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Abstract. Let G(z) be a real entire function of order less than 2 with only

real zeros. Then we classify certain distributions functions F such that the
convolution (G ∗ dF )(z) =

∫∞
−∞G(z − is) dF (s) has only real zeros.

1. Introduction

The main result of this paper is the following theorem:
Theorem 1. Suppose G is an entire function of order < 2 that is real on the
real axis and has only real zeros. Let {ai} be a nonincreasing sequence of positive
real numbers, let {Xi} be the sequence of independent random variables such that
Xi takes values ±1 with equal probability, and let Fn be the distribution function
of the normalized sum Yn = (a1X1 + · · · + anXn)/sn where s2

n = a2
1 + · · · + a2

n.
The functions Fn converge pointwise to a continuous distribution F = limn→∞ Fn.
Define H by the integral

H(z) = (G ∗ dF )(z) =
∫ ∞

−∞
G(z − is) dF (s).

Then H is an entire function of order < 2 that is real on the real axis. If H is not
identically zero, then H has only real zeros.

The organization of this paper is as follows: This section is an introduction to
the problem under investigation. Section 2 contains the proof of Theorem 1 as a
sequence of lemmas. Finally, in Section 3 we give a number of examples and state
several questions for further study.

Theorem 1 generalizes a very interesting observation by Pólya about the zeros
of certain entire functions:
Theorem 2 (Pólya [18], Hilfssatz II). Let a be a positive constant and let G(z) be
an entire function of genus 0 or 1 that for real z takes real values, has at least one
real zero, and has only real zeros. Then the function G(z + ia)+G(z− ia) has only
real zeros.

For the benefit of the reader and to illustrate Pólya’s elegant idea, we include
his short proof of Theorem 2.
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Proof. By hypothesis G has a Weierstrass product of the form

G(z) = czqeαz
∏

(1− z/αn) ez/αn

where q is a nonnegative integer, c and α are real, and the αn are the nonzero real
zeros of G. Suppose z = x + iy is a zero of G(z + ia) + G(z − ia). Then

|G(z + ia)| = |G(z − ia)|
and

1 =
∣∣∣∣G(z − ia)
G(z + ia)

∣∣∣∣2 =
(

x2 + (y − a)2

x2 + (y + a)2

)q ∏ (x− αn)2 + (y − a)2

(x− αn)2 + (y + a)2
.

If y > 0 then the right hand side of the last expression is < 1. If y < 0 then the
right hand side of the last expression is > 1. Both of these cases are impossible.
Hence, y = 0 and G(z + ia) + G(z − ia) has only real zeros. �

Pólya’s application of Theorem 2 was to study the Riemann zeta function ζ(s).
Let

ξ(s) = 1
2s(s− 1)π−s/2Γ(s/2)ζ(s).

It is well known that ξ(s) is an entire function satisfying ξ(s) = ξ(1− s) and all of
its zeros lie in the ‘critical strip’ 0 < <(s) < 1. The Riemann Hypothesis predicts
that <(s) = 1/2 for all zeros of ξ(s). By considering the main term resulting from
the Fourier integral representation of ξ(1/2 + it) Pólya approximated ξ(s) with a
‘fake’ zeta function ξ∗(s):

(1) ξ( 1
2 + it) ≈ ξ∗( 1

2 + it) = 4π2
(
K9/4+it/2(2π) + K9/4−it/2(2π)

)
where Kz(α) is the K-Bessel function defined by

Kz(α) ≡
∫ ∞

0

e−α cosh w cosh(zw) dw.

He proved that Kit/2(2π) has only real zeros. Then applying Theorem 2 with the
shift a = 9/2 he showed that the sum of Bessel functions has zeros only when t is
real. Thus, each zero of ξ∗(s) is on the ‘critical line’ <(s) = 1/2. Furthermore, he
showed that asymptotically ξ(s) and ξ∗(s) have the same number of zeros in the
critical strip.

Later Pólya [19] refined his approximation in (1) to include several more terms.
In a very interesting paper in 1990 Hejhal [13] vastly generalized Pólya’s line of
reasoning. In this paper we will not pursue Pólya’s or Hejhal’s investigations of the
zeta function. Rather, we will focus on generalizing Theorem 2. De Bruijn has also
generalized Theorem 2, but in a way different from Theorem 1. (See Theorem 3 of
[3].)

The fact that the function ξ( 1
2 + it) may be represented as a Fourier transform

has motivated interest in classifying the functions K such that

G(z) =
∫ ∞

−∞
K(t)eizt dt

is an entire function with only real zeros. Several authors have dealt with this topic
or more generally with functions in the Laguerre-Pólya class in recent years. (See,
for example, the papers by Craven, Csordas, Smith, Varga, and Vincze : [4], [5],
[6],[7],[8].)

It is interesting to apply Theorem 1 when G can be represented as a Fourier
transform. We obtain the following:
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Theorem 3. Suppose G is an entire function of order < 2 that is real on the real
axis and has only real zeros. Also suppose that G may be represented as

G(z) =
∫ ∞

−∞
K(t)eitz dt

where K(t) and |K(t)| are integrable real functions of t such that K(t) = O(e−|t|
2+ε

)
for any ε > 0. Let F be the distribution function in Theorem 1. Define H by

H(z) =
∫ ∞

−∞
K(t)L(t)eiztdt

where L(t) =
∫∞
−∞ cosh(ts) dF (s). If H is not identically zero, then all of the zeros

of H are real.

Proof.

H(z) =
∫ ∞

−∞
K(t)

(∫ ∞

−∞
cosh(ts) dF (s)

)
eizt dt

=
∫ ∞

−∞
K(t)

(∫ ∞

−∞
ets dF (s)

)
eizt dt

=
∫ ∞

−∞

(∫ ∞

−∞
K(t)eit(z−is) dt

)
dF (s)

=
∫ ∞

−∞
G(z − is) dF (s).

By Theorem 1, if H is not the zero function then H has only real zeros. �

Notice that in certain cases it is not difficult to explicitly evaluate the integral
for L. For example, if F is the normal distribution with variance 1 we obtain
L(t) = et2/2. If F is not the normal distribution its tail will not be as heavy as that
of the normal distribution (see Lemma 3 below) in which case L may grow more
slowly than et2/2.

2. Proof of Theorem 1

The proof of Theorem 1 will be presented as a sequence of lemmas. But first we
need to establish some notation.

The Laguerre-Pólya class LP of functions consists of the entire functions having
only real zeros with a Weierstrass factorization of the form

azqeαz−βz2 ∏
(1− z/αn)ez/αn

where a, α, β are real, β ≥ 0, q is a nonnegative integer, and the αn are nonzero real
numbers such that

∑∞
n=1 α−2

n < ∞. We shall be most interested in the subset LP∗
of the Laguerre-Pólya class consisting of all elements of LP of order < 2. Thus, β
is necessarily 0 for functions in LP∗.

The distribution function T for a random variable Y is T (x) = Pr(Y ≤ x).
We will consider the following types of random variables and their distribution
functions: Let {ai} be a nonincreasing sequence of positive real numbers. Let {Xi}
be a sequence of independent random variables such that Xi takes values ±1 with
equal probability. Let Yn be the sum

Yn =
a1X1 + · · ·+ anXn

sn
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where s2
n = a2

1 + · · ·+a2
n. Fn will denote the distribution function of Yn, and F will

denote the limit F = limn→∞ Fn. In Theorem 1 the distribution F has variance 1.
However, F could be rescaled to have any other positive value for its variance. The
following lemma describes this F :

Lemma 1. The sequence Fn converges pointwise to a continuous distribution F .
If the sequence sn is unbounded, F is the normal distribution. If the sequence sn is
bounded, F is not the normal distribution.

Proof. There are two basic types of limiting distributions F that can occur in this
setting. First, the variances s2

n of the sums a1X1 + · · ·+anXn could be unbounded
for increasing n. This condition causes the contribution due to individual summands
of Yn = (a1X1 + · · ·+ anXn)/sn to be ‘negligible’ as n becomes large. In this case,
the only possible limiting distribution F is the normal distribution. This is a result
of the Lévy-Khinchin Representation Theorem (see [12, Thm. 24, p. 310]).

Second, the sum σ2 =
∑∞

i=1 a2
i can be finite. Kolmogorov’s Three Series The-

orem (see [12, p. 203] or [15, p. 237]) guarantees that the distribution functions
Fn converge to a distribution function F almost surely. We must show that
limn→∞ Fn(x) = F (x) exists for all x and that F is continuous.

In this case, F is not the normal distribution. This can be seen by considering
the characteristic function f of F which is f(u) =

∫
eiuxdF (x) =

∏∞
i=1 cos(aiu/σ).

Since f vanishes for certain values of u, the Lévy-Khinchin Representation Theorem
(see [15, p. 301] or [12, p. 299]) shows that F is not infinitely divisible and therefore
is not a normal distribution.

Let b1, b2, . . . be a subsequence of a1, a2, . . . such that bi+1 < bi/3 for all i. Let Zi

be the corresponding subsequence of the Xi. Suppose that the distribution function
Sn for the random variable

Wn = bnZn + bn+1Zn+1 + · · ·

has maximal atom size Mn. Because the sequence {bi} decreases sufficiently rapidly,
bn + Wn+1 and −bn + Wn+1 have no values in common. Since

Sn(x) = 2−1
(
Sn+1(x + bn) + Sn+1(x− bn)

)
,

it follows that Mn = Mn+1/2. But Mn is bounded by 1 for all n which implies
that M1 = 0. This shows that S1 is a continuous distribution function. Now we
decompose

∑
i aiXi as the sum∑

aiXi = W1 +
∑′

aiXi

where the prime on the summation symbol means to exclude the terms correspond-
ing to the subsequence {bi}. Since the convolution of the non-atomic probability
distribution S1 with the probability distribution for

∑′
aiXi is non-atomic it fol-

lows that
∑

aiXi has a continuous distribution function. Therefore F is continuous.
Since the functions Fn are increasing functions that converge almost everywhere to
F , limn→∞ Fn(x) = F (x) exists pointwise. �

We will now establishing the fact that Pólya’s result may be applied repeatedly.

Lemma 2. Suppose G ∈ LP∗.
(a) Let H(z) = 1

2 (G(z − ia) + G(z + ia)) for a > 0. Then H ∈ LP∗.
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(b) Let a1, . . . , an be positive real numbers. Then the function

2−n
∑

G(z ± ia1 ± · · · ± ian)

obtained by summing over all possible combinations of plus and minus signs
is also contained in LP∗.

(c) The convolution Hn of G with the measure dFn,

Hn(z) = (G ∗ dFn)(z) =
∫ ∞

−∞
G(z − is) dFn(s),

is in LP∗.

Proof. It is clear that H(z) is real for real z and that the order of H is < 2.
Theorem 2 guarantees that if G has only real zeros and at least one real zero
then H has only real zeros. So in this case, H ∈ LP∗. The only other cases to
consider are when G(z) = c or ceαz where c and α are real. But then H(z) = c or
cos(αa)ceαz. In either case H ∈ LP∗. This proves part (a).

For (b) apply part (a) several times. For part (c) replace each ai by the normal-
ized values ai/sn where s2

n = a2
1+· · ·+a2

n and use the notation of a Riemann-Stieltjes
integral. �

In Lemmas 4 and 5 we will show that the integrals
∫∞
−∞G(z−is) dFn(s) converge

uniformly to
∫∞
−∞G(z− is) dF (s) for z in compact sets. The proof of Lemma 4 will

require the following 1994 result of Pinelis which is an improvement of a conjecture
by Eaton [9]:
Lemma 3 (Pinelis [17], Corollary 2.6). Let Xi be independent random variables
taking values ±1 with equal probability. Let s2

n = a2
1 + · · ·+ a2

n and let

Yn =
a1X1 + · · ·+ anXn

sn
.

Then
Pr(|Yn| > u) < 2c(1− Φ(u))

where c = 2e3/9, Φ(u) =
∫ u

−∞ φ(t) dt, and φ(t) = (2π)−1/2e−t2/2.

Lemma 4. Write Gz(s) = G(z − is). Let ε > 0 be given, suppose G ∈ LP∗, and
let K be a compact subset of C. Then there is a positive number A (depending on
ε and K) such that ∫

|s|>A

|Gz(s)| dFn(s) < ε

for all n and all z ∈ K.

Proof. Let λ denote the order of G. Choose δ with λ < δ < 2. Then choose A > 0
large enough so that |Gz(s)| < e|s|

δ

for all z ∈ K and |s| > A. Such an A exists
as follows: Choose δ′ with λ < δ′ < δ. Because the order of G is less than δ′ there
exists an R such that |G(s)| < e|s|

δ′

for |s| > R. Choose κ large enough so that
|z| < κ for all z ∈ K. If |s| > κ + R,

|Gz(s)| = |G(z − is)| < e|z−is|δ
′

< e(κ+|s|)δ′

.

Then there is an A > κ + R such that if |s| > A then e(κ+|s|)δ′

< e|s|
δ

.
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Then ∫
A<|s|<B

|Gz(s)|dFn(s) < 2
∫ B

A

esδ

dFn(s).

After integration by parts the right hand side becomes

2eBδ

(Fn(B)− 1)− 2eAδ

(Fn(A)− 1)− 2
∫ B

A

(Fn(s)− 1)d(esδ

)

< 2eAδ

(1− Fn(A)) + 2
∫ B

A

(1− Fn(s))δsδ−1esδ

ds.

According to Lemma 3 for s ≥ A and if A is sufficiently large, then

1− Fn(s) ≤ β

∫ ∞

s

e−t2/2dt <
e−s2/2

2

where β = 2e3/(9
√

2π). This gives∫
A<|s|<B

|Gz(s)|dFn(s) < eAδ−A2/2 +
∫ B

A

δsδ−1esδ−s2/2ds

and ∫
A<|s|

|Gz(s)|dFn(s) < eAδ−A2/2 +
∫ ∞

A

δsδ−1esδ−s2/2ds.

For sufficiently large A the last integral is bounded above by eAδ−A2/2. So,∫
A<|s|<B

|Gz(s)|dFn(s) < 2eAδ−A2/2.

The right hand side of the last inequality can be made arbitrarily small for suffi-
ciently large A. Therefore, we obtain

∫
|s|>A

|Gz(s)|dFn(s) < ε as desired. �

Lemma 5. Let K be a compact subset of C. Then∫ A

−A

Gz(s) dFn(s) →
∫ A

−A

Gz(s) dF (s)

uniformly as n →∞ for z ∈ K.

Proof. By the Helly-Bray Theorem (see [15, p. 182] or [10, p. 298]) it is immediate
that convergence occurs pointwise. We must, however, verify uniform convergence
for z ∈ K.

Let ε > 0 be given. Choose κ such that κ > |Gz(s)| = |G(z − is)| and κ >
|G′(z − is)| for all z ∈ K and s ∈ [−A,A]. Integration by parts yields∫ A

−A

Gz(s) dF (s) = Gz(A)F (A)−Gz(−A)F (−A) + i

∫ A

−A

F (s)G′(z − is) ds.
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Then∣∣∣∣∣
∫ A

−A

Gz(s) dF (s)−
∫ A

−A

Gz(s) dFn(s)

∣∣∣∣∣
≤ |Gz(A)| |F (A)− Fn(A)|+ |Gz(−A)| |F (−A)− Fn(−A)|

+
∫ A

−A

|F (s)− Fn(s)| |G′(z − is)| ds

≤ κ|F (A)− Fn(A)|+ κ|F (−A)− Fn(−A)|+ κ2A max
s∈[−A,A]

|F (s)− Fn(s)|

Since the functions Fn and F are distributions functions such that Fn converges
to the continuous distribution F pointwise on [−A,A], Fn converges to F uniformly
on [−A,A]. Thus for sufficiently large n and all s ∈ [−A,A]

|Fn(s)− F (s)| < min
( ε

6Aκ
,

ε

3κ

)
.

Therefore, for all sufficiently large n and all z ∈ K,∣∣∣∣∣
∫ A

−A

Gz(s) dF (s)−
∫ A

−A

Gz(s) dFn(s)

∣∣∣∣∣ <
ε

3
+

ε

3
+

ε

3
= ε.

This shows that the convergence
∫ A

−A
Gz(s) dFn(s) →

∫ A

−A
Gz(s) dF (s) is uniform

as claimed. �

Lemma 6. Suppose G ∈ LP∗. Then H(z) =
∫∞
−∞G(z − is) dF (s) is an entire

function that is real for real z and if it does not vanish identically then it has only
real zeros.

Proof. Since Hn(z) is real for real z, H(z) is real for real z.
Let Hn(z) =

∫∞
−∞G(z− is) dFn(s). Then Hn(z) converges uniformly to H(z) on

compact sets by Lemmas 4 and 5. By Hurwitz’s Theorem (see [1, Thm. 2, p. 178]),
if H is not identically zero, then H(z) is nonzero for nonreal z and the zeros of
H(z) are limit points of the zeros of Hn(z) which are real. �

Lemma 7. Suppose G ∈ LP∗. The order of H(z) =
∫∞
−∞G(z − is) dF (s) is ≤ λ

where λ is the order of G.

Proof. Choose δ with λ < δ < 2 where λ is the order of G. Then there is an R

such that |G(z)| < e|z|
δ

for |z| > R. Setting M = max|z|≤R{1, |G(z)|} we obtain
|G(z)| ≤ Me|z|

δ

for all z. Also recall that for any complex numbers α and β and
positive δ we have the inequality |α + β|δ ≤ γ(|α|δ + |β|δ) where γ = max{1, 2δ−1}
(see [16, Ex. 17, p. 73]). Then∣∣∣∣∫ ∞

−∞
G(z − is) dF (s)

∣∣∣∣ ≤ ∫ ∞

−∞
|G(z − is)| dF (s) ≤

∫ ∞

−∞
Me|z−is|δ dF (s)

≤
∫ ∞

−∞
Me(|z|+|s|)δ

dF (s) ≤
∫ ∞

−∞
Meγ|z|δ+γ|s|δ dF (s)

By Lemma 3 we may conclude that the integral
∫∞
−∞ eγ|s|δ dF (s) is finite. Hence,

|H(z)| is bounded by a constant times eγ|z|δ . This implies that the order of H does
not exceed λ which is less than 2. �

This completes the proof of Theorem 1.
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3. Examples and Questions

1. Let G(z) = zn and a > 0. Then H(z) = 1
2 (G(z + ia) + G(z − ia)) has n simple

real zeros which become more widely spaced as a is increased. The ‘shifted sum
operator’ of Theorem 2 has the effect of causing the zeros to repel.

Similarly, suppose G(z) = znG0(z) where G0 ∈ LP∗ and G0 has no zeros at
z = 0. If z is sufficiently close to zero then G0(z) behaves as a nonzero constant.
Thus for sufficiently small a, the zero of multiplicity n of G(z) splits into n simple
zeros of H(z). Again, it appears that the shifted sum causes zeros to repel.

It would be interesting to determine what additional hypotheses (if any) are
needed in Theorem 1 to guarantee that if G ∈ LP∗ then the zeros of G ∗ dF are
simple.

2. The sine and cosine functions are eigenfunctions of the convolution with dF
for any distribution F discussed in this paper. This is because the ‘shifted sum
operator’ has the effect

1
2

(sin(z + ia) + sin(z − ia)) = cosh(a) sin(z)

1
2

(cos(z + ia) + cos(z − ia)) = cosh(a) cos(z).

For the distribution F , if G(z) is either sin(z) or cos(z), we obtain

(G ∗ dF )(z) = λ G(z) where λ =
∫ ∞

−∞
cosh(s) dF (s).

The results for the sine and cosine functions are consistent with the heuristic given
in the first example because if evenly spaced zeros repel each other then the result
will be a function with evenly spaced zeros.

3. In Theorem 1 let ai = 1 for all i and normalize the partial sums to have variance
1/
√

2 instead of 1. Then the distribution functions for the random variables Yn =
1√
2n

(X1 + · · ·+ Xn) converge to the normal distribution

F (s) =
1√
π

∫ s

−∞
e−u2

du.

Let G(z) = zn and let

hn(z) =
∫ ∞

−∞
(z − is)n dF (s) =

1√
π

∫ ∞

−∞
(z − is)ne−s2

ds.

We find that this is

hn(z) = (−1)n2−nez2 dn

dzn

(
e−z2)

= 2−nHn(z)

where Hn(z) is the nth Hermite polynomial (see Szegö [21]). It is a well known fact
that the Hermite polynomials have only real zeros all of which are simple. This
example gives an alternate proof that the zeros of the Hermite polynomials are real.
For the traditional argument involving inner products see [11, Section 10.3] or [21,
Section 3.3]. From the point of view of Theorem 1 along with the heuristic of the
first example the convolution of zn with the normal distribution leaves the zeros
on the real axis and causes the zeros to repel from each other.
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4. If G ∈ LP∗, then convolution of G with a symmetric distribution not of the
type in Theorem 1 or Lemma 2 does not necessarily produce a function with only
real zeros. For example, if G(z) = z4, then

H(z) =
1
19

(G(z + i) + 17G(z) + G(z − i))

has no real zeros.
Alternately, if G does not satisfy the requisite genus condition then Theorems 1

and 2 do not necessary hold. For example, let G(z) = zez2
. This function is not in

LP∗ because it has genus 2 instead of 0 or 1. Then

H(z) =
1
2
(G(z + i) + G(z − i))

does not have only real zeros. For example, there is a zero approximately at z =
0.957505i.
5. In Theorem 1 let Xi for i = 1, 2, 3, . . . be the independent random variables
taking values ±2−i with equal probability. Then the distribution function of the
random variable Y =

∑∞
n=1 Xn is

F (x) =


0 if x < −1
1
2 + x

2 if −1 ≤ x < 1
1 if 1 ≤ x

If G ∈ LP∗ and G ∗ dF is not identically zero then

H(z) = (G ∗ dF )(z) = 1
2

∫ 1

−1

G(z − is) ds

also has only real zeros.
If we alter the random variables Xi in this example to take values ±3−i then the

measure dF will have support on a Cantor middle thirds set instead of an interval!
6. If G(z) has zeros in a strip −c ≤ =(z) ≤ c, under what conditions can we say
that the zeros of (G ∗ dF )(z) are in the strip −a < =(z) < a for a ≤ c? (A similar
question has been considered by Bump et al [2]. See also de Bruijn [3] Theorems 3
and 5.)
7. Can the function

Ξ(t) = ξ(1/2 + it) where ξ(s) = 1
2s(s− 1)π−s/2Γ(s/2)ζ(s)

be realized as a convolution Ξ(t) = (G∗dF )(t) where G(t) ∈ LP∗? This would prove
the Riemann Hypothesis! However, it seems unlikely that this approach would be
fruitful because the formula (see [22, p. 255])

Ξ(t) = 2
∫ ∞

0

Φ(u) cos(ut) du

with

Φ(u) = 2
∞∑

n=1

(2n4π2e9u/2 − 3n2πe5u/2)e−n2πe2u

suggests that it may be more natural to consider Ξ(t) as a Fourier integral than as a
convolution G ∗dF . (For basic properties of ζ(s) see the book by Titchmarsh [22].)



10 DAVID A. CARDON

Acknowledgment. I would like to thank Vidas Bentkus for making me aware of the
work of Iosif Pinelis [17], Iosif Pinelis for e-mail correspondence regarding Lemma 1,
Lawrence Gray for several very useful conversations, and the referee for carefully
reviewing this paper and suggesting a number of improvements.

References

[1] Lars V. Ahlfors, Complex analysis, An introduction to the theory of analytic functions of

one complex variable, Third edition, International Series in Pure and Applied Mathematics.
McGraw-Hill Book Co., New York, 1978.

[2] Daniel Bump, Kwok-Kwong Choi, Pär Kurlberg, and Jeffrey Vaaler, A Local Riemann

Hypothesis I, Math. Z. 233 (2000), no.1, 1–19.
[3] N.B. de Bruijn, The Roots of Trigonometric Integrals, Duke Math. J. 17 (1950), 197-226.

[4] Thomas Craven and George Csordas, Differential Operators of Infinite Order and the Dis-

tribution of Zeros of Entire Funtions, J. Math. Anal. Appl. 186 (1994), 799-820.
[5] George Csordas and Richard S. Varga, Integral Transformations and the Laguerre-Pólya
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