yo, frov, = vy, and
Jvy(Pvy A Vv, Pfvgv,) find an interpretation which satisfies the formula
and one which does not satisfy it.

3.4 Exercise. A formula which does not contain —1, <, or — is called
positive. Show that for every positive S-formula there is an S-interpretation
which satisfies it. (Hint: One can, for example, use a one-element domain.)

§4. The Consequence Relation

Using the notion of satisfaction we can state exactly when a formula is a
consequence of a set of formulas. Again we assume a symbol set S is given.

4.1 Definition of the Consequence Relation. We say that ¢ is a consequence
of © (written: @ = @) iff every interpretation which is a model of @ is also a
model of @.!

Instead of “{y/} = ¢ we shall write “y &= ¢”. We have already sketched
some examples of the consequence relation in Chapter 1. Now we can
formulate 1.1.1. (existence of a left inverse) as follows:

D, =V, oo 0ovp =e,
where

@, = {Vvo Vv, Yo,00 (g 2 V3) = (Vg © V1) ° Uz,
Yoo v 0 € = vy, Yoo 0104 0 vy = e}

To show that a formula ¢ is not a consequence of a set of formulas @, it
is sufficient to give an interpretation which satisfies every formula in @ but
fails to satisfy o.

For example, one shows

e8] not @, = Yo, Vovg 00, = vy 009

by giving as an interpretation a nonabelian group ® with an arbitrary
assignment of variables to elements of ®. Analogously, one can use an abelian
group to show

2 not @, = —1Vu, Yo,0q © vy = v 0 vg.

! We use the symbol = for both the satisfaction relation (3 k= ) and for the consequence
relation (® k= ). The symbol preceding “ = " (either for an interpretation, such as 3, or for a
set of formulas, such as @) determines the meaning.
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With (1) and (2) we see that

not® = ¢
does not necessarily imply

D= .

In Chapter I it became clear —both by examples and in an informal way—
that when ¢ can be proved from a system of axioms @ then ¢ is a consequence
of ®. There we raised the question as to what extent the consequences of a
system of axioms can be obtained by mathematical proofs. The precise
definitions of concepts given in this chapter and the next lay the foundation
for a rigorous discussion of this question. In Chapter V we shall obtain the
fundamental result that the consequence relation ® = ¢ can always be
established by means of a mathematical proof. We shall see that such a proof
consists of very elementary steps which, moreover, can be described in a
purely formal way (that is, syntactically).

Using the notion of consequence we are now able to define the notions of
validity, satisfiability, and logical equivalence.

4.2 Definition. A formula ¢ is valid (written: = @) iff J = o.

Thus a formula is valid when it holds under all interpretations. For
example, all formulas of the form (¢ v —1¢)or Ix x = x are valid.

4.3 Definition. A formula ¢ is satisfiable (written: Sat o) iff there is an inter-
pretation which is a model of ¢. A set of formulas @ is satisfiable (written:
Sat @) iff there is an interpretation which is a model of all the formulas in ®.
4.4 Lemma. For all ® and all ¢,
D= ¢ iff not Sat @ U {1}

In particular, @ is valid iff =1 ¢ is not satisfiable.
PROOF. @ = ¢

iff every interpretation which is a model of @ is also a model of ¢,

iff there is no interpretation which is a model of @ but not a model of ¢,

iff there is no interpretation which is a model of ® U {10},

iff not Sat ® U {—¢}. O

4.5 Definition. Two formulas ¢ and  are logically equivalent iff ¢ =  and
Y=o

Thus two formulas ¢ and  are logically equivalent iff they are valid
under the same interpretations, that is, iff &= ¢ < 1.
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It is immediately evident, from the definition of the notion of satisfaction
together with the truth-tables for connectives that the following formulas are
logically equivalent:

oAy and (T v ),

QY and 1 VY,

ooy and (e v ) v Ti(Te v ),
Vx¢o and —1dx 7.

(+)

Therefore, we can dispense with the connectives A, —, and <, and the
quantifier V. More precisely, we define a map * by induction on formulas,
which associates with every formula ¢ a formula ¢* such that ¢* is logically
equivalent to ¢ and does not contain A, —, <>, or V:

¢* = ¢ if ¢ is atomic,

(T@)* == T1p*,
(o v Y)Yt =¢* v y*,
(@ A ¥)* = 1(T9* v 1Y),

fi

(o = Y)F = T19* v Y,

(p oY) =7(e* v ¥*) v (T19* v 1Y),
(Ix)* = Ixe*,
(Vx@)* :== 1dx T19™*.

Using (+) one can easily prove that * has the desired properties.

In general a formula ¢ is easier to'read than the corresponding formula
@*, as 1s clear from (4 ). But because of the logical equivalence of ¢ and ¢*
we do not lose expressive power when we exclude the symbols A, —, <, and
V from our first-order languages. This will simplify our investigations of the
languages; in particular, proofs by induction on formulas will be shorter.
Thus we make the following conventions:

(1) In the sequel we restrict ourselves to formulas in which A, —, «, and ¥
do not occur. That is, in the common alphabet A of the first-order
languages (cf. I1.2.1.) we omit the symbols A, —, <>, and V. In the defini-
tion 11.3.2. of formulas we restrict cases (F4) and (F5) to the introduction
of formulas of the form (¢ v y) and 3xe, respectively. Finally, in the
definition of the notion of satisfaction we eliminate the cases correspond-
ing to A, —», <>, and V.

(2) Nevertheless we shall sometimes retain the symbols A, —, <, V when
writing formulas. Such “formulas ¢ in the old style” should now be
understood as abbreviations for ¢*; for example, Vx(Px A Qx) should
be understood as an abbreviation for 713x - 1(T1Px v 1Qx).
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4.6 Exercise. For arbitrary formulas ¢, , and y show that:

@ (p vi)E= 7l o= yand y =
b)) =e—-iff o= y.

4.7 Exercise. (a) Show that 3x Vyg = Vy Ixe.
(b) Show that ¥y 3x Rxy &= Ix Vy Rxy does not hold.

4.8 Exercise. Prove:

(@) =EYX(¢ A ) Yxp A VXY,

) = Ix(e v Y) > Ixe v Ixy,

©) = Yx(p v ) > ¢ v Vxi, if x ¢ free(ep),

(d) = Ix(@ A )o@ A Ixy, if x ¢ free(p).

(e) Show that one cannot do without the assumption “x ¢ free(¢)” in (c)
and (d).

4.9 Exercise. Let ¢ and y be formulas such that & (¢ <> ). Let x’ be obtained
from the formula y by replacing all subformulas of the form ¢ by .

(a) Define the map ' by induction on formulas.
(b) Show that for all y, I=(y < y).

Historical Note. The precise development of semantics is due essentially
to A. Tarski {27]. The notion of logical consequence was already present
in work of B. Bolzano [3].

§5. Coincidence Lemma and Isomorphism Lemma

-It seems intuitively clear that the satisfaction relation between an S-formula

¢ and an S-interpretation 3 depends only on the interpretation of the
symbols of S occurring in ¢, and on the variables occurring free in ¢. The
following lemma gives an exact formulation.

5.1 Coincidence Lemma. Let 3, = (U, f,) be an S,-interpretation and

3, = (N,, B,) be an S,-interpretation, both with the same domain, ie.,
A=A, PutS=5,nS8S,.

(a) Let t be an S-term. If 3, and 3, agree® on the S-symbols occurring in t
and on the variables occurring in t, then 3,(t) = 3,(1).

(b) Ler ¢ be an S-formula. If 3, and 3, agree on the S-symbols and on the
variables occurring free in @, then 3, = @ iff 3, = .

2 3, and 3, agree on k € Sor on x if k™ = k¥ or B,(x) = B,(x). respectively.
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ProoOF. (a) We use induction on terms.

t = x: By hypothesis, §,(x) = f,(x) and therefore

31(x) = f1(x) = Ba(x) = Ty (x).
t = ¢: Similarly.
t= fty...ty—y (feSnaryandt,,..., t,.,€T5:
3 (fto . tumy) = fH(Ste)s -+ i(ta=1))
= fM(3,(t), - ... 3,(t,—1)) (byinduction hypothesis)

S*(3y(to), - -, Ja(ts-y)) (by hypothesis /[ = f*2)
= 3(fto-. - ty-r)-

{b) We use induction on S-formulas.

L L

I

¢=Rty...1,., (ReSn-aryandt,,...,t,_,;€T5:
3= Rtg...t,_, iff RM3,(tg)... 3,(tey)

il R ,(t0) .. Salta_y) (by (@)
iff R*23,(t)... 3,(t.—;) (by hypothesis R = R¥2)
iff 3,=Rtg...t,_,.

@ =t; = t,: Similarly.

¢ =

3= T iff not 3, =

iff not 3, =y (by induction hypothesis)
iff 3, = 9.

@ = (Y v y): Similarly.
@ = Ixy:

. . a
3, = Ixy  iff there is an a € A, such that 3, — =
X
. . a
iff there is an a € A,(=A4,) such that 3, — =
X

(by the induction hypothesis applied to ¥, J, ; and 3, g; note that, because

free(y) < free(¢) v {x}, the interpretations J, ; and Szg agree on all
symbols occurring in ¥ and all variables occurring free in )

iff 3, = 3xy. O

In particular, the coincidence lemma says that, for an S-formula ¢ and
an S-interpretation 3 = (U, ), the validity of ¢ under 3 depends only on
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the assignments for the finitely many variables occurring free in ¢ (and, of
course, on the interpretation of the symbols of S in A). If these variables are
among v, ..., U,_1, i.e, if @ € L3, it is at most the f-values a; = f(v;) for
i=0,...,n — 1which are significant. Thus, instead of (¥, f) = ¢, we shall
often use the more suggestive notation

Q[ = (p[aO"' "an—l]‘

(Similarly, for an S-term ¢ such that var(t) = {vg, ..., v,-,} we shall write
t"[a,, ..., a,_,] instead of J(t).) When ¢ is a sentence, ie., ¢ € L§, we can
choose n = 0 and write

A= o,

without even mentioning an assignment. In that case we say that U is a model
of ¢. For a set of sentences @, U = @ means that A = ¢ for every ¢ € O.

5.2 Definition. Let S and §’ be symbol sets such that S < §';let A = (4, a)
be an S-structure, and A" = (4’, a') be an §’-structure. We call A a reduct of
A’ (more precisely, the S-reduct of A’} iff A = A’ and a and o’ agree on S. In
this case U is called an expansion of A, and we write A = A’ | S.

For example, the S_;-structure R = (the ordered field of real numbers) is an
expansion of the S, -structure R (the field of real numbers): R = R= [ S,,.

If A = W I S, then it follows from the coincidence lemma that for ¢ € L}
and ag,...,a,_,€A4, = ¢glag,...,a,-1] iff A =olag,...,a,-4] To
see that this holds we choose f: {v,: n € N} — A4 so that fi(v;) = a;for i < n,
and we apply the coincidence lemma for 3, = (U, §) and 3, = (W, f);
3, and 3, agree on the symbols occurring in ¢ and on the variables occurring
free in .

The definitions of interpretation, consequence, and satisfiability refer to a
fixed symbol set S. Using the coincidence lemma we can remove this reference
to S. Let us consider, for example, the notion of satisfiability. If @ is a set of
S-formulas and §'> S, then ® is also a set of §'-formulas. As a set of S-
formulas, @ is satisfiable if there is an S-interpretation which satisfies it,
and as a set of §’-formulas it is satisfiable if there is an S’-interpretation which
satisfies it. We have

5.3 Lemma. ® is satisfiable with respect to S iff ® is satisfiable with respect
to S

Proor. If 3" = (A, §') is an S'-interpretation such that 3’ = @, then by 5.1
the S-interpretation (A [ S, f) is a model of ®. On the other hand, if
3 = (U, ) is an S-interpretation which satisfies ®, we choose an S’-structure
A’ such that A’ [ S = A. (The symbols in §' — S can be interpreted arbi-
trarily.) By 5.1 the S-interpretation (2U, f) is then a model of ®. O
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We conclude this section with a result about isomorphic structures.

5.4 Definition. Let U and B be S-structures.

(a) A map n: A —» B is called an isomorphism of W onto B (written:
n: A = B)iff

(1) = is a bijection of 4 onto B;
(2) for n-ary Re Sand qq, ..., a,-, € A4,

R¥%, ...a,_, iff R®n(ap)...n(a,_,);
(3) forn-aryf e Sand ay, ..., a,- € 4,
n(f*do, - -+ p-1)) = fBA(Mag), - ., May-1));

(4) for every c € S, n(c¥) = c®.

(b) U and B are said to be isomorphic (written: 2 = B) iff there is an iso-
morphism n: A = B.

For example, the S, -structure (N, +, 0) is isomorphic to the S ,-structure
(G, +°¢,0) consisting of the even natural numbers with ordinary addition
+ ¢ The map n: N - G such that n(n) = 2n is an isomorphism of (N, 4, 0)
onto (G, +¢, 0).

The following lemma shows that isomorphic structures cannot be
distinguished by means of first-order sentences.

5.5 Isomorphism Lemma. If ¥ and B are isomorphic S-structures, then for
all S-sentences ¢

AUk ¢ iff B o.

ProoOF. Let n: ¥ = B. For the intended proof by induction it is convenient
to show not only that the same S-sentences hold in U and B, but also
that the same S-formulas hold if one uses corresponding assignments:
With every assignment f in 2 we associate the assignment f*:=mno fin B,
and for the corresponding interpretations 3 = (2, f) and 3" := (B, ) we
shall show:

(i) For every S-term t, n(3(t)) = I"(1).
(ii) For every S-formula ¢, 3 = ¢ iff 3™ k= ¢.
This will complete the proof.
(i) can easily be proved by induction on terms. (ii) is proved by induction

on formulas ¢ simultaneously for all assignments § in 2. We only treat the
case of atomic formulas and the steps involving —1 and 3.
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JEe=ty =1, Iff 3@, = 3(ty)
iff ©(3(to)) = 7(3(¢,) (since n: A — B is injective)

iff 37(ro) = 37°(t,) (by (1))
iff 3"=1t, =1,

SE=Rty... t,_; iff R¥3(ty) ... 3(t,-1)
iff R®(3(ty))... ©(3(t,-,)) (because n: A = B)
iff R®3(to) ... 3"(tn-1) (by (1))
iff 3"=Rty...t,_,.

Iy iff not 3 =y
iffl not 3" =y (by induction hypothesis)
iff 3= 1y

S k= 3xy iff there is an a € 4 such that Sg -

iff there is an a € 4 such that <3 g) =Y
(by induction hypothesis)

iff there is an a € A such that 3

W

<since (3 ﬁ)" = 3" E(i))
x x

. b
iff there is an element b € B such that 3" — =
X

"@’:
X

(since m: A — B is surjective)

iff 3" = Ixy. O
From the proof we infer

5.6 Corollary. If n: U = B, thenfor pe LS and aq, ..., a,_, € A,
ml: (Q[aOa'"’an'l] lff%': (p[n(ao)a'-'sn(an—l)]' D

5.5 tells us that isomorphic S-structures cannot be distinguished in L3.
Conversely one could ask whether S-structures in which the same S-sentences
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are satisfied are isomorphic. In Chapter VI we shall see that this is not always
the case. For example, there are structures not isomorphic to the S, -structure
N of natural numbers in which the same first-order sentences hold.

5.7 Exercise. Prove the analogue of 5.3 for the consequence relation.

5.8 Exercise. Let S be a finite symbol set and let 2 be a finite S-structure.
Show that there is an S-sentence g the models of which are precisely the
S-structures isomorphic to .

5.9 Exercise. Show:

(a) The relation < (“less-than™) is elementarily definable in (R, +, -, 0), i.e.,
there is a formula ¢ € LY" % such that for all a, be R, (R, +,-,0) =
¢la, b] iff a < b.

(b) The relation < is not elementarily definable in (R, +, 0). (Hint: Work
with a suitable automorphism of (R, +, 0), i.e., a suitable isomorphism of
(R, +, 0) onto itself.)

5.10 Exercise. Let I be a nonempty set. For every i eI, let ¥U; be an S-
structure. We write [ [;.; ¥; for the direct product of the structures U,
i €I, that is, the S-structure A with domain [];.; 4;:={glg: 1 —» ;cs 4;,
and for all i € I, g(i) € A;}, which is determined by the following conditions
(for g € [ [ic; A; we also write {g(i)|i € I)):

For n-ary R in S and for go, ..., g,—1 € [ [;es 4is

R%,...g,-, iff foralliel, R¥gy(i)...g,-,(i);
for n-ary fin Sand go, ..., G-y € [ |ics 4.

S Gos -+ Gn- =S ¥(gold), ..., gur(D]i€ Iy,
forcin S,

A=(Miel).
(a) Show that if ¢ is an S-term such that var(¢) = {vg,...,v,_,} and if
gor--r9n-1 € niel A;, then
[Q([gOa <9 Y- 1] = <tmi[go(i)7 e gn-' 1(1):”1 € I>

Formulas which are derivable in the following calculus are called Horn
formulas.

(i) , if ¢ is atomic;
¢
ii if ¢ is atomic;
(1) _](p,l @ is atomi
(iti) ,if @q, ..., @, are atomic and n > 1;

(Po Ao APy ) @,
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Horn sentences are Horn formulas containing no free variables.

(b) Show that if ¢ is a Horn sentence and if every %, is a model of ¢, then
[lic: Ui = . (Hint: State and prove the corresponding result for Horn
formulas.)

5.11 Exercise. A set ® of sentences is called independent if there is no ¢ € ®
such that ® — {¢} = ¢. Show that the axioms for groups (cf. p. 32) and the
axioms for equivalence relations (cf. p. 16) are independent sets of sentences.

§6. Some Simple Formalizations

As we saw in §4, the axioms for group theory can be formulated, or as we
often say, formalized, in a first-order language. As another example of
formalization we give the cancellation law for group theory:

@ = Yoa V0, YVo,(vg oy = Uy 00y = Vg = Uy).

To say that the cancellation law holds in a group ® means that ® = ¢, and
'to say that it holds in all groups means that @, = ¢.
The statement “there is no element of order two” can be formalized as

W= T130g(Tvg E e A bgovy = ).

The observation that there is no element of order two in (Z, +,0) thus
means that (Z, +, 0) is a model of y.

For applications of our results it is helpful to have a certain proficiency
in formalization. The following examples should serve this purpose. As the
exact choice of variables is unimportant (for example, instead of using the
formula ¢ above we could have used

Vv Vog Yo, (017 00y = vgov, > 1,5 = g)

to formalize the cancellation law) we shall denote the variables simply by
X, y, z, . .., where distinct letters stand for distinct variables.
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6.1 Equivalence Relations. The three defining properties of an equivalence
relation can be formalized with the aid of a single binary relation symbol as
follows:

Vx Rxx, Vx Vy(Rxy — Ryx), Vx Vy Vz((Rxy A Ryz) —» Rxz).
The theorem mentioned in Chapter 1

If x and y are both equivalent to a third element then they are
equivalent to the same elements,

can be reformulated as

For all x and y, if there is an element u such that x is equivalent
to i and yisequivalent to u, then for all z, x isequivalent to ziff y
is equivalent to z,

and then formalized as

Vx Vy(Qu(Rxu A Ryu) —» Vz(Rxz <> Ryz)).
6.2 Continuity. Let p be a unary function on R and let A be the binary distance
function on R, that is, A(rg, r,) = |ry — 7| for ry, r; € R. Using the function

symbols f (for p) and d (for A) we can treat (R, +,-,0, 1, <, p, A) as an
S.. U {/, d}-structure. The continuity of p on R can be stated as follows:

(*) For all x and for all ¢ > 0 thereis a § > 0 such that for all y, if
A(x, y) < 0 then A(p(x), p()) < &.

Concerning the restricted quantifiers “for all ¢ > 0” and “thereis a § > 0”
that appear in («) it is useful to observe that a statement of the form

for all x such that . .., we have
can be formalized
vx(... > —),
and a statement of the type

there is an x with ... such that

can be formalized
Ix(... A —).

Thus, using the variables v and v for ¢ and é we can give the following
formalization of (x):

Vx Vu(0 < u— (0 < v A Vy(dxy < v - dfxfy < u))).

6.3 Cardinality Statements. The sentence

Qo= 3y v, Iy = v,y
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is a formalization of “there are at least two elements”. More precisely, for
all § and all S-structures U,

A= ¢,, Iff Acontains at least two elements.
In a similar way, for n > 3, the sentence
Qon =g A0, (TTVEEOLA - A W=V At A T, =V, )
states that there are at least n elements, and the sentences

LY and Oon N T1P2p+1

say that there are fewer than n elements and exactly »n elements, respectively.
If we now put

O, = {@,.ln =2}

then the models of ®_, are precisely the infinite structures, that is, for all §
and all S-structures 2,

A= & iff Acontains infinitely many elements.

6.4 The Theory of Orderings. A structure A = (A4, <¥) is called an ordering
if it is a model of the following sentences:

Vx 1x < X,
D, VXV Vz(x <y A Yy <z)—> X <2)
VXVy(x < yvx=yvy<x)

(R, <® and (N, <V) are examples of orderings. If C denotes the set of
complex numbers and < is defined by

zy <%z, iff z,,z,eRand z; <®z,
then (C, <) is not an ordering because the third axiom in @, is violated.
If for a structure A = (4, <¥) we set

field <% = {ac Alforsomebe A, a <¥borb <¥q}?

then, for (C, <€), field <© = R and (field <€, <) is an ordering. We say
that <™ is a partially defined ordering on A if (field <¥, <¥) is a model of
D, 4, i€, if (4, <¥) satisfies

Vx 1x < X,
Dporaq VX VY Vz((Xx <y Ay <2) > x < 2),
Ux Vy((Qux <uvu<x)advoy<ovvo<y))
S(x<yvx=yvy<x)

3 Of course not to be confused with the notion of field as in 6.5.
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6.5 The Theory of Fields. As symbol set let us take S,, = {+, -, 0, 1}. An
S..-structure is a field if it satisfies the following sentences:

IxVyVz{ix + y) + z=x + (¥ + 2), Vxx + 0= x,

Vx Vy Vz(x-y) -z = x-(y-2), Vxx-1=x,

Vx3Jyx +y =0, Vx((x=0-3dyx-y=1),
Pra YVxVyx +y=y+Xx, VxVyx-y=y-x,

—10=1,

YxVyVzx-(y+2)=(x-y)+ (x-2).
Ordered fields are S;,-structures which satisfy the following sentences:
the sentences in @, and @, 4,
D yVXVyVz(x <y > x +z<y + 2),
IxVyVz((x <y A0 <z)osx-z<y-2)
6.6 Exercise. Formalize the following statements using the symbol set of
6.2:

(a) Every positive real number has a positive square root.

(b) If p is strictly monotone then p is injective.

(¢) p is uniformly continuous on R.

(d) For all x, if p 1s differentiable at x then p is continuous at x.

6.7 Exercise, Let S, = {R}. Formalize:

(a) R is an equivalence relation with at least two equivalence classes.
(b) R is an equivalence relation with an equivalence class containing more
than one element.

6.8 Exercise. Use 5.10 to show:

(a) If, for every i € I, ¥, is a group then [ [;., U, is a group.
(b) There is no set of axioms for the theory of orderings and for the theory
of fields which consists of Horn sentences only.

6.9 Exercise. A set M of natural numbers is called a spectrum if there is a
symbol set S and an S-sentence ¢ such that

M = {n e N|¢ has a model containing exactly n elements}.
Show:

(a) Every finite subset of {1, 2, 3, ...} is a spectrum.
(b) For every m > 1, the set of numbers > 0 which are divisible by m is a
spectrum.
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(c) The set of squares > 0 is a spectrum.
(d) The set of nonprime numbers > 0 is a spectrum.
(e) The set of prime numbers is a spectrum.

§7. Some Remarks on Formalizability

In the preceding section we had a number of examples showing how mathe-
matical statements can be formalized by first-order formulas. However, the
process of formalization is not always as simple as it was in those cases. In
this section we discuss some of the typical difficulties which can arise.

7.1 Partial Functions. When we defined the notion of structure we stipulated
that function symbols be interpreted by total functions, i.e., in the case of an
n-ary function symbol, by a function that is defined on all n-tuples of elements
of the domain. If, for example, in the field of real numbers, we regard division
on R as a function then we do not have a structure in our sense (because the
quotient is undefined if the divisor is zero). The following are possible
solutions to this difficulty:

(1) The division function can be extended to a total function. For example,
one can define r/0 := O for all r € R and take this into consideration when
formulating statements about the division function.

(2) Instead of the division function, one can consider its graph, that is, the
ternary relation {(a, b, ()e R*|b # 0 and a/b = ¢}. In VIIL.1 we shall
describe how statements about functions can be translated into state-
ments about their graphs. The remarks made there for total functions
can easily be modified to cover the case of partial functions.

(3) One can develop semantics for first-order languages which also include
partial functions. However, this approach leads to a complicated logical
system without yielding anything essentially new, as we see from (1)
and (2).

7.2 Many-Sorted Structures. The structures we have hitherto considered
have only one domain and in this sense consist of elements of only one sort.
On the other hand, some important structures in mathematics contain
elements of different sorts. Planes in affine spaces consist of points and lines,
and vector spaces consist of vectors and scalars. Taking vector spaces as an
example, we give two possibilities for treating many-sorted structures.

(1) Many-Sorted Languages. We regard a vector space B as a “structure
with two domains” (as a so-called two-sorted structure):

% = (Fs V’ +F7 'F’ OFa lF, @V’ eV, *F'V)’
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where F is the set of scalars, (F, +F, -%, 0%, 1¥) is the field of scalars, V is the
set of vectors, (V, @", €¥) is the additive group of vectors, and ™" is the
multiplication of scalars and vectors defined on F x V.

In order to describe such two-sorted structures we introduce a two-sorted
language, that is, a language built up in the same way as the languages we
have used so far, but having two sorts of variables, namely ug, uy, u,, ...
(for elements of the first domain, in the case above, scalars) and v, v, v5, . ..
(for elements of the second domain, in the case above, vectors).

A quantified variable always ranges over the corresponding domain. To
illustrate this we formalize some of the axioms for vector spaces.

() Associativity of scalar addition:
Vug Yuy Yu, ug + (uy + uy) = (Ug + uy) + us.
(P) Associativity of vector addition: l

Yoo Vo, Yo, 00 @ (v, @ v,) = (vg D vy) D v,
(v) Associativity of scalar multiplication of vectors:

Yug Vuy Yoo(utg - ty) * vg = g * (Uy * vg).

(2) Sort Reduction. It is also possible to use our one-sorted first-order
languages to treat many-sorted structures, namely, by a so-called sort
reduction. We demonstrate this method briefly for the case of vector spaces.
Let F and V be two new unary relation symbols. We regard a vector space
asai{F,V, +,.,0 1, @, e, x}-structure

% = (F U V’ EB’ 289 +BQ .m’ 08’ lm’ @m’ em’ *m)’

where F® .= F and V® := V, and the functions +3, -3, %, and *® are arbitrary
extensions of +F, -, @" and +"" to (F U V) x (F u V). The introduction
of the “sort symbols” F and V enables us to speak of scalars and vectors. We
exemplify this by reformulating the many-sorted vector axioms given above:

() VxVyVz(Ex A Ey AFZ) > (x + )+ z2=x + (¥ + 2)).
B VXV Vz(Vx AVYAVzo(x@Y)@z=xD(y @ 2)
(7) YxVyVz((Fx A Ey A Vz) > (x-y)*z = X x (y * 2)).

Since all quantifiers are “relativized” to F or V, it makes no difference how
the functions +7%, ... are extended.

7.3 Limits of Formalizability. The question of the limits of formalizability,
which is ultimately the question of the expressive power of first-order
languages, will be treated in detail in Chapter VI and Chapter VII, §2. Here
we discuss two examples.

(1) Torsion Groups. A group © is called a torsion group if every element of
® has finite order, i.e., if for every a € G there is an n > 1 such that a" = .
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An ad hoc formalization of this property would be
UVx(x =e v xox=ev (Xox)ex=ev...)

However, in first-order logic we may not form infinitely long disjunctions.
Indeed we shall later show that there is no set of first-order formulas, the
models of which are precisely the torsion groups.

(2) Peano’s Axioms. We consider the question whether there is a set of
S,-sentences the models of which are the structures isomorphic to :t =
(N, +,-,0, 1). For simplicity we shall statt our discussion with the structure
N, = (N, g,0), where o is the successor function on N (a(n) = n + 1 for
neN). N, is a {g, 0}-structure, with g (“successor”) a unary function
symbol. The results can easily be extended to N, cf. Exercise 7.5.

N, satisfies the so-called Peano axiom system:

(o) Ois not a value of the successor function o.

(B) o is injective.

(y) (the so-called induction axiom). For every subset X of N:if 0 € X and if
o(n) € X whenever n € X, then X = N.

(o) and (B) may easily be formalized in L'z % by

(P1) Vx -1ox = 0;
(P2) ¥xVy(gx =gy - x = y).

The induction axiom (y) is a statement about arbitrary subsets of N. For an
“ad hoc” formalization of this axiom we would also need to quantify over
variables for subsets of the domain. In such a language, (y) could be formal-
ized thus:

(P3) YX(XO0 A ¥x(Xx > Xax)) - ¥y X))

(P3) is a so-called second-order formula (cf. IX.1).
The following theorem shows that (P1)-(P3) characterize the structure
N, up to isomorphism:

7.4 Dedekind’s Theorem. Every structure U = (A, a*, 04) which satisfies
(P1)~(P3) is isomorphic to N,,.

In V1.4 we shall show that no set of first-order {g, 0}-sentences has (up to
isomorphism) just 9, as a model. Thus the induction axiom cannot be
formalized in L%,

The proof of Dedekind’s theorem depends essentially on the fact that in
structures A which satisfy (P3), the following kind of inductive proofs can
be given: In order to show that every element of the domain A has a certain

property P, one verifies that 0* has the property P and that if an element a
has the property P then g*(a) does also.
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Suppose U = (A4, 64,01) is a structure which satisfies (P1)-(P3). The
isomorphism 7: M, = A, which we need, must have the following properties:

@) n(0%) = 0*;
(i) m(a™(n)) = a*(n(n)) for alln e N,

that is,

(i) m(0) = 0*;
) n(m + 1) = g¥(n(n)) for alln e N.

We define n by induction on n, taking (i)’ and (ii) to be the definition. Then
the compatibility conditions for an isomorphism are trivially satisfied and
we need only show that = is a bijective map from N onto 4.

Surjectivity of n: By induction in U (2 satisfies (P3)) we prove that every
element of A lies in the image of 7. By (i), 04 is in the image of 7. Further, if
a is in the image of =, say a = n(n), then g*(a) = a*(n(n)); hence by (ii),
o*(a) = n(n + 1), and it follows that g*(a) is also in the image of 7.

Injectivity of n: By induction on n we prove

(*) Forallme N, if m # n then n(m) # n(n).

n=0:If m#0, say m =k + 1, then n(m) = n(k + 1) = a*(n(k)), and
since U satisfies the axiom (P1), a*(n(k)) # 0*. Hence, by (i), n(m) # n(0).

The induction step: Suppose () has been proved for n and suppose
m # n + L.Ifm = 0,weargue asinthecasen = Othat n(n + 1) # n(m) = 0*.
If m#£ 0, say m = k + 1, then k # n and so, by the induction hypothesis,
n(k) # n(n). By the injectivity of g (U satisfies (P2)) it follows that g*(n(k)) #
o*(n(n)); hence from (iiy we have n(k + 1) # n(n + 1), ie., n(m) #
n(n + 1). O

7.5 Exercise. Let 1 be the following system of second-order S,,-sentences:
¥Vx 1x +1 =0,
VxVpx+l=y+lox=y),
YX((X0 A ¥X(Xx - Xx + 1)) - Vy Xy),
Vxx +0=x,
VxVyx+(y+D=x+y+ 1
Vxx-0=0,
VxVyx-(y+ D=(x-y) + x.

(@) If A = (4, +4, 4,04 14) is a model of IT and if g*: A — 4 is given by
g¥(a) = a +* 14, then (4, g*, 0) satisfies the axioms (P1)~(P3).
" (b) Show that ® = (N, +,-,0, 1) is characterized by I1 up to isomorphism.
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§8. Substitution

In this section we define how to substitute a term ¢ for a variable x in a formula
@ at the places where x occurs free, thus obtaining a formula . We wish to
define the substitution in such a way that ¢ expresses the same about x as
Y does about t. First we give an example to illustrate our objective and to
show why a certain amount of care is necessary.

Let

@:=3zz+z=x.
In 9N the formula ¢ says that x is even; more exactly,
(R, Py = ¢ iff B(x)is even.

If we replace the variable x by y in ¢ we obtain the formula 3zz + z = y,
which states that y is even. But if we replace the variable x by z, we obtain
the formula 3z z + z = z, which no longer says that z is even; in fact, this
formula is valid in 9t regardless of the assignment for z (because 0 + 0 = 0).
The meaning is altered in this case because at the place where x occurred
free, the variable z gets bound. On the other hand, we obtain a formula which
expresses the same about z as ¢ does about x if we proceed as follows: First
we introduce a new bound variable u in ¢, and then in the formula
Ju u + u = x thus obtained we replace x by z. It is immaterial which variable
u (distinct from x and z) we choose. However, for certain technical purposes
it is useful to make a fixed choice.

In the preceding example we replaced only one variable but in our exact
definition we specify the procedure for simultaneously replacing several
variables: With a given formula ¢, pairwise distinct variables x, ..., x
and arbitrary terms t,, ..., {,, we associate a formula

re

which is said to be obtained from ¢ by simultaneous substitution of t, . . ., t,
for x,,..., x,. The reader should note that the x; need be replaced by ¢,
only if

x; € free(¢p) and X; # .

In the following inductive definition this is explicitly taken into account in
the quantifier step; in the other steps it follows immediately.

It will become apparent that it is convenient to first introduce a simul-
taneous substitution for terms. Let S be a fixed symbol set.
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8.1 Definition

@ xto"'t'_ x, ifx#x,...,x # X,
Xg ... X, t;, ifx=x,
tg... 1
(b) e 2=,
Xg ... X,
) to...t Lty t to-.-t
©) [fte - thoy] D= frp =
Xg ... X, Xg ... X, Xg .. X,

For easier reading we use square brackets here and in what follows.

8.2 Definition

tg...1 tg...1 tg... 1

(@) [fo =] >——=to =1, >,
Xg .o X, Xg .o Xy Xg ..o X,
tg...1 tg...1 tg...1

(b) [Rty...t,_ ]2 =Rty 2" g, 2,
Xg... X, Xg oo Xy Xg .o X,
fo...1 to...t

(c) [Co] —— ="l —7|
Xg .o Xy Xg .- X,
to...t, tg...t fg...t

d (o v = Lv L.

() l//)xo...x, (pxo...x, wxo...x,

(e) Suppose x;,...,x; (g <---<ig_,) are exactly the variables x;

among the x,, ..., x, such that

x; € free(Ix¢p) and X, # 1.
Then set

tg ... 1 t. ...t; u
[Axe] 22— F = E]u[(p o feml ],
Xg ... X, Xig-o- X, X

where u is the variable x if x does not occur in t;

ig? * *

is the first variable in the list v, v,, v,, ... which does not occur in ¢,
Ligs e+ s Li_ o

(By introducing the variable u we ensure that no variable occurring
int,,...,t,_, falls within the scope of a quantifier. In case there is no
x; such that x; € free(Ix¢@) and x; # t; we have s = 0, and from (e) we
obtain

., t; _ ;otherwise u

ig—19

to... 1L, X
Ixgp] ——= = =
[3x¢] Xg ... X, Elx[(p x]’

which is dx¢, as we shall see in 8.4(b).)
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ExampLES. For binary P and f we have

51

. Uy lg?
(n [Pvo fo12,] ,2_0‘1 = Prg fvavg,
Vi0a V3
) vy fov , V04U L
(2) [FvoPug fv,v,] 4—1{’vl—i = HUO[PUO.fUIUZ ll—lbo] = dvg Py, fv, fo vy,
ol2

. Vol Uy
(3) [3vo Pvg fryv,] ——
U102

) LoUs
= 3v3[onfvlvz "

] = Jv; Pu; frgu,.

1Yo

At the places where x; occurred free in ¢, we now find in

to .-
Xg o o-

¢

the term t;. Hence, if free(¢p) = {x,, .

t0-~.
Xg .-

¢

r

X

¥

.., X, } then we expect that

L,
X

r

will hold for an interpretation 3 = (U, ) iff ¢ holds in U, provided we use
the assignments 3(¢q) for x,, ..., 3(t,) for x,. An exact formulation of this
property is given in the following “substitution lemma™ 8.3. Later we shall
frequently refer to this lemma whereas we shall rarely return to the technical
details of definition 8.2. Before stating the lemma we generalize the definition

a
of 3—. Let x,,..
x

interpretation, and qaq, .

., X, be pairwise distinct and suppose I = (U, f) is an

.., a, € A; then the assignment

ﬁao...a,
Xg --- X,
in A and the interpretation
_Gg...a,
3
Xg .- X,
are given by
ag...a, (y) ify+#Xx9,...,9#Xx,
T
Xg .- X, ; if y = x;

and

Xg... X

r

xo-.-xr

Sao...a,:(m,ﬂao...a,)'

4 As the substitution lemma the further results of this section are intuitively clear. The proofs

are straightforward but lengthy and may be skipped by a reader already familiar with proofs
by induction on terms and formulas.
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8.3 Substitution Lemma. (a) For every term t,

ﬁ<t to...t,> _ 3S(to)...S(t,)

—=(1).

Xg .- X%,

-~ to---t, . 3(ty) ... 3(t,)
3 — jff J——— .
':(pxo...x, Zi Xg oo Xy =9

PROOF. By induction on terms and formulas in accordance with the defini-
tions 8.1 and 8.2. We treat some typical cases.

r=x:1fx # xq,...,x,, then, by 8.1(a)

and therefore

3<x to ... t,) - 30 = 5 3o) - 3() ).

Xg oo X, Xo .o X,
If x = x;, then
ty ..
x (1] tr :t,'
Xg oo X,

and hence

tg...t 3 ... 3 3(ty) ... 3

3<x 0 ')=3(t,-)= SJ([O) J(t')(x,-)= 3‘5( o) 3( r)(x)'
Xo .o X, Xg ... X, Xg .- X,

@ =Rty...t,_4:

IE=[Rey...t,_ (]

fo---lr ¥ 3(R) holds for 3(:5;0“"')...
.

Yoo % 0 X,
(by 8.2(b))
iff S(R) holds for sM;L’r)(% -
O e r
(by (a))
iff 3 M (R) holds for
Xg ... X,
3(to) ... 3(1,)
3 — (DT
iff sw,: R, .0,

Xg .o X,
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@ = 3Ixy: As in 82(), let x;,,...,x; _, be exactly those variables x; for

Is—1

which x; € free(3xy) and x; # t;. Then, for u chosen as in 8.2(e),

to... 1,
3 [Fxy] 2
Xg .- X,
t. ... L
iff 3= au[w i x”]

. . a L.t _u
iff thereis an a € A such that 3 - = y —0——==1—
u .

gt Mig—y

. . a
iff there is an a € A such that | 3 —

(by induction hypothesis)

59] 30 -3, )a

u X X X

L ] ig * "

iff there is an a € A such that

=y

is~1

(by the coincidence lemma, since u does not occur in t;, ..., f; _,)

iff there is an a € A such that 3

3t ) ... 3(;
(t:,) (t;,_,)a =y
Xy oo Xig_ X

(by the coincidence lemma, since either v = x or u does not occur

n )
;). .. It
iff there is an a € 4 such that [SM] a4 B=
Xig -+ Xiy_, x
(note that x # x;,,..., X # Xx;,_,, because x; , ..., X;_ _, e free(Ixyr))
. 3@, ... 3,
- 3303
Xig oo Xi,
- 33(t0)... 3(,) = Ixy
Xg - X,
(sincefori # ig, ..., i,_y, X; ¢ free@xy) or x; = t)). O

In the following lemma we collect several “syntactic” properties of

substitution.

8.4. Lemma. (a) For every permutation 7t of the numbers O, ..., r

k)

Le0y -+« tuery
Xg ..o X, X(0) - - - Xner)

to .-ty

¢
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(b) If0 <i <randx; =t then

o to-..t, — Lo - -ticitisg--- 1Ly
Xo - X, Xo oo Xjo1Xigge-- X

In particular, ¢ E = .
(c) For every variable y,
(i) if ye var(t H) then (yevar(ty) U --- U var(t,)) or (y € var(t)
and y # Xqg, ...,V # X,);
(ii) ifye free((p ;Z—;’) then (y € var(ty) v - - - v var(t,)) or (y € free(p)

r,

and y # Xg, ...,V # X,).

PRrROOF. By induction, using 8.1 and 8.2. We give two typical cases of (c).

tg... 1
y e var| x 2T}
Xg ..o X,

In case x # xq,..., x # x, we have

t = x: Suppose

hence y = x and so (y e var(x) and y # xq,...,y # X,). In case x = x; we
have

hence by assumption y € var(t,), that is, y € var(t,) U - - - U var(t,).

¢ = dxy: Let s, iy, ..., is~, and u be as in definition 8.2(e). Suppose
to... 1, ti ..t
i 0ty 3 i/ BTl B
ye ree([ﬂxxp] o Xr) free( u[xp T xi,_lx:l)

[ ST, ¥
y#u and ye free(xp x'“—'—’—iu-),

[T x,-s_

Then

thus, by induction hypothesis, y # u and (y € var(t,)) v --- v var(t;,_,) U {u}
ory € free(y), ¥ # Xi,---» ¥ # X;,_,, ¥ # Xx). Since for i # iy, ..., i;_; we
have Xx; ¢ free(y) or x; =t;, it follows that y e var(sy) U --- U var(t,) or
yefree(y), y # X, ...,y # X,. |
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8.5 Corollary. Suppose free(p) < {x,, ..., X,}, where we continue to assume
that xg, ..., x, are distinct. Then, for terms t,,...,t, such that var(t;,)
{Vg, .-+, Uy}, the formula
to... 1,
¢ Xg ... X,

is in L,,. In particular,

Co.--C
Xg...X

is a sentence. |

We call the number of connectives and quantifiers occurring in a formula
¢ the rank of ¢, written rk(¢). More precisely:

8.6 Definition.
rk(p):=0, if ¢ is atomic,
tk(T1¢) ==r1k(p) + 1,

tk(p v ¥) =r1k(p) + 1k(¥) + 1,
rk(Ix¢) == rk(p) + 1.

From the definition of substitution one obtains immediately:

8.7 Lemma.
rk( o Lot = rk(gp) O
(pxo...x, - e

The quantifier “there exists exactly one” can be conveniently formulated
with the use of substitution. Let ¢ be a formula, x a variable, and y the first
variable which is different from x and does not occur free in ¢. Then we

write 37 1x¢ (“there is exactly one x such that ¢”) for Ix(¢ A Vy(e % -

x = y)). It can easily be shown that for every interpretation 3 = (2, B),

3= 37!xp iff there is exactly one a € 4 such that 3 < = ®.
x

8.8 Exercise. For n > 1 give a similar definition of the quantifiers “there
exist exactly n” and “there exist at most n”.
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8.9 Exercise. Let P and f be binary and set x = vy, y = vy, u = v,, 0 = v3,
and w = v,. Show, using definition 8.2 that

(a) Ix IY(Pxu A Pyv)i—zm = 3x Iy(Pxu A Pyu),
v
v fuv .
(b) dx 3y(Pxu A Pyv) = dx Iy(Pxv A Pyfuv),
u v
ux fuv ,
(c) 3x Iy(Pxu A Pyv) o - 3w Iy(Pwx A Pyfuv),
u
, x fxy )
(d) [Vx Iy(Pxy A Pxu) v Jufuu = x] . = Vv dw(Pvw A Pufxy)
u
v Jufuu = x.
8.10 Exercise. Show that if x,, ..., x, ¢ var(t,) U - -- U var(t,) then
to.--t,
Qg ——o¥Xy...x, (Xxg=tyg A - AX, =L, @)
Xo ... X,

8.11 Exercise. Give a calculus in which the derivable strings are exactly those
of the form

[ Xg-vo Xy bgouil, t — " or @ X Xy bgonitl, p—",
Xg - .- X, Xg ... X

(Hint: For (a) and (¢) in 8.1 one can choose the following rules:

, X # X9, .., x # X,
X Xg...X, tg... t,X
, ifx = x;;
X Xg.o-X, bg...Li;
S Xg---X, tg...t, Sp

Sp—1 Xg-.- X, tg.. b, Sp_y

SSg-. Sp—1 Xg- X Loty S Sh 4

, if feSand fisn-ary.



CHAPTER IV
A Sequent Calculus

In Chapter I we discussed the way in which a mathematician proceeds to
develop a particular mathematical theory: In order to obtain an overview
of the theory, he tries to find out what propositions follow from its axioms.
To show that a proposition follows from the axioms he supplies a proof.
Now that we have an exact definition of the notion of consequence, we are
sufficiently equipped to give a more thorough discussion of the goals and
methods in mathematics. If S is a symbol set and @ is a set of S-sentences,
we let ®" be the set of S-sentences which are consequences of ®. A mathe-
matical proof of an S-sentence ¢ from the axioms in @ shows that ¢ belongs
to ®". For example, consider the set @, of axioms for groups, where § = §,,.
The proof of I.1.1 then shows that the S -sentence Vx 3y yo x = e belongs
to ®@F,. However, in view of the goals of the mathematician and the scope
of his methods, a central question is whether every sentence in @~ can be
proved from the axioms in ®. In order to answer this we must analyse the
notion of proof. But even if we limit ourselves to statements which can be
formulated in first-order logic, we encounter difficulties at the very outset
of such an attempt. The difficulties arise from the fact that mathematicians
do not have an exact, fixed notion of proof. A mathematician does not learn
what a proof is from a list of permissible inferences; rather he gets acquainted
with this notion by doing concrete proofs in the course of his mathematical
education. Furthermore, the collection of commonly accepted methods of
proof is continually being expanded by the addition of new variants. Last,
but not least, the development of new theories often includes the invention
of new proof techniques.

In view of this situation we shall not attempt to give an exact description
of the whole spectrum of mathematical arguments. Rather we shall look at
some concrete proofs and try to abstract from them certain basic constituents.
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From these constituents we shall build up a precise notion of proof. It will
turn out that they are sufficient to reconstruct all types of mathematical
arguments. Thus we proceed as we did when we introduced the precise
notion of mathematical statement, where instead of trying to give an exact
description we used the first-order languages to give a clearly defined frame-
work. In the case of first-order languages we shall merely be able to
make it plaustble that, in spite of their limited expressive power, these
languages are in principle sufficient for the purpose of mathematics (cf.
VIL.2). By contrast, we can really prove that every sentence in @~ is provable
from sentences in @ in the precise sense.

How can we single out basic constituents of mathematical deductions?
If we analyse the proofs in Chapter I, for example, we see that those steps
which are directly related to the meaning of the connectives, the quantifiers,
and the equality symbol seem very elementary. We mention three examples.
In a proof one can proceed from statements ¢ and i, which have already
been obtained, to the conjunction (¢ A V); similarly one can proceed from
Pt to dx Px and from Px and x = ¢ to Pt. We can represent these rules
schematically as follows:

e, Y Pt Px,x=t

() (¢ ~¥)  IxPx’ Pt

Written in this way, these constituents of proofs can be regarded as syntactic
operations on strings of symbols. Adhering consistently to this point of view,
we shall set up a list of deduction rules (in Sections 2 and 4) in this way
obtaining a calculus ©. We shall motivate its form in §1. In §6 (with a preview
in §1) we shall give the fundamental definition for the notion of a formula ¢
being formally provable from a set @ of formulas. This definition will be based
on the notion of derivability in S. Formal provability is the syntactic counter-
part of the semantic notion of consequence.
Throughout this chapter we fix a symbol set S.

§1. Sequent Rules

A mathematical proof proceeds from one statement to the next until it
finally arrives at the assertion of the theorem in question. The individual
statements depend on certain hypotheses. These can either be hypotheses of
the theorem or additional hypotheses temporarily assumed in the course of
the proof. For example, if one wants to prove an intermediate claim ¢ by
contradiction one adds —1¢ to the hypotheses; if a contradiction results
then ¢ has been proved, and the additional assumption —¢ is dropped.
This observation leads us to describe a stage in a proof by listing the
corresponding assumptions and the respective claim. If we call a nonempty
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list (sequence) of formulas a sequent, then we can use sequents to describe
stages in a proof. For instance, the stage with assumptions ¢, ... ¢,_, and
claim ¢ is rendered by the sequent ¢, ... ¢,_,¢. The sequence ¢, ... ¢,_,
is called the antecedent and ¢ the succedent of the sequent ¢g ... ¢,_,0.
From I1.4.3 it follows that the formulas which constitute a sequent are
uniquely determined. In particular, the antecedent and the succedent are
well-defined.

In terms of sequents, the indirect proof sketched above can be represented
schematically as follows:

Qo Pp-y T1Q Y

(+) Qo Py 1@ VY
Qo Puot @

Thus (+) describes the following argument: If under the assumptions
®o> - - -» Pn_, and (the additional assumption) —1¢ one can obtain both the
formula  and its negation —1y (that is, a contradiction), then from the
assumptions ¢, ..., ¢,_, one can infer ¢.

In the following we shall use the letters I', A, ... to denote (possibly
empty) sequences of formulas. Then we can write sequents in the form
Ty, Ay, ... and the scheme (+) as

I' e ¢

(++) T o

(As in (+), we use spaces between elements in a sequent merely for easier
reading.)

According to the concepts which we have developed so far, each step in
a proof leads from certain stages already attained to a new one and hence
from sequents to a new sequent. Thus it seems natural to represent deduction
rules such as (+ +) as rules of a calculus &, which operates on sequents
(sequent calculus). Our conception of S is based upon [16]. For comparison
the reader can find calculi of a different nature in [25].

Before listing the rules of & in the next section, some further remarks will
be helpful.

If, in the calculus &, there is a derivation of the sequent I'¢, then we write
HT'¢p and say that T'¢ is derivable.

1.1 Definition. A formula ¢ is formally provable or derivable from a set @ of
formulas (written: @ - ¢) if and only if there are finitely many formulas
Po, ..., 0,1 iInDsuchthat —¢@q ... 0,_;0.

A sequent I'g is called correct if I' = ¢, more precisely, if {ys | is a member
of I'} k= ¢. Since the rules of € are modelled after usual mathematical
inferences, it will turn out that they are correct, i.e., when applied to correct
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sequents they yield a correct sequent. As a result, every formula which is
derivable from @ also follows from ®. We convince ourselves of the correct-
ness of each rule as soon as we introduce it.

§2. Structural Rules and Connective Rules

We divide the rules of the sequent calculus & into the following categories:
structural rules (2.1, 2.2), connective rules (2.3, 2.4, 2.5, 2.6), quantifier rules
(4.1, 4.2), and equality rules (4.3, 4.4). We start with the two structural rules.

2.1 Antecedent Rule (Ant).

I
I ¢’

if every member of T is also a member of T (briefly. if T = I').

Note that a formula which occurs more than once in T" need only occur
once in I™.

2.2 Assumption Rule (Ass).

r o if @ is a member of T.
CORRECTNESS. (Ant): If a sequent I'¢g is correct and I' < I'", then since
I'= ¢, also I = ¢. (Ass) is correct since @ = ¢ always holds for ¢ € ®. [J

(Ass) reflects the trivial fact that one can conclude ¢ from a set of assump-
tions which includes ¢. (Ant) expresses the fact that one can re-order or add
to assumptions.

The first negation rule incorporates the commonly used method of proof
by cases. In order to conclude ¢ from I one first considers the case where a
condition i holds and then treats the case where =1y holds. That is, one
first has y and then —/ as an additional assumption. We can translate this
argument into a rule for sequents as follows:

2.3 Proof by Cases Rule (PC).

r vo
I' =y ¢
I @

CORRECTNESS, Suppose 'y = ¢ and I' 71y = ¢ hold. We must show that
I' = ¢. Let 3 be any interpretation such that 3 =T, i.e., 3 = y for every
member y of I'. Either J= ¢ or J= 1. If = ¢ then since 'y = ¢ it
follows that I k= ¢@. If 3= 1y one obtains the same result because
I' 7y = o |

As the second rule concerning negation we take the schema (+ +) given
mn 81-
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2.4 Contradiction Rule (Ctr).

I' 7o ¢y
I' 719 ¢
r @

CORRECTNESS. Let I’ —¢ =y and T’ —1¢ = —. Then there is no interpre-
tation satisfying I —1¢; hence any interpretation satisfying I must satisfy ¢,
ie., I ¢ is correct. O

2.5 v-Rule for the Antecedent (v A)

I o x
I vy x
I'(p vy

The proof that this rule is correct is similar to that for (PC).

2.6 v -Rules for the Succedent (v S)

@Te . ®OTge
I'(evy) L@ v o)
CORRECTNESS. Suppose I' = ¢ and let 3= I'. Then 3 = ¢ and hence both
- JE(p vy and IE= (Y v @) O

.: 2.7 Exercise. Decide whether the following rules are correct:

(@) T o, ‘/j1 b I ¢, W1
I' ¢, P . I' ¢, 123
I' (¢ v o)W1 v ¥,) I (1 v @2)W1 A Wz)

- §3. Derivable Connective Rules

- Using the rules of & which we have formulated so far, we derive a number
" of sequents and introduce the notion of a derivable rule. In our first example
. we show that all sequents of the form (¢ v —1¢) are derivable. Our notation
is similar to that used for derivations in previous calculi (cf. Chapter 11, §3).

Lo ¢ (Ass)
¢ (¢ v 7¢) (vS)appliedto 1
(%) g 1@ (Ass)
=19 (¢ v 7¢) (v S)applied to 3
(¢ v 71¢) (PC) applied to 2 and 4.

ISAEE S AN
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We consider the rule (TND) (“Tertium non datur” or “Law of the excluded
middle”)

(@ v T1¢)

which is not a rule of &. If we add (TND) to € we do not enlarge the set of
derivable sequents. For if we are given a derivation of a sequent which uses
rules of & together with (TND), we can insert lines 1-4 of (x) directly before
every sequent (¢ v —1¢), which originally was introduced by (TND). In
this way we obtain a derivation in &.

Rules for sequents, whose use in a derivation can be eliminated by a
derivation schema like (), and which therefore do not enlarge the set of
derivable formulas, will be called derivable rules. Thus (TND) is a derivable
rule. The use of such derivable rules contributes to the transparency of
derivations in the sequent calculus, In the remainder of this section we give
some useful examples, also including derivable rules with premises.

3.1 Second Contradiction Rule (Ctr’).
ry
r =y
I' ¢

JustiFicATION. (The justification shows that the rule is derivable. In this

case we have to show how one can use rules of © to obtain the sequent I" ¢
from (the “premises™) I'yy and I" —1yr.)

1. T W premise

. T Yy premise

. I m¢ 1y (Ant) applied to 2

2

3.7 - ¢ (Ant) applied to 1

4

5. T @ (Ctr) applied to 3 and 4.

3.2 Chain Rule (Ch).

I' ¢
F'oy
r v
JUSTIFICATION.
1. T 17 premise

2T o ¥ premise
33T g o (Ant) applied to 1
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4. T 11¢ 19 (Ass)
507 1oy

6.

r

(Ctr’) applied to 3 and 4

¥  (PC)applied to 2 and 5.

3.3 Contraposition Rules (Cp).

e I R R R
JUSTIFICATION OF (a)
L.L.T ¢ W premise
2T o o (Ant) applied to 1
3.7 7wy @ Y (Ass)
4. T -y ¢ ¢ (Ctr')appliedto2and3
50T = 19 1@ (Ass)
6. I' 7y —1¢ (PC)applied to 4 and 5.
34

I' (¢ v )

' —e¢

Iy
JUSTIFICATION
. T (¢ v ) premise
2. T i premise
3. T ¢ Y (Ass)
4. T ¢ ¢ (Ant) applied to 2
5T e @ (Ass)
6. T ¢ Vi (Ctr') applied to 5 and 4
7. T (o v ) ¥ (v A) applied to 6 and 3
8. T W (Ch) applied to 1 and 7.
3.5 “Modus ponens”.

I'(e—=¥) I'(Cevy)
If:%—_—’ that is, 11: i

63

e 7y

Ty ¢
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The following justification of 3.5 is analogous to the one given for 3.4.

JUSTIFICATION

LT (T¢ v ) premise

2. T @ premise

3.7 e ¢ (Ant) applied to 2

4. T o i (Ass)

5T e Vi (Ctr") applied to 3 and 4
6. T v ¥ (Ass)

7T (mevy)y (v A) applied to 5 and 6
8. I 1/ (Ch) applied to 1 and 7.

Using the preceding rules we obtain:

3.6 Lemma. The following sequents are derivable:

(al) ¢ (¢ v ¥); (@2) ¥ (@ v ¥);
) (evy) ey; © (Ceovy) ey

Proor. For (al):
Lo ¢ (Ass)

2. ¢ (@ v ) (vS)applied to 1.

(a2), (b), and (c) can be proved similarly by using (v S), 3.4, or 3.5, respec-
tively. O

3.7 Exercise. Show that the following rules are derivable.

@) 2 @)
) T e I' o
Py S
o 228, @
d) oy

r (-9
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§4. Quantifier and Equality Rules

Now we give two sequent rules of & which involve the existential quantifier.
The first is a generalization of a scheme already mentioned in the introduction
to this chapter.

4.1 Rule for 3-Introduction in the Succedent (3S).

t
I —
¢ X

I Ixe’

(3S) says, in essence, that we can conclude Ix¢ from I' if we have already
obtained the “witness” ¢ for this existence claim.

t . .
CORRECTNESS. Suppose I' = ¢ —. Let 3 be an interpretation such that
X

. t s
3 = I'. By assumption 3 = ¢ — holds. Then by the substitution lemma,
X

3(t
SL) = ¢ and hence J = Ix¢ also. O
X
The second 3-rule is more complicated, but it incorporates a method of
argument that is used frequently. The aim is to prove a claim y from assump-
tions ¢q, ..., ¢,_ 1, Ix¢@. (On our formal level to achieve the corresponding
aim requires a derivation of the sequent

() Po - Pu-13XQ Y
in the sequent calculus.)

According to the hypothesis Ix¢, one assumes one has an example—
denoted by a new variable y—which “satisfies ¢” and uses it to prove .
(In the sequent calculus this corresponds to a derivation of

Yy
(%) Po - Pnor® V-
where y is not free in (*).) Then one regards y as having been proved from
@0 - -s Pn- 1, Ix@'. We can reproduce this argument in the sequent calculus
by a rule which allows us to proceed from (*x) to (*):
4.2 Rule for 3-Introduction in the Antecedent (3A).
Yy
I'e x ¥
i .
T e U o b if yisnot free in I' Ixg .

! Cf. the proof of L1.1. with the use of y in line (1).
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CORRECTNESS. Suppose I ¢ Y =, y is not free in I 3x¢ Y, and the
X
interpretation 3 = (2, ) is a model of I' 3x¢. We must show that 3 = .

. . a . .
First, there is an a € 4 such that 3— = ¢. Using the coincidence lemma
X

a .

we can conclude <3 7)3 = ¢. (For x =y this is clear; for x # y note
y) x

that y ¢ free(p) since otherwise y efree(3xp) contrary to assumption.)

a
Because 3 — (y) = a we have
y

o a
and hence by the substitution lemma 3 — = ¢ i’ From 3 = T and y ¢ free(I)
y
we get 3 a = I, again by the coincidence lemma; since I'¢ % = i we obtain
y

39 s and therefore 3 = Y because y ¢ free(y). a
y

The condition on y in (3A) is essential. For example, the sequent
[x = fy]%y = fy is correct; however, the sequent 3Ix x = fy y = fy,

which we could obtain by applying (JA) while ignoring this extra condition,
is no longer correct. This can be verified, say, by an interpretation with
domain N, which interprets fas the successor function n+—n + 1 and y as 0.

r. . . . .
From a formula ¢ — it is not in general possible to recover either ¢
X

or t. For instance, the formula Rfy can be written as Rxf—y or as Rfx Y
X X

Therefore, in applications of the rules (3S) and (3A), we shall explicitly
mention ¢ and t or ¢ and y if they are not clear from the notation.

The last two rules of & arise from two basic properties of the equality
relation.

4.3 Reflexivity Rule for Equality (=).

I
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4.4 Substitution Rule for Equality (Sub).

67

t
CORRECTNESS. (=): trivial. (Sub): Suppose I' = ¢ < and suppose J satisfies

t S
I and t =¢. Then 3k ¢— and hence, by the substitution lemma,
X

3() 3)

3 —— = ¢; therefore since J(t) = 3(¢') we have I—== ¢. A further
X

X

’

.. o . t
application of the substitution lemma yields finally that 3 = ¢ =

4.5 Exercise. Decide whether the following rules are correct:

o ¥ Fe y
r . . b) —— .
@ 35,30 ® e ae
I' @ Q
©) X , if fis unary, and f and y do not occur in I" Vx¢.

I' Vxo

§5. Further Derivable Rules and Sequents

Since (pz = (p, we obtain from 4.1 and 4.2 (for t = x and y = x)

5.1.

e
a
()r3x<p’

(b)Ffp 4

m, if x is not free in I .

A corresponding special case of (Sub) is

5.2,

a
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We conclude with some derivable sequents dealing with the symmetry
and the transitivity of the equality relation and its compatibility with func-

tions and relations.

5.3.

54.

Hto=1t, t; =1,
5.5. For every R € S, R n-ary,
FRtg...ty_y lg=1ty ;=1

5.6. For every f € S, [ n-ary,
o=ty ty =1t .. loq =1,

JUSTIFICATION OF 5.3 THROUGH 5.6

t, 1=t-, Rty...t

n—1-

fto o tyey = fth .ot 1.

5.3: Let x be a variable not occurring in t, or 1.

1. =ty (=)

i

2=t 4

ty (Sub) applied to 1 using to = to = [x = f,] ’;"

5.4: Suppose x is a variable not occurring in t,, £,, or t,.

lLty=1t, to=1t; (Ass)

2. =1 4

it
f

t 1o

t
t, (Sub)applied to 1 using t, =1t, = {1, = x] ;1

5.5: For simplicity we assume that n = 2. Let x be a variable which does not

occur 1n tg, ty, ty, Or ).

1. Rtyt, Rityt;  (Ass)

2. Rtgty to =ty Rtyt; (Sub) applied to 1 using

t
Rigt, = [thd;o

3. Regt; to=ty ty =1ty Reyt; (Sub)applied to 2. using

t
Rtyt, = [Rtyx] ;‘

5.6 can be treated similarly.
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5.7 Exercise. Show that the following rules are derivable:

r . I'=3
(al) VX('D, that 1s,—-—m; (a2) I VX(p.
r ! r ! I 9
¢ X @ x
t y
Fo-— vy o
(b1) T vx l//; (b2) T Vag’ if y is not free in I" Vx¢;
r
(b3) ? - t; (b4) T sz, if x is not free in T

§6. Summary and Example

For the reader’s convenience we list all the rules of € together:

T
(As9) . ifisinT (Ant) F'—Z’ ifr I
I vyo I e v
PCOYT =y o (Ctr) T ¢ ¢
r 10/ I @
AT I r
(vA) ¢ X (vS) ¢ @
r v y FTevy) T (v e)
IF'(pviy)x
y t
Fol v I'o—
JA) ————— if yi i
( )F Ep l//,1 yisnotfreein I'Ixpy (3S) T
I (pi
(E)t‘=_t (Sub) e
I't=t (,0;

I.n 1.1 we defined a formula ¢ to be derivable ( formally provable) from ®
(written: @ - ¢) if there are formulas ¢,...,¢,., in ® such that
@6 ... ¢,- 1. From this definition we immediately obtain:

6.1 Lemma. For all ® and ¢, ® ~ ¢ if and only if there is a finite subset @,
of ® such that @y — . |
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We have already more or less proved the correctness of &:

6.2 Theorem on the Correctness of S. For all ® and ¢, if ® — @, then ® = ¢.

PRrROOF. Suppose @ — ¢. Then for a suitable I' from @ (that is, a I" whose
members are formulas from ®) we have —TI ¢. As we showed, every rule
without premises yields only correct sequents, and the other rules of &
always lead from correct sequents to correct sequents. Thus, by induction
over €, we see that every derivable sequent is correct, hence also I' ¢. There-
fore I' = ¢ and so @ = ¢. O

We shall prove the converse of 6.2, namely, “if @ = ¢ then @ ¢”, in
the next chapter. In particular, it will follow that if ¢ is mathematically
provable from @, and hence @ |= ¢, then ¢ is also formally provable from ®.
However, because of the elementary character of the rules for sequents, a
formal proof is in general considerably more complicated than the corre-
sponding mathematical proof. As an example we give here a formal proof
of the theorem Vx Jy y o x = e (existence of a left inverse) from the group
axioms @y =VxVyVz(Xxoy)oz = xo0(ycz), ¢, =Vxxoce=x, and ¢, =
Vx 3y x o y = e. For simplicity we shall write xy instead of x o y. The reader
should compare the formal proof below with the mathematical proof of the
same theorem in I.1.1. The chain of equations given there corresponds to the
underlined formulas in the derivation. For easier reading we use the de-
rivable rules:

51

ey = I'y=1
Sym) — and Trans
Sy 't, =1t ( )I“t1 t

Tty=1t,

il

The reader can easily justify them by means of 5.3, 5.4, and (Ch).

l. 9o @1 @1 Vx xe = x (Ass)

290 01 @2 (yx)e = yx 5.7(al)
applied to 1
settingt = yx

3. 90 ¢1 @2 yx = (yx)e (Sym)
applied to 2

4 @0 1 @y e=yz yx = (yx)(yz) (Sub)
applied to 3

5. 00 @ @2 yZI=e e=yz 5.3 and (Ant)

6. 9o @1 @y yz=e yx = (yx)(yz) (Ant) and
(Ch) applied
to Sand 4

7. 0o @1 ¢, Y2 =€ Vx Vy Vz (xy)z = x(yz) (Ass)

e
3]

8. ¢y 0, @0, yz YuVz (yu)z = w(uz) 5.7 (al)

applied to 7

e e aa'
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9.

10.

11

12.

13.

14.
15.
16.

17.

18.

19.

20.

21

22,

23.

24,

25.

®o

Po

®o

Po

Po

Po

Po

®o

Po

Po

Po

Po

Po

Po

Do

Po

®o

?

@1

®1

?1

®

?1

@

¢

?y

®1

®,

®,

®

®,

®

®,

®

(5]

@2

()

@2

]

@2

()

()

()

(5]

@2

()

@2

()

@2

(5]

@2

yz=¢e
yz=e
yz=¢e

yz =e x(yz) = (xy)z

yz = e
yza=e
yz=e
yz=e
yz=e
yz=e
yz=e
yz=e
yz = e
yz = e
Xy =e
Xy =e
Xy = ¢

Xy=e
Xy=e
Xy=e
Xy=e
Xy =eye
Xy=e
Xy=e
yz=e
yz=e
Jzyz=e

Vz (yx)z = y(xz)

(yx)(yz) = y(x(y2))

yx = y(x(y2))

yx = y((xy)z)

(xy)z = x(yz)

x(yz) = (xy)z
yx = y((xy)z)
yx = y(ez)

(ve)z = y(ez)

yez) = (ye)z

yx = (ye)z
VX = yz
yesy
yXx = yz
VX =e
Jyyx=e
Jyyx=e

71

5.7(al)
applied to 8
setting t = x
5.7(al)
applied to 9
settingt = yz
(Trans)
applied to 6
and 10
(Sub)
applied to 11
5.7(a2)
applied
three times
to7

(Sym)
applied to 13
(Ch) applied
to 14 and 12
(Sub)
applied to 15
5.7(al)
applied
three times
to ¢ ; like
steps 7-10
(Sym)
applied to 17
(Trans)
applied to 16
and 18

(Sub)
applied to 19
5.7(al)
applied to 1
setting t = y,
and (Ant)
(Ch) applied
to 21 and 20
{Sub) and
(Ant)applied
to 22

(3S) applied
to 23

(3A) applied
to 24
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26.

27.
28.

29.

30.

31.

32.

33.

34.

Qo @1 @, Xy=e Vydzyz=e

xXy=e
Xy=e

dyxy=e
Vx3dyxy=e

(]

Po P @2 Xy =€

©o @1 @2 VxIyxy=e

Po P1 P2

dyyx=e
Xy =e
Jzxz=e
Jdzxz=e
Jzxz=e
Vydzyz=e
dyyx=e
dyyw=e
VYx3dyyx =e

IV. A Sequent Calculus

5.7(b3)
applied to 25
(Ass)

(3S) applied
to 27

(3A) applied
to 28

5.7(b3)
applied to 29
5.7(b2)
applied to 30
(Ant), (Ch)
applied to 31
and 26

(3A) and
5.7(b3)
applied to 32
(Ant) and
5.7(b4)
applied to 33

6.3 Exercise. Following the proof of 1.2.1, give a derivation for the sequent

Yo Wy Y, Vx ¥y Qu(Rxu A Ryu) — ¥z (Rxz « Ryz)),

where ,, Y/,, and s, are the axioms for equivalence relations (cf. I11.6.1).

§7. Consistency

The syntactic concept + of derivability corresponds to the semantic concept
= of consequence. As a syntactic counterpart to satisfiability we define the

concept of consistency.

7.1 Definition. (a) @ is consistent (written: Con @) if and only if there is no
formula ¢ such that ® — ¢ and ® — —1¢.
(b) @ is inconsistent (written: Inc @) if and only if ® is not consistent (that

is, if there is a formula ¢ such that ® - ¢ and ® — —1¢).

First we show that from an inconsistent set one can derive any formula.

7.2 Lemma. For a set of formulas @ the following are equivalent
(a) Inc @,

(b) For all ¢, ® + ¢.
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PrOOF. (a) follows immediately from (b). Suppose, on the other hand, that
Inc @ holds, i.e., ® —  and @ — —1y for some formula . Let ¢ be an arbi-
trary formula. We show @ — ¢. First of all there exist I'; and I', consisting
of formulas from @ and derivations
' and o
Ly L, 7y

By combining these two derivations and adding to the resulting derivation,
we obtain

n. I, —y
n+ 1L I'NIL, ¥ (Ant) applied to m
n+ 2. I''T, 71 (Ant)applied ton
n+3 I'I, ¢ (Ctr") applied ton + 1 and n + 2.
Thus we see that ® - ¢. d

7.3 Corollary. For a set of formulas ® the following are equivalent :
(a) Con @
(b) There is a formula ¢ which is not derivable from @, O

Since @ ¢ if and only if @, - ¢ for a suitable finite subset @, of @, we
obtain:

7.4 Lemma. For all ®, Con ® if and only if Con ®, for all finite subsets @,
of . d
1.5 Lemma. Every satisfiable set of formulas is consistent.

PROOF. Suppose Inc @. Then for a suitable ¢ both ® - ¢ and @ - —¢;
hence, by the theorem on the correctness of &, ® = ¢ and ® = —1¢. But
then ® cannot be satisfiable. d

Later we shall need:

7.6 Lemma. For all ® and ¢,

@) if not ® -~ @, then Con ® U {—¢};
(b) if Con @ and @ + ¢, then Con ® U {@};
(¢) if Con @, then Con @ U {¢} or Con ® L {1 ¢}.
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PRrROOF. (a) Suppose not @ - ¢, but ® u {¢} is inconsistent. Then for a
suitable I' consisting of formulas from @, there is a derivation of the sequent
I' 79 ¢. From this we obtain the following derivation:

I' 79 ¢
' ¢ (Ass)
r o (PC)

Hence @ |- ¢, a contradiction.

(b) Interchange the rdles of ¢ and ¢ in (a) and note that ® - —1¢ does
not hold.

(c) This follows directly from (a) and (b). O

In this chapter we have referred to a fixed symbol set S. Thus when we
spoke of formulas we understood them to be S-formulas, and when dis-
cussing the sequent calculus & we actually referred to the particular calculus
&g corresponding to the symbol set S. In some cases it is necessary to treat
several symbol sets simultaneously. Then we insert indices for the sake of
clarity. To be specific, we use the more precise notation ® - ¢ to indicate
that there is a derivation in & (consisting of S-formulas) whose last sequent
is of the form I ¢, where I consists of formulas from ®. Similarly, we write
Cong @ if there is no S-formula ¢ such that ® -5 ¢ and ® -5 T1¢.2

In the next chapter we shall need:

7.7 Lemma. For ne N, let S, be symbol sets such that Sy = S, = S, < ...
and let @, be sets of S,- formulas such that Cong, ®,and @y =« ®;, c ©, < ....
Let S = Jyen Spand @ = | J,en @, Then Cong @.

PROOF. Assume the hypotheses of the theorem, and suppose Incg @. Then,
by 7.4, Incg ¥ must hold for a suitable finite subset ¥ of ®. There is a k such
that ¥ < @, and hence Incg @, ; in particular, ®, -5 v, = vy and O, -5 v,
= vo. Suppose we are given S-derivations for these two formulas. Since they
contain only a finite number of symbols, all the formulas occurring there are
actually contained in some LS. We may assume that m > k. Then both
derivations are derivations in the S,,-sequent calculus and therefore Incg .
Since ®, = @,, we then obtain Incg,_®,,, which contradicts the hypotheses
of the theorem.

2 The reader should note that for two symbol sets S’ = §, and for ® = L5 and ¢ € LS, it is con-
ceivable that @ . ¢ but not @ 5 ¢, for it could be that formulas from L% — LS are used in
every derivation of ¢ from ® in S;., and that (later on in the proof) these formulas are then

eliminated from the sequents, say by application of the rules (Ctr), (PC), or (3S). In V.4. we shall
show that this cannot, in fact, happen.
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7.8 Exercise. Define (3V) to be the rule

I' 3xe Yx¢

(a) Determine whether (3V) is a derivable rule.
(b) Let € be obtained from the calculus of sequents & by adding the rule
(3V). Is every sequent derivable in &'?



CHAPTER V
The Completeness Theorem

The subject of this chapter is a proof of the completeness of the sequent
calculus, l.e., the statement:

(%) For all ® and ¢, if ® = ¢ then ® |- .
In order to verify () we show
(%) Every consistent set of formulas is satisfiable.

From this, (x) can be proved as follows: We assume for ® and ¢ that @ = ¢,
but not ® — ¢. Then ® U { ¢} is consistent (cf. Chapter IV, 7.6(a)) but not
satisfiable, a contradiction to (xx).

To establish (xx) we have to find a model for any consistent set ® of
formulas. In §1 we shall see that there is a natural way to do this if ® is
maximally consistent and if it contains witnesses. Then we reduce the general
case to this one: In §2 for at most countable symbol sets, and in §3 for arbi-
trary symbol sets.

Unless stated otherwise, we refer to a fixed symbol set S.

§1. Henkin’s Theorem

Let @ be a consistent set of formulas. In order to find a model I = (U, B) of
®, one can only use the “syntactical” information given by the consistency
of ®. Hence we shall try to obtain a model using syntactical objects as far
as possible. A first idea is to take as domain A4 the set of all S-terms, to define
B by B(v;) = v;(ieN) and R¥, say for unary R, by R¥ = {te A|Rt € ®}.
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Then, if for instance Rx € ® and Rx — Ry € ®, we should have Ry € @, and
if 3x Rx € @ there should be a “witness” ¢, i.e. a term ¢ such that Rt € ®.
We see that in order to get a model of @ in this way, ® has to satisfy certain
closure conditions. These are made precise in the following definition. It
will turn out that they are sufficient to carry out the above idea.

1.1 Definition. Let @ be a set of formulas.

(a) @ is said to be maximally consistent if and only if Con @, and if every
formula ¢ with Con @ U {¢} already belongs to ®.
(b) @ contains witnesses if and only if for every formula of the form Jx¢

there exists a term ¢ such that <3x(p - i) 0
If 3 is an interpretation, then the set ® = {¢ € L5| 3 k= ¢} is maximally
consistent: Since 3 = @, @ is satisfiable and hence by 1V.7.5 it is consistent.
Further, if Con ® U {¢}, then ¢ ¢ ®; hence I = p and so p € D.
Conversely, with every maximally consistent set ® which contains wit-
nesses we shall associate an interpretation 3q as outlined above such that
Jo = @. (Thus it turns out that every such @ is satisfiable.)

1.2 Lemma. Let ® be maximally consistent and contain witnesses. T hen, for
all  and :

@) If®+ @, then p € .

(b) Either o€ ® or 1 € D.

© (@pvip)edifandonlyif pe ®or y € ®.
@) If (o> Y)e®and ¢ € D, then y € ©.

. t
(e) 3xp e® if and only if there is a term t such that ¢ — e @.
x

PrOOF. (a) If @ I~ ¢, then by 1V.7.6(b), Con ® U {¢}, and hence ¢ € ® since
® is maximally consistent.

(b) By 1V.7.6(c) we have Con ® U {¢} or Con ® U {—1¢}, and therefore
@e® or 1¢ped. Since ® U {p, T} is inconsistent, ¢ and T1¢ cannot
both belong to ®.

(c) Suppose first that (¢ v y)e®. If @ ¢ ® then —¢pe®. Since
(o v ) 1@ (cf. 1V.3.6(b)), we have ® - y and from (a), y € ®. On the
other hand, if, for example, ¢ € ®@, then by 1V.3.6(al), ® - (¢ v ), and so
by (a), (¢ v V) e .

(d) Assume that (¢ —» ) (i.e. (M@ Vv ) and ¢ belong to ®. Since
(719 v ey (cf. 1V.3.6(c)), we obtain by (a) that ¢ belongs to ®.

(e) First suppose that 3x¢ € ®. Since @ contains witnesses, there is a term

t
t such that <3x(p - (p;) € ®, and therefore (pied) by (d). On the other

hand, if ¢ % € ®, then @ - 3x¢ (use (3S)) and by (a), Ixp € P. J
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From 1.2 we shall obtain the result that for an interpretation 3, the state-
ment

(%) k=g ff ped
holds for all ¢ (and hence 3 k= @) provided we can establish (1) and (2):

(1) (%) holds for atomic ¢.
(2) Forevery element of the domain of Jthere is a term ¢ such that 3(¢) = a.

Taking up our original idea we construct an interpretation 3 satisfying
(1) and (2). For the domain of 3 we intended to take the set of terms, and to
arrange the interpretation so that 3(¢) =t (cf. (2)) and (k= Rty ... 1,
iff Rty ... t,.; € ®) (cf. (1)). A slight difficulty arises concerning equations:
If ty = t, € @, then on account of (), I(¢y) = I(t,) must hold even if ¢, and
t, are distinct terms. We overcome this difficulty by defining an equivalence
relation on terms and then using the equivalence classes rather than the
individual terms as elements of the domain of 3.

In the remainder of this section let ® be a maximally consistent set con-
taining witnesses. We proceed to define the interpretation 3¢ = (Tp, Bo).
First of all, we introduce a binary relation ~ on the set TS of S-terms:

1.3. to ~ tl lﬁ to = tl E(I)

1.4 Lemma. (a) ~ is an equivalence relation.
(b) ~ is compatible with the symbols in S in the following sense: If
Lo~ 1oy osly—y ~ tu_y, then for n-ary f €S,

Stooity_y ~ fto...thy
and for n-ary R € S,
Rty...t,_,€® iff Reg...t;,_,€®,

The proof uses the rule (=)and 1V.5.3-5.6. We give two cases as examples:

(1) ~ issymmetric: Suppose t, ~ t,,thatis, 1, = t, € ®. By IV.5.3 we obtain
Dty =ty;hence, by 1.2(a), 1, = t, € D, ie, t; ~ to.

(2) Let f be an p-ary function symbol from S, and assume t, ~ g, ...,
tay ~ by, le, Lo = tQ)E(D R SR 1e(D Then by Iv.5.6,
OF fto..ty—1 = flo... 14, and by 1.2a), fto...tamy ~ fto. .-ty O

Let f be the equivalence class of t,
fe={t'eTSt~1t}
and let Ty be the set of equivalence classes,

Ty = {F|t € TS
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Ty is not empty. Define the S-structure Ty over Ty, the so-called term structure
corresponding to @, by the following clauses:

1.5. For n-ary R € §,
R*i,...i,_, iff Rty...t,_,€®.
1.6. For n-ary f €S,
f3(os s Tamr) = flo - ta-y.
1.7. Force S,

T

=,

By 1.4 the conditions in 1.5 and 1.6 are independent of the choice of the
representatives to, . .., t,_ 1, hence R*® and f*® are well defined.
Finally, we fix an assignment S, by

1.8. Bo(x):=X.
We call 3q = (T, o) the term interpretation associated with @.

1.9 Lemma. (a) For all t, Jy(t) = L
(b) For every atomic formula ¢,

Sek=¢ iff pe®.

PRrOOF. (a) By induction on terms. The lemma holds for t = x by 1.8 and for
t=cbyl7.Ift= fty...1,_4, then

So(fto .- ta1) = [T(SBolto)s - » Jolta-1))
= f*(i,,...,{,_;) (by induction hypothesis)

= ftg... ty_4 (by L.6).
(b) Set=to=t; iff Jg(to) = Jolty)
iff iy =1, (by (2))
lﬂ tO ~ tl
ff to =1, €.
Jok= Rty ... 1, iff R*®f, ... f,_,
iff Rtg...t,,€® (byl.5). ]

1.10 Henkin’s Theorem. Let ® be a maximally consistent set containing
witnesses. Then for all ¢,

(%) ‘ Sok= 0 iff pe®.
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ProOF. We show (%) by induction on the number of connectives and quanti-
fiers in ¢, in other words, by induction on rk(¢) (cf. I11.8.6). If rk(¢) = 0, then
@ is atomic, and (x) holds by 1.9(b). The induction step splits into three
separate cases.

(1) ¢ = 7¢:
Jot= 1 iff not Jgp =
iff ygd (by induction hypothesis)
iff "yed (by 1.2(b)).
@ o=WvVi:

Sok=( v ) iff Jpk=yorIgl=
iff yedor xyed® (byinduction hypothesis)
iff (f v )ed (by 1.2(c)).
(3) o =3xy:
3@ = 3xl//

. . t
iff there is a term ¢ such that Jg — = ¢
x

iff there is a term ¢ such that J,

3‘;(’) = (by 1.9(a))

. . t o
iff there is a term ¢ such that 3¢ k= iy — (by the substitution lemma)
X

. . t
iff there is a term ¢ such that 4y —e @ -
x

(by induction hypothesis since rk(l// 1) = rk(y) < rk(g) (cf. 111.8.7))
X
iff Iy ed (by 1.2(e)). O

1.11 Corollary. Let ® be a maximally consistent set containing witnesses.
Then 3¢ k= ® and therefore @ is satisfiable. O

§2. Satisfiability of Consistent Sets of Formulas
(the Countable Case)

By 1.11, every maximally consistent set of formulas containing witnesses is
satisfiable. We prove that any consistent set @ of formulas is satisfiable by
showing how to extend it to a maximally consistent set containing witnesses.
In this section we settle the case of symbol sets which are at most countable.
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Inthe following let S be at most countable. First we treat the case where only
finitely many variables occur free in @, i.e., where free(®) == | . free(o) is
finite.

2.1 Lemma. Let ® = L® be consistent and let free(®) be finite. Then there is a
consistent set ¥ such that ® = ¥ < L5 and ¥ contains witnesses.

2.2 Lemma. Let ¥ < LS be consistent. Then there is a maximally consistent
set @ with¥ c ® < LS.

2.1 and 2.2 enable us to extend a consistent set ® of formulas in two stages
to a maximally consistent set of formulas containing witnesses. First of all,
we extend @ to ¥ according to 2.1, and then W to ® according to 2.2. ® is
maximally consistent, and it contains witnesses because ¥ does. Hence by
1.11, ® is satisfiable, and, since ® = O, & is also satisfiable. To summarize we
obtain:

2.3 Corollary. Let @ be consistent, and let free(®) be finite. Then @ is
satisfiable. ]

It still remains to prove 2.1 and 2.2,

ProoOF OF LemMa 2.1. By 11.3.3, LS is countable. Let 3xq ¢, 3x,¢;,... be a
list of all formulas in LS which begin with an existential quantifier. Inductively
we define formulas i, ¥4, . . ., which we add to ®@. For each n, i, is a “ witness
formula” for Ix,¢,.

Suppose ,, is already defined for m < n. Since free(®) is finite, only
finitely many variables occur free in ® U {i,,/m < n} U {Ix,0,}. Let y,bea
variable distinct from these. We set

Y= <3x,. Qn = Pn &).
X

n

Now let
Yi=0u {l//0a l//b'"}‘

Then @ = ¥ and W clearly contains witnesses. It remains to be shown that
W is consistent. For this purpose put

D, =0 U {y,.|m < n}.

Then @y c @, c ®, =--- and ¥ = ),y @,. By IV.7.7 (for § = S, =
Sy =...) the proof will be complete if we can show that each ®, is consistent.
We proceed by induction on n.

Since @, = @, Con @, holds by hypothesis. For the induction step we
assume that @, is consistent. Suppose, for a contradiction, that ®,,, =
®, U {,} is inconsistent. Then for every ¢ there exists I' over @, such
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that — 'y, 0, ie.,

= F(—! 3%, 0n V @5 ?)w-

n

Thus there is a derivation,

m. F(ﬁﬂxn(p,, V @, %)(p,

which, if ¢ is a sentence, we can extend as follows:

m+ 1. T —3x,0, 13x,0, (Ass)

m+ 2 T 713x,e, <—|3x,,(p,, v (p,,&) (v S)applied to m + 1
X

n

m+ 3 T 3x,0, ¢ (Ch) (with (Ant)) applied tom + 2
and m
m+4 T o, In @ (analogously)
xl‘l
m+ 5T Ix,0, o (3A) applied to m + 4 (y, does not

occur free in ' 3x, ¢, @)

m+6. T o (PC) applied tom + Sand m + 3

Hence we have @, - ¢. But then @, is inconsistent, as can be seen by taking
@ =30y = vy and ¢ = 13v, vy = vy. This contradicts the induction
hypothesis. ]

PROOF OF LEMMA 2.2. Suppose ¥ is consistent and let ¢4, ¢4, @5, ... be an
enumeration of LS. We define sets of formulas @, inductively as follows:

@0 = lll’
and
o . [@ule) iCnO,u{p,)
e, otherwise,
and we set
®:=1) o,
neN

First of all, ¥ < @. Clearly all ®, are consistent, and hence by IV.7.7, ® is
consistent as well. Finally, ® is maximally consistent. For if ¢ € LS, say
@ = @,,and if Con © u {@,}, then, since @, = O, we obtain Con ©, U {¢,}
and hence ¢,€0,, ., i.e, ¢, ©. O
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Now we drop the assumption that free(®) is finite.

2.4 Theorem. If S is at most countable and ® — L% is consistent, then @ is
satisfiable.

PROOF. We reduce 2.4 to 2.3. Let ¢q, ¢y, ... be distinct constants which do
not belong to S, and set

S =8vu{cy,cy,-..}

For ¢ € LS denote by n(¢p) the smallest n such that free(p) = {vg,...,Vp—1}.
Let

Co .- Cnig)— . ,
() Q= (p_O (o)~ 1 and b = {¢'|p € D}.
Vo -+ Unigy—1

First, by 111.8.5,

2) free(®) = .
Now it will suffice to show that
3) Cong. @',

for then we know from the special case proved in 2.3 that @’ is satisfiable,
say by some interpretation 3’ = (', ). Using the coincidence lemma we
can, by (2), assume that 8(v,) = ¢, i.e., I(v,) = I(c,) for all ne N. Then
from (1) and the substitution lemma it follows that J' is a model of @; hence
® is satisfiable.

We prove (3) by showing that every finite subset @, of @' is satisfiable,
and thus, by IV.7.5, consistent (with respect to §*). Let &, = {¢g,.... ¢n-1},
where g, ..., ¢, € ®.Since {@,, ..., @,_} is a subset of @ it is consistent
(with respect to S), and since only finitely many variables occur free therein,
it is satisfiable (cf. 2.3).

Choose an S-interpretation 3 = (U, f) such that

(*) St‘:{(po’---’(pn—l}

and expand U to an S'-structure A’ with ¢ = J(v,) for n e N. From (1),
(*), and the substitution lemma, it then follows that the S’-interpretation
(W, By which results is a model of @;,. O

The following exercise shows that the assumption “free(®) is finite” in
2.1 is necessary.

2.5 Exercise. Let S be arbitrary and let
O = {vo=tte TS v {Fv, v, vy = vy}

Show that Con @ holds and that there is no consistent set in L® which in-
cludes ® and contains witnesses.
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2.6 Exercise (A Special Case of the So-called Herbrand Theorem). Let S be
a symbol set, and let ¢ and y be quantifier-free formulas in which there is at
most one free variable, namely x. Show that if

Vxo = 3Ixif,
then there is an n > | and there are S-terms g, ..., t,_1, Sg»--.,S,_4 such
that
Sn-1

x .

to - So
DA A = 2 vy
(px (pr——l//x W

(Hint: Give an indirect proof making use of the set

ro. to.
{(p —|tis an S-term} U {ﬁl// —|tisan S-term}.)
X X

§3. Satisfiability of Consistent Sets of Formulas
(the General Case)

In this section we no longer assume that S is countable. The réle of 2.1 and 2.2
will be taken over by 3.1 and 3.2.

3.1 Lemma. Assume ® < L5 and Cong ®. Then there is an S' > S and a ¥
such that ® < ¥ < L5 and Cong ¥, and ¥ contains witnesses with respect
to S (i.e., for every formula of the form Ixp € L5 there is a term t € TS such

that (Bx(p - (pi) eV).

3.2 Lemma. Assume ¥ < L% and Cong ¥. Then there is a set © such that
¥ = © < L® and © is maximally consistent with respect to S.

We obtained 2.3 from 2.1 and 2.2; likewise we have from 3.1 and 3.2 the
following:

3.3 Corollary. If ® = L’ and Cong @, then ® is satisfiable. O

The following consideration will lead to a proof of 3.1.
Let S be an arbitrary symbol set. Associate with every ¢ € L® a constant
¢, such that ¢, ¢ S and ¢, # ¢, for ¢ # . Defining

§* =S U {Cay,|Ixp € L5}
and

W(S) = {ax(p S % EME LS},

one obtains for ® < LS:
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3-4. If Cons (I), then Cons* (ON)} W(S)

ProoOF. Suppose Cong® holds. We show that every finite subset ®F of
® U W(S) is consistent with respect to S* by proving that it is satisfiable.
Let

Co Cu—1
g:(I)OU{axo(po“’(po_’-"’axn—l(pn—l—’(pn—l . }a
Xo xn— 1
where @, = ®, 3x, @, ..., Ix,_ 1¢,—; € L5, and where ¢; stands for ¢,
For a suitable finite subset S, < S, we have

@, U {3x@q, ..., IX,_ 10u_ 1} < L5,

Further, since Cong ® holds, so does Cong @, and hence, of course, Cong @,
Because free(®,) is finite, it follows from 2.3 that @, is satisfiable.

Let 3 = (U, B) be an S-interpretation which satisfies @, and fix an element
a in A. In order to satisfy ®F we extend 3 to an S*-interpretation J* as
follows: For i < n we choose a; € A such that

() 3% ¢, if 3= Ixe;

i

and a; = a otherwise. We extend 2 to an S*-structure U* by setting

U*

i =4

for i < nand interpreting the remaining constants of the form ¢;,,, by a. Let
3J* = (U*, B). Since no constant c,,, occurs in @, it follows from 3J = @,
that 3* = @,. Furthermore

C.
I* = A0 - @ ;l

1

(and this shows that @} is satisfiable). In fact, if 3* = Ix, ¢, then I* % = @

by (x). Since a; = I*(c;) it follows by the substitution lemma that 3* k=
C;

@i —.
X

i

PROOF OF LEMMA 3.1. Let ® = L% and suppose Cong ®. We define a symbol
set $’and W = L% with the following properties:

(a) S S'and ® < \P.
(b) Cong Y.
(c) ¥ contains witnesses.

For this purpose we define symbol sets S, and sets @, of formulas by induction
on n:

So=3S and Sne1=(S)*
D, :=0 and O, , =0, W(S).
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(Concerning the definition of (S,)* and W(S,), cf. the definitions of $* and
W(S) preceding 3.4.)
From the constriiction it follows that

S:SOCSICSZC...,
&, L5 forneN,
q)zd)oc(plcq)zc....

We set S = J,cn S, and W := { J,.n @,. Then (a) holds. Using 3.4 one can
easily show Cong, @, by induction on n, and hence by IV.7.7, that Cong. V.
Therefore (b) also holds. Finally, ¥ contains witnesses: Suppose, for example,
Ix¢p € LS. Then, for a suitable n, 3x¢ € L. Thus for some constant ce S, i,

the formula (Exq) - (pE) is an element of W(S,) and hence an element
X
of ¥, O

ProoOF OF LEMMA 3.2. In the proof of 2.2 we made essential use of the count-
ability of LS. For arbitrary § we no longer have this property at our disposal.
We resort to Zorn’s lemma, which we now state in a form suited to our
purposes. The reader can find a proof of this lemma in books on set theory.

Let M be a set and let U be a nonempty set of subsets of M. B is called a
chain in U, if B < U, B~ ¢, and if for V,, V; € B we have V; = V; or
Vi < V. Then Zorn’s lemma says

3.5. If for every chain B in N the union { ), .o V belongs to U, then there is
at least one maximal element in U, i.e., an element U, for which there is no
U, € U such that U, < U,.

Now, for arbitrary S, let ¥ < L% and Con ¥. Set M := L’ and
U:={®|¥ < ® c L% and Cong D}.

Clearly ¥ € U, so U is not empty. Let B be a chainin U. O, := | Jp o Pis an
element of W because ¥ = @, < LSand Cong ©,. (The consistency of @, can
be proved as follows: If @, is a finite subset of @,,say @ = {@g, - -, @u_11»
then there are @, ..., ®,_, € B with ¢, e ®; for i < n. Since B is a chain,
we can number the @, such that &, «c &, = --- =« ®,_,. Thus @, < ®, _,,
and by Cong ®@,_, we have Cong @)

Now we can apply Zorn’s lemma (3.5) to U, thereby obtaining a maximal
element @ in U. From the definition of U we know that ¥ < ® = L5 and
Cong ©. On the other hand © is also maximally consistent. For if ¢ € LS and
Cong © U {¢}, then ® U {@} € U; but since ® is maximal, ® = @ U {¢}, in
other words, ¢ € ©. 1
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§4. The Completeness Theorem

As already mentioned in the introduction to this chapter, we can obtain
the completeness of the sequent calculus from 2.3 (for at most countable S)
and from 3.3 (for arbitrary S):

4.1 Completeness Theorem. For ® < LS and e LS if ®= ¢, then

From 4.1 together with the theorem on correctness (IV.6.2) we have:
For®el’ and ¢el’, (D¢ iff Or;o,
and from 3.3 and 1V.7.5 we obtain:
For® c L%,  Sat® iff Cong®.

In II1.5 we saw that the concepts of consequence and of satisfiability are
actually independent of the particular choice of S. It follows from the results
above that the concepts of derivability and consistency are also independent
of § (cf. the footnote on page 74). Thus we can simply write “}" and
“Con”, omitting the subscript.

4.2 Theorem on the Adequacy of the Sequent Calculus.

@ Q= oiff O 0.
(b) Sat @ iff Con ®. O

4.3 Exercise (cf. exercise 111.2.1). If one transfers the rules (Ass), (Ant), (PC),
(Ctr), (v A), and ( v S) from the sequent calculus to the language of proposi-
tional calculus (with propositional variables p,, p;, p,, ... and connectives
-1 and v ), one obtains a sequent calculus for propositional logic. For a set
® U {o} of formulas in propositional logic let ® - o have a definition similar
to the definition for first-order logic. Further, write @ = « if for every assign-
ment s such that [s] = T for all e ®, also afs] = T.

Prove the completeness theorem (and the correctness theorem) for
propositional logic:

OE=o iff O o

Historical Note. The completeness theorem is due to Godel [11]. The
program of setting up a calculus of reasoning was first formulated and
pursued by Leibniz, although traces of it may be found in the works of
earlier philosophers (e.g., Aristotle and Lull). At the beginning of this
century, Russell and Whitehead developed a calculus, and within it, gave
formal proofs for a large number of mathematical theorems. Then in 1928,
Godel proved the completeness theorem. The method of proof used in this
section is due to Henkin [13].



CHAPTER VI

The Lowenheim-Skolem Theorem and
the Compactness Theorem

The equivalences of - and = and of Con and Sat, respectively, form a bridge
between syntax and semantics which allows us to transfer properties of
to = and of Con to Sat. In this way we shall prove several important results
concerning k= and Sat, and at the same time we shall acquire a deeper insight
into the expressive power of first-order languages.

§1. The Lowenheim-Skolem Theorem

The domain of the model J3q defined in V.1 consists of equivalence classes
of terms. We use this fact to obtain the following theorem:

1.1 Lowenheim—Skolem Theorem. Every satisfiable and at most countable
set of formulas is satisfiable over a domain which is at most countable.

ProoF. First let @ be an at most countable set of S-sentences which is satis-
fiable and hence consistent. Since each S-formula contains only finitely
many S-symbols, there are at most countably many S-symbols in @. Therefore
we may assume, without loss of generality, that S itself is at most countable.
Since Sat @ holds, so does Con ®, and the proofs in V.1 and V.2 show that
there is an interpretation which satisfies ® and whose domain A4 consists of
classes 7 of terms, where t ranges over T5. Because T is countable (cf. 11.3.3),
A 1s at most countable. This argument can easily be transferred from sets of
sentences to sets of formulas; for, if ® is a set of S-formulas and

®’={¢M|neN,l//eL;fm(D},

Ug...0y_1
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where ¢,, ¢y, ..., are new constants, then ® and @’ are satisfiable over the
same domains (cf. the proof of V.2.4). O

VxVyx = y is a sentence which has only finite models. For a unary
function symbol f, the sentence Vx Vy (fx = fy - x = y) A TIVx 3y fy = x
has only infinite models (since there is no function on a finite set which is
injective but not surjective).

If one re-examines the proof of the completeness theorem for the case of
uncountable symbol sets, one obtains the following generalization of 1.1,
which we formulate for readers who are familiar with the concept of
cardinality:

1.2 Downward Lowenheim—Skolem Theorem. Every satisfiable set of formulas

® < L® is satisfiable over a domain of cardinality not greater than the cardi-
nality of LS. O

In 1.1 (and 1.2) a certain weakness of first-order languages is already
apparent. In the case of the symbol set S, for example, there cannot exist
a set @ of sentences which characterizes the ordered field R~ =
(R, +,-0,1, <) up to isomorphism (in the sense that exactly R~ and the
structures isomorphic to R* are the models of ®). Any such set @ of S;-
sentences would be at most countable and satisfiable (since R~ = ® must
hold); then by 1.1 there would be an at most countable structure U such that
A = &. But this could not be isomorphic to R~ since R is uncountable.

In analysis R © is characterized up to isomorphism, say, by the axioms for
ordered fields and the axiom on Dedekind cuts. Since the former can be
formulated in L% we see that the axiom on Dedekind cuts cannot be

k)

phrased in terms of S;;-formulas.

1.3 Exercise. If @ is an at most countable, satisfiable set of formulas and if
the equality symbol does not occur in any formula of @, then @ is satisfiable
over a countable domain. (Hint: In the proof of Henkin’s theorem use the
set of terms instead of the set of classes of terms as the domain of Jg,.)

1.4 Exercise. Show that every at most countable set of formulas which is
satisfiable over an infinite domain is satisfiable over a countable domain.

§2. The Compactness Theorem

From the definition of - and Con we obtained directly (cf. IV.6.1 and
1V.7.4):

(a) ® I ¢ iff there is a finite ®, < ® such that &g - ¢.
(b) Con @ iff for all finite ®, < ®, Con d,,.
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Using the adequacy theorem V.4.2 we can rephrase these results for the
corresponding semantic concepts:

2.1 Compactness Theorem

(a) (for the consequence relation)
O = ¢ iff thereis a finite ®, = @ such that @ = .
(b) (for satisfiability)
Sat @ iff for all finite d, = @, Sat D,,.

The compactness theorem is so called because, in terms of a suitable
topological reformulation, it says that a certain topology is compact (cf.
Exercise 2.5).

Wenow use the compactness theorem to obtain variantsof the Léwenheim-
Skolem theorem.

2.2 Theorem. Let @ be a set of formulas which is satisfiable over arbitrarily
large finite domains (i.e., for every n € N there is an interpretation satisfying
® whose domain is finite and has at least n elements). Then @ is also satisfiable
over an infinite domain. :

PRroOOF. Let
W= U (@512 < n}

(¢ >, was introduced in II1.6.3). Every interpretation which satisfies ¥ is a
model of @ and has an infinite domain. Therefore we need only prove that ¥
is satisfiable. By the compactness theorem it is sufficient to show that every
finite subset ¥, of ¥ is satisfiable. For each such ¥, there is an n, € N such
that

(*) Yo =@ U {9,412 < n < npt.

According to the hypothesis of the theorem there is an interpretation 3
which satisfies ® and whose domain contains at least n, elements. By (%),
3 is also a model of ¥,,. ™

2.3 Upward Lowenheim-Skolem Theorem. Le: ® be a set of formulas which
is satisfiable over an infinite domain. Then for every set A there is a model of
® which contains at least as many elements as A. (We say that M has at least
as many elements as A if there exists an injective map of A into M.)

PrOOF. Let ® — LS. For each ae 4 let ¢, be a new constant (ie., ¢,¢S)
such that ¢, # ¢, for a # b. First, we show that the set

Y:=0 v {Tc,=cyla,be A, a # b}

of Su {c,lae A}-formulas is satisfiable. Because of the compactness
theorem we can restrict ourselves to showing, for every finite n-tuple of
distinct elements aq, ..., a,-, € A, that

(+) DUl =¢ lijeniztil
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is satisfiable (cf. the argument in the previous proof). By hypothesis, there is
an S-interpretation J = (B, ) which satisfies ® and whose domain is
infinite. Therefore there are n distinct elements by, ..., b,_; in B. We Jet
2 :=b; for i < n. Then the interpretation (B, ¢, ..., c2 ), p) satisfies the
set (+). Since every finite subset of V¥ is satisfiable, we can find an inter-
pretation 3’ which satisfies ¥ and hence also ®. Let D be the domain of J'.
For a, be A such that a # b we have I = ¢, = ¢,. Hence J(c,) and
J'(cy) are distinct elements of D. Therefore the map n: 4 — D, where n(a) =
J'(c,), is injective. Thus D has at least as many elements as A. O

The same idea is used in the proof of the following theorem, which we
state here for readers familiar with the concept of cardinality.

2.4 Theorem of Lowenheim, Skolem, and Tarski. Let @ be a set of formulas
which is satisfiable over an infinite domain and let k be an infinite cardinal
greater than or equal to the cardinality of ®. Then ® has a model of cardinality k.

PrROOF. Let @ and « be given as in the statement of the theorem. Let 4 be a
set of cardinality k. We may assume that ® < L5 for a symbol set S of
cardinality < «. Then the symbol set S U {c,|a € A} given in the proof of
2.3 has cardinality « as does the set of S U {c,|a € A}-formulas. Again, let
Y =0u{c,=cla be A, a # b}. By 1.2 there is a model I’ of ¥ (and
hence also of ®) whose domain D has cardinality <k. On the other hand,
since ¢, = ¢, € W for distinct a, b € A, D has cardinality > «; hence its
cardinality is exactly . t

2.5 Exercise. Let S be a symbol set. For every satisfiable set @ of S-sentences
let Wq, be an S-structure such that Wy, k= @, Further, write

2= {Uy|® <« L3, Sat @},
and for every S-sentence ¢ set X, := {W e Z| W I= ¢}.

(a) Show that the system {X ,|¢ € L3} is basis for a topology on Z.

(b) Show that every set X, is closed.

(c) Use the compactness theorem to show that every open covering of £ has
a finite subcovering, so that X is (quasi-)compact.

§3. Elementary Classes

For a set ® of S-sentences we call
Modg @ := {W|W is an S-structure and A = O}

the class of models of ®. Instead of “Modg{p}” we sometimes write
‘6M0ds (p”.
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3.1 Definition. Let & be a class of S-structures.

(a) K is called elementary iff there is an S-sentence ¢ such that & = Mod; ¢.
(b) K is called A-elementary iff there is a set @ of S-sentences such that
K] = Mod ®.

Every elementary class is A-elementary. Conversely, because

Modg @ = () Mod; ¢,

ped®

every A-elementary class is the intersection of elementary classes.

From an algebraic point of view we can formulate the question of the
expressive power of first-order languages as follows: Which classes of
structures are elementary or A-elementary, i.e., which classes can be axio-
matized by a first-order sentence ¢ or by a set @ of first-order sentences?

Let us give some examples.

3.2. The class of fields (considered as S,,-structures) and the class of ordered
fields (considered as S,;-structures) are elementary. For example, the first
class can be represented in the form Mods__¢F, where ¢ is the conjunction
of the field axioms in IIL.6.5. Similarly, the class of groups, the class of equiv-
alence structures and the class of partially defined orderings (cf. 111.6.4) are
elementary.

Let p be a prime number. A field § has characteristic p if
1B 4. 4 18 = (8,
—_—————
p-times

that is, if & satisfies the sentence

Ypi=1l+---+1=0.

p-times

If there is no prime p for which & has characteristic p, & is said to have
characteristic 0. For every prime p the field Z/(p) of the integers modulo p
has characteristic p. The field R of real numbers has characteristic 0.

Mods, (@r A x,) is the class of fields of characteristic p. Hence this class
is elementary. The class of fields of characteristic 0 is A-elementary; it can be
represented as Modg, ({@r} U {T1%,|p is prime}). The following considera-
tion will show that it is not elementary. Let ¢ be an S,,-sentence which is
valid in all fields of characteristic 0, that is,

{or} © {M1X,Ip is prime} = .
By the compactness theorem there is an n, (depending on ¢) such that

{or} V {7 x,lpis prime, p < ne} = @.
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Hence ¢ is valid in all fields of characteristic > n,.
Thus we have proved:

3.3 Theorem. An S,,-sentence which is valid in all fields of characteristic 0O is
valid in all fields whose characteristic is sufficiently large. O

We conclude from this that the class of fields of characteristic 0 is not
elementary, for otherwise, there would have to be a sentence ¢ which is
valid precisely in the fields of characteristic 0.

As an instance of 3.3 one obtains the well-known algebraic result that two
polynomials p(x) and a(x), whose coefficients are integral multiples of the
unit element and which are relatively prime over all fields of characteristic
0, are also relatively prime over all fields of sufficiently large characteristic.
In order to verify this, one rewrites the statement that p(x) and o(x) are
relatively prime as an S,,-sentence. In the case p(x) = 3x* + 1 and o(x) =
x® — 1 one can take the sentence

1 3ug Ju, Iwg 3wy 324 3z, 32, VX
(uo +uy-xy-(wo +wy-x)=(1+1+1)-x-x+1
Alug + Uy x) (2o + 2y x+2-x-x)=x-x-x— 1)

A 13 Juy Yx (ug +up-x)-(L+ 1+ D x-x+1) =x-x-x— 1

Here “... = x-x-x — 1” stands for
does not belong to S, ).

...+ 1 =x-x-x" (the symbol —

3.4. The class of finite S-structures (for a fixed S), the class of finite groups,
and the class of finite fields are not A-elementary. The proof is simple: If, for
example, the class of finite fields were of the form Modg_  ®, then ® would
be a set of sentences having arbitrarily large finite models (e.g., the fields of
the form Z/(p)) but no infinite model. That would contradict 2.2. ™

On the other hand, exercise 3.6 below shows that the corresponding
classes of infinite S-structures (groups, fields) are A-elementary.

3.5. The class of torsion groups is not A-elementary. We give an indirect
proof, assuming (for a suitable set ® of S,-sentences) Mods @ to be the
class of torsion groups. Let

Yi=bu{xc--rox=eln>1}
——

n-times
Every finite subset ¥, of ¥ has a model: Choose an n, such that

Yoo {1xe...ox=¢e|l <n<ng};
———

n-times
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then every cyclic group of order n, is a model of W, if x is interpreted by a
generating element. Now let (®, ) be a model of W. Then f(x) does not
have finite order, showing that ® is a model of ® but not a torsion group.

0O

3.6 Exercise. Let & be a A-elementary class of structures. Show that the
class 8% of structures in & with infinite domain is also A-elementary.

3.7 Exercise. If & is a class of S-structures, ® = L§ and & = Modg @, then
® is said to be a system of axioms for K. Show:

(a) K is elementary if and only if there is a finite system of axioms for K.
(b) If K is elementary and & = Modg ® then there is a ﬁnlte subset @, of
® such that & = Modg ®,.

3.8 Exercise. A set @ of S-sentences is called independent if no pe ® is a
consequence of ® — {¢}. Show:

(a) Every finite set ® of S-sentences has an independent subset ®, such that
Modg @ = Modg @, .

(b) If S is at most countable then every A-elementary class of S-structures
has an independent system of axioms. (Hint: Start by defining an axiom
system @q, @y, @1, ... suchthat =¢;,; > @;forie N))

3.9 Exercise. Let @ be the finite system of axioms for vector spaces expressed
intermsof S = {F, V, +,-0, 1, ®, e, *} (cf. [IL.7.2). Show:

(a) For every n the class of n-dimensional vector spaces is elementary.
(b) The class of infinite-dimensional vector spaces is A-elementary.
(¢) The class of finite-dimensional vector spaces is not A-elementary.

§4. Elementarily Equivalent Structures

We begin by introducing two new concepts.

4.1 Definition. (a) Two S-structures U and B are called elementarily equiv-
alent (written: W = B)if for every S-sentence ¢ we have U = @ iff B k= .

(b) For an S-structure N let Th(A) := {¢ € LS| A = ¢}. Th(N) is called the
(first-order) theory of .

4.2 Lemma. For S-structures W and ‘B,

B=U iff B ThA).
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PrOOF. If B = A then, since A = Th(A), also B = Th(A). Conversely, if
B = Th(A) then, given an S-sentence ¢, we examine the two possibilities:
(i) If A = ¢ then ¢ € Th(A) and hence B = ¢. (i) If not A = ¢, then
—1¢ € Th(A); thus B = ¢ and therefore not B = ¢. O

In the following let A be a fixed S-structure. We consider

(1) the class {B|B =~ W} of structures isomorphic to A;
(2) the class of structures which satisfy the same sentences as U, i.e., the
class {B|B = A} of structures elementarily equivalent to .

From the isomorphism lemma II1.5.5 it follows directly that isomorphic
structures are elementarily equivalent, that is,

(+) {B|B =AU < {B|B=UAL

4.3 Theorem. (a) If Wis infinite then the class {B|B = W} is not A-elementary;,
in other words, no infinite structure can be characterized up to isomorphism
in a first-order language.

(b) The class {B|B =W} is A-elementary, in fact {B|B =AU} =
Modg Th(). Moreover, {B|B = W} is the smallest A-elementary class
which contains U.

From 4.3 together with (+) we obtain the result that for infinite 2 the
class {B{B = AU} must be a proper subclass of {B|B = WU}; in particular:

4.4 Corollary. For each infinite structure there exists an elementarily equiv-
alent, nonisomorphic structure. O

PROOF OF 4.3. (a) We assume U to be infinite and @ to be a set of S-sentences
such that

(*) Modg® = {B|B = A}.

® has an infinite model, and hence by 2.3, it has a model B with at least as
many elements as the power set of A. Hence B is not isomorphic to A, in
contradiction to (*).

(b) From 4.2 it follows immediately that {8|8 = A} = Modg Th(2).
Now, if Modg ® is another A-elementary class containing 2, then A = @
and therefore B = © for every B such that B = U; hence {B|B = A} =
Modg @. O

4.3(b) shows that a A-elementary class contains, together with any given
structure all elementarily equivalent ones. In certain cases one can use this
fact to show that a class & is not A-elementary. To do this one simply specifies
two elementarily equivalent structures, one of which belongs to R, and the
other does not. We illustrate this method in the case of archimedean fields.
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An ordered field & is called archimedean if for every a € F there is a
natural number »n such that

a<f1f +...41°
B
n-times

For example, the ordered field of rational numbers and the ordered field R~
of real numbers are archimedean. We show that there is an ordered field
elementarily equivalent to ™ which is not archimedean. Then we shall
have obtained:

4.5 Theorem. T he class of archimedean fields is not A-elementary.

PROOF. Let
Y=ThRH U {0<x1<x,2<x,...},

where 0, 1, 2,... stand for the S, -terms 0, 1, 1 + 1,... . Every finite subset of
¥ is satisfiable, for example, by an interpretation of the form (R <, ), where
B(x) is a sufficiently large natural number. By the compactness theorem
there is a model (B, ') of W. Since B = Th(R <), B is an ordered field
elementarily equivalent to R <, but (as shown by the element f'(x)) it is not
archimedean. 0

The application of the compactness theorem in the preceding proof is
typical and has already been used several times (cf. 2.3, 3.5). In each case the
problem consists in finding a structure with certain properties which can
be expressed in first-order language by means of a suitable set ¥ of formulas.
To prove satisfiability of ¥ one employs the compactness theorem. In the
preceding proof W contains (in addition to Th(R<)) formulas which
guarantee that there is an element which violates the archimedean ordering
property. The compactness theorem says in this case that, from the existence
of ordered fields with arbitrarily large “finite” elements, one can conclude
the existence of an ordered field with an “infinitely large” element. We shall
give some further examples.

The axiom system Il from IIL.7.5 characterizes the structure 9t up to
isomorphism. However, 9 cannot be characterized up to isomorphism by
means of first-order formulas (cf. 4.4). Hence the induction axiom, being the
only second-order axiom of I1, cannot be formulated as a first-order formula
or as a set of first-order formulas.

A structure which is elementarily equivalent, but not isomorphic, to
N is called a nonstandard model of arithmetic. The proof of 2.3 shows that
there exists an uncountable nonstandard model of arithmetic. We now prove:

4.6 Skolem’s Theorem. There is a countable nonstandard model of arithmetic.

PROOF. Let
Y:=ThMu {1x=0,x=1, 1x=2,...}
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Every finite subset of ¥ has a model of the form (9N, B), where f(x) is a
sufficiently large natural number. By the conipactness theorem there is a
model (U, B) of ¥, which by the Léwenheim-Skolem theorem we may
assume to be at most countable. U is a structure elementarily equivalent to
IN. Since for m # n the sentence —1m = n belongs to Th(M), A is infinite and
hence it is countable. 9t and A are not isomorphic, since an isomorphism n
from 9% onto A would have to map n = n™ to n™ (cf. (i) in the proof of I111.5.5),
and thus B(x) would not lie in thé image of =. O

Considering the set Th( ) u {mx=0, ix=1, Ix=2,...}, we
obtain analogously:

4.7 Theorem. There is a countable structure elementarily equivalent to M~
which is not isomorphic to R <. (In other words, there is a countable nonstandard
model of Th(M~).) O

What do nonstandard models of Th(9) or Th(9 <) look like? In the
following we gain some insight into the order structure of a nonstandard
model W of Th(9t™) (and hence also into the structure of a nonstandard
model of Th($h); cf. exercise 4.9).

In 9t~ the sentences

Vx(0=x v 0<x),
O0<IlAax<x—-1=xv1<ux),
l<2AVx(l<x—-2=xvVv2<X),...
hold. They say that 0 is the smallest element, 1 the next smallest element after

0, 2 the next smallest element after 1, and so on. Since these sentences also
hold in U, the “initial segment” of W looks as follows:

VR PR VR

! |

In addition, A contains a further element, say a, since otherwise U and N
would be isomorphic. Furthermore, 9% and hence ¥ satisfy a sentence ¢
which says that for every element there is an immediate successor and for
every element other than O there is an immediate predecessor. From this it
follows easily that 4 contains, In addition to a, infinitely many other elements
which together with a are ordered by <“ like the integers:

|—-—'_.{—> 1
04 14 24 i

04 14 24 a a+4a



98 VI. The Léwenheim-Skolem Theorem and the Compactness Theorem

The reader should give a proof of this and also verify that between every two
copies of (Z, <?) there lies another copy.

The examples in this and the previous section show that there are impor-
tant classes of structures which cannot be axiomatized in a first-order
language. On the other hand, this weakness of expressive power also has
agreeable consequences. For example, the argument establishing that the
class of archimedean fields is not axiomatizable yields a proof of the existence
of non-archimedean ordered fields; and the fact that the class of fields of
characteristic 0 cannot be axiomatized by means of a single S, -sentence is
complemented by the interesting result 3.3. Using similar methods, one can
obtain structures elementarily equivalent to the ordered field R= of real
numbers which contain, in addition to the real numbers, infinitely large
elements and infinitely small positive elements (infinitesimals). Such struc-
tures can be used in a development of analysis which avoids the ¢ — o-
technique (nonstandard analysis; cf. [14], [23]). Thus we see that the first-
order languages turn out to be a useful tool in various areas of mathematics.
Semantic investigations of this kind belong to the subject called model
theory. We refer the reader to [4] for further information.

4.8 Exercise. Show that a sentence which is valid in all non-archimedean
ordered fields is valid in all ordered fields.

4.9 Exercise. Let the S, -structure U be a model of Th(M). Let the binary
relation < be defined as follows:

For alla,be A, a <4biff a # b and there is ¢ € 4 such that
a+4c=bh

Show that (A, <*) is a model of Th(Jt ).

4.10 Exercise. If % is a model of arithmetic (that is, U = Th(M)) and if
a, b € A, then a is said to be a divisor of b (written: a|b) if a*¢ = b for a
suitable ¢ € 4. Let Q be a set of prime numbers. Show that there is a model
AU of arithmetic which contains an element a whose prime divisors are just
the members of Q, that is, for every prime p:

1+ ...+14a iff peQ.
—— e
p-times
Conclude that there are uncountably many pairwise nonisomorphic count-

able models of arithmetic.

4.11 Exercise. Let 21 = (4, <) be a partially defined ordering (cf. 111.6.4).
We say that <4 (or also (4, <)) has an infinite descending chain, if there
are elements ag, ay,a,, .. .in the field of <“suchthat... <*a, <4a, <4aq,.
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Show:

(@) (N, <) contains no infinite descending chain; on the other hand, if 4
is a nonstandard model of Th(9t<), then (4, <*) contains an infinite
descending chain.

(b) Let < € Sand ® = L3. Assume that for every m € N there is a model U
of @ such that (4, <%) is a partially defined ordering and the field of
<“ contains at least m elements. Then there exists also a model B of @
such that (B, <®) is a partially defined ordering containing an infinite
descending chain.



CHAPTER VII
The Scope of First-Order Logic

In the introductory chapter we realized that investigations into the logical
reasoning used in mathematics require an analysis of the concepts of mathe-
matical proposition and proof. In undertaking such an analysis, we were
led to introduce the first-order languages. Further we defined a notion of
formal proof which corresponds to the intuitive concept of mathematical
proof. The completeness theorem then shows that every proposition which
is mathematically provable from a system of axioms (and thus follows from
it) can also be obtained by means of a formal proof, provided the proposition
and the system of axioms admit a first-order formulation.

In this chapter we discuss what has been achieved so far and what impli-
cations this has for the foundations of mathematics. To start our discussion
let us consider the following questions:

(1) One goal of our investigations was a clarification of the notion of proof.
However, we carried out mathematical proofs before the notion of proof
was made precise. Are we not trapped in a vicious circle? Further, even
if there are no problems of this kind in our approach, how can we then
justify the rules of the sequent calculus &?

(2) We realized, particularly in Chapter VI, that the first-order languages
have certain deficiencies in expressive power. Hence the question: What
effect does the restriction to first-order languages have on the scope of
our investigations?

We deal with the second question in §2. There we shall see that the first-
order languages are in principle sufficient for the mathematics of today.
Hence the following discussion, pertaining to the first question, applies, in
fact, to the whole of mathematics.
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§1. The Notion of Formal Proof

In answering question (1), we want to show that no mathematical proofs are
needed to introduce the notion of formal proof. In our discussion we also
investigate the nature of the sequent rules and consider possible means of
justifying them.

In §2 we shall argue that a finite set S of concretely chosen symbols
suffices to represent the statements and arguments arising in mathematics.
Therefore in this discussion we can specify the symbols as concrete signs;
thus terms, formulas, and sequents are concrete strings of symbols and not
abstract mathematical entities such as are, for example, formulas in a
language whose symbol set is {c,|r € R} (cf. IL.1).

The notion of formal proof is based on the manipulation of symbol
strings such as terms, formulas, and sequents. These manipulations are
governed by a series of calculi, like the calculus of terms and the sequent
calculus. The application of rules in these calculi consists of simple syntactic
operations. We illustrate this in the case of the sequent calculus. To clarify
the aspect we have in mind let us start by a comparison with the rules of
chess.

The rules of chess permit certain operations on concrete objects, the chess
pieces. Applying a rule, that is, making a move, consists of proceeding from
one configuration of pieces to another. Each individual rule of chess is so
simple that everyone who knows the rules—even if he is not a chess player—
can carry out moves by himself, or can check moves to determine whether
they were made according to the rules.

A similar situation pertains in the case of sequent rules. Clearly the rules
are motivated by the intended meanings (of =, v, =,...), but their applica-
tion does not require any knowledge of these meanings: one merely performs
concrete syntactic operations on strings of symbols. Anyone who knows the
rules—even if he is not a logician or a mathematician—can apply them and
can check whether an application has been carried out correctly. Admittedly,
when dealing with sequents, we have often relied on mathematical proposi-
tions (for example, we invoked the unique decomposition of a sequent into
formulas when speaking of the succedent). But this can be avoided if, when
applying a rule, we not only note the sequent, but also keep a record of how
the symbol strings in it were obtained. We give some examples.

(a) Let ®, and @, be sequents which occur in a derivation. One reads from
the record accompanying the derivation that ®, was obtained by forming
a string from ¢g,..., ¢, and that ®, was obtained similarly from
Yo, ..., Y, If one wants to apply the rule (v A), for example, one must
first check whether n = m > 1, and whether the symbol strings ¢; and
W, agree for every i # n — 1. If so, one can apply (v A) by forming the
symbol string @q ... @, 2(@,—y vV ¥,_ )@, from the components
Poy-ves Pnezs Pue1s Yn— 1, @n, (, vV, and ). Moreover, one notes in the
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record that this symbol string was obtained from the components
Pos s On—2, ((pn—l v l//n—l)’ and Dn-

(b) An application of the rule (=) consists of writing down a sequent of the
form ¢ = t, where the term ¢, for its part, has to be given by means of a
derivation in the calculus of terms (cf. I1.3.1).

(c) Similarly, when one uses the rule (3A) to proceed from the sequent

| ) % ¥ to the sequent I' 3x¢ y, one must supply a derivation of ¢xy¢ 4
X

in the substitution calculus (cf. II1.8.11), and, for every x in I" 3x¢ , one
must supply a derivation of y y in the calculus of nonfree occurrence for
variables (cf. I1.5.2) in order to show that the condition “y is not free in

I' 3xe ¢ is fulfilled. Then, starting from the sequent I" ¢ % ¥, one needs

only to write down the sequent I" 3x¢ .

From these examples it becomes clear that an application of the sequent
rules consists of purely syntactic manipulations which can be carried out
without any reference to mathematical arguments. Since, by definition, a
formal proof is just a sequence consisting of sequents, each of which is
obtained by an application of a sequent rule to preceding sequents, it is
obvious from our previous remarks that no mathematical proofs are needed
in order to introduce the notion of formal proof. Thus our approach is not
circular. The proofs we have given before defining the notion of formal
proof, and the mathematical arguments we have used in building up the
semantics, merely served the purpose of gaining insight into first-order
languages and of motivating our development.

However, a word of warning is in order when considering this reduction
of the notion of proof to a triviality by the calculus of sequents: We have seen
that no mathematical talent, only patience, is needed to verify a formal proof
in accordance with the rules; but it is a completely different matter to under-
stand the idea of a proof, not to speak of developing such ideas oneself.
Likewise, in chess there is also a great difference between knowing the rules
and being able to checkmate a skillful opponent. Thus when determining
the notion of formal proof we did not really touch upon the more creative
part of mathematical activity (and this includes not only the development of
proofideas, but also the introduction of adequate concepts, setting up suitable
systems of axioms, and finding new interesting conjectures).

Does our formal notion of proof provide a justification of common
mathematical reasoning? Certainly not; for we have merely imitated
methods of proof in the framework of a precisely defined language. However,
we can at least claim that the sequent rules correspond to the normal usage
of connectives, quantifiers, and equality in mathematics. For example, the
v -rules reflect the use of the inclusive “or”, according to which the disjunc-
tion of two propositions is true if and only if at least one of the propositions
is true. Admittedly, such usage of “or™ rests on certain assumptions; for
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example, it must be meaningful to speak of the truth or falsehood of a
mathematical proposition, and every such proposition must be either true
or false (tertium non datur). In traditional mathematics (which in this
regard is also called classical mathematics) these assumptions are accepted.
Thus the rules of the sequent calculus are based upon the classical usage of
the logical connectives.

Some mathematicians engaged in foundational questions, among them
intuitionists, do not share the classical point of view. An intuitionist associates
with the assertion of a mathematical proposition the requirement that it be
proved in a “constructive” way. For instance, an existential statement must
be proved by presenting an example, and a disjunction must be proved by
establishing one of its members. To illustrate this we consider the following
two statements.

A:Everyeven number >4 isthe sum of two primes (Goldbach’s
conjecture);

not A: Not every even number >4 is the sum of two primes.

From the classical point of view (4 or not A) is true. However, an intuitionist
cannot assert (A4 or not A)since neither the proposition 4 nor the proposition
(not A) has hitherto been proved (even using classical methods).

This example already shows that mathematics as pursued by an in-
tuitionist, the so-called intuitionistic mathematics (cf. [17]), differs consider-
ably from classical mathematics. Intuitionists investigate “mental mathe-
matical constructions as such, without reference to questions regarding the
nature of the constructed objects, such as whether these objects exist inde-
pendently of our knowledge of them” (cf. [17], p. 1). By contrast, some
mathematicians adopt the classical point of view from the conviction that
“the objects in mathematics, together with the mathematical domains,
exist as such, like the platonic ideas” ([24], p. 1), i.e., that propositions
concerning these objects describe properties which either do or do not hold,
and hence are either true or false.

We see from this discussion that the possibilities for justifying methods
of mathematical reasoning (and specifically for justifying a proof calculus)
depend essentially on epistemological assumptions. We shall continue to
adopt the classical point of view.

§2. Mathematics Within the Framework of
First-Order Logic

In this section we wish to discuss the latter question raised at the beginning
of the chapter: How serious is the restriction to first-order languages?

To treat this question we start with the example of arithmetic. In this
case, the weakness of the expressive power of first-order languages manifests
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itself in the fact that the structure i, = (N, g, 0) (cf. II1.7.3) cannot be charac-
terized up to isomorphism in L!¢-% On the other hand, according to
Dedekind’s theorem, R, can be characterized in a second-order language by
the Peano axioms (cf. 111.7.4):

(P1) Vx 1gx = 0.
(P2) VxVy(ox =gy - x = y).
(P3) VX((X0 A Vx(Xx — Xax)) - Vy Xy).

Let us call a structure which satisfies (P1)-(P3) a Peano structure. Then we
can formulate Dedekind’s theorem as follows:

2.1. Any two Peano structures are isomorphic.

Since Peano structures cannot be characterized in the first-order language,
one might suspect that the result 2.1 cannot be formulated in the framework
given by first-order logic, and in particular, that its proof in II1.7.4, which
involves (P1)-(P3), cannot be carried out within this framework. Never-
theless this can be achieved as we now show.

First let us note that in 2.1 a statement is made about {g, 0}-structures.
We want to interpret 2.1 as a statement about a domain which comprises
as elements all Peano structures and also with any two such structures an
isomorphism between them. Furthermore this domain should contain the
elements and subsets of Peano structures, since these also play a rdle in the
formulation of (P1)-(P3) and in the proof of 2.1.

In order to avoid drawing arbitrary boundaries and to enable us to
apply our discussion to other propositions besides 2.1, we shall consider as
domain the totality of all objects which are treated in mathematics; this we
shall call the (mathematical) universe. The universe contains not only
“simple” objects, such as the natural numbers or the points of the euclidean
plane, but also “more complicated ” objects, such as sets, functions, structures,
or topological spaces. A mathematician assumes in his arguments that this
universe has certain properties: for example, that for every two objects a,
and a, the set {a,, a,} exists, likewise for any two sets M,, M, the union
M, U M,, and for every injective function f the inverse f ~—'. Mathematical
statements can then be regarded as propositions about the universe. From
this point of view, 2.1 says that for every two Peano structures 2% and B in
the universe there is another object in the universe which is an isomorphism
between A and B.

Now it is possible to present in a suitable first-order language a rather
simple set of sentences expressing all the properties of the universe which
mathematicians use. Proposition 2.1 can also be formalized in this language.
In other words, 2.1 can be formalized as a proposition about the universe
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in a first-order language LS appropriate to the universe, just as the proposi-
tion “there is no largest real number” can be formalized as a proposition
about the structure (R, <®) in the language L' <" appropriate to (R, <®).

We carry out some steps of this idea more carefully: A preliminary analysis
of the totality of mathematical objects leads us to a symbol set which is
suitable for the universe. In a second step we present parts of a system @,
of axioms which express those properties of the universe used in mathematics.
(A complete presentation of such a system ®, follows in §3.) Finally, we
indicate how to obtain a first-order formalization of 2.1.

When introducing the universe, we spoke of “simple” objects (numbers,
points,...) and “complex” objects (sets, functions, ...). For the sake of
simplicity we make use of the empirical fact that the whole spectrum of
“complex” objects can be reduced to the concept of set. (We shall carry out
this reduction for ordered pairs and functions.) We call the “simple” objects
urelements. Thus, the universe contains only urelements and sets. The sets
consist of elements which are either urelements or else sets themselves.
Therefore @, essentially collects basic properties of sets and hence is called
a system of axioms for set theory.

We use the unary relation symbols U (“... is an urelement™) and M
(“...is a set™) to distinguish between urelements and sets, and we use the
binary relation symbol € for the relation “is an element of ...” . Thus we are
led to the symbol set §:= {U, M, €}.

Now we give four axioms from ®, which formalize simple properties of
the universe.

(A0) Vx(Ux v Mx)
“Every object is an urelement or a set”.

(AD) Vx (Ux A Mx)
“No object is both an urelement and a set”.

(A2) Vx Vy((Mx A My AVz(zexeozey) »x =)
“Two sets which contain the same elements are equal ™.

(A3) VxVy3z(Mz AVu(uez U =x v u=y))
“For every two objects x and y, the pair set {x, y} exists”.

The set z, whose existence is guaranteed by (A3), is uniquely determined
by (A2). Repeated application of (A3) yields the existence of the set {{x, x},
{x, y}}. This set is normally written (x, y) and called the ordered pair of x
and y. It is not difficult to show from (A0)-(A3) that

(x’ y) = (x/, y/) iff x=x" and y = V.
Ordered triples can then be introduced by

(x, y, 2) = ((x, y), 2).
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In order to obtain formalizations which are easier to read, we introduce a
number of abbreviations.

(c) xcy forMx A My AVa(zex—zey).
(“x is a subset of y”)

(Instead of treating “x < y” as an abbreviation for a formula of L® we could
have added the binary relation symbol < to S and expanded @, by adding
the axiom

Vx¥y(x < y o> (Mx A My A Vz(z € x - z€ Y)).
Both approaches are equivalent, as we shall see in VIIL.1.)

(OP) OPzxy forMz A Vu(uezeo(Mu A Vo(veueov = x)
vVvveue (v =x v v=y))))
(“z is the ordered pair of x and y™)

(OT) OTuxyz for Mu A Fv(OPuvz A OPuxy)
(" u is the ordered triple (x, y, z) as defined above”)

(E) Euxy for Mu A 3z(zeu A OPzxy)
(“The ordered pair (x, y) is an element of u™)

(F) Fu for Mu A Vz(z € u — 3x 3yOPzxy) A
Vx Vy Vy' ((Euxy A Euxy) —y =y’)
(“u is a function, that is, a set of ordered pairs (x, y), where y is the
value of u at x™).

By means of (F) the concept of function is reduced in the usual manner to
that of set: a function f: A — B is considered as the set {(x, f(x))|x € A},
which is also referred to as the graph of f.

(D) Duv for Fu A Mv A ¥x(x € v «> 3y Euxy)
(“v is the domain of the function u”)

(R) Ruv for Fu n Mv A Vy(y € v & 3x Euxy)
(“v is the range of the function u”).

For simplicity we regard a {g, 0}-structure as an ordered triple (x,y, z)
consisting of a set x, a function y: x — x, and an element z of x. Then the
following abbreviation “ PSu” expresses that u is a Peano structure, whereby
parts (1), (2), and (3) are formulations of the Peano axioms (P1), (P2), and
(P3), respectively.

(PS) PSu for 3x 3y 3z(QTuxyz A Mx A z€ X
A Fy A Dyx A 3o(Ryv A v C X)A
(1) Yw 1 Eywz A
(2) Vw Vw' Yo((Eywo A Eyw'v) > w = w') A
B) VX (X cx AzexX
AYwYo((we x A Eywy) » v € X)) - X' = x)).
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(&3]

The final abbreviation “/wuu’” states the property that w is an isomorphism
of the Peano structure u onto the Peano structure u':

() Iwuu’ for PSu A PSu’ A Fw
Adx 3y 3z Ix’ 3y’ 32QTuxyz A QTu'x'y'z’
A Dwx A Rwx’
AYr Vs YU ((Ewrt' A Ewst) > r = s)
A Ewzz' A YoVu' Yr((Eyvr A Ewov') — 3r(Ewrr’ A Ey'v'r))).

Thus the following is a formalization of 2.1:
(+) Yu Yo(PSu A PSv — 3wlwuv).

Clearly, (+) is a {U, M, g}-sentence. So we have attained our goal of
formulating 2.1 within a first-order language. This was possible because we
did not distinguish between different types of mathematical objects, such
as natural numbers and sets of natural numbers, but simply treated all
objects in the universe as first-order ones (compare (P3) and (3) in (PS)).
We can achieve even more: Recall that the system @, (which we have given
only in part) captures all properties of the universe needed for mathematical
reasoning. By rewriting in LS the proof of Dedekind’s theorem 2.1 (cf. 111.7),
one can obtain a proof that leads from axioms of @, to the assertion (4 ) using
only sequent rules. Hence we have:

2.2, ®y+— Vu Vo(PSu A PSv — 3wlwup).

This procedure can be generalized:

Experience shows that all mathematical propositions can be formalized in
L® (or in variants of it), and that mathematically provable propositions have
Jormalizations which are derivable from ®,. Thus it is in principle possible to
imitate all mathematical reasoning in LS using the rules of the sequent calculus.
In this sense, first-order logic is sufficient for mathematics. At the same time
this experience shows that the properties of the universe which are expressed
in @, are a sufficient basis for a set-theoretic development of mathematics.
Thus @, is a formalization of the set-theoretic assumptions about the universe
upon which the mathematician ultimately relies. Since these set-theoretic
assumptions can be viewed as the background for all mathematical con-
siderations, we call @, in this connection, a system of axioms for background
set theory.

On the other hand, @, itself, like any other system of axioms, can also
be the object of mathematical investigations. For example, one can ask
whether @, is consistent or study the models of ®,. Such a model has the
form A = (4, U*, M*, €*) and is, like every structure, an object of the
universe, that is, an object in the sense of background set theory. The same
is true of the domain 4. Thus as an object of the universe, A is distinct from
the universe. (In particular the universe is not the domain of a model of ®,.)



108 VII. The Scope of First-Order Logic

Nevertheless, in a model U = (4, U4, M4 €*) of ®@,, all set-theoretical
statements hold which are derivable from ®, ; but note that, for example,
a e’ b (for a, b € A) does not mean that « is an element of b, ie., that ae b
holds.

Let us emphasize once again that ®, plays two réles: It is both an object
of mathematical investigations and a formalized description of basic proper-
ties of the universe. In other words, it is both a mathematical object and a
framework for mathematics.

Thus we have two levels, “object set theory ” and “background set theory”,
which must be carefully distinguished. Many paradoxes arise from a con-
fusion of these two levels. In §4 we shall discuss this in more detail. For the
present we merely mention Skolem’s paradox. 1t is well known that there are
uncountably many sets (for example, there are uncountably many subsets of
N). This fact can be formalized by a sentence ¢, which is derivable from ®@.
By the Lowenheim-Skolem theorem there is a countable model A of @,
and hence of ¢. The countable model A thus satisfies a sentence which says
that there are uncountably many sets in U!

§3. The Zermelo-Fraenkel Axioms for
Set Theory

We now present in full a system of axioms for set theory. For a more detailed
exposition we refer the reader to [8] or [9].

In §2 we assumed that the universe consists only of sets and urelements,
and we saw with the help of set-theoretic definitions for concepts such as
“ordered pair” and “function” that this assumption is really no restriction.
Furthermore, experience has shown that one can even replace the urelements
arising in mathematics by suitable sets. Hence in what follows we shall
assume that the universe consists only of sets. Later, as an example, we shall
give a set-theoretic substitute for the natural numbers.

Since we are abandoning the use of urelements, the symbols U and M
become superfluous. Therefore we formulate the axioms in L'®, where the
variables are intended to range over the sets of the universe. The resulting
system of axioms, called ZFC, is originally due to Zermelo and Fraenkel,
and includes the axiom of choice.

ZFC contains the axioms EXT (the axiom of extensionality), PAIR (the
pair set axiom), SUM (the sum set axiom), POW (the power set axiom), INF
(the axiom of infinity), AC (the axiom of choice), and the axiom schemes SEP
(separation axioms) and REP (replacement axioms).!

EXT: VxVy(Vz(zex—zey) > x = ).
(Two sets which contain the same elements are equal.)

! Often one also includes the so-called axiom of regularity.
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SEP: For each ¢(z, xq, - .., X,—1)* and arbitrary distinct variables x, y
which are also distinct from z and the x;, the axiom

V vxn 1\7’x3y\7’( eyH(ng/\(p(Z,Xo,...,X"_l))).

(Given a set x and a property P which can be formulated by an
{e}-formula, the set {z € x|z has the property P} exists.)

PAIR: VxVy3zVwweze(w=x v w=y)).

(Given two sets x, y, the pair set {x, y} exists.)
SUM: Vx 3yVz(zey—Iwwex A zew)).

(Given a set x, the union of all sets in x exists.)
POW: Vx3dyVz(zeyeVwwez > we X)).

(Given a set x, the power set of x exists.)

In order to formulate the remaining axioms more conveniently, we in-
troduce some defined symbols. The considerations in VIIL.1 show that
formulas which contain these symbols can be regarded as abbreviations of
{e}-formulas. The symbols and their definitions are:

& (constant for the empty set):
Vg =yeVzzey).
c (relation symbol for the subset relation):
VxVy(x ¢ yeoVz(z € x > z€y)).
{, } (function symbol for pairing):
VxVyVz({x,y} =z Vw(wezeo(w = x v w=y))

(For the term {y, y} we often write the shorter form {y}.)
v (function symbol for the union):

VxVyVzxuy=zeVwwezeo(wex v we y))
o (function symbol for the intersection):
YVxVyVz(xny=zeVwweze(Wex A wey))).
P (function symbol for the power set operation):
Vx Vp(Px = yeo Vz(zey oz € X))
The remaining axioms of ZFC are as follows:

INF: 3x(Bex A Vy(yex—-yu {y} €x)).
(There exists an infinite set, namely a set containing ¢4, {5},

@A, ... )

Neumann) has become customary because of numerous advantages.
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REP: For each ¢(x, y, Xg, ..., X,~;) in L'® and all distinct variables u, v
which are also distinct from x, y, x,, ..., X,_, the axiom

va T vxn—l(vx 3=1y(p(x’ Vs Xg, -0 e xn—l)
—>VudoVi(y ev o Ix(x €u A @(X, ¥, Xo, -+, Xam1)))-

(If for parameters xg,..., X,-; the formula @(x, ¥, X, ..., X,—1)
defines a map x — y, then the image of a set is again a set.)

AC: Vx((MJex A VuVo((uex AveEx A Ty =0v) 2un v =)
- 3yVwwex -3 'zzewn )

(Given a set x of nonempty pairwise disjoint sets, there exists a set
which contains exactly one element of each set in x.)

Within the framework of ZFC one can now introduce the notions of
ordered pair, ordered triple, function, etc. as we did in the preceding section.
Moreover, as already mentioned above, experience shows that ZFC also
permits one to substitute suitable sets for urelements, as we demonstrate
below in the case of the natural numbers. Thus the insight stated (for @) in
the previous section also applies to ZFC: All mathematical propositions can
be formalized in L', and provable propositions correspond to sentences
derivable from ZFC.

We now effect a set-theoretical substitute for the natural numbers.
Moreover in our present framework we exhibit a Peano structure which
can play the réle of R, .

The sets 0:= &, 1 :={}, 2:={, {@}},... will play the rdle of the
natural numbers 0, 1, 2,.... Thus 0=, 1 = {0}, 2= {0, 1}, and in
general p = {0, 1,..., n.— 1}. Let us call a set inductive if it contains (%, and
if whenever it contains x it also contains x U {x}; then the smallest inductive
set assumes the role of RN. It remains to show that the statement “there is a
smallest inductive set” is derivable in ZFC. We give a guideline as to how to
proceed. By INF there exists an inductive set, say x. Using SEP we obtain
the set

w = {z|z € x and for all inductive y, z € y},

which can be shown to be the smallest inductive set. The function v: w — o,
where v(x) = x U {x} for x € w (i.e., the function v = {(x, x U {x})|x € w})
plays the r6le of the successor function. One can then see that (w, v, 0) is a
Peano structure.

We close our presentation of ZFC with an important methodological
aspect by briefly discussing the so-called continuum hypothesis. This hypo-
thesis was stated at the end of the nineteenth century by G. Cantor and has
had a crucial influence on the development of set theory.

Two sets x, y are said to be of the same cardinality (written: x ~ y) if there
is a bijection from x to y. A set is finite if and only if it is of the same cardinality
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as an element of w; it is countable if it 1s of the same cardinality as w. The set
R of real numbers (the “continuum ) is uncountable (cf. exercise I1.1.3).
Now the continuum hypothesis states: Every infinite subset of R is either
countable or of the same cardinality as R.
Using canonically defined symbols R, Fin, ..., this statement can be
formulated in L in the following form:

Vx((x € R A 71Fin x) - (Count x v x ~ R)).

This formula is denoted by “CH” (Continuum Hypothesis). The question
whether the continuum hypothesis holds corresponds to the question whether
CH is derivable from ZFC,

K. Godel showed in 1938:

3.1. If ZFC is consistent then not ZFC - 71CH,
and P. Cohen showed in 1963:

3.2. If ZFC is consistent then not ZFC +— CH.

Thus if we assume that ZFC is consistent (cf. §4), then neither CH nor
—1CH is derivable from it.

According to previous remarks, ZFC embodies our knowledge of the
intuitive concept of set which mathematicians in fact use. In the light of the
results of Gédel and Cohen we see that our concept is so vague that it does
not definitely decide the truth or falsehood of the continuum hypothesis.
One can even show (cf. X.7) that it is not possible to give “explicitly” an
axiom system W for set theory, which decides every set-theoretic statement ty
(in the sense that either ¥ I~ y or ¥ - —y).

§4. Set Theory as a Basis for Mathematics

In this section we supplement our previous discussion by treating three
aspects: In 4.1, taking ZFC as an example, we show how the question of the
consistency of mathematics may be made precise by the use of suitable
first-order axioms sufficient for mathematics. In 4.2 we discuss misunder-
standings which may arise from a confusion of object set theory with back-
ground set theory. Finally, in 4.3 we show how first-order logic, like every
other mathematical theory, can be based on set theory.

4.1. In the preceding sections we have emphasized the experience that
provable mathematical statements can be formalized by {c}-sentences
which are derivable from ZFC. Taking this for granted, suppose it were
possible in mathematics to prove both a statement and its negation. Let ¢
be a formalization of this statement. Then both ZFC I ¢ and ZFC |- —¢
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would hold and thus ZFC would be inconsistent. Therefore, a proof that
ZFC is consistent could be regarded as strong evidence for the consistency
of mathematics. In fact, the question of the consistency of ZFC is one of the
key problems of foundational investigations. In an explicit formulation it
asks: Is there a derivation in the sequent calculus of a sequent of the form
Qo - Pu_1(@ A T19), Where ¢@q, ..., ¢, are ZFC axioms? In this form,
the problem is obviously of a purely syntactic character. Therefore one might
hope to solve it by elementary arguments concerning the manipulation of
symbol strings by sequent rules. (Hilbert also demanded a proof of such an
clementary nature to recognize “that the generally accepted methods of
mathematics taken as a whole do not lead to a contradiction™.) However, by
Godel’s Second Incompleteness Theorem, such a consistency proof for ZFC is
not possible (cf. X.7). A proofis not even possible if one admits all the auxiliary
means of the background set theory described by ZFC.* Nevertheless, the
fact that ZFC has been investigated and used in mathematics for decades
and no inconsistency has been discovered, attests to the consistency of ZFC.
In the following considerations we assume ZFC to be consistent.

4.2. We investigate the relationship between background set theory and
object set theory by first discussing Skolem’s paradox (cf. §2). In terms of
ZFC the paradox can be formulated as follows: ZFC, being a countable,
consistent set of sentences, has a countable model A = (4, €*) according to
the Lowenheim-Skolem theorem. On the other hand, U satisfies an {e€}-
sentence ¢ (derivable from ZFC) which says that there are uncountably
many sets in A. If for simplicity we again use defined symbols, we can write

@ = dx 13y(Function y A Injective y A Domain of y = x
A Range of y = ).

@ symbolizes the property of the universe that there exists an uncountable
set (and hence also that uncountably many sets exist). Since U is a model
of ZFC, we have U = ¢, i.e., there is an a € A (for x) such that

(*) A = 13p(Function y A --- A Range of y = w)[a].

The set {be A|be”a} is at most countable because it is a subset of A.
Therefore in the universe there exists an injective function whose domain is
{be A|b c* a} and whose range is a subset of w. This does not contradict
(*). For (x) merely says that in 2 there is no injective function defined on a
with values in @*, or more exactly, that there isno b € 4 such that Function®b,
Injective” b, and Domain® b = “ @w*; in other words, a is uncountable in 2.

We see from this example that it is necessary to distinguish carefully
between the set-theoretical concepts (which refer to the universe) and their
meaning in a model.

4 Since on the basis of background set theory we proved the correctness of the sequent calculus
(cf. 1V.6.2, 7.5), the preceding remark says in particular that on this basis one cannot show that
ZFC is satisfiable, i.e., one cannot prove the existence of a model (A4, €*) of ZFC in the universe.
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Let us consider another example. The set of sentences
¥:=ZFCu {c,ewlre R} U {Tc, = ¢|r,se R r # s}

is satisfiable, as one can easily show using the compactness theorem. Let
B = (B, €®) be a model of ¥ (more exactly, the {€}-reduct of a model of ).
Then {b € B|b €® P} is an uncountable set. On the other hand, »® (being
the set of natural numbers in B) is Countable® (that is, Countable® w?).

As before let A = (4, €*) be a countable model of ZFC. Then
{ae Alae* v} is countable because it is a subset of A, and we obtain:

(1) There is no bijection of {b € B|b €® w®} onto {a € Ala e* v},

since one set is uncountable whereas the other one is countable. At first
glance (1) seems to contradict Dedekind’s theorem, according to which
every two Peano structures are isomorphic. To analyze the situation, we
take a formalization i of this theorem as an {€}-sentence

iy == Vx Vy((Peano structure x A Peano structure y)
— X isomorphic to y).

Then we have
Q) ZFC+ .

However, (1) and (2) do not contradict each other. (2) merely says that
in each individual model € of ZFC every two Peano structures are isomorphic
(in the sense of €), whereas (1) speaks of Peano structures in different models.

4.3. We provide a set-theoretic development of first-order logic, i.e., we show
that its concepts can be based on the concept of set, as we have done already
for functions and Peano structures. To be specific, we restrict ourselves to
the symbol set S = {P!, P? ...}, where P" is n-ary. Our first goal is to give a
set-theoretic substitute for S-formulas.

As a substitute for the variables vy, vy, ... we use the elements 0, 1, ... of
. The rébles of the symbols 1, v, 3, = are assumed by the ordered pairs
2:=00,0, v=(01), 3:=(0,2) and = =(Q, 3), respectively. For the

P" (for n > 1) we take the ordered pairs P* := (1, x), where x €  — {0}.
(Similarly, one could, for example, let ordered pairs (2, x) with x € w stand
for function symbols. In order to represent symbol sets with uncountably
many elements, one could use an appropriate set of larger cardinality
instead of w.)

Now formulas of the form v, = v,, correspond to triples (x, =, y) with
X, y € w. These triples are the elements of the set

At= =0 x {=} x w.

Ordered pairs of the form (P*, z), where x € wand z is a function from x into o,
play the role of formulas of the form P", ...v, . (For instance, the
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formula P3v,v,0s corresponds to the ordered pair (P?, z) with z = {(0, 1),
(1, 4), (2, 5)}.) Thus we are led to the set

At? == {(P*, z)|x e wand z: x - w}.

Likewise, one can define the set of all S-formulas set-theoretically to be the
smallest set A which satisfies the conditjons:

(1) At= U AtY < A;

(2) if ye Athen (T, y)e A:

(3) if y,ze Athen (y, v ,z)e 4;

4) if xewand ye 4 then (3, x, y) € A.

One can now give a natural set-theoretic description of the notions of
sequent and derivation, developing in this way the whole syntax set-
theoretically. Semantic concepts such as the notions of structure or of
consequence can also be introduced set-theoretically. By doing this one can
obtain a set-theoretic formulation of the completeness theorem. All con-
siderations can be carried out in L'¢ on the basis of ZFC. In particular, the
completeness theorem can be formalized as an {c}-sentence and can be
derived from ZFC,

What benefits do we obtain from such a set-theoretical treatment? We
mention three points.

(1) The mathematical development of first-order logic (as given in the first
six chapters) can be founded upon the axiomatic basis of ZFC.

(2) The set-theoretic treatment enables us to deal with uncountable symbol
sets in a precise manner. Appropriate variations of this approach make
it possible to define other languages, e.g., languages with infinitely long
formulas of the form ¢¢ v ¢, v ¢, v ... (Chapter IX).

(3) In our discussion concerning the formal notion of proof and the scope
of first-order logic, we did not appeal to the completeness theorem.
The reason for this was to avoid becoming trapped in a vicious circle
since the completeness theorem itself requires a proof. In a set-theoretical
framework one can investigate more closely the assumptions which
are needed for a proof of the completeness theorem. Doing this one finds
that a considerably weaker axiom system than ZFC is sufficient for the
proof (cf. [17]).

4.4 Exercise. A reader who has been confused by the discussion in this
chapter says, “Now I'm completely mixed up. How can ZFC be used as a
basis for first-order logic, while first-order logic was actually needed in order
to build up ZFC?” Help such a reader out of his dilemma. (Hint: Again be
careful in distinguishing between the object and the background level.)



CHAPTER VIII
Appendix

In this chapter we note some results which will be needed in Part Il and
which are also of independent interest.

§1. Extensions by Definitions

We have chosen the symbol set {<} for the theory of partially defined
orderings and the symbol set {o, e} for group theory. The field of a partially
defined ordering and the inverse operation in a group are examples of
relations or functions for which we have no symbol in {<} and {c, e},
respectively, although such symbols would facilitate the formulation of
propositions. In this section we show that the use of additional symbols
does not increase the expressive power of a language provided they are
“definable”, The field of a partially defined ordering and the inverse opera-
tion in a group will turn out to be definable in this sense. For motivation we
first discuss these examples in more detail.

When one adds to the symbol set { <} a unary relation symbol P for the
field of a partially defined ordering one has the following definition:

Vx(Px > 3y(x <y vy < Xx)).

In L'“-® one can write more transparent formalizations, e.g., the third
axiom for the theory of partially defined orderings (cf. 111.6.4) may now be
written as follows:

Vx Vy((Px A Py) > (X <yvx=yvy<Xx)).
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Similarly, the proposition which says that the ficld of the ordering relation
contains at least three elements has a formulation in L'=-® which is both short
and easy to read:

Ix Iy AzZ(PX APy APz A IXSEYAIX=2zA IZ=Y).

Thus the introduction of P is convenient for formalizations. On the other
hand, it cannot be expected that more propositions about partially defined
orderings can be formulated in L'=-® rather than in L', since every { <, P}-
formula can be transformed into an equivalent {<}-formula by replacing
all subformulas of the form Px by 3y(x <y v y < X).

Similar considerations apply to definable functions and constants: When
we add to S,, = {o, e} a unary function symbol~" for the group inverse, we
have the following definition:

VxVp(x ' = yeorxoy =e)
Note that the right-hand subformula does indeed define a function in every
group (regarded as an S,-structure), since
O, =VxIyxoy=e.

In a similar way we can introduce the constant J for the empty set in
the set theory ZFC by means of the definition

VX(J = x = Vy 1y € X);
for one can show that
ZFCE= 37 'xVyyex.
In the sequel @(vq, ..., v,_ 1) stands for a formula ¢ where the variables
occurring free are among vy, ..., v,_ ;.

1.1 Definition. Let @ be a set of S-sentences.

(a) Let P ¢ S be an n-ary relation symbol and ¢(vy, ..., v,_ ;) an S-formula.
Then we say that

Voo ... Vo, (Pog ... 0,1 = @(vg, ..., 0,_1))
is an S-definition of P in ®.

(b) Let f ¢ S be an n-ary function symbol and (v, ..., v,) an S-formula.
We say that
Voo .- V0, Vo,(fo .. byt = L, o @(Lg, s UVyeqs V)

is an S-definition of [ in ® provided that
D= Yoy ...V, 370, (g, ..., 1)
(c) Let ¢ ¢ S be a constant and ¢(v,) an S-formula. We say that

Yoo(e = vg > @(vy))
is an S-definition of ¢ in ® provided that ® = 3~ v, @(ve).
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We thus say that Vog(Pry < Fv,(vg < v; V 1y < 1g) is a {< }-definition
of P in @4, V0o V0,(v5 ' = v; © vy 0 v, =€) is an S,-definition of ~! in
®,,, and Yoo (g = v <> Vv, 710, € 1) is an {e}-definition of F in ZFC.

Now assume that a symbol set S and a set ® of S-sentences are given,
Suppose that S o S, and that for every symbol in S* — S exactly one
S-definition in @ has been fixed, say,

for n-ary P € §% — S the S-definition
(1) Yoo ... Vo, ((Pvg ... 01 = @p(Ug, .oy Up_ 1))
for n-ary f € §* — § the S-definition
(ii) Yo ... Vo, V0,(fvg ... gy = 0, @V, .., Vg1, V),
and for c € §* — § the S-definition
(iil) Yoo(c = vo > @(vo))-

Let A be the set of definitions in (i), (ii), and (iii). As in the case of the group
inverse, the interpretation of the symbols in S* — S is determined in every
model of ®:

1.2 Lemma. If the S-structure U is a model of ®©, then there is exactly one
SA-structure N2 such that

(*) TS =A  and A=A

PROOF. Suppose A*[ § = A and A* = A

Then, by (i),

1) P™ay ... a,_, iff We= pplag, ..., an- 1]

for n-ary Pe S* — Sand ag, ..., a,_; € A;

by (ii),

@) f*ao,...say-1) = a, iff W= @ lags- -,y 1, )
for n-ary fe$* — Sanday,...,a,_,, a,€ Y;

and by (iii),

3) M =a iff Ak ¢[a]

force S — Sand a € A.

(1), (2), and (3) show that there is at most one S®-structure A2 satisfying (*).
On the other hand, (1), (2), and (3) determine an S*-expansion N2 of A with
the property A* = A. (Indeed, (2) and (3) determine an n-ary function and an
element of A4 since by 1.1(b), (c) we have

W= Yoo ... Vo,m 1 37 0,0, (Vos - .-, Oy g, V)

and A = 3~ 'vg @ (vg), respectively.) O
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It is intuitively obvious that the introduction of defined symbols does
not increase the expressive power: For every formula y containing defined
symbols, one obtains an equivalent formula " without such symbols by
replacing the new symbols by their defining formulas. This is the content of

1.3 Theorem on Definitions. Let S2 > S and ® < L3. Let A be a set of
S-definitions in ®, one for each symbol in S* — S. Then for each € L3*
there is a formula ¥ € L3 such that

(a) Given an S-structure W with W= ® and aq, ..., a,-, €A,

W = Yldo, - -s ap—1] iff W= Y lao, ..., a,-4]

(A2 denotes the S*-expansion of W, which, by 1.2, is uniquely determined
by the condition W = A.)
(b) ® U A Yoy,

PROOF. As already mentioned, we obtain /¥ from y by replacing all symbols
from S$* — S in by their defining formulas. In this process we must take
into account the possibility that a term may contain nested function symbols.
Thus, for instance, the formula

Y = 3Ixfox =y

(where f, g € S* — S) will be converted into one of the form

dx Ju Hv((pg—)iuv A Qg Woav= y).
UoUy Vo Uy

We define ¥: L5* - LS by induction on S*-formulas. The definition for
atomic s uses induction on m(y), where m(y) is the number of occurrences of
symbols from S* in , including repetitions.

If m() = 0 then y¥:= y..

If m(y) > O let x4, x;, X5, ... be the enumeration of the variables not
occurring in ¥ in the order of the enumeration vy, vy, ... .

Casel. Yy = Ptg...t,_;:

Y e=3x0 . I (o = 1) Ao A Koy = 1,2q)T
/\PXO...X"_I), lfPeS,

l//V:= El'XO"'a'xrl—l((xO = [0)V N s A (xn-l = tnvl)v
A(pPM), ifPest—S.
Vo v Upeq

(Since P does not occur in x; = t;, m(x; = t;) < m()")
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Case 2.y is of the form ' = ", Since m(y) > 0, i is not of the form x = y.
M y=ftg...t,_4 =t:
l//V = 3X0 e E*xn—l Elxn((xO = tO)V Acer A (xn—l = tn—l)v

A=tV A fXg...Xyo1 = X,), if€S,

YV o= Axg ... Ix,y 3xn<(xo =t0)" A A Xy =ty y)

A= 0 A (p,x""‘x"), if fesd—s.
Vg ...V,
Qy=c=t
YV = 3xo((xo = )Y A c = x,), ifceSs,
l/,V = EIxO((xO = )f)V A @, ﬁ), ifcesS®—S.
Vg

B)Yy=x= ftg...t,_, or y = x = ¢: analogous to (1) or (2).

This completes the definition for the atomic case.
For the induction step we set

YT =yt W v )T =5 v YY), and  Exy) = 3xyT

Now, upon using this definition, it is not difficult to prove by induction
that statement (a) of the theorem holds. Furthermore, it is clear that ¥ € L3
provided y € L]. It is also clear that for A = ® and ag,...,a,_, € A

(+) QIAF:(‘//HVIV)[(IO’HW(I"—I]‘

For (b): Let B be an S2structure such that B = ® U A, and let
by, ..., b,_ € B. We must show that B = (y < ¢")[b,,..., b,_]. For the
structure A := B I §, we have A* = B by 1.2. Thus (b) followsfrom (+).

Given elementarily equivalent S-structures 2% and B, we have for y € L3":

Wy iff A=y

iff Be=y¥
iff B =y
Hence we have
1.4 Corollary. [f N = B then N2 = B2, [

When treating set theory in Chapter VII, we have frequently used defined
symbols to obtain more appealing formalizations. Now we have justified
this procedure since, by 1.3(b), a formula ¢ in the extended language can be
regarded as an abbreviation for the {¢}-formula 7.
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We point out a further application: An ordering is sometimes considered
as a structure (A4, <), sometimes as a structure (4, <). The theorem on
definitions implies that the choice of the basic symbols is immaterial, pro-
vided the symbols are definable from each other. In the case of orderings we
obtain that L'<) and L=’ have the same expressive power. For a precise
formulation see exercise 1.11.

A symbol set is called relational if it contains only relation symbols.
Sometimes it is convenient to be able to restrict oneself to relational symbol
sets. Using the theorem on definitions, we show how function symbols and
constants can be replaced by relation symbols in order to obtain a relational
symbol set. The idea is to consider the graph of a function rather than the
function itself.

Let S be a symbol set. For every n-ary f € S let F be a new (n + 1)-ary
relation symbol, and for ¢ € § let C be a new unary relation symbol. Let S
consist of the relation symbols from S together with the new relation symbols.
Thus S" is relational. We associate with every S-structure 9 an S'-structure
A" by replacing the functions and constants by their graphs:

(1) A":= 4;
Q) for Pe S, P¥ := P¥;
(3) for n-ary f € S let F¥ be the graph of f¥, that is,
FmrdO"'an—lan lﬁ .le(aO""9an—l) = a,,
(4) for c € S let C* be the graph of ¢¥ that is,
C%a iff Y=a.

Correspondingly, one can transform every S-formula into an S'-formula,
replacing atomic subformulas such as fxy = z by Fxyz and ¢ = x by Cx;
nested function symbols are treated as in the proof of 1.3. For instance, if
Y = fegx = ¢ we set " = 3y 3z(Cy A Gxz A Fyzy). Then for arbitrary
we have that i holds in ¥ if and only if " holds in A". A precise statement of
this relationship is contained in the following theorem; the proof follows

the outline above and is included for the reader who is interested in seeing
the details.

1.5 Theorem. For every € LS there is " € LS such that for all S-structures
Uanday,...,a,_, € A:
(+) U= yYlag, .., au-1] iff WEdTlao, ..., a,-11
ProOF. Instead of proving the theorem directly, we refer to 1.3, now letting
S w §" play the role of S and §" the role of S. Further let

®:={Vvy...Yv,_1 3 "0, Fvg...v,_1v,] f €S and fis n-ary}

u {3~ Coglc e S},
A= {Vvy ... Yo, Vo,(fog... 05y = v, Fvg...0,_10,)]
S e Sand fis nary} U {VYoy(c = vg = Cpg)lc e S}.
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For every function symbol f and every constant ¢ in S, A contains an S'-
definition in @ which says that f and ¢ have graphs F and C, respectively. By
1.3, for every formula y € L35 we have y¥ € L,", and for every S"-structure
B which satisfies ® and for all by, ..., b,_, € B,

(*) B = Ylbo,.... by 11 iff Bi=y by, ..., b, 1]

For ¢ € LS set y" =",

Now, in order to prove (+) let 2 be an S-structure. We apply (*) for the
case B := A" (A" satisfies ®!). Since A™ = A, the transition from A" to
A means that one adds exactly the functions and distinguished elements
which were eliminated in passing from 2 to A", Hence A™ [ S = A. Thus
foryeliandag,...,a,_, € A,

W= Ylag, ... dn_ 1] iff W2 S Ylag,. -, an-1]
iff A= ylag,...,a,_;] (coincidence lemma)
iff A k= ¢ ag,....an-1] (by(¥)),

and since y/¥ = y/", the theorem is proved. Ol

Given S-structures N and B such that A" = B" we have by 14 that
N2 = B2 As A2 S = Wand B2 S = B it follows that W = B. Hence
we have obtained

1.6 Corollary. For any W and B, A = B" implies N = B. O

The converse of 1.6 can be shown similarly. Define

A= {Voy ... Vo, Yo (Fvg...0h_ 10, fvg...0,_1 = v, f €Sisn-ary}
U {Voo(Crg <> ¢ = vg)|c € S}.

Then for every new relation symbol in §” — S, A contains an S-definition in
the empty set of sentences. Clearly for every S-structure 2, A*[ §™ = A".
Now, if A = B, then 1.4 yields A* = B4, and hence by the coincidence
lemma we have A" = B". Together with 1.6 we obtain

1.7 Theorem. For any W and B, A = B if and only if A = B". Ol

We shall use 1.7 in some discussions on elementary equivalence when it is
convenient to restrict to relational symbol sets.

1.8 Exercise. In the notation of 1.3, show that ® U A= y iff @ &= ¢/

1.9 Exercise. Let us call a formula i term reduced if its atomic subformulas
are of the form Pxy ... x,_ 1, X =y, fxg ... Xy,—1 = X,,, O ¢ = X. Show that
every formula is logically equivalent to a term reduced formula with the
same free variables.
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1.10 Exercise. Prove theorem 1.5 in the following way: Using 1.9 note that
one just needs to consider term reduced formulas. Then give an inductive
definition of " for term reduced formulas.

1.11 Exercise. Show that for any ¢ € L{} there is a y € L5~ and for any
W e L' there is a @ € L5} such that

(a) an ordering (4, <*) satisfies ¢ if and only if the corresponding ordering
(A, <) satisfies ¥,

(b) an ordering (4, <*) satisfies ¥ if and only if the corresponding ordering
(4, <) satisfies @.

§2. Relativization and Substructures

If one regards a vector space as a one-sorted structure, then the domain
consists of scalars and vectors (cf. 111.7.2(2)). When formulating the vector
space axioms in the corresponding language, one must relativize the field
axioms to the set of scalars and the group axioms (for the vectors) to the set
of vectors. For the field axiom Vx x-1 = x this can be done by using the
relation symbol F for the set of scalars and reformulating the axiom as
Vx(Fx — x -1 = x). Similarly, the S,,-formula

e =¥x(x=0v x=1),

when relativized to F, becomes
o =Vx(Fx > (x =0 v x = 1)).

In a vector space, ¢F just says that the ficld of scalars satisfies . This section
deals with the relation between a formula and its relativization. First it is
useful to introduce the notion of substructure.

2.1 Definition. Let 21 and B be S-structures. Then U is called a substructure
of B (written: A < B) if

(a) A < B;
(b) (1) for n-ary Pe S, P* = P® ~ A" (that is, for all aq,...,a, ;€ A,
P, ...a,_ifT PPay...q,_,);
(2) for n-ary [ €S, f¥is the restriction of /® to A";
(@) force S, ¥ = &

For example, M = (N, +™,-N, 0, 1) is a substructure of the field R =
(R, +% B 0, 1) of real numbers.

If A = B, then A is S-closed (in B), that is, A # &, c®e A for ceS, and
dg, ..., a,—; €A implies f®¥aq,..., a,- )€ A for fe€S.
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Conversely, every S-closed subset X of B is the domain of exactly one
substructure of B, because in this case the conditions in 2.1(b) determine
exactly one structure with domain X. We denote this substructure by [ X]%.

For example, the set {re R{r > 0} is S,,-closed in R and hence is the
domain of a substructure of R, but the set {re R|r < 0} is not S,,~closed,
since (—1)-(—1)isnot <0.

2.2 Lemma. Let U and B be S-structures such that W <= B, and let
B: {v,|JneN} - A be an assignment. Then, for every S-term t and for every
atomic S-formula ¢,

B =B /0. WhHEo iff B PEo
The proof by induction on terms is straightforward. O

The result 2.2 does not hold for arbitrary ¢: the formula Ixx + 1 =0
holds in R but not in its substructure 9.

2.3 Definition. Let S be a symbol set and let P be a unary relation symbol.
By induction we define, for every y € L5, the formulayf € LS°%!, the so-called
P-relativization of yr:

P =1, ify is atomic;
[y = —yP;
Mo v Y1) =g v ¥D);
[3xy 1P = Ix(Px A YP).

Thus [Vxy]® = [3x 1P = 73x(Px A —F), and this formula is
logically equivalent to Vx(Px — /). Moreover, it is clear that free(yy) =

free(y?).

2.4 Relativization Lemma. Let U be an S U {P}-structure such that P* < A
is an S-closed set. Then for y € LS,

[P =y iff A= y"
2.4 describes the relationship sketched at the beginning of this section:
the relativization i/* says the same in  as i does in the substructure [ P41

ProOF. We show by induction on € L5:

(%) For all assignments f: {v,|n e N} — P4

P P =y iff (WP =Y.
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If Y is atomic, then y* = i, and we obtain (x) from 2.2. For = 1y, or
W = (o Vv ), (x) follows directly from the induction hypothesis for v,
and ;. In case Yy = 3Ixyy, we argue as follows:

([P, B) k= 3xypo iff for some a € P*, (EPA]QI’ ﬂ;) = o

iff for some ae P4, (91, B E) = 5 (by induction
X hypothesis for )

iff for some a e A, (QI, [3€> = Px A b
X
iff (U, B) = Ix(Px A Yi). O

2.5 Exercise. Let U and V be distinct unary relation symbols, U, V ¢ S.
Assume (U, U4, V*)to be an S U {U, V}-structure such that U* and V* are
S-closed and U# < V. Show that for ¢ € L

(A UL VY = ([0"] « oY)

2.6 Exercise. A formula of the form Ix4...3x,_ ;¢ (Vxq ... Vx,_,¢), where
n > 0 and @ does not contain any quantifiers, is called an existential formula
(universal formula). Show:

(a) If A < B, ¢ is an existential sentence and N = ¢, then B = ¢.

(b) If A = B, ¢ is a universal sentence and B = ¢, then A = .

(c) In the language L5# there is no system of axioms for group theory
consisting only of universal sentences.

§3. Normal Forms

In this section we show that one can associate with every formula a logically
equivalent formula which has a special syntactic form.

Let S be a fixed symbol set. For an arbitrary set ® of S-formulas let (O}
be the smallest subset of LS containing @, and containing with any y and x
the formulas =1y and (¥ v x). Note that ® < Lf implies (®) = L;.

3.1 Lemma. Let ® < L}. Suppose A and B are S-structures, and aq, ...,
a,_,€A,by,....,b._1€B. If

(*) Q’IF: qo[aO’“'aar—l] W%F:(D[bos---,br—J

holds for all @ € @, then (x) holds for all ¢ € (D).

PrOOF. The set of ¢ for which () holds includes @ and with any ¢ and y also
contains 1y and (Y v x).
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3.2 Lemma. Let ® = {¢q, ..., @,} be a finite set of formulas. Then every
satisfiable formula in {®) is logically equivalent to a formula of the form

(+) oo A" Ao VoV (Yo A AP,

where k < 2" and for i <k and j < n, Y, ;= @; or Y; ; = T¢;. In par-
ticular, there are only finitely many pairwise logically nonequivalent formulas
in (®>.

Thus we see that every formula in (®) is logically equivalent to a dis-
junction of conjunctions of formulas from {@g, ..., @, Q¢+ 1@

PrOOF. We choose an r such that ® = {¢,, ..., @,} = L}. For a structure
N and an r-tuple d == (aq, ..., a,_,) € A" let

() Vs = Yo Ao A Y,

where

l//"= @i, ifQIt:(pi[ao""aaVAI]s
' e, f U= elag, ..., a- 1

Then
)] A= Yo nlae, . - a1

and Y ; is a conjunction of the form in (4). Moreover, for any 8 and
by,....b._, €B,

3) B b= Y olbos - bri]
ifffori=0,...,n:
W= plag,...,a, ;1 T B glby,...,b_1]
iff (cf. 3.1) for all ¢ € (D):
= olag, ....a, 1] iff B olby,...,b 4]
From (1) it follows that the set
{5 Ais an S-structure and g € A"}

has at most 2"*! elements.
The proof is complete if we can show that every satisfiable ¢ € (®) is

logically equivalent to the disjunction y of the finitely many formulas from
the set

{5 Wis an S-structure, G € A", A = glag, ..., a1}
In a suggestive notation we write

x= \/i{ll/(mv,;”‘)l is an S-structure, ¢ € A", W = ¢lag, ..., a,-11}.
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To verify the equivalence between ¢ and y, assume first that B =
olbg,...,b,_1] Then Yy 5, is a member of the disjunction y. Since B =
Y. hlbo, .-, beo11(cf. (2)) it follows that B = x[b,, ..., b,_,]. Conversely,
if B ylby,..., b, 1], then by definition of y there is a structure U and
there are ag, ..., a,_, € A such that

A= plag, ., a,-1] and B = Yanlbos -5 b1 )

Then by (3), by, ..., b,_, satisfy the same formulas of (®> in B as
ag,...,a,_, do in A, In particular, B k= ¢[by, ..., b,_ ] O

A formula which is a disjunction of conjunctions of atomic or negated
atomic formulas is called a formula in disjunctive normal form. A formula
which contains no quantifiers is said to be quantifier-free. As a corollary to
3.2 we obtain

3.3 Theorem on the Disjunctive Normal Form. If ¢ is quantifier-free, then ¢
is logically equivalent to a formula in disjunctive normal form.

PRrOOF. Let ¢ be a quantifier-free formula. If ¢ is not satisfiable then ¢ is

logically equivalent to —1v, = v,. If ¢ is satisfiable and ), ..., , are the
atomic subformulas in ¢, then ¢ € ({{, ..., ,} ). The theorem now follows
from 3.2. =

We turn to formulas which also contain quantifiers. A formula  is said
to be in prenex normal form if it has the form Qg xy ... Q- 1 Xm- 10, Where
Q,=3or Q,=Vfori< mand ¥, is quantifier-free. Qgxq...Q,_ Xp-1 1S
called the prefix and v, the matrix of .

3.4 Theorem on the Prenex Normal Form. Fvery formula ¢ is logically
equivalent to a formula \ in prenex normal form with free(p) = free(y).

Proor. First we note some simple properties of logical equivalence. By
“@ ~ " we mean that ¢ and  are logically equivalent.

(1) f ¢ ~ ¢, then 11¢p ~ .

(2) T oo ~Yoand @ ~ Yy, then (py v @1) ~ (Yo vV ¥y)

3y Ifop ~yand Q = For Q@ =V, then Qxp ~ Qxy.

(4) Tdxp ~ Vx 1, VX0 ~ Ix 0.

(5) If x ¢ free(yy), then (Axg v ¥) ~ Ix{p v ), (Vxp Vv ) ~ Vx(p Vv ),
W v Ixp) ~ Ix(Y Vv @), and (Y v Vx@) ~ Vx(y v ).

We shall see how one can transform a given formula into prenex normal form
by repeated application of (1)—(5). For instance, if ¢ = T13xPx v VxRx we
can proceed as follows:

—13xPx v VXxRx ~ ¥x =1Px v YxRx (by (2) and (4))
~ ¥x 1 Px v VYyRy (since VxRx ~ VyRy and by (2))
~ ¥x(— Px v VyRYy) (by (5))

o Mv il — P~y v P (lx £ annd 78 Y
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In general we argue as follows: For ¢ € LS let qn(¢p) be the quantifier number
of @, i.e., the number of quantifiers occurring in ¢. Using induction on n, we
prove:

(*). For ¢ with gn(¢p) < nthereis ay € L’ in prenex normal form
such that ¢ ~ ¥, free(p) = free(y)), and qn(p) = qn(¥).

We leave the arguments for “free(p) = free(ys)” to the reader.
n = 0:1f qn(p) = 0, ¢ is quantifierH{ree and we can set y := ¢.

n > 0: We show (%), by induction on ¢. Suppose qn(p) < n. The quantifier-
free case is clear. If ¢ = —1¢’ and gn(g) > 0, then qn(ep’) = qn(p) > 0, and
by induction hypothesis there is a formula of the form Qxy which is a prenex
normal form for ¢’ (where qn(Qxy) = qn(p) and where y may contain
quantifiers). By (1) and (4), 9 ~ Q" 'x—1y (where V"'=3 and 37! = V).
Since gn{—y) = qn{Q@xy) — 1 = qn(p) — ! < n — 1, there exists a formula
¥ logically equivalent to —y which is in prenex normal form such that
gn(¥) = gn(—1y). By (3), Q" 'xy is a formula logically equivalent to ¢ with
the desired properties.

Let ¢ = (¢ v ¢") and let qn(p) > 0, eg., qn(¢’) > 0. By induction
hypothesis there is a formula of the form Qxy which is a prenex normal form
for ¢'. Let y be a variable which does not occur in Qxy or in ¢”. It is easy to
show that

Oxz ~ Qvr?
X
and thus, by (2) and (5), to obtain

' 17? y "
o =(¢ V<p)~<ny;vq)>

y "
Qy<x Ve >

Since qﬂ(X% v @")=qn(p) —1<n—1, we can find a formula ¥ in

prenex normal form which is logically equivalent to (XX v @"). @y has
X

the desired properties.

Let ¢ = dx¢". Since gn(¢’) < n — 1 there is a formula ¥’ in prenex
normal form which is logically equivalent to ¢". Axy’ is a formula in prenex
normal form which, by (3), is logically equivalent to ¢ and has the same
quantifier number as ¢. Ol

3.5 Exercise (Conjunctive Normal Form). Show that if ¢ is quantifier-free,
then ¢ is logically equivalent to a formula which is a conjunction of dis-
junctions of atomic and negated atomic formulas.
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3.6 Exercise. Let S be a relational symbol set and let ¢ € L be of the form
Ixg ... Ix, Yyy . - . Yy iy, where y is quantifier free. Show that every model
of ¢ contains an (n + 1)-element substructure which is also a model of ¢.
Conclude that the sentence Vx dy Rxy is not equivalent to any {R}-sentence
of the above form.
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CHAPTER IX
Extensions of First-Order Logic

We have seen that the structure M of natural numbers cannot be charac-
terized in the first-order language corresponding to . The same situation
holds for the class of torsion groups. As we showed in Chapter VII, one can,
at least in principle, overcome this weakness by a set-theoretical formulation:
One introduces a system of axioms for set theory in a first-order language,
e.g., ZFC, which is sufficient for mathematics, and then in this system carries
out the arguments which are required, say, for a definition and characteriza-
tion of M. However, this approach necessitates explicit use of set theory to
an extent not usual in ordinary mathematical practice.

The situation may act as a motivation to consider languages with more
expressive power which permit us to avoid this detour through set theory.
For example, in a second-order language we can directly characterize the
natural numbers by means of Peano’s axioms. However, already at this
stage we wish to remark that in order to set up the semantics of such a
language and to prove the correctness of inference rules, one has to make
more extensive use of set-theoretic assumptions (for example, of the ZFC
axioms) than for first-order logic.

There is a further reason for introducing and investigating more powerful
languages. We saw that results such as the compactness theorem are useful
in algebraic investigations (cf. VI.4). Therefore it seems worthwhile to seck
other more expressive languages in the hope of obtaining tools for more
far-reaching applications in mathematics.

In this chapter we introduce the reader to some of the languages which
have been considered with these aims in mind.
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§1. Second-Order Logic

The difference between second-order and first-order languages lies in the
fact that in the former one can quantify over second-order objects (for
example, subsets of the domain of a structure) whereas in the latter this is
not possible.

1.1 The Second-Order Language L3. Let S be a symbol set, that is, a set of
relation symbols, function symbols and constants. The alphabet of L3
contains, in addition to the symbols of L5 for each n > 1 countably many
n-ary relation variables V), V1, V4, ... . To denote relation variables we use
letters X, Y, ... . We define the set L3 of second-order S-formulas to be the
set generated by the rules of the calculus for first-order formulas (cf. 11.3.2),
extended by the following two rules:

(a) If X is an n-ary relation variable and ¢,,...,t,_, are S-terms, then
Xty ... t,_, is an S-formula.
(b) If p isan S-formula and X is arelation variable, then 3X ¢ is an S-formula.

1.2 The Satisfaction Relation for L. A second-order assignment y in a struc-
ture U is a map which assigns to each variable v; an element of A and to each
relation variable V¥ an n-ary relation on 4. We extend the notion of satis-
faction from L® to L by taking (a) and (b) into account as follows: If 2 is
an S-structure, y a second-order assignment in N, and I = (2, y), then we
set

@) 3= Xty ... t,_ ff p(X) holds for 3J(ty), ..., I(t,_ ).
C
(b') I=3X¢ iff there is a C = A" such that 3 X = @ (where 3% =

C C
(‘ZI, » }) and y X is the assignment which maps X to C but which otherwise

agrees with v ).

We write &, to denote second-order logic, that is, the logical system given
by the languages L3 together with the satisfaction relation for these languages.
Similarly, we denote first-order logic by %,. For the present we still use the
term “logical system” in the naive sense. A precise definition will be given
in XII.1.

1.3 Remarks and Examples

(1) One defines the free occurrence of variables and relation variables in
second-order formulas in the obvious way and can then prove the analogue
of the coincidence lemma. In particular, when ¢ is an L§-sentence, i.e., a
formula without free variables or free relation variables, it is meaningfu) to
say that 2 is a model of ¢, written U = .
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(2) Let VX ¢ be an abbreviation for 73X —1¢. Then
C
J=VXe iffforall C < A™ 3§t= 0.

(3) If X is a unary relation variable, then the following formalizations of
Peano’s axioms,

(P1) Vx —1ax = 0;
(P2) VxVp(ax = gy > x = y);
(P3) VX((X0 A Vx(Xx = Xax)) —» VyXy),

which we had in II1.7.3, are L{f'®-sentences. Hence by passing from first-
order to second-order logic we have gained expressive power since no first-
order axioms can characterize the structure (N, g, 0) up to isomorphism.,

(4) Let S be arbitrary. Then the Lji-sentence
(+) Vx Vi(x = y o VX (Xx o X))

is valid: two things are equal precisely when there is no property which
distinguishes them (the identitas indiscernibilium of Leibniz). Thus in the
development of Lj we could have done without the equality symbol using
(+) to express equality.

(5) When setting up the second-order languages we could have introduced,
in addition to relation variables, function variables which can also be quan-
tified. This procedure would increase convenience, but not the expressive
power of the languages. We illustrate this by means of an example (cf. the
elimination of function symbols in VIIL1).

Let g be a unary function variable and let ¢ be the “second-order formula”

Vg(Vx ¥y(gx = gy — x = y) = Vx Iy x = gy).

Then (for the natural extension of the notion of satisfaction) the following
holds:

A = ¢ iff every injective function from A to A is surjective
iff A is finite.

Considering the graph of a unary function instead of the function itself,
we can use a binary relation variable and rewrite ¢ as

VX((Vx 37y Xxy A Vx VyVz((Xxz A Xyz) = x = y)) - Vx Ty X yx).
Call this formula ¢f;,. @ and ¢, have the same models. Therefore,
U= @, T A is finite.

In tater examples we shall often use function variables to obtain formulas
which are easier to read.
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(6) In &£, one can introduce operations such as substitution and relativiza-
tion (cf. VIIL2.3) by definitions analogous to those for .#;. One can also
verify basic semantic properties such as the analogue of the isomorphism
lemma.

The situation is different when we consider deeper semantic properties
such as the completeness theorem, the compactness theorem and the
Lowenheim-Skolem theorem: the price we have to pay for being able to
quantify over second-order objects is the loss of all these central properties.
1.4 Theorem. The compactness theorem does not hold for £y;.

Proor. The following set of sentences is a counterexample:

{@fin} U {@2anln = 2}.

This set is not satisfiable, but, of course, every finite subset is satisfiable. [

1.5 Theorem. The Liwenheim-Skolem theorem does not hold for &£\;.

PrOOF. We give a sentence @, € L{ such that for all structures 2,

W k= @y, iff A is uncountable.

Then @, is satisfiable but it has no model that is at most countable.
To define @,,. we use an LZ-formula ¢ (X) with just one free unary
relation variable X, for which

(QI’ V) k= (ofin(X) IH '}"(X) is ﬁnite.

It is easy to obtain such a formula by modifying ¢y;, as given above. Clearly
a set A is at most countable if and only if there is an ordering relation on A4
such that every element has only finitely many predecessors. So let us define,
using a binary relation variable Y,

Qv i=3Y (VX 1YXX A VXVyVz((Yxy A Yyz) = Yx2)
AVXVYY(Yxy v x =y v Yyx)
A VX 3X (@l X) A V(X y < YyX))).
Then we have

W= @ T A is at most countable

and hence we can set @ e *= 10 < b1 O

1.6. For first-order logic we obtained the compactness theorem from the
existence of an adequate system of derivation rules (cf. VI.2). For ¥y, there
is no correct and complete system of derivation rules. Otherwise we could use
the same argument as for #, to prove the compactness theorem for #y,.
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This negative result does not, of course, hinder us from setting up correct
rules for second-order logic. For example, one can add to the first-order
rules the following correct rules for quantification over refation variables:

Fr'e T oy
r iXe’ T 3Xe ¥’

if X is not free in I y.

In the introduction to this chapter we provided two motivations for
investigating more expressive languages, namely: (a) to facilitate the forma-
lization of mathematical statements and arguments, and (b) to supply us
with more powerful tools for mathematical investigations. In regard to (a)
and (b), what have we accomplished by second-order logic?

To begin with, we note that by supplementing the second-order rules
presented above, one can obtain a system largely sufficient for the purposes
of mathematics. (However, by 1.6, one never gets a complete system, so that
the choice of rules can only be made from a pragmatic point of view, and not
with the aim of attaining completeness.) In addition, bearing in mind that
mathematics can be formulated more conveniently in a second-order
language, one can tend to the opinion that progress in the sense of (a) has
indeed been made. However, as far as (b) is concerned %y is hardly an
appropriate system. The results 1.4 and 1.5 already hint at this. The expressive
power of second-order languages is so great that results such as the compact-
ness theorem or the Lowenheim-Skolem theorem, which are of value for
mathematical applications, no longer hold. In view of these remarks it is
natural to investigate other extensions of first-order logic (cf. §2, §3).

By considering a further aspect we explain how, in a certain sense, second-
order logic has overshot the mark: We show that set theory, as based, e.g.,
on ZFC, is not sufficient to decide basic semantic questions for ;. This
follows because we can write down a sentence ¢y € Lf which is valid if
and only if the continuum hypothesis CH holds. Since neither CH nor its
negation can be proved in ZFC (cf. VIL3), the validity of ¢pcy can neither be
established nor refuted within the framework of ZFC.

CH says:

(1) For every subset A of R, either 4 is at most countable, or there is a
bijection of R onto A.

¢cp Will be essentially a formalization of (1). First, similar to ¢ . ,, We can
easily give a formula ¢ _ ,(X) with the property

A, N E @ qu(X) iff p(X)isat most countable.
Further, there is a formula ¢g such that
(2) A = ¢ iff A and R have the same cardinality.

To obtain ¢g, note that the ordered field R < of real numbers is, up to iso-
morphism, the only complete ordered field. Therefore, if i is the conjunction
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of the axioms for ordered fields and of the second-order S;;-sentence
VX((AxXx A yVz(Xzoz <) » (Vz(Xz 5 (2 <y v z=y)
AVX(x <y —3dz(x <z A X2))))

(“every nonempty set which is bounded above possesses a supremum”™),
then for all S;;-structures ¥, the following holds:

) U=y iff A = R-.
Hence, in order to obtain (2), we can choose as ¢ an L{-sentence which
says:

“There are functions +, -, elements 0, 1, and a relation < such

that .

(We leave it to the reader to write down ¢p as a second-order sentence.)
Now we can take as ¢cy a sentence which says that “if the domain is of the
same cardinality as R, then every subset of the domain is either at most
countable or else of the same cardinality as the whole domain”,

¢cn = or = VX(@ cami(X) v Ig(VxXgx
AYXVYY(gx = gy = x = y) A V(X y - Axgx = p))).
It is easy to prove (cf. (1)) that
E=@cy Iff CH holds. 1
1.7 Exercise (The System £} of Weak Second-Order Logic). For every §,

let L}® = L§. Change the notion of satisfaction for #;; by specifying, for
J = (U, y) and n-ary X, that

. . C
3 =,3X ¢ iff thereis a finite C = A" such that 3 X = @

Thus only quantification over finite sets (and relations) is allowed.
Show:

(a) There is a sentence ¢ and a structure N such that A =, ¢ but not A = ¢.

(b) For each sentence ¢ € Ljj'5, there is a sentence € L} such that for all
S-structures W, U =, ¢ iff A = .

(c) The compactness theorem does not hold for #}.

(However, the Lowenheim-Skolem theorem does hold for Z}; cf. exercise
2.7 in the next section.)

§2. The System &

In VI.3.5 we showed that the class of torsion groups cannot be characterized
in first-order logic. But we can axiomatize this class if we add to the group
axioms the “formula™

w10

(*) VX(x =ev Xxex=ev XoXoX=eV---)
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Thus we gain expressive power when allowing infinite disjunctions and
conjunctions. Such formations are characteristic of the so-called infinitary
languages. In the simplest case one restricts to conjunctions and disjunctions
of countable length. This leads to the system ¥, . (The notation &, ,,
follows the systematic terminology usual in the study of infinitary languages,
cf. {77).

To define the formulas of &, ,, we use the jargon of calculi. Nevertheless
it should be noted that the rule in 2.1(b) below is not a calculus rule in the
strict sense, since it has infinitely many premises. (For example, in order to
obtain the formula (x) one must already have obtained the formulas x = e,
Xox=e,....) A precise version of such “calculi” and their usage can be
given within the framework of set theory (cf. VI.4.3). For example, the
definition of formulas and proofs by induction on formulas can be based on
the principle of transfinite induction.

2.1 Definition of %, ,. Compared with the first-order language L%, we
add the following to constitute the language L

wiw "

(a) the symbol \/ (for infinite disjunctions);
(b) to the calculus of formulas the following “rule”:

If @ is an at most countable set of S-formulas, then \/(D IS an
S-formula (the disjunction of the formulas in ®);

(c) to the definition of the notion of satisfaction the following clause:

If @ is an at most countable set of L) -formulas, A an S-
structure, f an assignment in A and I = (A, f) then

I = VO iff 3= ¢ forsome ¢ e @.

There are many classes of structures which can be characterized in L, ,,,
but not in first-order logic. Examples are:

the class of torsion groups, characterized by the conjunction of the group
axioms and
Vx \/{xo---ox =e|n=1},
WA Inz 1}

n-times

the class of fields with characteristic a prime, by the conjunction of the field
axioms and

VAL + + 1 = 0|n prime},
n-times

the class of archimedean ordered fields, by the conjunction of the axioms for
ordered fields and

A
xVix<l+- 4+ 1n=1}

n-times
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the class of structures isomorphic to (N, g, 0), by the conjunction of the first
two Peano axioms and

Vx\/{x=g---a Oln>0}.

n-times

2.2 Remarks.
(a) For a set @ which is at most countable let A® be an abbreviation for
the L,,,-formula =\/{—1¢|¢ € ®}. Then

= A0 iff forallpe®, I = ¢.
/\®@ is called the conjunction of the formulas in ®.

(b) The definition of the set SF(¢) of subformulas of a formula ¢ in L,,,,,
is obtained from the corresponding definition for first-order formulas in
I14.5 by adding the clause SF(\/®):= {\/®} U | J, .o SF(). It can be
proved for arbitrary ¢ that SF(¢) is at most countable. The proof is by
induction on formulas; we give the \ /-=step: Let ¢ = \/®, where by induction
hypothesis SF(y) is at most countable for every y € ®@. Since SF(p) = {¢} U
Uweo SF(y) is an at most countable union of at most countable sets, SF(¢p)
is at most countable. In partlcular for every ¢ € LS, , there exists an at most
countable §’ = S such that p € LS

wiw*

(c) Define the set free(\/®) of the variables occurring free in \/® to be
Uyeofree(y). The formula \/{v, = v,|n €N} has infinitely many free
variables. But one can easily prove by induction that in case free(¢) is finite
then so is free(y) for any subformula y of . In particular, subformulas of
an #,, ,-sentence have only finitely many free variables.

Consider the L2 ,-sentence
Yrin = \V/{1@5aln = 2}.
Then for every structure A we have
U b= Y, iff A is finite.

Hence the set of sentences {.} W {@../n = 2} is an example showing
2.3 Theorem. The compactness theorem does not hold for £ ,,,. ]

Nevertheless, many results for 4 have their counterparts in & ,,,,,. We
mention some examples and refer the reader to [20] for more information.

(1) The analogue of the Léwenheim-Skolem theorem holds (see 2.4 below).
(2) Extend the sequent calculus for first-order logic by the following “rules”

for \/:
z// for every p e @ r o .
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where I stands for a finite sequence of L, ,-formulas. In this way one
obtains a correct and complete “calculus”: for &, ,-sentences @,
1, ---» @, and @, the sequent ¢, @ ... @,-,¢ is derivable if and
only if it is correct. However, one must allow infinitely long derivations as
is obvious from (\/A).

(3) An analysis of (2) shows that by suitably generalizing the concept of
finiteness one can transfer other results from %, to #,,,,,. Among these
is the Barwise compactness theorem, cf. [1].

2.4 Lowenheim-Skolem Theorem for ¥, . Every satisfiable £, ,-sentence
has a model over an at most countable domain.

Since for every %, ,-sentence ¢ there is an at most countable § such that

¢ €L, 24 follows directly from

2.5 Lemma. Let S be at most countable, ¢ € Lf,lw, and let B be an S-structure
satisfying . Then there is an at most countable substructure W = B such that
A= o.

PrOOF. We first present the idea of the proof.

Let B, be a nonempty at most countable subset of B which is S-closed,
that is, which contains all ¢® for ¢ € S and which is closed under application
of f8for f € S. Then B, is the domain of an at most countable substructure
B, of B. If one tries to prove by induction that B, = ¢, the proof breaks
down at the point where 3-quantifiers are considered. For example, in a
simple case where ¢ is of the form IxPx, one must ensure that there is a
b € B, such that P®h. Therefore we shall close B, with respect to all possible
existential requirements arising from subformulas of ¢.

We now begin the proof. For pairwise distinct variables x,, ..., X, we
write Y(xg, ..., X,_ ;) to denote a formula y with free(yy) = {x¢, ..., X,—1}.
Define a sequence 4y, A;, 4,, ... of at most countable subsets of B so that

(a) Am < Am+1;
(b) for n'aryf € S and ag, ..., 0,y eAm).f%(GOa ""an—l)eAm-fl;
(©) for Y(xy,...,x,)eSF(p)and ay, ..., ay_y € Ap, If

B = Elxrll//[aO) et an—l]
then there is an a, € A,,,, such that B = Y[ay, ..., a,_ 1, a,]

Let A, be a nonempty at most countable subset of B which contains {c¢®{ce S}.
Suppose A4, is already defined and is at most countable. In order to define
Ap -1 we first set

Ap=1{f¥ag,...,a,_)n > 1, f €S n-ary,ag,...,a,_; € Ap}.

Ay, is also at most countable. Now, for y(x,, ..., x,) € SF(¢) and ay, ...,
a,_, € A, such that B = Ix,¥[a,, ..., a,_,], we choose an element b € B
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such that B = Y[ay, ..., a,- 1, b]. Let A,, be the set of b’s chosen in this
way. Since SF(¢) and A,, are at most countable, so is A;,. Hence A4,,,, ==
A, U A, U Asis also at most countable, and (a)—(c) are satisfied.
Now let
A= Ap.

meN

Then

(1) A is at most countable.

(2) Ais S-closed. (By choice of 4, we need only show that A is closed under
the functions f*®. Let f € S be n-ary and a,, ..., a,_, € A. Since the sets
A,, form an ascending chain, ay, ..., a,_, lie in some A4,. By (b) the
element f®(ay, ..., a,_,) lies in A, , and hence also in A.)

By (1) and (2), 4 is the domain of an at most countable substructure
of B. Therefore we are done if we can show:

(*) A= .

(*) follows immediatetly from the following claim:

(x+) Forall y(xy,...,x,-,)€ SF(p)and allq,, ..., a,_, € A,
U= Ylag,...,a,_,] fft Be=ylag,...,a,_,]

We prove (**) by induction on , but limit ourselves to the 3-case.
Let ¥(xg, ..., Xy_y) = Ix, 2(xg, ..., X,), and suppose ag,...,a,_, € A.
If A = Ix,xlag, .-, a,— ] then we obtain successively:

There is a € 4 such that A = ylag, ..., a,_,, al.
There is a € A such that B = y[ag, ..., a,-1,a] (Ind. hyp.).
“B = HX"X[(IO, s an*l]'

Conversely, if B = 3x,x{ay,...,a,_,], we choose k such that aq, ...,
a,_; € Ay, and we obtain successively:

There is a € A, ,, such that B &= y[a,, ..., a,—y,a] (by (c)).
There is a € Ay, such that A &= y[ag, ..., a,_;, a] (Ind. hyp.).
A = Ix, qlag, - -, Au_ ] O

Consider an at most countable set @ of first-order sentences and let
@ = /\®. Then it follows from 2.5 that every model of ® has an at most
countable substructure which is also a modet of ®@. In particular, this yields
a proof of the Léwenheim-Skolem theorem for first-order logic which does
not rely on the proof of the completeness theorem. Note that an Z,, -
sentence characterizing (N, o, 0) has no uncountable model; hence in
&, We do not have an analogue of the upward Lowenheim-Skolem
theorem VI.2.3.
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To conclude this section we give a mathematical application of 2.5 by
choosing ¢ appropriately.

We consider groups as S-structures with § = {o, ¢, "'}. A group ©® is
said to be simple if {¢%} and G are the only normal subgroups of ®. If for
a e G we denote by {a)® the normal subgroup of ® generated by a, then
clearly ® is simple if and only if (a>® = G for all a € G such that a # €.

Since

(ayg = {goa®®gs ' ... gua™g, 'IneN, zo,...,2,€Z,go, ..., gn€ G},

the class of simple groups can be axiomatized in L3, by the conjunction

¢, of the group axioms and the following sentence:

Vx(nix = e - Vy \/{Jvg ... v, V{y = vpx®v5 ... v, x|
Zo,...,ZHEZ}InEN}.

Using 2.5 we now show

2.6 Proposition. If ® is a simple group and M a countable subset of G then
there is a countable simple subgroup of ® which contains M.

PROOF. Let S:=§ U {c,lae M }, where the ¢, are new constants for a € M.
We expand ® to an _S-structure ®, interpreting each ¢, by the corresponding
a, and apply 2.5 to ® and ¢,. 0

2.7 Exercise. Show that for every L}y 5-sentence ¢ (cf. exercise 1.7) there is
an L} ,-sentence i with the same models (that is, for all S-structures %,
A=, ¢ ff A=) Conclude from this that the Lowenheim-Skolem
theorem holds for .Z};.

2.8 Exercise. Show that the following classes can be axiomatized by an
Z ., o-Sentence:

(a) the class of finitely generated groups;
(b) the class of structures isomorphic to (Z, <).

2.9 Exercise. (a) For arbitrary S, show that LY, is uncountable.

(b) Give an uncountable structure B (for a suitable countable symbol set S)
such that there is no countable structure U satisfying the same LJ -
sentences.

2.10 Exercise. Using 2.5, show that any two infinite @f-structures satisfy
the same £ 2 ,-sentences.
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§3. The System &£,

The system £, is obtained from first-order logic by adding the quantifier
0, where a formula Qx¢ says “there are uncountably many x satisfying ¢”.

3.1 Definition of £,. Compared with the first-order language L®, we add
the following to constitute the language Ly:

(a) the symbol Q;
(b) to the calculus of formulas, the rule:

If ¢ is an S-formula then so is QOx¢;

(¢) to the definition of the notion of satisfaction, the clause:
If ¢ is an S-formula and 3 = (¥, ) an S-interpretation then

JE=QOxp iff {a cA|3 ; = (p} is uncountable.

&£, has more expressive power than #,. For example, the class of at most
countable structures can be axiomatized in £, by the sentence 71Qx x = x.
For S = {<} let ¢, be the conjunction of the axioms for orderings and
(@xx =x AVx1Qyy < x). Then ¢, is an Lz-sentence characterizing the
class of uncountable orderings in which every element has at most countably
many predecessors. These so-called w,-like orderings play an important
role in investigations of Z,.

Note that the sentence ¢, or even the sentence Qx x = x, has an un-
countable, but no at most countable model. Hence the strict analogue of the
Léwenheim-Skolem theorem does not hold. (However, each satisfiable
&£ o-sentence has a model of cardinality <N, cf. exercise 3.3.)

One can set up an adequate sequent calculus &, for £, by adding the
following rules to the sequent calculus for first-order logic. (After each rule
an explanatory comment is given, which is also the essence of a correctness
proof.)

I'Oxep

)/y bl
I QW;

if y is not free in ¢.

(Renaming of bound variables);

TOX(x=y v x=2) if y and z are distinct from x.

(“Singletons and pair sets are not uncountable™);

I Vx(o - ¥)
I Oxp » Oxy’
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(“Sets having uncountable subsets are uncountable™);

' 71 Qx3yp
' Qyixe
T 3IxQye’

(“If the union of at most countably many sets is uncountable then at least
one of these sets is uncountable™).

One can show (cf. [19]) that the calculus S, is correct and complete in
the sense that the equivalence “® = ¢ if ® - ¢ holds for Z, if ® is at
most countable. As for first-order logic we conclude (cf. VI.2):

3.2 £ ,-Compactness Theorem. For every countable set ® of L-formulas, ®
is satisfiable if and only if every finite subset of ® is satisfiable. O

The following example shows that the compactness theorem does not
hold for uncountable sets of formulas. Let S be an uncountable set of con-
stants and let

Q:={c=d|lc,deS,c#d} v {1Q0xx = x}.
Then every finite subset of @ is satisfiable, but ® itself is not.

In Chapter VI we saw that the compactness theorem and the Lowenheim-
Skolem theorem are useful for mathematical applications. None of the
extensions of %, which we have discussed in this section satisfies both
theorems. The compactness theorem fails for £, . the Loéwenheim -Skolem
theorem for £, and both for #);. Does there exist any logical system at all
which has more expressive power than first-order logic and for which both
the compactness theorem and the Léwenheim-Skolem theorem hold? We
shall give a negative answer to this question in Chapter XII.

3.3 Exercise. Show that every satisfiable #,-sentence has a model over a
domain of cardinality at most &, (where N, is the smallest uncountable
cardinal). (Hint: Use a method similar to that in the proof of 2.5: for formulas
Ox, which hold in B, add ¥, elements satisfying ¢.)

3.4 Exercise. Let %) be obtained from &£, by changing the notion of
satisfaction 3.1(c) as follows:

JE=QOxe iff {a e Al3 )—i = (p} is at most countable.

Show that the compactness theorem does not hold for 9, but that the
Lowenheim-Skolem theorem does.



CHAPTER X
Limitations of the Formal Method

Only in methodological questions have we thus far referred to the fact that
applications of sequent rules consist ultimately of mechanical operations on
symbol strings (cf. VII.1). In the following we also want to make stronger
use of this formal-syntactic aspect in mathematical considerations. Let us
give an initial idea, taking as an example the system of axioms @, =
{@o, @1, @,} for group theory. It follows from the completeness theorem
that for all S,-sentences ¢,

O, =0 iff Oy o
Thus ¢ is a theorem of group theory
Thy, = {§ € L3Py, = ¥},

if and only if the sequent ¢, ¢, ¢, ¢ is derivable.

By systematically applying all the sequent rules one can generate all
possible derivations and thus compile a list of the theorems of Th,,: One
adds a sentence ¢ € L3 to the list if one arrives at a derivation whose last
sequent is @o¢@,¢@,¢@. Hence there is a procedure by which one can in a
“mechanical” way list all theorems of Th,,. It should be plausible that one
could use a suitably programmed computer to carry out such a procedure.
Of course, one would have to be able to increase the capacity of the computer
if necessary since the derivations and the sequents and formulas therein
can be arbitrarily long. A set such as Th,, which can be listed by means of
such a procedure is said to be enumerable.

Of course, the above enumeration procedure yields many trivialities like
V¥x(x = x —» x = x). On the other hand, a group theorist is only interested
in specific group-theoretical statements ¢ which are relevant for his in-
vestigations. His aim is to determine for such a ¢ whether ¢ € Th, or not.
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Usually this is accomplished either by a proof or by a counterexample.
Unfortunately, an enumeration procedure for Th,, as above is of little help
in this situation: Given ¢, one might start the procedure in order to see
whether ¢ appears as an output; however, if ¢ ¢ Th,, the procedure will not
yield this information since at any step one is left uncertain as to whether
@ will appear later or will not appear at all. Thus we are led to seek a different
kind of procedure which can be applied to an arbitrary S,-sentence ¢ and
then stops after finitely many steps, yielding the decision whether ¢ € Th,,
or not. Put another way, can one program a computer so that whenever it
is given an S,,-sentence ¢ it “computes” whether ¢ belongs to Th,,? If such
a procedure exists for a given theory, we call that theory decidable.

The present chapter is devoted to questions of this kind. First we discuss
the concepts of enumerability and decidability in more detail, in §1 from a
naive point of view, and in §2 on the basis of the precise notion of register
machine. These topics form part of the so-called recursion theory (theory of
computability). The remaining sections of the chapter then contain applica-
tions to first-order and second-order logic.

For further information about recursion theory we refer the reader to

[6] and [15].

§1. Decidability and Enumerability

A. Procedures, Decidability

It is well known how to decide whether an arbitrary natural number » is
prime: If n = 0 or n = 1, n is not prime. If # > 2, one tests the numbers
2,3,...,n — 1 tosee whether they divide a. If none of these numbers divides
n then # is prime; otherwise it is not.

This procedure operates with strings of symbols. For example, in the
case of decimal representation of natural numbers it operates with strings
over the alphabet {0, ..., 9}. Our description has not specified it in complete
detail—for instance, we have not described how division is to be carried
out—but it should be clear that it is possible to fill these gaps in order to
ensure that all steps are completely determined. In view of its purpose we
call the procedure a decision procedure for the set of primes.

Other procedures which are well known include those for

(a) multiplying two natural numbers,
(b) computing the square root of a natural number,
(c) listing the primes in increasing order.

Common to all of these procedures is the fact that they proceed step by
step, they operate on symbol strings of a well-defined sort, and they can be
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carried out by a suitably programmed computer. A procedure can operate
on one or more inputs (as in (a) or (b)) or it can be started without any
particular input (as in (c)). It can stop after finitely many steps and yield an
output (as in (a) for any input and in (b) for inputs which are squares), or it
can run without ever stopping, possibly giving an output from time to
time (as in (c)).

Procedures in our sense (effective procedures, processes, algorithms)
operate with concrete objects such as symbol strings. Sometimes mathe-
maticians use these notions in a wider sense, speaking, for instance, of the
Gram-Schmidt orthogonalization process even when referring to abstract
vector spaces.

Concerning the following definition and the subsequent discussion the
reader should bear in mind that the notion of procedure has so far been
introduced just in an intuitive way and by means of examples.

1.1 Definition. Let A be an alphabet, W a set of words over A, 1.e., W < A¥*,
and B a procedure.

(a) B is a decision procedure for W if, for every input { € A*, P eventually
stops, having previously given exactly one output n € A*, where

n="0, if{ew,
n# O LW
(b) W is decidable if there is a decision procedure for W.

Thus when a decision procedure for W is applied to an arbitrary word ¢
over A, it yields an answer to the question “{ € W ?” in finitely many steps.
The answer is “yes” if the output is the empty word; it is “no” if the output
is a nonempty word.

To formulate the above decision procedure for the set of primes according
to definition 1.1 we set A := {0, ..., 9} and W := the set of primes, and we
agree that the empty word shall be the output for primes and, say, 1 the
output for nonprimes.

Further examples of decidable sets are the set of terms and the set of
formulas for a concretely given symbol set. In the case of S, (cf. 11.2) for
instance, terms and formulas are strings over the alphabet

Am::{vo,vl,...,j, V,aaEs)v(}USOO'

We sketch a decision procedure for the terms.

Let { € A* be given. First determine the length /(). If I({) = 0, { isnot a
term. If () = 1, { is a term if and only if { is a variable or a constant. If
I($) > 1, { is not a term unless it begins with a function symbol. If { begins
with a function symbol, say { = f3(’, then check whether there is a de-
composition (' = {4{,{,, where the {; are terms. { is a term if and only if
such a decomposition exists. To check whether each {; is a term, use the
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same procedure as for {. (Clearly, in this way an answer will be obtained
after finitely many steps.)

If one analyzes the procedure or tries to program it for a computer, a
difficulty arises: programs (or descriptions of procedures) are finite and
therefore can only refer to finitely many symbols in A, whereas A, con-
tains, among other things, the infinite list of symbols vy, v,, v,, . .. . Therefore
we introduce the new finite alphabet

Ay={r,01,...,90,1,...,9, 7, v,3, =,), (R, f, c}

and then represent the symbols in A in terms of the symbols of A, in the
natural way. For example, we represent v,, by v71, ¢;, by cl11, R}z by R318
and the S -formula 3v;3(Rlvy v ¢,y = fov,) by W3(R11v3 v cll = f100]).
With this in mind we only consider finite alphabets in the sequel.

1.2 Exercise. Let A be an alphabet, and let W, W’ be decidable subsets of
A* Show that W u W/, W n W’ and A* — W are also decidable.

1.3 Exercise. Describe decision procedures for the following subsets
of A¥:

(a) the set of strings x¢ over A, such that x € free(ep),
(b) the set of S -sentences.

B. Enumerability

We consider a computing machine which operates as follows: it successively
generates the numbers 0, 1, 2, ..., tests in each case whether » is a prime,
and yields » as output if the answer is positive. The machine runs without
ever stopping, and it generates a list of all primes, i.e., a list in which every
prime eventually appears.

Sets, such as the primes, which can be listed by means of a procedure are
said to be enumerable:

1.4 Definition. Let A be an alphabet, W < A* and P a procedure.

(a) P is an enumeration procedure for W if P, once having been started,
eventually yields as outputs exactly the words in W (in some order,
possibly with repetitions).

(b) W is enumerable if there is an enumeration procedure for W.

We give some further examples for enumerable sets.

1.5 Proposition. [f A is a (finite) alphabet, then A* is enumerable.
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PROOF. Suppose A = {aq, ..., a,}. We first define the lexicographic order on
A* (with respect to the indexing 4y, ..., a,). In this ordering { precedes ('
if either

&) < 1)
or

) =) and “{ precedes {' in a dictionary”,

that is, there are a;, a; € A, with i < j, such that for suitable ¢, n, 1" € A*,

{=<&amnand ' = La;n’.

For example, if A = {a,b,c,...,x,y, z}, then “papa” comes before
“papi”, but after “zoo”. In general the ordering begins as follows:

O, ag,...,a,, 0000, Agay, ..., oGy, A1Qg, -« .5 QyQ,, Agdodg, - - . -

n=ns

It is easy to set up a procedure which lists the elements of A* in lexicographic
order. ]

1.6 Proposition. {@ € L3*| = ¢} is enumerable.

PrOOF. By the completeness theorem we have to describe a procedure which
lists the S -sentences ¢ with - ¢@. We use the same idea as in the procedure
for listing Th,, at the beginning of this chapter: We systematically generate
all possible derivations for the symbol set §, . If the last sequent in such a
derivation consists of a single sentence ¢, we include ¢ in the list. Note that
the derivations can be generated as follows: Forn = 1,2, 3,. .. one constructs
the first » terms and formulas in the lexicographical ordering, and one
forms the finitely many derivations of length <n which use only these
formulas and terms, and which consist of sequents containing at most »
members. O

C. The Relationship Between Enumerability and
Decidability

We have just seen that the set of “logically true” sentences can be listed by
means of an enumeration procedure. Is it possible to go farther than this
and decide whether an arbitrary given sentence is “logically true”? The
enumeration procedure given above does not help to solve this problem.
For example, if we want to test a sentence ¢, for validity we might start the
enumeration procedure in 1.6 and wait to see whether ¢, appears; we obtain
a positive decision as soon as ¢, is added to the list. But as long as ¢, has
not appeared we cannot say anything about ¢, since we do not know
whether @, will never appear (because it is not valid) or whether it will
appear at a later time. In fact we shall show (cf. 4.1) that the set of valid
S .-sentences is not decidable.
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On the other hand, if a set is decidable we can conclude that it is
enumerable:

1.7 Theorem. Every decidable set is enumerable.

ProOOF. Suppose W < A* is decidable and P is a decision procedure for
W. To list W, generate the strings of A* in lexicographic order, use P to
check for each string { whether it belongs to W or not, and, if the answer is
positive, add { to the list. ]

As an extension of 1.7 we have:

1.8 Theorem. A subset W of A* is decidable if and only if W and the comple-
ment A* — W are enumerable.

PRrROOF. Suppose W is decidable. Then A* — W is also decidable (one can
use a decision procedure for W, merely interchanging the outputs “yes”
and “no”). Thus by 1.7, W and A* — W are enumerable. Conversely,
suppose W and A* — W are enumerable by means of procedures ¢ and
P'. We combine P and P’ into a decision procedure for W which operates
as follows: Given {, B and P’ run simultaneously until { is yielded by either
P or P'. This will eventually be the case since every symbol string in A* is
either in W or in A* — W. If { is listed by 9B, the output is “yes” ({ € W), if
it is listed by *B’, the output is “no” ([ ¢ W). O

1.9 Exercise. Suppose U = A* is decidable and W < U. Show that if W
and U — W are enumerable, then W is decidable.

Our definitions of decidability and enumerability were given with respect
to a fixed alphabet. However, this reference is not essential:

1.10 Exercise. Let A, and A, be alphabets such that A; < A,, and suppose
W < A¥%. Show that W is decidable (enumerable) with respect to A if and
only if it is decidable (enumerable) with respect to A,.

D. Computable Functions

Let A and B be alphabets. A procedure which for each input from A* yieldsa
word in B* determines a function from A* to B*. A function whose values
can be computed in this way by a procedure is said to be computable. An
example of a computable function is the length function I, which assigns to
every { € A* the length of { (in decimal notation as a word over the alphabet
{0,...,9}).

Whereas our discussion of effective procedures deals mainly with the
notions of enumerability and decidability, many presentations of recursion
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theory start with computability of functions as the key concept. Both
approaches are equivalent in the sense that the above notions are definable
from each other. The following exercise shows that the notion of computable
function can be reduced to both the notion of enumerability and the notion
of decidability.

1.11 Exercise. Let A, B be alphabets, # ¢ A U B, and f: A* - B*. Show
that the following are equivalent:

(1) f is computable.
@) {w # f(w)|we A*} is enumerable.
(iil) {w # f(w)|w € A*} is decidable.

{w # f(w)|we A*} can be considered as the graph of f, and hence the
equivalences in 1.11 can be formulated as follows. A function is computable
iff its graph is enumerable (decidable). Note that by 1.8 the notion of decid-
ability can be reduced to that of enumerability.

§2. Register Machines

In the foregoing discussion we have used an intuitive notion of procedure
which we illustrated by use of examples. The conception we have thus
acquired is perhaps sufficient for recognizing in a given case whether a
proposed procedure can be accepted as such. But in general, our informal
concept does not enable us to prove that a particular set is not decidable.
Namely, in this case one must show that every possible procedure is not a
decision procedure for the set in question. But such a proof is usually not
possible without a precise notion of procedure.

We now introduce such a precise concept, starting from the idea that a
procedure should be programmable on a computer. For this purpose we set
up a programming language and define procedures in the formal sense to be
exactly those procedures which can be programmed in this language.

For the following discussion we fix an alphabet

A = {ao,...,a,}.

The programs are executed by computers with a memory consisting of
units R, ..., R, called registers. (In the litcrature such machines are
frequently called register machines.) At each stage in a computation every
register contains a word from A*. We assume that we have machines with
arbitrarily many registers at our disposal, and that the individual registers
can store words of arbitrary length. This idealization agrees with our objec-
tive of encompassing all procedures which can be carried out in principle by
a computer, i.e., disregarding problems of capacity.
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A program (over A = {a,, ..., a,}) consists of instructions, where each
instruction begins with a natural number L, its label. Only instructions of the
form (1) through (5) below are permitted. (The instructions describe very
elementary operations on registers; for instance, they will add or delete a
symbol in a register, or will test whether a register contains the empty word
or not. Together with the instructions we give their precise meaning in
parentheses.)

(1) L LET R; =R; + a;
for L, i,j e N with j < r (Add-instruction: “Add the letter a; to the word
in register R;”);

(2) L LET R; =R; — g
for L, i, j e N with j < r (Subtract-instruction: “If the word in register
R; ends with the letter a;, delete this a;; otherwise leave the word un-
changed™);

(3 LIFR;=0 THEN L' ELSEL, OR...OR L,
for L,i, L', Ly,..., L, e N (Jump-instruction: “If register R; contains
the empty word go to instruction labelled L’; if the word in register R,

ends with aq (resp. a,,...,a,) go to instruction labelled L, (resp.
Lla e Lr)”);

(4) L PRINT
for Le N (Print-instruction: “Print as output the word stored in
register R,”);

(5) L HALT
for L e N (Halt-instruction: “Halt”™).

2.1 Definition. A register program (or simply program) is a finite sequence
%o, ..., % of instructions of the form (1) through (5) with the following
properties:

(1) o; haslabeli(i=0,..., k).
(it) In an instruction of the form (3) the labels L', L,, ..., L, are <k,
(iii) Only o, is a halt-instruction.

Each program P gives rise to a procedure: Imagine we have a computer
which contains all registers occurring in P and which has been programmed
with P. At the beginning of a computation all registers with the possible
exception of R, are empty, i.e., they contain the empty word, whereas R,
contains a possible input. The computation proceeds stepwise, each step
corresponding to the execution of one instruction of the program. Beginning
with the first instruction one proceeds line by line through the program,
Jumping only as required by a jump-instruction. Whenever a print-instruc-
tion is encountered, the respective content of R, is given as an output
(“printed out™). The machine stops when the halt-instruction is reached.
Some examples of programs follow.



152 X. Limitations of the Formal Method

2.2 Example. Let A = {|}. We interpret the strings [1, |, ||, ... as the natural
numbers 0, 1, 2,... . The following program P, decides whether an input in
the register R, is an even number or not: P, successively deletes strokes from
the string n given as an input in R, until the empty string is obtained. It
ascertains whether n is even or odd and prints out [ or | accordingly and
then stops.

0 IF Ry, =[] THEN 6 ELSE 1

1 LET Ry =R, — |

2 IF R, = O THEN 5 ELSE 3
3 LET R, =R, — |

4 IF R, =0 THEN 6 ELSE 1|
5 LET Ry=Rg + |

6 PRINT

7 HALT.

We say that a program P is started with a word { € A*, if P begins the
computation with { in Ry and [ in the remaining registers. If P started with
{, eventually reaches the halt-instruction, we write

P: { - halt;
otherwise we write
P:{— .
For {, n € A*,
P:{-n

means that P started with { eventually stops, having—in the course of the
computation—given exactly one output, namely #. In the above example,

Py:n— [, ifniseven,

Po:n—|, ifnisodd.

2.3 Example. Let A = {aq, ..., a,}. For the program P:
0 PRINT

1 LET Ry =R, + a,

2 IFRye=0 THEN 0 ELSE 0 OR...OR 0

3 HALT

we have P: { — oo for all {. If P is started with a word {, P prints out succes-
sively the words ¢, {ag, {agay, ... .
Line 2 of P has the form

L IF R =0 THEN L' ELSE L' OR...OR L.

In every case such an instruction results in a jump to line L'. For the sake of
simplicity we shall in the sequel abbreviate it by

L GOTO L.
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2.4 Example. We present a program P for the alphabet A = {a,, a,}, such
that P: { — {{for { € A*. (Given { in Ry, instructions 0-8 serve to build up
{ in reverse order in the registers R, and R, after which {{ is built up in R,
taking the first copy from R, (instructions 9-15) and the second copy from
R, (instructions 16-22).)

0 IF Ro, =0 THEN 9 ELSE 1 OR 5
1 LET Ry =R, — a4

2 LET R{ =Ry + a4

3 LET R, =R, +a,

4 GOTO 0

5 LET Ry =Ry — g,

6 LET R =R, + 1,

7 LET R, =R, + a,

8 GOTO 0

9 IF R, = O THEN 16 ELSE 10 OR 13
10 LET R, =R, — a,

11 LET R, =R, + a,

12 GOTO 9

13 LET R, =R, — a,

14 LET Ry, =R, + a,

15 GOTO 9

16 IF R, = 00 THEN 23 ELSE 17 OR 20
17 LET R, = R, — g,

18 LET R, = R, + a,

19 GOTO 16

20 LET R, =R, — g,

21 LET Ry =Ry + g,

2 GOTO 16

23 HALT.

As an exercise the reader should write a program P over the alphabet
A = {ay, a,, a,} which accomplishes the following:

P C - halt, lf(: = dgdpd;,
P:{—> w0, if{+#apapa,.

By analogy with the naive definitions in §1, we can introduce the exact
notions of register-decidability and register-enumerability.

2.5 Definition. Suppose W < A*,
(a) A program P decides W if for all { € A*,

P: ¢ -0, iflew,
P:l-nwithy£ 0O, if(eéW.
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(b) W is said to be register-decidable (abbreviated: R-decidable) if there is a
program which decides W.

Example 2.2 shows that the set of even natural numbers is R-decidable.

2.6 Definition. Let W < A*,

(a) A program P enumerates W if P, started with [, prints out exactly the
words in W (in any order, possibly with repetitions).

(b) W is said to be register-enumerable (abbreviated: R-enumerable), if there
is a program which enumerates W.

If P enumerates an infinite set, then P:[] — co. By 23, W =
{0, ay, agay, ...} is R-enumerable. The program 0 HALT enumerates the
empty set, as does the program

0 LET R, =R, + a,
1 GOTO 0
2 HALT.

For the sake of completeness we add the definition of register-computable
functions.

2.7 Definition. Let A and B be alphabets and F: A* —» B*.
(a) A program P over A U B computes F if for all { € A*,
P:{— F(0).

(b) F is said to be register-computable (abbreviated: R-computable) if there
1s a program over A U B which computes F.

In this terminology, program P of 24 computes the function
F:{ay, a,}* - {ag, a,}* with F({) = {{. Definitions 2.5 through 2.7 can
easily be extended to n-ary relations and functions. For example, in order
to use a program to compute a binary function, one enters the two arguments
in the first two registers.

Since any program describes a procedure it is clear that every R-decidable
set is decidable, every R-enumerable set is enumerable, and every R-com-
putable function is computable. Does the converse also hold ? In other words,
can every procedure in the intuitive sense be simulated by means of a
program? A mathematical treatment of this problem is not possible because
the concept of procedure is an intuitive one without an exact definition.
Nevertheless, in spite of the simple form of the instructions allowed in
register programs, it is widely accepted today that all procedures can indeed
be simulated by register programs, and consequently that the intuitive
concepts of decidability and enumerability coincide with their mathe-
matically precise R-analogues. This view was first expressed by A. Church

in 1936 (referring to a different but equivalent precise notion of decidability
and enumerabilit Y Therefore the claim that everv nrocediire ran he
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simulated by a program and hence that the concepts of enumerability and
decidability coincide with their precise counterpartsis called Chureh’s Thesis.
We mention two arguments which suppori this thesis.

ARGUMENT | : Experience. Hitherto it has always been possible to simulate
any given procedure by a register program. In particular, programs in
programming languages such as ALGOL or FORTRAN can be rewritten
as register programs.

ARGUMENT 2. Since 1930 numerous mathematical concepts have been pro-
posed as precise counterparts to the notion of procedure. Although developed
from different starting points, all of these definitions have turned out to be
equivalent. In the literature R-decidable sets and R-computable functions
are frequently called recursive, and R-enumerable sets are called recursively
enumerable.

Proofs of R-enumerability or R-decidability often require a considerable
amount of programming work. To avoid getting lost in details, rather than
actually writing down register programs, we shall usually content ourselves
with describing procedures intuitively. The following example should help
to illustrate this.

2.8 Examp]e. The set of valid S -sentences is R-enumerable.
As proof we accept the procedure described in 1.6. U

In the following exercises the critical reader is invited to practice writing
programs for given procedures. The more trusting reader may instead draw
upon the experience of others and rely on Church’s thesis.

2.9 Exercise. Suppose W, W’ = A*. Show that if W and W' are R-decidable,
thensoare A* — W, W n W.,and W U W'

2.10 Exercise. Suppose W = A*. Show:

(a) A*is R-enumerable.

(b) W is R-decidable if and only if W and A* — W are R-enumerable.
2.11 Exercise. Suppose W = A* Show that (a) and (b) are equivalent.

(a) W is R-enumerable.
(b) There is a program P such that

P:{-> [, if{ew
P:{— «, if{¢W

2.12 Exercise. Show that aset W — A*is R-decidable iff W is R-enumerable
in lexicographical order.
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§3. The Halting Problem for Register Machines

Again we fix an alphabet A = {a,, ..., a,}. Our aim is to present a subset of
A* which is not R-decidable. The set will consist of register programs (over
A) which are suitably coded as words over A.

For this purpose we associate with every program P (over A) a word
£p € A*. First we extend A to an alphabet B

(+) B=AU{A,BC,....X,Y,Z}u{0,1,...,89% u{=,+, -, ][}
and we order B* lexicographically according to the order of letters given in
(+). We represent a program P as a word over B, e.g., the program

0 LET R, =R, — a,
1 PRINT
2 HALT

is represented by the word
OLETR1=R1—~a,|1PRINT|2HALT.

If this word is the nth word in the lexicographic ordering on B*, let

Epi=ag...qq.
(RS
n-times
Set 1 := {&£p| P is a program over A}.

The transition from P to &p (i.e., the numbering of programs over A with
words in {ay}*) is an example of a Gadel numbering (Gédel was the first to
apply this method); and £p is called the Godel number of P.

Clearly, for each P we can effectively determine the corresponding
£p e A*; conversely, given { € A* we can decide whether it belongs to I
or not, and if it does we can effectively determine the program P such that
¢p = (. The corresponding procedures can be programmed for register
machines (cf. the discussion at the end of §2). In particular we have

3.1 Lemma. ITis R-decidable. U
The following theorem presents first examples of R-undecidable sets.

3.2 Theorem (Undecidability of the Halting Problem). (a) The set
I}, = {&p| P is a program over A and P: &p — halt}

is not R-decidable.
(b) The set

I, = {&p| P is a program over A and P: [1 — halt}

is not R-decidable.
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Part (b) says that there is no register program which decides the set
I,,,,. Hence by Church’s Thesis there is no procedure whatsoever which
decides IT,,,,. From this we obtain the following formulation of 3.2(b):

There is no procedure which decides for an arbitrarily given
program P whether P: 1 — halt.

For, if such a procedure P did exist, one could use it to decide ITy,,, as follows.
First, for a given {, check whether { € IT (cf. 3.1). If { ¢ IT then { ¢ IT,,. If
{ e T1, construct the program P for which p = { and then apply P to P.

PROOF OF 3.2. (a) For a contradiction, suppose that there is a program P,
deciding IT},,,. Then for all P:

Py: ép— O, if P:&p — halt,

M Po: &ép - nforsome n # [, if P:ép— o0,
From this we easily obtain a program P, (see below) such that
) Pi:ép— oc, if P:&p— halt,

Py:ép—halt, if P:&p - 0.
Then the following holds for all programs P:
3) P:¢p— oo iff P:ép— halt.
In particular, if we set P = P, we have
4) P :&ép, — o0 iff Py:ép, — halt,

a contradiction.

To complete the proof of 3.2(a) we show how to construct P, from Py:
Wechange P in such a way that if P, prints the empty word, the new program
P, will not reach the halt instruction. This is achieved by replacing the last
instruction K HALT in P, by

k IF R, = THEN k ELSEk +1 OR...OR k + 1
k+1 HALT

and all instructions of the form L PRINT by L GOTO k.
(b) To each program P we assign in an effective way a program P* such
that

P: ¢&p — halt iff P*: 0O - halt,
that iS, ép € n;,a“ lﬁ él’* € l"Ihall‘

()

Using (*) we can prove {b) indirectly as follows:

Suppose that I1,,, is R-decidable, say by means of the program P,. Then in
contradiction to (a), we obtain the following decision procedure for ITj,,:
For an arbitrarily given { € A* first check whether { e IT (cf. 3.1). If { ¢ I1
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then { ¢ I1},,. If { € IT take the program P with Godel number (| (i.e., with
&p = {)and construct P*. Using P, decide whether &p+ € Il,;,. On account
of (x) one thus obtains an answer to the question whether {p € Iy, 1e.,
whether { € Iy,,.

It remains to define a program P™ satisfying (%), If

(p=ay...aq

n-times
let P* be the program which begins with the lines

0 LET R, = R, + a,

n—1 LET R, =Ry + a,

followed by the lines of P with all labels increased by n. When P~ is started
with [ as input, it first builds up the word £, in R, and then operates in the
same way as the program P applied to £,. Hence (*) holds. ]

The reader should note that the only properties of the map P +— £p used
in the proof were its injectivity and properties of effectiveness as mentioned
before 3.1. Therefore the undecidability of the halting problem does not
depend on our particular choice of Godel numbering.

Of course, for particular programs P it may be easy to determine whether
P: [0 - halt or not. But theorem 3.2 tells us that there cannot exist a pro-
cedure which decides this question “uniformly” for each P. (Strictly speaking,
3.2 only refers to procedures which can be simulated by register programs.
However, we obtain our preceding formulation if we accept Church’s
thesis. Henceforth we shall tacitly do this in explanatory remarks.)

The following lemma together with 3.2 shows that I, is an example of
an enumerable set which is not decidable.

3.3 Lemma. [1,,, is R-enumerable.

PrOOF. We sketch an enumeration procedure: for n = 1, 2, 3, ... generate
the finitely many programs whose G6del numbers are of length <n. Start
each such program with [ as input, and let each one perform n steps of its
computation. To compile the desired list, note each program which stops. [J

Applying 1.8, we obtain
3.4 Corollary. A* — I, is not R-enumerable. O

The proof of 3.2(a) is based on a so-called “diagonal argument”. The
following exercise contains an abstract version of this method of proof.
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3.5 Exercise. (a) Suppose that M is a nonempty set and R €« M x M. For
aeM let

M, = {be M|Rab}.
Show that the set
D = {b e M|not Rbb}

is different from each M,.
(b) Let M = A* for some given alphabet A = {ay, ..., a,}, and define
Rc M x Mby

Rén iff ¢ is the Godel number of a program P enumerating
a set in which » occurs.

Show that
D = {n|not Ryn}

is not enumerable. Thus the set of programs which do not print their own
Godel number is not enumerable.
(c) Let M be as in (b) and define R =« M x M by

Ré&y iff & is not the Godel number of a program which
eventually stops when started with #.

Show that all R-decidable sets (= A*) occur among the sets M, and that
D= H;mlt'

§4. The Undecidability of First-Order Logic

The set of valid first-order S, -sentences is enumerable (cf. 1.6). On the
other hand we have:

4.1 Theorem (Undecidability of First-Order Logic). The set {¢p € Ly*|= ¢}
of valid S -sentences is not R-decidable.

Thus there is no procedure which decides, for an arbitrary S, -sentence,
whether it is valid or not.

PrROOF. We adopt the notation of §3 with A = {}}. Again we identify words
over A with natural numbers. By 3.2 we know that the set

[y, = {&p| P is a program over A and P: {1 — halt}

is not R-decidable. We shall assign to every program P, in an effective way,
an S -sentence @p such that

(*) =¢p iff P: 0 - halt.
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Then we are done: If the set {¢p € Ly*|=¢} were decidable, we would
have the following decision procedure for Il,,, (a contradiction): Given
{ e A* first check whether { is of the form &p. If so, take P, construct ¢p
and decide whether ¢, is valid. By (x) we obtain an answer to the question
whether P: [1 — halt, i.e., whether &p € IT,,,.

The following considerations are preparatory to the definition of the
sentences @p.

Let P be a program with instructions ag, . .., ;. Denote by n the smallest
number such that the registers occurring in P are among Ry, ..., R,. An
(n + 2)-tuple (L, mg, ..., m,) of natural numbers with L < k is called a
configuration of P. We say that (L, my, ..., m,) is the configuration of P
after s steps if P, started with [, runs for at least s steps, and if after s steps
instruction L is to be executed next, while the numbers my, ..., m, are in
Ry, ..., R,, respectively. In particular, (0,0, ..., 0) is the configuration of
P after O steps (the “initial configuration”). Since only o, is a halt-instruction
we have

(1) P: O - halt iff for suitable s, my, ..., m,,
(k, mq, ..., m,) is the configuration of P after s steps.

If P: [ — halt, we let s be the number of steps carried out by P until it
arrives at the halt-instruction. Finally we choose symbols R ((n + 3)-ary),
< (binary), f (unary), and ¢ from S (e.g., R{*3, RS, f§, and c,), and set
S={R, <, f,c}.

With the program P we associate an S-structure U, within which we shall
describe how P operates. We distinguish two cases:

Case 1. P: [1— oc. We set Ap:=N and interpret < by the usual
ordering on N, ¢ by 0, f by the successor function, and R by the relation
{(s, L, mg,...,m)|(L, my,..., m,) is the configuration of P after s steps},
respectively.

Case 2. P: [0 — halt. We set e:= max{k, sp} and A, :={0,..., ¢}, and
interpret < by the usual ordering on 4 and ¢ by 0, respectively; furthermore
we define f*? by f*#(m) = m + 1 for m < e and f*#(e) = ¢, and set R*? :=
{(s, Lymg,....m)|(L, my, ..., m,) is the configuration of P after s steps}.
(Note that R**? is indeed a relation on A, since at each step P increases the
contents of each register by at most 1, and hence we have m,,...,m, <
sp < eforall(s. L,mg,....m,)eR*?)

Now we provide an S-sentence i/, which, in a suitable way, describes the
operations of P on [J. We abbreviatec, fc, ffc, ... by 0, 1,2, ..., respectively.
In reading ¢, the reader should convince himself that the following holds:

(2) (@) Up = yp.
(b) If A is an S-structure with WA = ¢p and (L., my, ..., m,) is the con-
figuration of P after s steps, then the elements 04 T4, ... 5 are
pairwise distinct and U = RsLim, ... m,,.
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We set
¢P3=¢0 A R(_)(_)/\ l//ozo/\ A wolkvl’

where Yo, Yy, - - - » Ya, Will now be defined. ¢, says that < is an ordering
whose first element is ¢, that x < fx holds for every x, and that fx is the
immediate successor of x in case x is not the last element,

Yo =" < is an ordering” A Yx(c < x vV ¢ = Xx)
AVX(x < fx vx=fx)AVx@yx <y-(x<fx
AVI(x < z > (fx <z v fx = 2)))).

Fora = ay, ..., %_, the sentence 4, describes the operation corresponding
to instruction «. It is defined as follows.

Fora =L LET R;=R; +|:
Uy =YX Vyy ... Y (RxLyy ...y, — (x < fx
ARFXL + 1yg . Yic 1 fViViv1 - Vo)
Fora =L LET R; =R, —|:
Ve =VxVyo... VW (RxLyy...y,— (x < fx
A(yi=0ARfXL + 1yy...y) v (Dy; =0
A Ju(fu=y; A RFXL + 1y ... Yic1yivy - YD)
Fora =L IF R; = J THEN L' ELSE L,:
W =VXVyo ... VW (RxLyy ...y, > (x < fx
A(i=0ARXLYyy...y) v (Ty; =0 A RfxLoyo ... y)))-
For a = L. PRINT:
o =YX Vyo ... Yy (RxLyy ...y, = (x < fx A RfxL + lyg...y,).
Now we set
(3) @p:=1tp— Ix Iy, ...y, Rxky, ... y,.
Then ¢p is an S-sentence which satisfies (*), i.e.,
E=@p iff P: O — halt.

Indeed, suppose first that ¢p is valid. Then in particular Up = @p. Since
Wp = yp (cf. (2)(a)), we have Up = Ax Iy, ... Iy, Rxky, ... y, (cf. (3)), ie.,

for suitable s, mq,..., m,, (k, mg,..., m,) is the configuration of P after s
steps. Now, (1) yields P: [J — halt.
Conversely, if P: [J — halt, then for suitable s, mg, ..., m,, the tuple

(k, mg, ..., m,) is the configuration of P after s steps. Hence ¢, is valid,
because if A is an S-structure such that A = p, then W = R5km,, ... m, by
(2)(b) and hence A = @p.



162 X. Limitations of the Formal Method

The undecidability of first-order logic was first proved by A. Church [5]
in 1936. In traditional logic (Llull, Lejbniz) the problem of finding a decision
procedure for “logically true propositions” had already been considered.
4.1 shows that such a search was bound to fail.

4.2 Exercise. Prove (2)(b) by induction over s.

4.3 Exercise. Show that the set of satisfiable S,-sentences is not R-
enumerable.

§5. Trahtenbrot’s Theorem and the
Incompleteness of Second-Order Logic

The object of this section is to prove that the set of valid second-order
S .-sentences is not enumerable, and to briefly discuss the methodological
consequences. A useful tool in this context will be Trahtenbrot’s theorem,
which says that the set of sentences valid in all finite structures is not
enumerable.

5.1 Definition. (a) An S-sentence ¢ is said to be fin-satisfiable if there is a
finite S-structure which satisfies ¢.
(b) An S-sentence ¢ is said to be fin-valid if every finite S-structure satisfies .

To be specific we consider the symbol set S and put
@, = {¢ € L3=| o fin-satisfiable},
®;, = {p € L3=| ¢ fin-valid}.

As an example, we note that over a finite domain any injective function is
also surjective; therefore the sentence @ =VxVy(fx=fy-ox=y) —
Vx dyx = fy is fin-valid; however, ¢ is not valid. The sentence —1¢ is
satisfiable but not fin-satisfiable.

5.2 Lemma. ®, is R-enumerable.

Proor. First we describe a procedure which decides, for every S -sentence
@ and every n > 1, whether or not ¢ is satisfiable over a domain with n
elements. Suppose ¢ and n are given. Since for every structure with n elements
there is an isomorphic structure with domain {1, ..., n}, we only need to
check (by the isomorphism lemma) whether ¢ is satisfiable over {1,..., n}.
Let S be the (finite!) set of symbols occurring in ¢ and A, ..., Ay be the
finitely many S-structures with domain {1, ..., n} (cf. 111.1.5). We can describe
the ?A; explicitly by means of finite tables for the relations, functions and
constants. ¢ is satisfiable over {1,...,n} if and only if U, = ¢ for some
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i < k. Thus we only need to test whether U, = @ fori = 0, ..., k. These tests
can be reduced to questions which can be answered from the respective
tables as follows: Given i < k, if ¢ = —1 then the problem “U; = ¢?” can
be reduced to the question of whether ;=4 If @ = (y v y) then similarly
the problem can be reduced to the questions of whether U; = iy and whether
A = 7. If @ = Ixyy we reduce to the questions “A; = Y[13?7, ..., “A =
¥[n]?”. Continuing in this way we eventually arrive at questions of the
form “; = y[ng, ..., n,_11?” for atomic formulas (v, ..., v,-) and
Hos ..., Hy— < n.Clearly these can be answered effectively by inspecting the
tables for ;.

Now @, can be enumerated as follows: For m = 1, 2,... generate the
(finitely many) words over A, which are §_-sentences and are of length <m,
and use the procedure just described to decide, for n = 1, ..., m, whether
they are satisfiable over a domain with n elements. List the sentences for
which this is the case. U

5.3 Theorem. @, is not R-decidable.

PROOF. For a program P over A = {|}, let A, and ¢p be defined as in the
proof of 4.1. We show

(*) P:[1 - halt iff ¢pe ®y.

This proves the theorem; for otherwise, using (*), one could obtain from a
decision procedure for @y a procedure to decide whether P: [ — halt
(cf. the corresponding argument in the proof of 4.1).

Proof of (). If P: [1 — halt, then U, is finite and is a model of . Hence
p € Op,. Conversely, if P: [1 — o0, then by (2)(b) in the proof of 4.1, the
elements 0%, T¥ ... are pairwise distinct in every model U of ¢/ p. Thus every
model of ¢ is infinite, and hence ¢p ¢ ®,. ]

From 5.2 and 5.3 we now obtain

5.4 Trahtenbrot’s Theorem. The set @, of S,-sentences valid in all finite
Structures is not R-enumerable.

PROOEF. Clearly,
(*) (pGng - (Dfs iff _](peq)fv

holds for ¢ € L§~. For a contradiction assume that ®@;, is enumerable. Then,
using (*), one can also enumerate L3= — ®,,: one simply starts an enumera-
tion procedure for ®;,, and whenever it lists a sentence —1¢, one writes down
@. This would lead to a decision procedure for @, (in contradiction to 5.3)
as follows: For a string { over Ay, decide first whether { is an §, -sentence.
If so, start enumeration procedures for @, (cf. 5.2) and for Ly — @, and
let both procedures continue until one of them yields { as output. Thus one
obtains a decision whether { € ®,. O
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5.5 Theorem (Incompleteness of Second-Order Logic). The set of valid
second-order S, -sentences is not R-enumerable.

ProOF. Let ¢y, be a second-order S -sentence with the property that for
all A,

WU = @, Iff Ais finite
(cf. IX.1). Then for all first-order S -sentences ¢,
(*) Qe Iiff =@, - @

Now, if the set of valid second-order S -sentences is R-enumerable, then
one can start an enumeration procedure for this set, and each time it yields
a sentence of the form ¢y;, = ¢, where @ € L3*, one adds ¢ to the list. By
() we obtain in this way an enumeration of @, in contradiction to Trahten-
brot’s theorem. O

Theorem 5.5 is due to Godel. It is a stronger version of a result obtained
in IX.1. There we concluded from the failure of the compactness theorem for
second-order logic ., that there cannot be any correct and complete proof
calculus for .#y. In other words, there is no calculus whose derivability
relation - satisfies

{+) Forall & -sentences ¢ and all sets ® of .#-sentences,
D= iff®+ o

However, (+) leaves open the question of whether there is a calculus which
satisfies (+) for ® = (¥, that is, whether there is a correct calculus in which
all valid second-order sentences are derivable. Now 5.5 shows that in this
sense second-order logic is also incomplete: If such a calculus existed, one
could apply its rules systematically to generate all possible derivations and
hence all valid second-order sentences (cf. the proof of 1.6).

At this point we see how useful it has been to introduce the notion of
enumerability: By employing this notion we were relieved of the task of
giving precise definitions for the notions of derivation rule and calculus, but
were nevertheless able to conclude that there is no adequate proof calculus
for the valid second-order sentences.

The argument for 5.5 above is based on the fact that the finite sets are
characterizable in second-order logic. Thus it can also be applied to weak
second-order logic (cf. IX.1.7).

For the sake of simplicity, we have, in the last section, referred to the
symbol set S although we have actually needed only a few symbols from
S,. It should be clear that the results are also valid for other symbol sets
S which are effectively given as is S, and contain the symbols mentioned
above. One can even show that it is sufficient for § to contain only one
binary relation symbol. Moreover, the incompleteness of second-order logic



§6. Theories and Decidability 165

already holds for S = & (cf. 5.6). On the other hand, the set of valid first-
order S-sentences is decidable provided S contains only unary relation
symbols (cf. X1.3.9(b)).

5.6 Exercise. The set of valid second-order (f-sentences is not R-enumerable.

§6. Theories and Decidability

In this section we investigate several theories, especially with regard to
enumerability and decidability. Among the results obtained is the unde-
cidability of arithmetic. We shall always assume that the symbol sets con-
sidered are effectively given.

A. First-Order Theories

6.1 Definition. T < L3J is said to be a theory if T is satisfiable and if it is
closed under consequence (i.e., every S-sentence which follows from T
already belongs to T).

For every S-structure 2 the set
Th() == {p € L3 | A = ¢}
1s a theory, the theory of U (cf. VL.4.1). Th(M) is called (elementary) arithmetic.
For ®  L§ let ®= :={pe L|® = ¢}. If T is a theory, then T = T=,

and if @ is a satisfiable set of S-sentences, then @ is a theory. We give a few
examples.

() &~ = {lpelili=o}.

(2) For § = S, (first-order) group theory Th,, = ®,.

(3) For § = {e}: ZFC set theory Thygc:= ZFCF.

(4) For S = §,,: the so-called (first-order) Peano arithmetic Thp, := OF,.
The axiom system ®p, consists of the Peano axioms given in II1.7.5,
where the usual induction axiom (a second-order sentence) is replaced
by the first-order “induction axioms” (%) below:

Vx1x+1=0, WVplx+ 1l=y+1-x=y),
Vxx +0=x, VxVyx+ (G +D=(x+y+1,
Vxx-0=0, VxVyx-(yv+ 1)=x-y + x,

(») and for all xq,....x,_,, » and all @€ L5 such that free(p) <
{Xg,..., X,_ 1, ¥} the sentence :

0 )+ 1
" on...\/x,,_1<<(py A \/y<(p—>(pJ ; ))-»Vyw).
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N is a model of ®p, . The schema (*) is a natural substitute for the induction
axiom, because it expresses the induction axiom for properties which are
definable in first-order logic. Many theorems of elementary arithmetic (i.e.,
sentences in Th(MN)) can be derived from @, . Nevertheless it turns out that
not all sentences of Th(M) are derivable from @p,: in 6.10 we shall show that
Op5 & Th(N).

6.2 Definition. (a) A theory T is said to be R-axiomatizable if there is an
R-decidable set @ of sentences such that T = ®~.

(b) A theory T is said to be finirely axiomatizable if there is a finite set ® of
sentences such that T = ©®~.

Every finitely axiomatizable theory can be axiomatized by means of a
single sentence. (Take the conjunction of the axioms.) Every finitely axio-
matizable theory is also R-axiomatizable. The theories Thp, and Thygc are
R-axiomatizable, but it can be shown that they are not finitely axiomatizable.

6.3 Theorem. An R-axiomatizable theory is R-enumerable.

PROOF, Let T be a theory and let ® be an R-decidable set of S-sentences such
that T = ®~. The sentences of T may be listed as follows: Generate syste-
matically all derivable sequents and check in each case whether the members
of the antecedent belong to ®@. If so, list the succedent provided it is a sentence.

O

An R-axiomatizable theory T need not necessarily be R-decidable.
Examples are T = (J~ (for S = S,; cf. 4.1) and T = Thy, (cf. [28]). The
situation is different, however, if T is complete in the following sense.

6.4 Definition. A theory T < L3 is complete if for every S-sentence ¢ we
have pe Tor npeT.

Th(2) is complete for every structure A.

6.5 Theorem. (a) Every R-axiomatizable and complete theory is R-decidable.
(b) Every R-enumerable and complete theory is R-decidable.

PrOOF. By 6.3 it is sufficient to prove (b). Let T be an R-enumerable complete
theory. In order to decide whether a given sentence ¢ belongs to T, we use a
procedure to enumerate T, continuing until either ¢ or ~1¢ has been listed.
Since T is complete, one of these two sentences will eventually be listed. If
@ is listed, ¢ belongs to T ; if —1¢ is listed, ¢ does not belong to T. O

From 6.5 we obtain the decidability of an axiomatizable theory once we
have proved its completeness. A method for proving completeness will be
introduced in the next chapter. In certain cases one can use the assertion in

7T FAar thic M11rmoacs
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6.6 Exercise. Let T = ®F be a theory, where @ is R-enumerable. Show that
T is R-axiomatizable. (Hint: Starting with an enumeration ¢,, @y, ... of @,
consider the set {py, po A @q,...})

6.7 Exercise. (a) For at most countable S, let T = L{ be a theory having
only infinite models. Further, suppose there is an infinite cardinal « such
that any two models of T of cardinality k are isomorphic. Show that T
is complete.

(b) Set up a decidable system of axioms for the theory of algebraically
closed fields of fixed characteristic and use (a) to show its completeness
(and hence by 6.5 its decidability).

B. The Undecidability of Arithmetic

In this section we prove the undecidability of arithmetic, i.e., we show that
there is no procedure which decides for every S,,-sentence whether it holds
in N. We shall use the same method of proof as in showing the undecidability
of first-order logic: we effectively assign to every register program P an
Sa-sentence gp such that

N = @p iff P: 0 - halt.

The undecidability of Th(3) then follows immediately from the undecid-
ability of I, ,,,.

In defining @p we shall make use of a formula yp which, in N, describes
how the program P operates. The following lemma provides us with such a
formula.

Assume the program P consists of the instructions oy, ..., o, and let n
be the smallest number such that all registers mentioned in P are among
Ry, ..., R,. Recall (cf. §4) that a configuration of P is an (n + 2)-tuple
(L, my, ..., m,) of natural numbers such that L < k. (L, m,, ..., m,) stands
for a situation where a; is the next instruction to be executed and the contents
of the registers are my, ..., m,.

6.8 Lemma. With any given program P one can effectively associate a formula
Uplvg, ..., Uany2) Such that for all ke, ..., k,, L,mq, ..., m, € N the following
holds:

N = Yplko, .., kn, Lomg, ..., m,])iff P, beginning with the con-
Sfiguration (0, kg, ..., k,), after finitely many steps reaches the
configuration (L, mq, ..., m,).

Using p, we can write down the desired formula ¢p as

. 1
Pp = an+2 e HerHrZ l//P((_)a .. -,Qa k, [ JA vZn+2)'

n
!In case ¢ € L3, for example, we write ¢(n, v;) for ¢ — and ¢(n, m) for ¢ . Here, as before,
Vo Vo ly

n denotes the corresponding term 1 + -+ + 1.
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Then we have (note that o, is the halt-instruction of P):

N = ¢@p iff P, beginning with the configuration (0,...,0),
after finitely many steps reaches the configuration
(k,mg,...,m,) for some my,...,m,

iff P: [0 - halt.

Thus we have

6.9 Theorem (Undecidability of Arithmetic). Arithmetic, i.e., the S,,~theory
Th(N), is not R-decidable. O

Since Th(%) is complete, using 6.5, we obtain

6.10 Corollary. Arithmetic is neither R-axiomatizable nor R-enumerable. [

According to 69 and 6.10 arithmetic is not amenable to a purely
“mechanical” treatment in the following sense: There is no procedure for
deciding whether any given arithmetical sentence is true, nor is there even a
procedure which lists all true arithmetical sentences. In other words, every
procedure which lists only true arithmetical sentences must necessarily omit
some true arithmetical sentences. Thus mathematicians will never possess a
method for systematically proving all true arithmetical sentences.

PrOOF OF LEMMA 6.8. Let P be given as above. We must find an S, -formula
Yp(Xo, .- s Xp, 2, Vg -, V) (=¥p(X, z, 7)) which says (in i) that P, beginning
with the configuration (0, X), proceeds through a series of configurations,
ending finally with the configuration (z, y). That is, (X, z, ¥) should be a
formalization of the following statement:

“There is an s e N and a sequence C,, ..., C, of configurations
such that

(1) COZ(Ov XO,...,X"), CSZ(Z,,\'oa-u,y,.),
and foralli < s, C; - Ciiy”
“C; 5 Ci (7 means that P passes from configuration C; to C;,; when

executing the instruction addressed in C;. We form a single sequence from
Cy, ..., C,and thus obtain the following formulation of (1):

“There is an s € N and a sequence

(Gos .+ pi1s Ayyas .. st 2y a1y - -yt 2p -+ sn v 2y 4 (v 1))

Co C, C,
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(2) such that
00:0,(11 = Xgyeoes Qpyg = Xy,

as(n+2) =1z as-(n+2)+l = y07 et as~(n+2)+(n+ 1) = yn,

and for all i < s,

k2l
(ai~(n+2)s s Ay 2y (1)) 7 @G+ 1yme2yr -0 it 1)-(n+2)+(n+1)) .

The principal difficulty in formalizing (2) as a first-order S,-sentence
arises with the quantifier “there exists a sequence...”. We overcome this
problem by using natural numbers as codes for finite sequences. Often one
codes a sequence (ay, ..., a,) by the number pi*!.. .. p**! where p;
denotes the ith prime. However, when using this code, we would be forced to
give an LS*-definition of exponentiation. Since such a definition is rather
involved, we provide another coding where a sequence (ay, .. ., a,) is coded
by two suitably chosen numbers ¢ and p.

6.11 B-function Lemma.> There is a function B: N*> — N with the following
properties:

(a) For every sequence (ag, - - ., a,) over N, there exist t, p € N such that for
i<r
ﬂ([’ ps l) = ai'
(b) There exists an S,,~formula y(v,, vy, v,, v3) which defines f in It in the
sense that for t, p,i,a e N,

N= gLt p, i, a) iff B, p,i)=a.

PrOOF. (a) Given (ay, ..., a,), we choose a prime p which is larger than
ag,...,a,,r+ 1and set

(*)  t=1-p" +agp' + 2p> + a;p> + - + (r + Dp¥ + a,p¥

By choice of p the right-hand side is the p-adic representation of z.
First we show that for all i < r

a = q; iff there are by, by, b, such that
(i) t = by + by((i + 1) + ap + byp?),
(%) (il a < p,
(iii) by < by,
(iv) b, = p?' for a suitable I.

The implication from left to right follows immediately from (x). Conversely,
suppose (i)-(iv) hold for by, by, b, and let b; = p?'. From (i) we obtain

t=by + G+ 1)-p¥+ ap?*t! 4+ b,p¥'t+2.

2 This nomenclature stems from Godel’s use of § for a function with the properties (a) and (b)
of the lemma.
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Since b, < p*', a < p, and the p-adic representation of ¢ is unique, a com-
parison with (%) yields ! = iand a = a;. Weset (1, p, i) = a,,i.e., the uniquely
determined number a for which the right-hand side of (*x) holds. We extend
this definition to arbitrary natural numbers r, g, j by specifying

the smallest a such that there exist by, b;, b, with
(i) r=bo+by((j+ 1)+ aq + b,q*)
(i) a<q
pr.q,j) = (iii) by < b,
(iv) b, = ¢*' for suitable [,
if such an a exists and q is prime
0, otherwise.

Then f has the properties required in (a).

(b) The definition just given leads immediately to an S,,-formula
x(vo, vy, U5, v3) defining B; one need only note that (iv) is equivalent to the
condition that b, be a square and that for alld # 1 withd|b, we haveqg|d. [J

We now return to the proof of 6.8, that is, to the problem of giving an
S..-formula which says that the program P passes in finitely many steps from
the configuration (0, X) to the configuration (z, ). As we have seen, this
statement about P is equivalent to statement (2). We can formalize (2) with
the aid of the formula y from the f-function lemma (where we now use
s, t, ... to denote variables):

Wp(Xos vy Xns 2, Yos o vns Va)

=35 Ip J(x(t, p, 0, 0) A x(t, p, 1, Xo) A -+- A x(t, pyn+ 1,x,)

Ayt p,s-(nt2),2) Ax(t,ps-(n+2)+ L yg) A
A p,s-(n+2)+ (n+ 1)y,

AVYiVuug ... u,Vu'uy ... u,

<saxtpi-(t2,u)agt,pi-(n+2)+ Lug)A---

Axtpi-(nt+2)+ (m+ 1)1,

Axtp, i+ 1)-(nt2),u) A g6, p, (i + 1D)-(n+2)+ Lug) A -
Axtp i+ 1)-(nt2)+ (nt 1), u,)

>, g, - Uy) p (W, U, )]

Here
“(u, U, '-"un) ? (u/7 u69 ""u;l)”

stands for a formula which describes the direct transition from configuration
(u, ug, ..., u,) to configuration (', up,...,u,); such a formula can be
obtained as a conjunction ¥ A --- A Y, _, where y; describes transitions
induced by instruction «; of P. For example, if «; is of the form

JLET R, =R, + 1
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then we take
Yipi=mu=joW=ut+lAuy=ugAuy=u +1Auy=uy A
A Uy = Uy,).
Instructions of other type can be treated similarly. Thus a formula y, with

the desired properties is obtained, and the proof of 6.8 is completed. O

Finally, we note another consequence of the fact that computations of
register machines can be described in 9.
6.12 Theorem. Let r > 1.

(a) Given an r-ary R-decidable relation Q over N, there is an S, -formula
@(vy, ..., U,_,) such that for allky, ..., k,_, €N,

nkO"'kr~1 iﬁ‘mlz(p(l_{Oa-"akr—l)'

(b) Given an R-computable function f:N"— N, there is an S,-formula
vy, ..., Uy, Uy) such that for all ko, ... k,_ 1, k, € N,

f(kOs"'akr—l):kr l:ﬁ‘miz(p(l_COs-"’l_{r—l’kr)’
and in particular,
m = 3=1 Ur(P(ko’ R _Igr—l, U,).

PROOF. (a) Suppose r > 1 and let Q be an r-ary R-decidable relation over
N. Let P be a register program which decidesQ and o, ..., @ be the print-
instructions of P. Suppose that R, is the largest register mentioned in P,
and without loss of generality, that n > r — 1. Then, using ¥, from 6.8, we
have for arbitrary ky, ..., k., € N:

Qkg ... k,_, iff P, beginning with configuration

©, ko, ..., k,_4,0,...,0),
N —
n—r41

after finitely many steps reaches a configuration
of the form (L;, 0, m, ..., m) with0 < i < [
iff <N = 30"4_3 [ 7 )

(l//P(ko’ ""I_crvls (_)a "'a(_)’I_‘O’ (_)a vn+3""’02n+2)
Vo Vv l/’P(kOs"'skr-lsQ""stI:I’Q’ vn+37"'702n+2))'

Thus for ¢(vy, ..., v,_,) one can take the formula

1
E]vn+3 TS \/l//P(UO’”"vr—la Qa"'st L‘l‘,Q’ vn+3,'--702n+2)'
i=0
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(b) We proceed as in (a), noting that
flky, ..., k,—1) =k, iff P,beginning with configuration
0, ko, ..., k,_1,0,...,0),

after finitely many steps reaches a con-
figuration of the form (L;, k,, my, ..., m,)
withO<i<l

Hence the required formula ¢(vy, ..., v,_, t,) can be chosen as

1
3vn+3 e Uy \/ l//P(UO,"" Ur-l’ (_)7--'397 Li? Uy, vn+3"",02n+2)' D
i=0

Relations and functions over N which can be described by an S,,-formula
as in 6.12 are said to be arithmetical. Thus 6.12 says that all R-decidable
relations and all R-computable functions over N are arithmetical.

§7. Self-Referential Statements and Godel’s
Incompleteness Theorems

In the preceding section we have shown that arithmetic is not R-axiomatiz-
able. Originally Godel [13] used another method to prove this result. He
showed that within sufficiently strong axiom systems there are self-referential
formulas, i.e., formulas which make statements about themselves. Such
self-referential formulas are the main theme of this section. We shall close
by taking up our original objective of this chapter and obtain some important
results concerning the limitations of the formal method. With this aim in
mind we shall often conduct the arguments on the syntactic level.
In the following we take ®@ to be a set of S,,-sentences.

7.1 Definition, (a) A relation Q < N’ is said to be representable in @ if there
is a formula (v, ..., v,_;) € L3 such that for all ny, ..., n,_; € N:

Qng...n,_, impliess®+ ong, ..., H_1),

not Qny...n,_; implies®+ =g, ..., 1)
In this case we say that @(vg, ..., v,_ ) represents Q in ®.
(b) Afunction F: N" — N is said to be representable in @ if there is a formula
@(vg, ..., v,) € L3 such that forall ng, ..., n,_, n, e N,

F(ng,...,n,_y) =n, implies ®— ¢(ng, ..., n);
F(ng,...,n._q) # n, implies ® — T1png,...,n);
(I) l'_ Hzl Ur(P(’lo, ety Er—h vr)'

In this case we say that @(ve, . . ., v,) represents F in @.
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7.2 Lemma. (a)If® < @ < L3 then the relations and functions representable
in @ are also representable in @'

(b) If @ is inconsistent then every relation and every function is representable
in ®.

(c) Let @ be consistent. If @ is decidable then every relation representable in
® is decidable and every function representable in @ is computable.

All assertions follow directly from definition 7.1. To prove (c), note that
the set of formulas derivable from a decidable set @ is enumerable. O

For @ < L3 we define

Repr @ iff all R-decidable relations and all R-computable
functions on N are representable in ®.

Repr @ says, in a certain sense, that @ is rich enough to describe how pro-
cedures operate. In the preceding section we have described the execution
of programs in ® := Th(MN). Indeed we have

7.3 Proposition. Repr Th(%t).
The proofis immediate from 6.12 if one notes that for every S, -sentence ¢,

Ni= ¢ if TW(O)+ ¢
and
not N = ¢ iff ThH(R) — 0. O

A closer analysis shows that the arguments in the previous section which
led to a description in Th(M) of the execution of programs, can actually be
carried out in @p,. Thus one can obtain

7.4 Proposition. Repr ®p,. O

As an important technical means we assume in the following that an
effective coding of the S, -formulas by natural numbers (a Gédel numbering)
is given, and moreover that every number is the Godel number of some
formula. We write n? for the Gédel number of ¢. Conversely, we let ¢,
denote the formula with Gédel number . In this way it is possible to translate
statements about formulas into arithmetical statements. For example, a
statement about the derivability of a formula ¢ becomes an arithmetical
statement about the Godel number of ¢, and this in turn can be formalized
as an S, -sentence.

The way we shall proceed originates from the liar’s paradox, thereby
leading, on a formal level, to a clarification of the problems which lie behind
this paradox. The paradox of the liar amounts to the fact that the statement

(*) “I am not telling the truth”
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can neither be true nor false; for if it were true it would have to be false, and
if it were false it would have to be true. Note that (*) makes a statement
about itself, and hence is an example of a self-referential statement.

As a first step we consider statements of this kind in general. We show
that within a sufficiently rich system, every property which is expressible in
the system gives rise to a self-referential sentence; more precisely:

7.5 Fixed Point Theorem. Suppose Repr ®. Then, for every € Li™, there
is an S,,-sentence ¢ (= ) such that

D ¢ < Y(?).
Intuitively, ¢ says “I have the property Y.
PrOOF. Let F: N x N — N be given by

™ if p = n* for some y € L3

F =

(n, m) {0, otherwise.

Clearly, F is computable, and for y € L3> we have
F(n*, m) = n*™,

Since Repr @, F can be represented in @ by a suitable formula a(vy, vy, v,) €
L3> We write x, y, z for v, vy, v,. For given y € LI we set
B = Vz(a(x, x, z) > Y(2)),

@ = Vz(a(n’, v’ 2) > Y(2)).
8
n
Since fe L{* and ¢ = ,B”;, we have F(n?, n#) = n® and hence

(M @ - o, n¥, n®).
We now show in two steps that
D+ ¢ = Y((n?)

First, by definition of ¢,
® U {p} = an’, v, n%) > Y.

By (1), it follows that ® - ¢ — y(n®). Since o represents the function F in
®, we have, on the other hand,
O 37 'za(n’, v, 2);
thus by (1)
®  Yz(u(nh, 0, z) —» z = n?),
and therefore
D - Y1) - Va(a(n®, n¥, 2) - Y(2)),

that is,

Q- Y(a®) > 0. =
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Let us now turn to systems which are rich enough to contain statements
about the “truth” or “falsity” of statements formalizable in the system. The
following theorem shows that in such a system one cannot classify all state-
ments as either “true” or “false”. Formally, we consider an axiom system ®;
The “true” statements correspond to the sentences in

" ={p e Ly|0+ o},

the “false” statements to the negations of sentences in ®". To say that one
can speak of “truth” in ® is to say that ®" is representable in ® (more
precisely, that {n?|p € ®"} is representable in @), If & satisfies this latter
condition then, as we shall show, there is a sentence ¢ such that neither ¢
nor —1¢ belongs to ®".

7.6 Lemma, Let ® be consistent and suppose Repr ®. If ®" is representable
in @, then there is an S,,-sentence ¢ such that neither ® - ¢ nor ® — .

PROOF. Suppose x(v,) € L3 represents the set ®~ in ®. Then in particular,
for @ € L3,

O+ y(n) iff O
For y = =1y we choose, by 7.5, a “fixed point™ ¢ € L such that
(*) D ¢ o y(n®);
@ says intuitively “I am not true”.
As in the paradox of the liar, we now obtain that neither ® - ¢ nor
® - —1¢. For if ® - ¢ then @ - y(n®) and hence by (x), ® — ¢, that is,
® is inconsistent, contrary to our initial assumption. On the other hand, if

® - ¢ then by (x), ®  x(n®) and therefore ® - ¢, and ® would again be
inconsistent. O

Lemma 7.6 has interesting consequences both on the syntactical and
semantical levels. In semantical formulations one usually refers to ®~
instead of ®".

7.7 Tarski’s Theorem [26]. (a) Suppose ® is consistent and Repr ® holds. If
@~ is representable in @, then ®F is not complete.
(b) Th(R) is not representable in Th(N).

PROOF. (a) Since @~ = @~ (a) follows immediately from 7.6.
(b) follows from (a) by setting ® = Th(R) and noting that Th(N) =
Th(9)" is complete. O

Tarski’s theorem is of great significance in the study of semantics. Part
(a) says that for a sufficiently strong system the following two conditions
cannot hold simultaneously:

(1) Every statement in the system is either true or false (“® is complete™).
(2) Truth is expressible in the system (“®F is representable in ®™).
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The paradox of the liar arises from the tacit assumption that both conditions
(1) and (2) hold for everyday language.

Part (b) of Tarski’s theorem can be formulated succinctly as “there is no
truth definition for arithmetic within arithmetic”.

Like Tarski’s theorem, Godel’s first incompleteness theorem is also a
consequence of lemma 7.6 (cf. 6.10).

7.8 Godel’s First Incompleteness Theorem. Let @ be consistent and R-decidable
and suppose Repr ®. Then there is an S, -sentence ¢ such that neither ® - ¢
nor ® - 1.

PrROOF. Suppose that for every S,,-sentence ¢, either @~ ¢ or ® - —e.
Then ®" is decidable. Hence, by Repr @, ®" is representable in @ in con-
tradiction to 7.6. O

A refinement of the above discussion leads to results concerning the
consistency of mathematics. In particular, Godel’s second incompleteness
theorem, which we shall derive, shows that the consistency of a sufficiently
rich system cannot be proved using only the means available within the
system.

Let ® < L3 be decidable such that Repr ®. We choose an effective
enumeration of all derivations in the sequent calculus associated with S,
and define a relation H =« N x N by

Hnm iff the mth derivation ends with a sequent of the form

Yo ... Wp_ 10, Where Yo,..., ¥, €® and ¢, is
(as before) the nth formula in the Gdel numbering
of §,,-formulas.

Since ® is decidable, so also is H, and clearly,
® - ¢ iff there is m € N such that Hn®m.

As a decidable relation, H can be represented in ® by a suitable formula
oulvy, v1) € L3>, Again we write x, y for vy, v, and set

Derg(x) = Iyopu(x, ¥).
For y = 1Derg(x) we choose a fixed point ¢ € L3
(%) ® - ¢ & 1Derg(n?).
@ says intuitively “I am not provable from @
Then we have
7.9. If ® is consistent then not ® — .

PROOF. Suppose @ - ¢ holds. Choose msuch that Hn?m. Then @ - ¢, (n%, m),
and so @ i~ Derg(n®). From (*) we have ® — —1¢, and hence ® is incon-
sistent. O
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Since Repr @, the consistency of ® is equivalent to “not @ 0 = 1".
(Note that in case ® - 0 = 1 every representable set which contains 0
would also contain 1.) The §,~sentence

Consisg = T1Derg(n’=")

thus expresses the consistency of ®. 7.9 may then be formalized as the
S,.-sentence

Consisg — —1Derg(n?).

An argument which is in principle simple, though technically rather tedious
could now be used to show that the proof of 7.9 can be carried out on the
basis of @, in case ® > ®,, (and a natural representation ¢y(v,, v;) of H has
been chosen). This means:

(%) ® - Consisg > —1Derg(n?).

We then can deduce

7.10 Godel’s Second Incompleteness Theorem. Let ® be consistent and
R-decidable such that ®p, < ®. Then

not ® - Consisg,.

PrOOF. If ® - Consisg then by (xx) ® - —1Derg(n®) also. By (), @~ ¢ «
—1Derg(n®) and hence @ - ¢, in contradiction to 7.9. (]

For ® = ®,, Godel’s second incompleteness theorem says intuitively
that the consistency of ®p, cannot be proved on the basis of ®p, . This result
shows that Hilbert’s program cannot be carried out in its original form. In
particular this program aimed at a consistency proof for ®p, using only
finitistic means. The concept “finitistic”, though not defined precisely
(cf.[18], p. 32), was taken in a very narrow sense; in particular it was required
that finitistic proof methods be carried out on the basis of ®p,.

The above argument can be transferred to other systems where there is a
substitute for the natural numbers and where decidable relations and com-
putable functions are representable. In particular, they apply to systems of
axioms for set theory such as ZFC. One uses the natural numbers as defined
in ZFC. Then one can define an {€}-sentence Consiszrc, which expresses
the consistency of ZFC, to obtain

7.11 Theorem. If ZFC is consistent then not ZFC (- Consiszgc. O

Since present-day mathematics can be based on the ZFC axioms, and
since “not ZFC - Consiszgc” says that the consistency of ZFC cannot be
proved using only means available within ZFC, we can formulate 7.11 as
follows: If mathematics is consistent, we cannot prove its consistency by
mathematical means.
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In a similar way also Tarski’s theorem and Gddel’s first incompleteness
theorem can be transferred to axiom systems for set theory. For example,
7.8 would then assert that for every decidable and consistent system of
axioms @ for set theory which contains ZFC, there is an {€}-sentence i such
that neither ® - ¢ nor ® - —y. Intuitively this means that there is no
decidable consistent system of axioms for mathematics which, for every
mathematical statement, allows us to either prove it or disprove it. In this
fact an inherent limitation of the axiomatic method is manifested.



CHAPTER XI

An Algebraic Characterization of
Elementary Equivalence

The greater part of our exposition so far has been devoted to the development
and investigation of first-order logic. We can justify the dominant réle
assumed by first-order logic in several ways:

(a) First-order logic is in principle sufficient for mathematics.

(b) The intuitive concept of proof and the consequence relation can be
adequately described by a formal notion of proof, which is given by
means of a calculus.

(¢) A number of semantic results such as the compactness theorem or the
Loéwenheim-Skolem theorem lead to an enrichment of mathematical
methods.

However, in contrast to these positive aspects, one also has to take into
account that the limited expressive power of first-order language often
requires clumsy formulations. In particular, it forces us to make explicit
reference to set theory to an extent not usual in mathematical practice. For
this reason we were led to seek other systems with greater expressive power
but still satisfying conditions (b) and (c). We introduced a number of exten-
sions of first-order logic (Lyu, ZH, Lw0. L) and investigated their
semantic properties. In each case we found (cf. IX) that not all the properties
mentioned in (c) are available.

In the previous chapter we obtained negative results of a more syntactic
nature. For example, we saw that for &} and for &} there is no possibility
of adequately describing the notion of proof by means of a calculus; hence
in these cases we also have to make concessions concerning (b).

The discussion in the last two chapters will show that these negative
results have a deeper reason: Having made precise the concept “logical
system” we shall prove in Chapter XII that no logical system with more
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expressive power than first-order logic can meet the conditions of (b) and
(c).

In the present chapter we introduce a useful tool for these investigations.
Recall that two structures are elementarily equivalent if they satisfy the
same first-order sentences. We now present a purely algebraic characteriza-
tion of elementary equivalence. This characterization is useful not only for
our present purpose but also in other contexts. For example, in many cases
it can serve to verify that two given structures U and B are elementarily
equivalent (in a simpler way than by proving directly that U and B satisfy
the same first-order sentences).

§1. Partial Isomorphisms

In this section we provide the concepts we need in order to formulate the
algebraic characterization of elementary equivalence. We refer to a fixed
symbol set S. The domain of a map p is denoted by dom(p), its range by

rg(p).

1.1 Definition. Let 2 and B be (S-)structures and let p be a map. p is said to
be a partial isomorphism from A to B if and only if dom(p) = 4, rg(p) = B
and p has the following properties:
(a) p is injective.
(b) p is homomorphic in the following sense:

(1) For n-ary Pe S and ay, ..., a,_, € dom(p),

PYa,...a,_, iff P®Pp(ay)...p(a,—,).
(2) Forn-aryfeSanda,y,...,a,_,;,acdom(p),

fMao, ... ap )y =a iff fHplag)....pa, 1) = pla)
(3) Forc e S and a € dom(p),

AM=a iff c®=pla)

We write Part(, B) for the set of partial isomorphisms from A to B.

1.2 Examples and Comments.

(a) The empty map, ie., the map with empty domain, is a partial iso-
morphism from A to B.

(b) The map p with dom(p) = {2, 3} and p(2) = 2, p(3) = 6 is a partial
isomorphism from the additive group (R, +, 0) of real numbers to the
additive group (Z, +, 0) of integers. On the other hand, the map ¢ with
dom(q) = {2, 3} and g(2) = 1, ¢(3) = 2 is not a partial isomorphism from
(R, +,0)to (Z, +, 0), because 2 + 2 # 3 but g(2) + q(2) = q(3).
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(c) If S is relational, that is, if S contains only relation symbols, then for
ag,...,a,_1 €A and by, ...,b,_, € B the following two statements are
equivalent:

(*) By setting
pa)=b; (i <),
apartial isomorphism from A to B is determined (where dom(p) =
{ag,...,a,_yyand rg(p) = {by, ..., b,_1}).
() For every atomic formula y € LS,
U= yYlag,...,a,_,] ff Be=ylbe,....b,_1]
Proor. First we note that for i, j < r
a;=a; ff We=v,=vla,...,a,_]
bi=b; iff BE=v,=v[by,...,b_ 4],
and that for n-ary Pe Sand iy, ..., i,.; <
PYa a, , ft W= Py ...v_lag, .., a,-,],
P%b,-o...b iff Be=Po,...v [bo,...,b_1]
Now, if () holds, then by (1) and the fact that
W= v, =vfag,....a,_,] iff Be=v,=vlby,....b_1]

(M

2 o - -

in-1

p (as given in (x)) is well-defined and injective. Since
W= Po,...v,_lag,...,a,_,] iff Be=Puy,...v;, [bo,--.»b—1]

and by (2), p is also homomorphic.
Similarly one can use (1) and (2) to deduce (**) from (x). O

(d) Note that the equivalence in (¢) is no longer true if S contains function
symbols or constants. For example, for the partial isomorphism p in (b)

not (R, +,0) = vo + (v + vo) = v,[2, 3],
but on the other hand

(Z, +,0) = vo + (vo + o) = v,[pQ2), p(3)].

(e) The following example shows that even for relational S a partial
isomorphism does not in general preserve the validity of formulas with
quantifiers.

Let S = { <} and let ¢, be the partial isomorphism from (R, <)to (Z, <)
such that dom(q,) = {2, 3} and go(2) = 3, q4(3) = 4. Then

(R, <)i=3va(vyg < vy A vy, < vy)[2, 3]
but .
not (Z, <) k= Ju,(vg < vy A vz < v1) [90(2), o(3)].
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If p is a partial isomorphism from (R, <)to (Z, <)such that dom(p) = {a, b}
and a < b, then we always have

(R, <) = oy (v < vy A vy <vy) [a,b],

since, for example,
. a+b
R <YEvy<v, Av, < vl[a, b,T{I.

In this case the validity of
(+) (Z, <) = Fva(ve < v2 A v < v)p(a), p(b)]

is equivalent to the existence of a partial isomorphism g from (R, <) to
(Z, <) which extends p and has (@ + b)/2 in its domain. For, if such a ¢
exists, then (+ ) holds, since

(2, <) vo < v3 A vy < vl[q(ax 4(b), q(“ * b)];

2
conversely, if (+) is satisfied and, say,
(Z, <) = vy < vy A vy < vi[pla), pb), d],

then the extension g of p withdom(q) = {a, b, (a + b)/2} and g((a + b)/2)=d
is such a partial isomorphism.

This argument indicates that the truth of formulas with quantifiers is
preserved under partial isomorphisms provided that these admit certain
extensions. It embodies the basic idea behind the algebraic characterization
of elementary equivalence: The elementary equivalence of structures amounts
to the existence of extensions of certain partial isomorphisms.

In the following we identify a map p with its graph {(a, p(a@))|a € dom(p)}.
Then p < g means that ¢ is an extension of p.

1.3 Definition. 2 and B are said to be finitely isomorphic, written W = , B,
iff there is a sequence (I,),oy With the following properties:

(a) Every I, is a nonempty set of partial isomorphisms from U to B.

(b) (Forth-property) For every pel,,, and ae A4 there is g € I, such that
q © p and a € dom(g).

(c) (Back-property) For every pel,,; and b€ B there is g € I, such that
g o p and b e rg(qg).

Informally we can express (b) and (c) as follows: partial isomorphisms in
I, can be extended (n + 1) times; the corresponding extensions lie in
L, 1,y ...,1, and I, respectively. If (I,),.n has the properties (a), (b),
and (c), we write (I,),.n: W =, B.

1.4 Definition. 2 and B are said to be partially isomorphic, written A = , B,
iff there is a set I such that
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(a) I is a nonempty set of partial isomorphisms from 2 to B.

(b) (Forth-property) For every pel and ae A there is g€l such that
g > p and a € dom(g).

(c) (Back-property) For every pel and be B there is gel such that
q o p and b € rg(q).

Thus the conditions (a), (b), and (c) amount to (I),.n: UA =, B for the
constant sequence (), -

If (a), (b), and (c) are satisfied for I we write I: U =, B.

The following lemma lists the relations between the various notions of
isomorphism.

1.5 Lemma. (a) If A = B, then A =, B.

(b) f U =,Bthen A= ,B.

(©) If U =, Band Ais finite then A = B.

(d) If A =, Band A and B are at most countable then W = B.

PROOF. (a) If n: A = B then I: A =, B for I = {n}.

(b) If I: A =, B then (I), n: A =, B.

(¢) Suppose (I),en: U =, B, and suppose A has exactly r elements,
A={ay,...,a,_1}. We choose pel,,,. If we suitably apply the forth-
property r times we obtain a g € I, such that q,,...,qa,_; € dom(g), ie.,
dom(q) = A. If rg(q) # B and b e B — rg(q), then by the back-property
there would be an extension ¢’ of g in I, such that b € rg(g’). Since dom(q) = 4,
this is not possible. Therefore rg(q) = B and thus g: A = B.

(d) Suppose I: A = ,B, A = {ay, a,,...} and B = {by, by, ...}. Starting
from an arbitrary p, € I, by repeated application of the back- and forth-
properties, we obtain extensions p;, p,,... in I such that a, € dom(p,),
by e rg(p,), a; € dom(p,), by € rg(py), ..., that is

(1) Pn S Pt
(2) ifnis odd, say n = 2r + 1, then a, € dom(p,);
(3) if nis even, say n = 2r + 2, then b, € rg(p,,).

By (1), p = U,,EN p, 1s a partial isomorphism from U to B. As dom(p) = 4
(by (2)) and rg(p) = B (by (3)), we have p: AU = B. O

Part (d) of 1.5 is an abstract version of the following theorem of Cantor:

1.6 Theorem. Any two countable dense orderings (without endpoints) are
isomorphic.

Here a dense ordering is a { < }-structure which is a model of ®,,,4, where
®,,.4 contains the ordering axioms together with the following sentences:
UxVyx < y->3Fz(x <z Az <Y)),
Vx3dyx <y, YVxJdyy < x
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(R, <) and (@, <) are dense orderings. By contrast, (Z, <) is not a dense
ordering.
Cantor’s theorem follows from 1.5(d) and

1.7 Lemma. If A = (A, <*) and B = (B, <®) are dense orderings, then
I: A =, Bfor I = {p|p e Part(A, B), dom(p) finite}.

PRrOOE. Since p = ¢ isin I, I is not empty. I satisfies the forth-property. For,
it pel, dom(p) = {ag,...,a,_}, and a € A, then because B is dense there
is an element b € B which is related to p(ay), .. ., p(a,_ ) in the ordering B
in the same manner as a is related to aq, ..., a,- in the ordering A. Then
g = p v {(a, b)} is an extension of p which is defined for a and lies in 1. The
back-property follows analogously, using the fact that 9 is dense. O

1.8 Example. Suppose S = {g,0} and let @, consist of the “successor
axioms”

Vx(—1x = 0 & 3ygy = x),
Vx Vy(ox = gy - x = y),
and for every m > 1:
Vx—g...0x = X.
—‘,—(
m-times
The structure R, (cf. I11.7.3(2)) is a model of ®,. We show that any two models
of @, are finitely isomorphic. For a model U of @, and for a € A4, let

a™:=g*.. . a¥(a).

D —
m-times

For every n € N we define a “distance function” d,, on A x A by
m ifa™ =g and m < 2",
dfa,d)=3-m ifad'"™ =aandm < 2",
x otherwise.

Now suppose U and B are models of ®,. We show that (I,),.n: U =, B,
where
I, = {p € Part(U, B)|dom(p) finite, 0* € dom(p),
and for all a, ' € dom(p), d,(a, a’) = d(p(a), p(a))}.

Thus a partial isomorphism in I, preserves the “d,-distances”. First we have
1, # & since {(0%. 0%)} el,. We sketch a proof of the forth-property for
(I,)newn (the back-property can be proved analogously). Suppose pel,, .,
and a € A. We distinguish two cases, depending on whether or not the
following condition (x) is satisfied.

(*) There is an a’ € dom(p) such that |d,(a, a)| <2".
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If () holds there is exactly one b € B for which p U {(a, b)} preserves the
d,-distance (since pel,,); if (x) does not hold we choose an arbitrary
element b such that d,(p(a’), b) = = for all a € dom(p) (such an element
must exist since every model of @, is infinite). In any case it is easy to show
that g:==p v {(a, b)} € I,. O

1.9 Exercise. Let S = . Show that any two infinite S-structures are partially
isomorphic.

1.10 Exercise. (a) Give an example of structures which are partially iso-
morphic but not isomorphic.

(b) Give an example of structures which are finitely isomorphic but not
partially isomorphic.

1.11 Exercise. Give an uncountable model of the system of axioms @, in 1.8.

§2. Fraissé’s Theorem

Using the concepts introduced in §1, we now formulate the main result of
this chapter.

2.1 Fraissé’s Theorem. Let S be a finite symbol set and W, B S-structures.
Then

A=B iff A=, B.

Note that Fraissé’s theorem provides us with a characterization of
elementary equivalence which does not refer to first-order language.

Before proving the theorem (in the next section) we give several examples
showing how it can be used to check the elementary equivalence of structures
and the completeness of theories.

2.2 Proposition. (a) Any two dense orderings are elementarily equivalent. In
particular, (R, <) = (Q, <).

(b) Any two {g, O}-structures satisfying the axioms in 1.8 are elementarily
equivalent.

PRrOOF. (a) follows from 2.1, since every two dense orderings are partially
isomorphic, and thus also finitely isomorphic; (b) follows analogously by
means of 1.8. O

For some applications we need the following simple criterion for the
completeness of theories.
2.3 Lemma. For a theory T < L3 the following are equivalent:

(a) T is complete, i.e., for every S-sentence ¢ either p € T or 7@€ T.
(b) Any two models of T are elementarily equivalent.
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PrOOF. Suppose first that (a) holds, and let 2, B be models of T. For any
S-sentence ¢ cither g€ T or mpe T.lf ¢ € T then A = ¢ and B = ¢; if
TpeTthenUE 1pand B = —1¢p. Thus A = ¢ iff B = .

Conversely, let ¢ be an S-sentence and suppose ¢ ¢ T. Since T is a theory,
T = ¢ does not hold, and therefore there is a model Wof T U {—1¢}. By (b)
every model of T is elementarily equivalent to U, and thus is a model of —1¢.
Hence T = —1¢ and therefore 7o e T, O

From 2.2, with the aid of 2.3 and X.6.5 we obtain

2.4 Proposition. (a) The theory @, 4 of dense orderings is complete and
R-decidable. (Thus, for example, 3,4 = Th(R, <).)

(b) The theory ®; of “successor structures” is complete and R-decidable.
(Thus for example, ®F = Th(N, ¢).) O

Preparatory to the proof of Fraissé’s theorem we show that we can restrict
ourselves to relational symbol sets.

Let S be an arbitrary symbol set. As on p. 120 we choose, for each n-ary
f €8, anew (n + 1)-ary relation symbol F and, for each ¢ € S, a new unary
relation symbol C. Let S” consist of the relation symbols from S together
with the new relation symbols. " is relational. For an S-structure 2, let A"
be the S"-structure obtained from 2, replacing functions and constants by
their graphs (as in VIILI).

When defining partial isomorphisms we treated functions and constants
in such a way (cf. 1.1(b)) that

Part(, B) = Part(A’, B").
From this we obtain
(%) W=, B iff A =, B
In VIIL.1.7 we showed that
(%%) A=V iff AW =9

Thus, in proving Fraissé’s theorem, we can restrict to relational symbol sets.
For, if A and B are given, it follows from

Ar=B" iff W, ¥
by (+) and (x*) that
A=V iff Ax=,B

2.5 Exercise. Show that for S = ¢¥ the theory of infinite sets, {¢,,|n > 2}",
is complete and R-decidable.
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2.6 Exercise. Let S = {P,|n € N} be a set of unary relation symbols. Define
the S-structures A and B as follows: 4 := N, B:=N u {x}, P¥ = {m|me N,
m > n}, PP :={mlmeN,m>n} u {x} Showthat A = Bbutnot A =, B.
(Thus Fraissé’s theorem is in general not true for infinite symbol sets. Note,
on the other hand, that for arbitrary S and S-structures 2, B we have U = B
iff for any finite S < S, A [ So = B [ Sy, that is. A [ Sy =, B[ S,.)

§3. Proof of Fraissé¢’s Theorem

As a measure of the complexity of formulas we define the quantifier rank of a
formula ¢ to be the maximum number of nested quantifiers occurring in it:

qr(e) =0, if ¢ is atomic;
ar(me)=ar(e);  qrle v ) = max{qr(e), qr(y)};
qr(3xe) = qr(e) + L.

For example, the formula —13x(Vy Rxz A Q¥) A VzQz has quantifier rank 2.
The formulas of quantifier rank zero are the quantifier-free formulas.

In the sequel let S be a fixed finite relational symbol set. One half of
Fraissé’s theorem amounts to

3. If U=, BrhenA=BY.

In order to prove 3.1 we must show for every S-sentence ¢ that
U= iff B o.
We obtain this by applying the following lemma, taking r = 0, n = qr(¢),
and an arbitrary p € I, (note that I, # &%).
3.2 Lemma. Letr (1,),.n: U = B. Then for every formula ¢:
If pe L, qr(e) < n,pel,, and aq, ..., a, | €dom(p), then

(%)
W= olag, ... a1 iff B= olp(ao). ..., pa,-1)]
Informally, 3.2 says that partial isomorphisms from I, preserve formulas
of quantifier rank <n. It makes precise the idea discussed in 1.2(e) that
formulas with quantifiers are preserved under partial isomorphisms provided
these isomorphisms admit certain extensions.

Proor OF 3.2. We show (*) by induction on formulas ¢. Suppose ¢ € LS,
qr(e) < n,pel,,and aq, ..., a,_, € dom(p).

(i) For atomic o the result was proved in 1.2(c).
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(ii) If @ = =y then

A= plag,...,a,_,] iff not A= ylag,...,a,-1]
iff not B = Y[ pao), ..., pla,-1)]
(by induction hypothesis)
iff B = ol[plag), .-, pla,-1)]

(iil) For ¢ = o v Y, the argument is analogous.
(iv) Suppose ¢ = Ixy. Since ¢ € LS, v, does not occur free in ¢. Thus

v
k= 3Ixy > v, Y-, and therefore we may assume that x = v,. Because
X

qr(e) = qr(Ixy) < n, we have qr(y) < n — 1. The claim for ¢ is now
obtained from the following chain of equivalent statements:

(a) QI = (P[a(), R ] ar—l]'

(b) There 1s a € A such that A = Y[a,,-..,a,_, al.

(c) There is ae A and gel,_; such that ¢ > p, ae dom(qg), and A =
l//[aOa R a]'

(d) There is ae A and geI,_, such that g > p, aedom(q), and B =
W[P(ao), Tt p(ar—l)* q(a)]

(e) Thereisbe Band g € I,_, such that ¢ > p, b € rg(q), and

% = l1“:1)(610)’ MR p(ar— 1)’ b]

(f) There is b € B such that B = y[p(ay), ..., p(a, 1), b].
(g) % = (P[P(ao), ] p(ar—l)]'

To prove the equivalence of (e) and (f) and of (b) and (c), respectively, one
uses the back- and forth-properties of the sequence (I,,), . The equivalence
of (c) and (d) follows from the induction hypothesis. O

From the foregoing proof we extract another result needed in the next
chapter. Two structures 2 and B are m-isomorphic (written: A =, B) if
there is a sequence Iy, . . ., I,, of nonempty sets of partial isomorphisms from
A to B with the back- and forth-properties, i.e.,

forn+1<m,pel, and ae A (resp. be B), thereisgel,
such that ¢ > p and a € dom(q) (resp. b € rg(q)).

In this case we write (I,),<,n: U =, B.
Since the proof of 3.2 shows that partial isomorphisms in I, preserve
formulas of quantifier rank <m, we have

3.3 Corollary, If U =, B then A and B satisfy the same sentences of
quantifier rank <m. O

The following considerations are needed for the converse of 3.1.
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Given a set @ of S-formulas we write {®>, as in VIIL3, to denote the
smallest subset of L which contains ® and is closed under propositional
connectives (i.e., which contains together with y and y also 71y and (¢ v y)).

It is easy to verify:

(1) If every formula in ®, is logically equivalent to a formula in ®@,, then
every formula in {(®,) is logically equivalent to a formula in {®,).

By induction on ¢ one can show:
(2) If p € LS and qr(p) < n + 1 then
pe (W eLdlary) < n} U {3x Y e Llgry) < n}).
From (1) and (2) we obtain
3.4 Lemma. Let n € N. Then for every r € N there are, up to logical equiv-
alence, only finitely many formulas in LY of quantifier rank <n.
ProoOF. By induction on .

n = 0: Since S was assumed to be finite and relational, there are only
finitely many atomic formulas in L. By VIIL3.2 there are, up to logical
equivalence, only finitely many quantifier-free formulas in L%.

Induction step: Let r € N. By induction hypothesis there are formulas
Vo, ..., Vi_y € LS of quantifier rank <n
and formulas
Yos -+ Xn—y1 € LS, | of quantifier rank <n

such that every formula in LS (resp. LY, ;) of quantifier rank <n is logically
equivalent to some y; (resp. x;). We show:

(*) Every formula in

@, = {y e L¥|qr(y) < n} U {3x y € L¥[qr(y) < n}

is logically equivalent to a formula in

(DZ = {wo,..., wkwl} \J {HvaOs""Hvah—l}-

From this we obtain the claim in the induction step as follows: Every formula
in LS of quantifier rank <n + 1 is in <@, (cf. (2)) and is therefore, by (%)
and (1), logically equivalent to a formula in (®,>. But by VIIL.3.2 (®,)
contains only finitely many formulas which are pairwise logically non-
equivalent.

Proof of (x): By choice of the y; every y € LY with qr(y) < n is logically
equivalent to some ;. If 3xy € Ly and qr(y) < n, then k= Ixy <> v, ¢ &.
X
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v, . . . .
The formula " is in LY, | and has quantifier rank <n, hence is logically
X

equivalent to some y;; thus 3x y is equivalent to 3o, x;. O
We conclude the proof of Fraissé’s theorem by showing

3.5 Lemma. If A = B then A =~ B.
ProOF. Suppose A = B, For n eN we define I, as follows (cf. () in 3.2):

pel, iff pePart(A, B) and there arere Nanda,,...,a,_, €4
with dom(p) = {ay, ..., a,_,} such that for all p € LS
with gr(p) < n

Q’Ilz(p[a()""’ar-‘lj lﬂ EBlz(p[p(aO)a"‘,p(ar—l)]'

We show that (I,),.n: U =, B.

(I,)sen has the forth-property. For, suppose that pel, ;, ae A and
dom(p) = {ay,...,a,_,}. By 3.4 we can pick finitely many formulas
Yo, ..., Y€ LS, of quantifier rank <n such that every formula in LS, of
quantifier rank <n is logically equivalent to some y;.

For 0 < i < swe let

i l#ia ifQ’IIZI//i[aOs-"aarvlaa]a
Pi= 1, i W= wlae, ..., a,_4,al.

Then W= dv,(@p A -+ A @lae, ..., a,_1]. Since

ar@olpo A - A @) <n+ 1

and pel,,,, it follows that

23 = 3vr((pO A A (Ps)[P(ao), CRS ] p(ar—l)]’

say B = @y A - A @ plag), ..., pa,_,), b]. Then in A and B the elements
dg,...,a,_1, a and p(ay),..., pla,_,), b respectively, satisfy the same
formulas among the y; and therefore satisfy the same formulas of quantifier
rank <n. Thus p = q U {(a, b)} is a partial isomorphism which extends p
(cf. 1.2(c)), has a in its domain, and lies in I,,.

The back-property is proved analogously.

Finally, every I, is nonempty: Since A = B the same sentences of quan-
tifier rank < hold in A as in B, and therefore p = F lies in 1,,. O

If A and B satisfy the same sentences of quantifier rank <m, the last
argument in the preceding proof shows that p = ¢f is an element of I,
I, ..., I,. Summarizing, we have

3.6 Lemma. If A and B satisfy the same sentences of quantifier rank <m then
A=, B O
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Assertions 3.3 and 3.6 yield

3.7 Theorem. Let S be finite and relational. For S-structures U and B, the
Sollowing are equivalent:

(a) A =, B
(b) U and B satisfy the same sentences of quantifier rank <m. O
3.8 Exercise. Suppose S = {P,, ..., P,_;} with unary rejation symbols P;.

Show that for every S-structure 2 and every m > 1 there is a structure B
such that A =, B and B contains at most m - 2" elements. (Hint: Consider
the 2" subsets of A of the form A, N --- N A,_,, where 4, = P{ or 4, =
A — P#. Choose B to be a structure whose corresponding sets have the same
number of elements if this number is <m, and otherwise have m elements.)

3.9 Exercise. Again let S = {P,, ..., P,_,} with unary relation symbols P,,
let m > 1, and @ € L} be a sentence of quantifier rank <m. Show:

() If ¢ is satisfiable, then ¢ is already satisfiable over a domain with at most
m- 2" elements.
(b) {y|y € LS, y valid} is R-decidable.

§4. Ehrenfeucht Games

The algebraic description of elementary equivalence is well-suited for many
purposes. However, it lacks the intuitive appeal of a game-theoretical
characterization due to Ehrenfeucht, which we describe in the present
section.

Let S be an arbitrary symbol set and let 2 and B be S-structures. To
simplify the following formulation we assume 4 N B = . The Ehrenfeucht
game G(U, B) corresponding to A and B is played by two players, I and 11,
according to the following rules:

Each play of the game begins with player I choosing a natural number
r > 1:ris the number of subsequent moves each player has to make in the
course of the play. These subsequent moves are begun by player I, and both
players move alternately. Each move consists of choosing an element from
A U B. If player I chooses an element a; € A in his ith move, then player II
must choose b; € B in his ith move. If player I chooses an element b; € B in
his ith move, then player I must choose a; € A. After the rth move of player
II the play is completed. Altogether some number r > 1, elements ay, ...,
a, € Aand by, ...., b, € Bhave been chosen. Player II has won the play iff by
pla;) = b;for i = 1, ..., r a partial isomorphism from U to B is defined.

We say that player II has a winning strategy in G(21, B) and write “II wins
G, B)” if it is possible for him to win each play. (We omit an exact defini-
tion of the notion of winning strategy.)
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4.1 Lemma. % =, B iff II wins G(2, B).

This lemma, together with Fraissé’s theorem, yields the desired game-
theoretical characterization of elementary equivalence:

4.2 Ehrenfeucht’s Theorem. For finite S and arbitrary N and B:
A =B iff I wins G(U, B).
PRrOOF OF 4.1. Suppose (I,)),en: U =, B. Then (1)), W =, B also, where
I, := {p|there is g € I, such that p < g}.

We describe a winning strategy for player II:

If player I chooses the number r at the beginning of a G(2, B)-play, then
fori =1,...,rplayer I should choose the elements a; (or resp. b,) so that
by pia;) = b; for 1 < j < i one obtains a partial isomorphism p; in I,_;;
this is always possible because of the extension properties of partial iso-
morphisms in (I}), .. For i = r it follows that player Il wins the play.

Conversely, suppose that player Il has a winning strategy in G(2L, B).
We define a sequence (I,),.n as follows:

For ne N let

pel, iff pePart(, B) and there are jeN and ay,...,a;€ 4

such that

(1) dom(p) = {ay, ..., a;};

(it) thereisanm > nand a G(, B)-play which II plays
according to his winning strategy, which player I
opens by choosing the number m + j, and where in
the first j moves the elements a,,...,a;€ A and
p@ay), ..., p(a;) € B are chosen.

From the rules of the game we immediately obtain that (1,,),n: U =, B. [



CHAPTER XII
Characterizing First-Order Logic

In this final chapter we present some results, due to Lindstrém [217], which
we have already mentioned several times. They show that first-order logic
occupies a unique place among logical systems. Indeed we shall prove:

(a) There is no logical system with more expressive power than first-order
logic, for which both the compactness theorem and the Lowenheim-
Skolem theorem hold (§3).

(b) There is no logical system with more expressive power than first-order
logic, for which the Léwenheim-Skolem theorem holds and for which the
set of valid sentences is enumerable (§4).

§1. Logical Systems

In the definition of a logical system which follows, we collect several proper-
ties which are shared by the logics we have considered so far. As we are mainly
interested in semantic aspects we shall speak of a logical system as soon as
we have the following: We are given, for every symbol set S, an “abstract”
set whose elements play the role of S-sentences, and in addition, a relationship
between structures and such sentences which corresponds to the satisfaction
relation, and determines whether an “abstract ” sentence holds in a structure.

1.1 Definition. A logical system ¥ consists of a function L and a binary
relation = 4. L associates with every symbol set S a set L(S), the set of S-
sentences of . The following properties are required:

(a) If S, < S, then L(Sy) < L(S)).

(b) If A=4 o (ie, if Wand ¢ are related under = o), then, for some S, A
is an S-structure and ¢ € L(S).
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(¢) (Isomorphism property) If A =, ¢ and A = B then B =, ¢.
(d) (Reduct property) If Sy = S,, @ € L(Sy), and U 1s an S;-structure then

U=, 0 ff AT S, E=g0.

Ly, Ly L, £ w0, and £ are logical systems. For instance, in the case
of %, we choose L, to be the function which assigns to a symbol set S the set
Ly(S):=Lj of first-order S-sentences, and we take k=, to be the usual
satisfaction relation between structures and first-order sentences.

If & is a logical system and ¢ € L(S), let

Mod%(¢p) == {A| W is an S-structure and A = , ¢}.

In case S is clear from the context we just write Mod (o).

Mod%(p) can be regarded as a mathematically precise counterpart to
the meaning of ¢. It suggests the following definition of when a logical system
&' has more expressive power than ., namely, if for every ¥-sentence ¢
there is an .¥"-sentence y with the same meaning.

1.2 Definition. Let . and ¥’ be logical systems.

(a) &' is at least as strong as & (written: & < #') iff for every S and every
@ € L(S) there is a y € L'(S) such that

Mod() = Mod$. ().
(b) L and ¥’ are equally strong (written: ¥ ~ NIff ¥ < L and ¥ < &.

EXAMPLES. &) < ZY; £) < Ly; not Ly < & (ef IX17); 1 < Loo
(cf. IX.2.7); not £} < £, (proof !) and not ¥, < #};.

On our abstract level we now formulate some properties of logical
systems which are known to hold for the systems we have considered so far.

Boole(£) (* & is closed under propositional (“Boolean™) connectives™) if
(1) and (2) are satisfied.

(1) Given Sand ¢ € L(S),thereisa y € L(S) such that for every S-structure :
=gy iff not A=, .

(2) Given Sand ¢,y € L(S), thereisa y € L(S) such that for every S-structure
A

U=,z iff =g, por Uk, .

If Boole(.#) holds then let = ¢ and (¢ Vv ) stand for formulas y in the sense
of (1y and (2) above. (¢ A V), (@ — V), ... are used analogously.

Rel(#) (* & permits relativization”, cf. VIIL.2):

For S, ¢ € L(S), and unary U there is a y € L(S u {U}) such
that

A UY=Ly iff [UNEse
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for all S-structures U and all S-closed subsets U4 of A. ([U*]™
is the substructure of A with domain U*.)

If Rel(Z) holds let ¢V be a formula i with the above property.
Elim(¥£) (“ & allows elimination of function symbols and constants™):

If § is a symbol set and §" is chosen as in VIII.1, then for any
¢ € L(S) there is a € L(S") such that for all S-structures U:

Wiy iff Wy

(For the definition of A" cf. also VIIL1). If Eim(.%) then we write ¢" for a
formula s with the above property.

1.3 Definition. A logical system ¥ is said to be regular if it satisfies the
properties Boole(.¥), Rel(.¥), and Elim(¥).

All logical systems which we have hitherto considered are regular. In the
case of ¥, we verified Elim(.#}) and Rel(#,) in VIIL.1 and VIIL.2. The
arguments given there can also be applied without difficulty for the other
logical systems.

We tacitly adopt some semantic notions whose definition can be extended
from ¥, to the general case in a straightforward manner. For example,
@ € L(S) is said to be satisfiable if Mod%,(¢) # &, and valid if Mod%(¢) is
the class of all S-structures. If ® = L(S) then ® =, ¢ means that every
model of @ (in the sense of = &) is a model of ¢. Note that these definitions
refer to a fixed symbol set S. However, using the reduct property 1.1(d) one
can argue as in I11.5.3 to show that they do not depend on S. In the sequel
similar applications of 1.1(d) will be made without explicit mention.

We introduce the following abbreviations:

L6Sko(Z) (“ The Lowenheim—-Skolem theorem holds for #7):
Every satisfiable sentence of & has an at most countable
model.

Comp(#) (“The compactness theorem holds for £”):
If @ is a set of sentences of ¥ such that every finite subset of ® is
satisfiable, then @ is satisfiable.

In this terminology the result of Lindstrém mentioned in (a) reads as follows:

Let & be a regular logical system such that ¥ < %,
LoSko(.#), and Comp(#). Then ¥ ~ &,.

Before embarking on the proof (in §3) we derive in the next section some
properties of logical systems for which the compactness theorem holds.

1.4 Exercise. Let & be given by

(i) L(S):={p|¢ is an Lj-sentence of the form 3X,...3X,_ . where
does not contain a second-order quantifier}.
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(i) For ¢ € L(S) and any S-structure 2,

U= ff Uk, o
Show:

(a) & is a logical system.

(b) LoSko(Z), Comp(.¥), Rel(¥), and Elim(¥).
(c) Not Boole(%).

(d) & < Zbutnot ¥ < ¥,

§2. Compact Regular Logical Systems

In this section % will always be a regular logical system such that £, < 2.
For a first-order S-sentence ¢, let o* be a sentence in L(S) which has the
samc modecls as ¢, i€,

Mod$,(¢) = Mod%(e*).

For a set @ of first-order S-sentences define ®* := {p* | € ®}.

If & is compact, i.e., Comp(¥) holds, then also the compactness theorem
for the consequence relation holds, as can be shown similarly to the first-
order case:

2.1 Lemma. Suppose Comp(¥), and let ® U {¢} < L(S) and ® = 4 ¢. Then
there is a finite subset @y of ® such that Oy = 4 .

Proor. Choose —1¢ by Boole(#). Then ® u {—1¢} is not satisfiable. By
Comp(Z) there is a finite subset @, of ® so that @, U {19} is not satisfiable,
ie, @y =4 0. O

As a further property of compact logics, we show that the meaning of an
L(S)-sentence only depends on finitely many symbols from S:

2.2 Lemma. Suppose Comp(L) and y € L(S). Then there is a finite subset
So of S such that for all S-structures W and B,

if UATSo=B[S, then UL iff Bi=oh).

Proor. We restrict ourselves to the case where S is relational (the case we
shall subsequently need). There is no difficulty in extending the proof to
arbitrary symbol sets.

Choose new unary symbols U, V, and /. Let ® consist of the following
first-order S U {U, V, f}-sentences, which say that f is an isomorphism
between the substructure induced on U and the substructure induced on V:

IxUx, IxVx,
Vx(Ux = Vfx), Yy(Vy —» Ax(Ux A fx =),
VxVy((Ux A Uy A fx = fy)-x =),
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and for every R € S, R n-ary,

Vxo .. . V%o (((Uxg A -+ A Ux,_1) 2 (Rxg ... X1 2 RfXg oo fX0_ 1))
Then, firstly,
(D D* = YU oy

In fact, if 9 is an S-structure and (A, U4, VA, f4) = o ®*, i, (U, U4, VA, f4)
k= @, then U4 and V* are nonempty and f* | U4 is an isomorphism from
[U47¥ to [V4]™. By the isomorphism property (cf. 1.1(c)) we have

U=y iff [V =gy,
that is, by Rel(%¥),
(U, U =¥ iff (U, V) =yt
Using the reduct property and Boole(#) we obtain
(QI, UA, VA, fA) F:_y l/’U PN l//V-
Thus (1) is proved. By Comp(.%) there is a finite subset @, of ® such that
) D=y oyt

Since @, consists of first-order sentences, we may choose a finite subset S,
of S such that ®, consists of S,-sentences. We show that S, has the desired
properties. Suppose A and B are S-structures and 7: A [ Sq = B [ S,,
where we assume A N B = . (Otherwise we can take an isomorphic copy
of B and use the isomorphism property.) We define over C:=A4 U B an
S u {U, V, f}-structure (€, US, V¢, £©) as follows (note that § is relational):

R€:=R4 UR® forReS,
UC:=A4,
V€= B,
f€such that € | U® = =.
Then (€, US, VS, £€) is a model of @, i.e. (€, US, V, f€) = o . Hence by
(2),
€ USVE Y Epy =y,
and therefore, using [U°]® = A and [V]® = B,
U=y iff By O

Two S-structures A and B are said to be L-equivalent (written: A = , B),
if for all yy € L(S),
A =7 l// iff B = @ l//

For A = 4, B we continue to write simply U = B. Clearly, if & ~ £, then
A = B implies A = , B. We show that the converse holds for compact £.



198 XII. Characterizing First-Order Logic

2.3 Lemma. Assume Comp(¥) and suppose that A = B implies N = o B
for arbitrary W, B. Then L ~ &,.

PROOE. Since ¥, < &, given § and € L(S), we must show that there is a
first-order S-sentence ¢ such that

Modg,(¢) = Mod £().
Suppose  is satisfiable. (Otherwise we let ¢ = Vx —1x = x.) First, we claim
For every 2 € Mod (1)) there is g € L3 such that
" A= oy and PiEY.

To show this we let A € Mod 4(). Then for the first-order theory Th(2)
of A,

Th(AY* =g .

For if B = o Th(A)*, i.e., B = Th(A), then B = A by hypothesis; therefore
B =, A and hence B = 4 .

Since Comp(.¥¢), there are r and ¢g,..., @,€ Th(A) such that
{@&, . ... 0¥ =0 . We set @g=@o A -+ A @,. Then @y e Th(RI), ie.,
W = @y, and ¢F = o . Thus (1) is proved.

From (1) we immediately obtain

) Mode() = |J Mody(ef).

AeMod ¢ (¥)

Now we show that there are U, ..., U, € Mod 4(y)) such that

(3) Mod«(¥) = Mod#(0§,) © - - v Mod o(¢d,).

Otherwise, for arbitrary ,, ..., U, from Mod 4(1y) we would have
Mod 4(¥) 2 Mod 4(¢§,) © --- v Mod #(¢§,),

and thus every finite subset of {/} U {T¢¥|U e Modg ()} would be
satisfiable. By Comp(.¥¢) the whole set would be satisfiable, in contradiction
to (2).
Writing Mod 4(i) as in (3) we obtain
Mod () = Mod ¢,(pa,) © -+ - © Mod ¢,(¢u,)
= Modg (pa, V -+ Vv @u,)
Hence for ¢ := @y, v -+ vV @q, we have Mod ¢ (¢) = Mod &(). U

§3. Lindstrom’s First Theorem

We now have all tools available to obtain the following characterization of
first-crder logic.
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3.1 Lindstrém’s First Theorem, Let & be a regular logical system such that
&L < &. Then

L&Sko(&) and Comp(%) imply ¥ ~ &.

ProOF. Given ¢ satisfying the conditions of the theorem we must show
that ¥ < ;. By 2.3 it is suflicient to prove for all §:

(+) For all S-structures A and B, if A = B then A =, B.

We can restrict ourselves here to relational symbol sets. Assuming that (+)
has been established for relational symbol sets, we can then give the following
argument for arbitrary S:

Suppose A = B. Considering S*, A", and B" we obtain, first of all, A" = B”
(cf. VIIL.1.7). Then for the relational symbol set S", (+) yields A" = , B".
Finally, using Elim(%’), we have for arbitrary iy € L(S):

U=y iff W=y
iff B =y (since A =, B)
iff By,
and thus A = , B.

For relational § we now prove (4 ). Assume, for contradiction, that we
have S-structures 2 and B, and € L(S) such that

(1) A =B, A= if, B =y .

Corresponding to yy we choose a finite subset S, of S as in lemma 2.2, so that
the meaning of i only depends on the symbols in S,.

Since A [ S, = B [ S, holds, A [ S, and B [ S, are finitely isomorphic
by Fraissé’s theorem, and hence for suitable (I,), . we have

(2) Udwen: U T So =,B[S,, W= 4, B =g, Y.

The central idea of the proof is to apply Comp(.#) and L6Sko(.#) to obtain
structures " and B’ which are at most countable and for which

3) W Sy=,B IS, W=y, and B =4 4.

Once we have (3) we get the desired contradiction: The at most countable,
partially isomorphic structures W' S, and B [ S, are isomorphic (cf.
X1.1.5(d)). Hence by the choice of S,

W=, iff B =gy,
and this contradicts W = 4 ¢ and B’ =, 1y of (3).
In order to proceed from (2) to (3) we give a suitable “description” of (2)
in .. We may assume that 4 n B = ¢ for U, B in (2) (otherwise take an
isomorphic copy of B). Let the symbol set S* be formed from § by adding

the following new symbols: a unary function symbol f'and relation symbols
P, U, V (unary), <, I (binary), and G (ternary). We define an §*-structure €
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in which (2) can be suitably described. In particular € includes ¥ and B and
also contains the partial isomorphisms of the I, in (2): Set

@ C=A0BUNU|JenIn
(b) US = A and [U“]*"® = U;
(c) V¢ = Band [VC]*"® = ®B;

((b) and (c) are possible since A » B = ¥ and since § is relational.)

(d) <€ the natural ordering relation on N and f ' N the predecessor func-
tion on N, ie., f(n + 1) = nand f€(0) = 0;

(e) PC = UneN Irn

(f) I‘npiffneNandpel,;

(g) GSpab iff P¢p, a € dom(p) and p(a) = b.

This is illustrated in Fig. 12.1

Figure 12.1

@ is then a model of the conjunction y of the following finite set of sentences
of L(S*). (Since & < & we use first-order sentences as an intuitive notation
for the corresponding sentences of #.)

(iy Yp(Pp — ¥x Yy(Gpxy — (Ux A Vy))).
(i) Vp(Pp — VX VX' Yy VY ((Gpxy A GpxX'y') = (x = X <>y = )))).
(iii) For every R € Sy, R n-ary:
Vp(Pp — VXq ... ¥Xp—y VYo oo Yy 1((GpXoYo A -+ A GPXpo 1 Yn—1)
= (Rxg ... X1 ©Ryo .. Yo 1))
(In effect (i), (ii), and (iii) say that for a fixed p € P, Gp - - describes the graph

of a partial isomorphism of the S,-substructure induced on U to the S,-
substructure induced on V.)
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(iv) The axioms of @4 (for partially defined orderings) and
Vx(@yy<x->(fx<x A 3z(fx <z Az<X))

(i.e., (field <, <) is an ordering with predecessor function f').
(V) Vx(3y(x < y v y < x) = Ip(Pp A Ixp)) (ie, if x is in the field of <
then I, = {p|Pp A Ixp} is not empty).
(vi) Vx Yp VYu((fx < x A Ixp A Uu)
—3q Ju(Ifxq A Gquv A VX' Yy (Gpx'y — Ggx'y")))
(the forth-property).
(vil) An analogous sentence for the back-property.
(vili) Ix Ux A 3y Vy A YY A (7)) (note that U¢ = A, VS = B, W=, i,
B = ).

We choose a new constant ¢ and write f°c, f!c, f?c, ... for the terms ¢, fc,
ffc, ... . Then we let

Y ={y}u{. ffce<fc<cl}

he Y= {yu{f"lc< flfclneN}.

Every finite subsct of ¥ has a model, namely € = (€, ¢*), where ¢ is a
sufficiently large natural number. By Comp(.%#) there is a model of P, say
(D, ).

D contains an infinite descending chain, namely . .. (f2¢)? <P (fc)? <P cP.
For what follows we need a countable model with this property. L6Sko(.#)
does not directly help us here because it only applies to single sentences,
whereas ' is an infinite set of sentences. We circumvent this difficulty
using a new unary relation symbol Q: Let 9 be the L(S*™ U {c¢, Q})-sentence

3= Qc A Yx(Qx = (fx < Xx A Qfx))

(“Q contains ¢ and every element of Q possesses an immediate < -predecessor
which also belongs to Q”; thus @ is a subset of the field of <).
If QP :={(f"c)’|n € N} then

(D, Q%) =y A,

ie, y A 3 is satisfiable. Therefore, by LoSko(#), there is an at most
countable model (€, ¢*, Qf) of ¥ A 3. Since (viii) holds in €, Uf # ¢4,
VE % &, and because S is relational, UF and V¥ are domains of substructures.
We set

A = [UE:](GI‘S’ %/ i [VE](GPS

and show that the at most countable structures 2" and B’ satisfy the condi-
tions in (3). By (viii), € = » ¥Y and € =, (71)", and from this we obtain

(4) Wi, B =y Y.
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From (i), (ii), and (iii) we know that to every p € PF there corresponds a
partial isomorphism from A’ | S, to B’ [ S, which we also denote by p.

Since (€, ¢, QF) = 3, for every n e N the element e, := (f"c)* belongs to
QF and the e, form a descending chain ...ey <fe, <Fe; <Fe,. Let

I == { p|there is an n such that Ife,p}.

Using (v) we see that I # (&, and using (vi) and (vii), that I has the back-
and forth-property. For example, to verify the forth-property one can reason
as follows: if p € I, say I¥e,p, and a € A’ = U¥, then by (vi), there is ¢ such
that I%,, ,q (thus g € I), ¢ = p, and a € dom(q). To summarize, we have

(5) I 1Sy, B S,
(4) and (5) yield (3) and thus 3.1 is proved. ]

By closer inspection of the above proof we can obtain the following lemma,
which we shall need in the next section.

3.2 Lemma. Let ¥ be a regular logical system such that &) < ¥ and
LoSko(&). Assume that for some finite set S of relation symbols there is
W € L(S) such that for every m € N there are S-structures W, and B, with

(*) QIm ;m%ma QIm ':fl/’ and %m ':.S.’jl/’

Then in &, the class of finite orderings can be described in the following sense:
There is a finite S, containing symbols <, c and a sentence y, € L(S,) such
that (a) and (b) hold:

(@) If W= gy, then (A, <*) is a partially defined ordering and ¢* is an
element of the field with only finitely many <“*-predecessors.

(b) Forevery meN there is a model W of y, in which ¢* has at least m <“-pre-
decessors.

ProOF. Let S, i be given as above. Choose y and ¢ as in the preceding proof
(taking now S, = S)and set y; = y A" ¢ is in the field of <.

We first prove (b). For a given m, let 2, and B,, be as in () and let
U w<m: U, = B, Define € as in the proof of 3.1 except for the following
obvious modifications:

(i) <€ is the natural ordering on {0, ..., m};
(i) P€ = Unsm I,.

For ¢€:=m the structure (€, c%) is a model of y,, and ¢¢ has m <°-
predecessors.

PrROOF OF (a): Suppose there is a model (D, ¢®) of y, in which ¢” has
infinitely many <P”-predecessors. From (D, ¢?) we can proceed as in the
proof of 3.1 to obtain isomorphic structures A’ and B’ such that A =  and
B’ = 1y, a contradiction. I:]



§4. Lindstrom’s Second Theorem 203

Lindstrém’s theorem 3.1 characterizes first-order logic in the following
sense: Among the regular logical systems there is none of greater expressive
power which still satisfies the compactness theorem and the Léwenheim—
Skolem theorem.

If one considers the defining properties of regular logical systems .#, the
properties Rel(-#) and Elim(%) do not seem as fundamental as the others. An
analysis of the proof of 3.1 shows that both these properties were used to speak
about two structures U and B by placing them together in the structure €.
There are alternative properties that can be used for the same purpose (cf. [2]).
But if there is no substitute at all for Rel(#) and Elim(.%¥), then there are
counterexamples to 3.1.

§4. Lindstrom’s Second Theorem

In our considerations of logical systems we now pay special attention to
syntactic aspects. In this connection we recall the following properties of
first-order logic: For a decidable symbol set S

the S-sentences are concrete finite symbol strings and the set of S-sentences
is decidable;

operations such as negation, relativization, and the elimination of
function symbols can be carried out effectively;

there exists an adequate proof calculus, and therefore the set of valid
S-sentences is enumerable.

We shall consider these aspects for logical systems in general, thereby
arriving at the concept of an effective logical system. Within this framework
we can then formulate and prove the result of Lindstrém mentioned in the
introduction to this chapter under (b).

When speaking of a decidable set we understand it to be a set of words
over a suitable alphabet which is R-decidable in the sense of X.2.5.

4.1 Definition. Let % be a logical system. & is called an effective logical
system if for every decidable symbol set S the set L(S) is decidable, and for
every ¢ € L(S) there is a finite subset S, of S such that ¢ € L(S,).

4.2 Definition. Let £ and % be effective logical systems.

(a) & <. & iff for every decidable § there is a computable function *
which associates with every ¢ € L(S) a sentence ¢* € L'(S) such that
Mod%(¢) = Mod%(e*).

(b) &~ Z (& <o L and &' <0 &)

Py, L, L. and £ are effective logical systems, but #,, , is not. We have,
for instance, & <. L1 LN <ex Ln-
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4.3 Definition. Let & be a logical system. & is said to be effectively regular
if & is effective and if the following effective analogues of Boole(#), Rel(.¥),
and Elim(.¥) hold.

For every decidable symbol set S:

(i) There is a computable function which assigns to every @ € L(S) a
formula —1¢, and, in addition, a computable function which assigns to
any ¢ and € L(S) a formula (¢ v ). (Here 1o, for instance, denotes
an L(S)-sentence y such that A = 4 i iff not A = & ¢ (cf. the formulation
of Boole(.#) in §1).

(i1} Forevery unary U, there is a computable function which associates with
every ¢ € L(S) a formula ¢".

(iii) There is a computable function which associates with every ¢ € L(S) a
formula ¢" € L(S").

£y, &y, & are effectively regular logical systems.
Let ¥ be an effective logical system. We say that £ is enumerable for
validity if for every decidable S, the set

19 € LS = » o}

is enumerable.

Clearly, if % has an adequate proof calculus then & is enumerable for
validity. (Examples are ¢, and %,,.)

Lindstrém’s second theorem tells us that no proper extension .# of &,
with L6Sko(.#) can have an adequate proof calculus.

4.4 Lindstrom’s Second Theorem. Let & be an effectively regular logical
system such that Ly <. L. If LoSko( &) and if &L is enumerable for validiry
then £y ~ e &.

PROOF. Let & satisfy the hypotheses of the theorem. We prove that & < %,
in two steps.
First we show

(+) For every decidable S and for every y € L(S) there is a first-
order S-sentence ¢ which has the same models as .

Then we shall prove that the transition from y to ¢ can be carried out
effectively: Given a decidable S, we shall set up a procedure which yields for
every Y € L(S) a first-order S-sentence with the same models.

Since & is an effective logical system, we only need to give a proof of (+)
for finite decidable S (cf. 4.1). We leave it to the reader to show, using Elim(%),
that we can furthermore assume S to be relational.

Thus we assume that S is decidable, finite and relational. As a first step
Wwe prove
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4.5 Lemma. If for some € L(S) there is no first-order S-sentence with the
same models as ), then for every me N there exist S-structures W,, and B,
such that

(*) QIm’;mgsm’ QIml::.ifl/]’ 23m F:fjl/’

PROOF.  is satisfiable, otherwise Mod &(yy) = Mod (v, 710 = 15). We
proceed indirectly, assuming that for a suitable m € N and for all S-structures
A and B:

(1) IfA =, B, then (A k= o ¢ iff B 1= 4 ).

Let @q, ..., @ be, up to logical equivalence, the first-order S-sentences of
quantifier rank <m (cf. X1.3.4). We have (cf. X1.3.7):

Q) Az, Biff fori=0,....k Ak o if B @)

For an S-structure A let ¢y be the conjunction of the formulas in
{@;|0 < i <k, U= @;}. Then, by (2), for arbitrary B,

B) U, Biff B = ¢y.
Let ¢ be the disjunction of the (finitely many!) g for which W = 4 i, ie,,

4) ¢ = \V/{pul¥U S-structure, A k=, y}.
We show:

(5) Mod 4(y) = Mod (),

and thus obtain a contradiction to our assumptions. Suppose first that B is
amodel of . Then g is a member of the disjunction in (4), and since B = ¢y,
we have B = ¢. Conversely, if B = ¢, there is an U such that U k=, and
B k= @y (cf. (4)). Then by (3), A =, B, and finally by (1), B =4 . O

To continue with the proof of (+), we assume that there is a sentence
in L(S) for which there is no first-order S-sentence with the same models, and
aim for a contradiction. By the result 4.5 just proved there are, for every
meN, S-structures U,, and B,, such that A, =, B, U, =y, and
B,, = & 1. Since the assumptions in 3.2 are fulfilled, there is, for some finite
S,, a sentence y, € L(S,) which describes the finite orderings (as explained
in 3.2).

We extend §; by adding a new unary relation symbol W and consider the
L(S; v {W})-sentence

J=yx; A Ix Wx A Vx(Wx - x < ¢)
(note that ¥, < ). By the properties of y, (cf. 3.2) we have:

(a) If A is an S, v {W}-structure such that A = , 3 then W4 is finite and
not empty.

(b) Forevery m = 1 there is a model ¥ of 9 such that W4 contains exactly m
elements.
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Thus as U ranges over the models of 3, W+ ranges over the finite sets
(isomorphism property!). We shall now see that we can use (a) and (b)
together with Trahtenbrot’s theorem to conclude that & is not enumerable
for validity, in contradiction to our assumptions. We argue as in the proof
of the incompleteness of second-order logic (cf. X.5.5).

By Trahtenbrot’s theorem there is a decidable symbol set S, such that the
set of fin-valid first-order S,-sentences is not enumerable. We may assume
that S, is relational and disjoint from §, v {W}.

Let * be a computable function associating with every first-order §,-
sentence ¢ a sentence ¢* € L(S,) which has the same models. Then for
¢ € L5 we have

©) @ is fin-valid iff (= & 9 ~ (¢*)".

To prove this, we assume first that ¢ is fin-valid. If Wis an (S, v {W} U §,)-
structure such that A k=, 3, then W4 is finite by (a), and thus [W4]¥'52 = ¢,
But then [W#]™*2 = ., ¢*, and hence U = o (¢*)”. The converse is obtained
similarly by applying (b).

Equivalence (-) enables us to obtain from an enumeration procedure
for the set of valid L(S, v {W} U §,)-sentences an enumeration procedure
L for the fin-valid first-order S,-sentences, thus yielding a contradiction to
Trahtenbrot’s theorem. Q proceeds as follows for n = 1, 2, 3,...: the first
(lexicographically) n sentences ¢g, - . ., @,-; from L(S) are generated, and
the L(S, v (W} U §,)-sentences 3 — (@f)¥, ..., 3 = (¥ )" are formed.
(Note that the map * is computable and that the operations of relativization
and implication are effective.) Then, using B, one generates the first n valid
L(S, u {W} U S,)-sentences, listing those ¢; for which $ — (o¥)" occurs.
This finishes the proof of (+).

Now, given a decidable S, we describe an effective procedure which
associates with every sentence i € L(S) a first-order sentence ¢ with the same
models. Let P be an enumeration procedure for the set of valid L(S)-sentences,
and * a computable function which assigns to every first-order S-sentence
x an L(S)-sentence y* with the same models.

Given y € L(S), proceed as follows: Forn = 1, 2, 3, ... use P to generate
the first n valid sentences g, ..., ¥,-, from L(S); then generate the first
(lexicographically) n sentences ¢, ..., @,_, from L(S), and finally, form
the L(S)-sentences Y < @f, ...,y < @¥_,. Check whether there are i, j such
that ; = y < ¢F. By (+) this must eventually happen. Then let ¢; be the
@ associated with .

Lindstrom’s results initiated a series of investigations of properties of
logical systems and relations between them, in a general setting (cf. [2]). In
this way it is possible to bring important aspects of such properties into better
perspective, thus gaining new insights into concrete logical systems and even
into first-order logic. We illustrate this briefly, taking the compactness
theorem as an example.
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An ordering (4, <*) which contains no infinite descending chain
oo <*a, <?a; <*a, is said to be a well-ordering. All finite orderings are
well-orderings, as are (N, <™) and the ordering which results when (N, <™)
is extended by adding an isomorphic copy. On the other hand, (Z, <%) and
(Q, <) are not well-orderings.

Let & be a regular logical system such that ¥, < .. A well-ordering
(A, <) is said to be accessible in £ (or ¥-accessible) if there is an S with
< € S and an L(S)-sentence y such that

(a) in every model B of y, (field <, <?) is a well-ordering;
(b) there is a model B of y such that (4, <) < (field <5, <?).

Since ¥, < %, all finite well-orderings are #-accessible. If % is compact
then no infinite well-ordering is #-accessible. For if a sentence  has an
infinite model A, where (field <4, <4)is a well-ordering, then one can show
by a method similar to that used in exercise V1.4.11 that y» has a model B
in which (field <%, <*#) has an infinite descending chain.

If one assumes L6Sko(.#) and strengthens the regularity conditions
slightly, the following two statements are, in fact, equivalent:

(i) not Comp(.¥)
i)y (N, <M)is P-accessible.

These considerations motivate us to look beyond the simple dichotomy
“Comp(&) — not Comp(.¥)”, and to make finer distinctions: the more
& -accessible well-orderings there are, the more the compactness theorem is
violated. As a measure for the violation one can take the smallest well-
ordering which is not #-accessible, the so-called well-ordering number of
£ . The study of well-ordering numbers has led to a series of fruitful investiga-
tions (cf. [2]). In particular it has turned out that for certain logical systems
one can use arguments involving the well-ordering number to compensate
for the absence of the compactness property.
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Proof, formal 8, 101

Proposition ~ 7

Propositional calculus 30, 87

215
Quantifier 8
—, forall 13
— number 127
— rank 187
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Syntactic 26
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Well-ordering number 207
Whitehead 87

Witness 77

Word 10

—, empty 10

ZFC axioms for set theory 108
Zorn’s lemma 86



