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Abstract. We study the initial value problem for two fundamental theories of gravity,
that is, Einstein’s field equations of general relativity and the (fourth-order) field equations
of f(R)-modified gravity. For both of these physical theories, we investigate the global dy-
namics of a self-gravitating massive matter field when an initial data set is prescribed on an
asymptotically flat and spacelike hypersurface, provided these data are sufficiently close to
data in Minkowski spacetime. Under such conditions, we thus establish the global nonlinear
stability of Minkowski spacetime in presence of massive matter. In addition, we provide
a rigorous mathematical validation of the f(R)-theory based on analyzing a singular limit
problem, when the function f(R) arising in the generalized Hilbert-Einstein functional ap-
proaches the scalar curvature function R of the standard Hilbert-Einstein functional. In this
limit we prove that f(R)-Cauchy developments converge to Einstein’s Cauchy developments
in the regime close to Minkowski space.

Our proofs rely on a new strategy, introduced here and referred to as the Fuclidian-
Hyperboloidal Foliation Method (EHFM). This is a major extension of the Hyperboloidal
Foliation Method (HFM) which we used earlier for the Einstein-massive field system but for
a restricted class of initial data. Here, the data are solely assumed to satisfy an asymptotic
flatness condition and be small in a weighted energy norm. These results for matter space-
times provide a significant extension to the existing stability theory for vacuum spacetimes,
developed by Christodoulou and Klainerman and revisited by Lindblad and Rodnianski.

The EHFM approach allows us to solve the global existence problem for a broad class
of nonlinear systems of coupled wave-Klein-Gordon equations. As far as gravity theories
are concerned, we cope with the nonlinear coupling between the matter and the geometry
parts of the field equations. Our method does not use Minkowski’s scaling field, which is the
essential challenge we overcome here in order to encompass wave-Klein-Gordon equations.

We introduce a spacetime foliation based on glueing together asymptotically Euclidian
hypersurfaces and asymptotically hyperboloidal hypersurfaces. Well-chosen frames of vector
fields (null-semi-hyperboloidal frame, Euclidian-hyperboloidal frame) allow us to exhibit the
structure of the equations under consideration as well as to analyze the decay of solutions in
time and in space. New Sobolev inequalities valid in positive cones and in each domain of
our Euclidian-hyperboloidal foliation are established and a bootstrap argument is formulated,
which involves a hierarchy of (almost optimal) energy and pointwise bounds and distinguishes
between low- and high-order derivatives of the solutions. Dealing with the (fourth-order)
f(R)-theory requires a number of additional ideas: a conformal wave gauge, an augmented
formulation of the field equations, the quasi-null hyperboloidal structure, and a singular
analysis to cope with the limit f(R) — R.
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Part 1
Formulation of the problem

1 Purpose of this Monograph

1.1 Main objectives
1.1.1 Evolution of self-gravitating massive matter

Two theories of gravity. We are interested in the global evolution problem for self-
gravitating massive matter, which we formulate as an initial value problem associated
with the Einstein equations of general relativity or with the field equations of the f(R)-
modified theory of gravity. Einstein’s theory goes back to 1915, while the f(R)-theory
was formulated in 1970 by Buchdahl [21]. In this latter gravity theory, the integrand of
the Hilbert-Einstein functional, i.e. the spacetime scalar curvature R (cf. (L), below),
is replaced by a nonlinear function satisfying f(R) ~ R+ §R2 for some small constant
k> 0 (cf. (L), below).

Both theories play a central role in the foundations of astrophysics and cosmol-
ogy and it is natural to investigate the global nonlinear stability of the ‘ground state’
of these theories, i.e. Minkowski spacetime. This spacetime represents the geome-
try of a vacuum Universe at equilibrium. While building on the pioneering work by
Christodoulou and Klainerman [33] on the vacuum stability problem (cf. our review in
Section [L2Z] below), our aim in this Monograph is to solve the global stability prob-
lem for massive matter, i.e. to study the global evolution of a self-gravitating massive
field.

Three main results. More precisely, by prescribing an initial data set on a spacelike
hypersurface which is asymptotically flat (in a suitable sense) and is sufficiently close
to a slice of (empty, flat) Minkowski spacetime, we solve the following three nonlinear
stability problems:



(1) The global existence problem for the Einstein-massive field system.
(2) The global existence problem for the field equations of f(R)-gravity.

(3) The global validation of the f(R)-theory in the ]imi f(R) — R.

In particular, we prove that global Cauchy developments of f(R)-gravity are “close”
(in a sense we specify) to global Cauchy developments of Einstein theory.

The problems under consideration are geometric in nature and require a choice of
gauge. Our analysis relies on the wave gauge, i.e on coordinate functions satisfying
the wave equation (in the unknown metric). We built here on Lindblad and Rodni-
anski’s pioneering work [95] concerning the vacuum Einstein equations, while bringing
in significantly new insights and techniques required in order to cope with the three
new problems above. We emphasize that, even for vacuum spacetimes, our results are
stronger than those established earlier in [95] since we include a broader class of initial
data sets.

1.1.2 A new method for the global existence problem

The mathematical analysis of self-gravitating massive fields was initiated by the authors
in [87, 188], where the first of the above three problems was solved for the restricted class
of initial data sets coinciding with Schwarzschild data outside of a spatially compact
domain. In the present Monograph, we remove this restriction entirely and, moreover,
provide a resolution to all of the three problems above. Our stability theorems encom-
pass initial data sets which are characterized in terms of weighted Sobolev-type norms
and pointwise decay conditions at spacelike infinity.

Several novel techniques of analysis are introduced in this Monograph, which are
expected to be useful also for other problems. Namely, the fourth contribution of
the present Monograph is a vast generalization of the Hyperboloidal Foliation Method
(HFM) discussed by the authors in the earlier work [87, [88]. We refer to our approach
as:

(4) The Euclidian-Hyperboloidal Foliation Method (EHFM).

'We can also refer to this problem as the infinite mass problem.



While we develop this approach primarily for problems arising in gravity theory, we ex-
pect it to be useful to tackle the global existence problem for a broad class of nonlinear
systems of coupled wave-Klein-Gordon equations.

1.1.3 Two conjectures made by physicists

Asymptotically flat spacetimes. Numerical investigations of the stability problem
(1) above for small perturbations of massive fields had originally suggested a potential
mechanism for nonlinear instability. Indeed, the family of oscillating soliton stars
(defined in [48], [116]) provides a potential candidate for instabilities that may develop
during the evolution of matter governed by the Einstein equations. After several
controversies, only the most recent numerical developments(cf. [106]) have finally led
to a definite conjecture: in asymptotically flat spacetimes, one expects massive fields
to be globally nonlinearly stable.

Advanced numerical methods (including mesh refinement and high-order accuracy)
were necessary and, in the long-time evolution of arbitrarily small perturbations of
oscillating soliton stars, the following nonlinear mechanism takes place: in a first phase
of the evolution, the matter tends to collapse and, potentially, could evolve to a black
hole; however, in an intermediate phase of the evolution and below a certain threshold
in the mass amplitude, the collapse significantly slows down, until the final phase of
the evolution is reached and a strong dissipation mechanism eventually prevents the
collapse from occurring.

It was thus conjectured that dispersion effects are dominant in the long-time evo-
lution of self-gravitating matter. The present work provides the first rigorous proof of
this conjecture.

Asymptotically AdS spacetimes. It is worth mentioning that, in asymptotically
anti-de Sitter (AdS) spacetimes, it was observed numerically that the evolution of
generic (and arbitrarily small) initial perturbations leads to the formation of black
holes. In such spacetimes, matter is confined (i.e. timelike geodesics reach the AdS
boundary in a finite proper time) and cannot disperse; the effect of gravity remains
dominant during all of the evolution, unavoidably leading to the formation of black
holes; cf. Bizon et al. [16], [17, [I§] and Dafermos and Holzegel [35] [36].



It is only in a recent work by Moschidis [103, [104] that the instability phenom-
ena in asymptotically AdS spacetimes was rigorously established when the spherically
symmetric Einstein—massless Vlasov system is considered.

The theory of f(R)-gravity. Another important conjecture made by physicists is
relevant to the present study and concerns the theory of modified gravity theory. By
construction, this theory is expected to be a “correction” to Einstein’s theory, so that
solutions to the f(R)-field equations (discussed below) are conjectured to be “close”
to those of Einstein’s equations when the defining function f(R) is close to the scalar
curvature function R.

Of course, at a formal level it is straightforward to check that the field equations
determined from the nonlinear function f(R) ~ R + 5R? “converge” to Einstein’s
field equations when the defining parameter k — 0. The challenge is to establish
this property rigorously for a class of solutions. Indeed, in this work we resolve this
conjecture for the class of spacetimes under consideration.

We establish that f(R)-Cauchy developments converge to Einstein’s Cauchy de-
velopments, and this result therefore provides a mathematical validation of the f(R)-
modified theory of gravity.

1.2 Background and methodology
1.2.1 Massless vs. massive problems

Previous works. As far as the global evolution problem in 3 4+ 1 dimension is con-
cerned, only spacetimes satisfying the vacuum FEinstein equations have received at-
tention in the past twenty five years. The subject was initiated in 1993 when the
global nonlinear stability of Minkowski spacetime was established by Christodoulou
and Klainerman in a breakthrough and very influential work [33]. The method of
proof introduced therein is fully geometric in nature and, among other novel ideas,
relies on a clever use of the properties of the Killing fields of Minkowski spacetime in
order to define suitably weighted Sobolev norms and on a decomposition of the Ein-
stein equations within a (null) frame associated with the Lorentzian structure of the
spacetimes.
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Later on, Bieri succeeded to weaken the spacelike asymptotic decay assumptions
required in [33]; cf. the monograph [15] written together with Zipser. Next, Lindblad
and Rodnianski [95] discovered an alternative proof, which is technically simpler but
provides less control on the asymptotic behavior of solutions. (For instance, Penrose’s
peeling estimates were not established in [95]. This method relies on a decomposition
of the Einstein equations in wave coordinates [94] and takes its roots in earlier work
by Klainerman [76] [77, [79, 80] on the global existence problem for nonlinear wave
equations; see also [31] for a different approach and [67, [68].

Restriction to massless fields. Importantly, both methods [33, 05] only apply
to vacuum spacetimes or, more generally, to massless fields, since the scaling vector
field of Minkowski spacetime is used in a very essential manner therein. In contrast,
massive fields considered in the present Monograph are governed by Klein-Gordon
equations which are not invariant under scaling. Minkowski’s scaling vector field does
not commute with the Klein-Gordon operator and, therefore, cannot be used in defin-
ing weighted Sobolev norms and deriving energy estimates. Without this field, the
weighted Sobolev norms in [33] 05] are too lax to provide a suitable control on solu-

tions.

1.2.2 The Euclidian-Hyperboloidal Foliation Method (EHFM)

A new method. The main challenge we overcome in this Monograph is the res-
olution of the global evolution problem for massive matter fields. We introduce a
method of mathematical analysis for nonlinear wave equations, which does not re-
quire Minkowski’s scaling field. This new method, referred to here as the Fuclidian-
Hyperboloidal Foliation Method (EHFM), generalizes the method we introduced in
[85], 87, B8] and referred to there as the Hyperboloidal Foliation Method (HFM). The
latter already allowed us to tackle a large class of nonlinear systems of coupled wave-
Klein-Gordon equations.

In [85] 87, [88], we relied on a foliation of the interior of the light cone in Minkowski
spacetime by spacelike hyperboloids and we derive sharp pointwise and energy esti-
mates in order to be able to study the nonlinear coupling taking place between wave
and Klein-Gordon equations. Our method had the advantage of relying on the Lorentz
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boosts and the translations only, rather than on the full family of (conformal) Killing
fields of Minkowski spacetime.

With the Hyperboloidal Foliation Method, we solved the global nonlinear stability
problem when the Einstein equations are coupled to a massive scalar field and are
expressed in wave gauge. Only the restricted class of initial data sets coinciding with
Schwarzschild data outside a spatially compact domain was treated in [88].

The present Monograph provides a vast extension of our previous arguments and
covers a broad class of initial data sets while, simultaneously, treating a significant
generalization of Einstein’s theory. The approach we propose here relies on a space-
time foliation based on glueing together asymptotically Euclidian hypersurfaces and
asymptotically hyperboloidal hypersurfaces. For our main tools, we refer to Part
and [Vl below. A presentation of the method is also provided in [90].

Hyperboloidal foliations. In the case of wave-Klein-Gordon equations in 1 + 1
dimensions to be discussed in [08], solutions enjoy much better properties [37, 123].
The use of hyperboloidal foliations for wave equations was suggested first by Klain-
erman [77, [78] and, later, investigated by Hormander [62]. Earlier on, in [49, 50| [51],
Friedrich also studied hyperboloidal foliations of Einstein spacetimes and succeed to
establish global existence results for the Cauchy problem for the conformal vacuum
field equations.

Hyperboloidal foliations can also be constructed in fully geometric manner by gen-
eralizing Christodoulou-Klainerman’s method. In this direction, Wang [137] indepen-
dently also obtained a very different proof of the restricted theorem [88]. We also
mention that Donninger and Zenginoglu [40] recently studied cubic wave equations
which exhibit a non-dispersive decay property. Furthermore, such foliations for the
Einstein equations were constructed numerically by Moncrief and Rinne [100], and is
a very active domain of research for numerical relativity [5] 45 [46] 59 141].

1.2.3 Kinetic equations and other generalizations

Kinetic equations. We expect the Euclidian-Hyperboloidal Foliation Method of this
Monograph to be relevant also for the study of the coupling of the Einstein equations
with kinetic equations, such as the Vlasov equation (cf. [4 [I11] for an introduction).
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In this direction, recall that Fajman, Joudioux, and Smulevici [41], 43] have analyzed
the global existence problem for a class of relativistic transport equations and their
coupling to wave equations, and relying on [88] together with a new vector field tech-
nique [1211 [41], established the stability of Minkowski spacetime for the Einstein-Vlasov
system [43] for initial data sets coinciding with vacuum Schwarzschild data outside a
spatially compact domain. Such a stability result for the Einstein-Vlasov system was
also independently proven by Lindblad and Taylor by a completely different method
[96], [132].

The application to kinetic equations, therefore, needs to be be further investigated
and it would be desirable to extend our new approach EHFM to the Einstein-Vlasov
equations and, more generally, to the Einstein-Boltzmann equations.

Klein-Gordon equations. Concerning the global existence problem for the Einstein-
Klein-Gordon system with non-compact data, we also mention an ongoing research
project by Wang [138] based on the fully geometric approach [33, 137] and, while
our project came under completion, we also learned that Ionescu and Pausader [60]
were also studying this problem by using a completely different methodology including
the notion of resonances from [118] and [14], 55, (6], 1], 109, 110]. In this direction,
our wave-Klein-Gordon model in [87] is already successfully revisited by Ionescu and
Pausader [65] for a class of non-compact matter fields.

We conclude this brief review by mentioning that nonlinear wave equations of Klein-
Gordon type, especially when they are posed on curved spacetimes, have been the
subject of extensive research in the past two decades. A vast literature is available in
this topic and we refer the interested reader to our former review in the introduction
of [88], as well as [8 O, 62} [63], 69, [70], [78, O2, 117, 119, 125] and the references cited
therein.

1.3 Gravity field equations
1.3.1 The Hilbert-Einstein functional

Einstein curvature. Throughout this Monograph, we are interested in four-dimen-
sional spacetimes (M, g) where M is a topological manifold (taken to be M ~ [1, 4+00) x

13



R3) and g is a Lorentzian metric with signature (—, +, +, +). The Levi-Civita connec-
tion of the metric ¢ is denoted by V, = V from which we can determine the (Riemann,
Ricci, scalar) curvature of the spacetime.

The standard theory of gravity is based on the Hilbert-Einstein action defined from
the scalar curvature R, = R of the metric g:

/M (Rg + 167 Lo, g]) dv,, (1.1)

where dV, denotes the canonical volume form on (M, ¢). It is well-known that critical
points of this action satisfy Finstein’s field equations

Gaﬁ = 87TTaﬁ in (M, g), (12)
in which R
Gaﬁ = Rap — 79 9ap (1.3)

is the Einstein curvature tensor and R,g denotes the Ricci curvature of the metric g,
which later we will express explicitly in coordinates in Proposition I3l

Matter tensor. The Lagrangian 167 L[¢, g] describes the matter content of the
spacetime and allows us to determine the right-hand side of (IL3]), given by the energy-
momentum tensor

SL
Tap = Tapld,g) 1= =2 55510, 91+ Gap L1, 9. (1.4)

Throughout, Greek indices describe 0,1,2,3 and we use the standard convention of
implicit summation over repeated indices, as well as raising and lowering indices with
respect to the metric g,s and its inverse denoted by ¢*’. For instance, we write
X, = gapX? for the duality between vectors and 1-forms.

1.3.2 The generalized gravity functional

A modified gravity action. The so-called f(R)-modified theory of gravity is a
generalization of Einstein’s theory and is based on the following modified gravity action

| (s + 167 L1 g]) avy, (15)
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in which f : R — R is a given (sufficiently smooth) function. In order for the modified
theory to be a formal extension of Einstein’s theory, we assume that f(r) ~ r in the
zero curvature limit » — 0. More precisely, we assume that

f(R):R+gR2 as R — 0 (1.6)

for some positive coefﬁcien x > 0. For some historical background about this theory,
we refer to Buchdahl [21] and Brans and Dicke [19], as well as [25] 26, 105, 114] and
the references therein.

Critical points of (LL3]) satisfy the following f(R)-field equations

Naﬁ =87 Taﬁ[¢7 g] in (Mv g)? (17)
in which

Naﬁ = f/(Rg) Gaﬁ - %(f(Rg) - Rgf/(Rg)>ga6 + <gaﬁ Dg - vavﬁ) (f/(Rg)> (1-8)

is referred to as the modified gravity tensor. Here, U, := V,V® is the wave operator
associated with the metric g.

The limit problem f(R) — R. We observe the following:

e Within the above theory, Einstein’s equations are obviously recovered by choosing
the function f(R) to be the linear function R.

e In the limit k — 0 in (LG), one has f(R) — R and the field equations (.7
formally converge to the Einstein equations (L.2).

Clearly, taking the limit f(R) — R is singular in nature, since (L2 involves up to
second-order derivatives of the unknown metric g, while (7)) contains fourth-order
terms. One of our objectives will be to rigorously prove that solutions of ([I.7]) converge
(in a sense to be specified) to solutions of (L.2)).

IThe positive sign of x := f”(0) is essential for the global-in-time stability of solutions, but is
irrelevant for their local-in-time existence.
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1.3.3 Evolution of the spacetime scalar curvature

Next, taking the trace of the field equations (L), we obtain
30,/ (Ry) + (= 2f(Ry) + Ryf'(Ry)) = 87 g* ' Tog in (M, g), (1.9)

which is a second-order evolution equation for the spacetime curvature R. It will play
a central role in our analysis. Interestingly enough, from (L], we have

(—2f(R)+ f(R)R) ~ —R  (when R — 0),

so that the linear part of the differential operator in (L9)) reads (with x > 0)
1
3K

Hence, the scalar curvature function R, : M — R satisfies a nonlinear Klein-Gordon

OR, — —R,. (1.10)

equation. In view of (LI0), we can refer to 1/ as the mass parameter.

The study of the convergence problem “modified gravity toward Einstein gravity”,
or infinite mass problem, will require to understand the singular limit x — 0 in solutions
to the differential operator (LI0).

1.3.4 Dynamics of massive matter

Massive scalar field. From the twice-contracted Bianchi identities V¥ R,p = %VﬁR,
the Einstein tensor as well as the modified gravity tensor are easily checked to be
divergence free, that is,

VeGap =V Nyg =0 (1.11)

and, consequently, the following matter evolution equations hold
Vs =0 in (M, g). (1.12)

We are interested here in massive scalar fields ¢ : M — R corresponding to the following
energy-momentum tensor:

Ty = Vad V30— (57,0970 + U(6) ) gas (1.13)

in which the potential U = U(¢) is a prescribed function depending on the nature of
the matter field under consideration.
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Nonlinear Klein-Gordon equation. By combining (LI2)) and (I.13]), we see that
the field ¢ satisfies a nonlinear Klein-Gordon equation associated with the unknown

curved metric g:

Ty~ U'(@)=0  in (M,g), (1.14)

which is expected to uniquely determine the evolution of the matter (after prescribing
suitable initial data). Throughout, we assume that
c

U(6) = S +0(6). (115

for some constant ¢ > 0, referred to as the mass of the scalar field.
2

For instance, with the choice U(¢) = $¢*, (LI4) is nothing but the Klein-Gordon
equation [J,¢ — ¢?¢ = 0, which would be linear for a known metric g. However, our
challenge is precisely to understand the nonlinear coupling problem when the metric
g itself is one of the unknowns and is given by solving (L3]) or (L7) (with suitably

prescribed initial data).

2 The initial value formulation

2.1 The Cauchy problem for the Einstein equations
2.1.1 Einstein’s constraint equations

We begin with a discussion of the initial value problem for Einstein’s field equations
coupled with a massive scalar field and, next, present our generalization to the f(R)-
field equations.

The formulation of the initial value problem for the Einstein equations is based
on the prescription of an initial data set, denoted here by (Mo, 90, ko, Po, qbl), which
provides us with the intrinsic and extrinsic geometry of the initial hypersurface (i.e.
the induced metric and the second fundamental form of the hypersurface), and with
the matter variables on this hypersurface, denoted here by (¢q, ¢1), which provide us
with the initial value of the scalar field and its Lie derivative in the timelike direction
(normal to the hypersurface).

Importantly, such an initial data cannot be chosen arbitrarily, but must satisfy
certain constraint conditions of Gauss-Codazzi-type. We assume that the spacetime
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under consideration is foliated (at least locally, for the sake of this argument) by a
time function ¢ : M — [1,+00), so that a local chart can be expressed as (t, z%) with
a = 1,2,3. Obviously, a solution to (LZ) may exist only if, in these coordinates, at

least the equation
G()O = 87TT00, Goa = 87TTOa, (21)

are satisfied. However, these four equations turn out to involve only the induced metric
and second fundamental form to the initial hypersurface {t = 1} as well as matter data.
This motivates the introduction of the following definition.

Observe that the following definition does not require any topological or asymptotic
assumptions on the data.

Definition 2.1. An initial data set for the Einstein-massive field system (L2) consists
of data (Mo, go, ko, Po, ¢1) satisfying the following conditions:

e My is a 3—dimensional manifold, endowed with a Riemannian metric gy and a
symmetric (0,2)-tensor field ky.

e ¢g and ¢1 are scalar fields defined on My.

o The so-called Hamiltonian constraint holds:

Ro — ko ket + (k8 ) = 8 (vomovggbl + ()2 +4 U(¢0)), (2.2)

in which Ry = Ry, denotes the scalar curvature of the Riemannian metric gy and
Vo denotes its Levi-Civita connection.

e The so-called momentum constraints hold:

Vouskoo — Voukg, =8T &1 Voo (2.3)

Of course, the indices in (2.2)) and (2.3]) are raised or lowered with the metric gq,
so that for instance ko wk’ = g6% g8 koakowrr and VoudoVidr = go™Vo,.adoVosoi-

!The remaining equations Gq; = 87Ty, provide us with genuine evolution equations.
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2.1.2 Einstein’s Cauchy developments

A geometric notion of solution. Relying on Definition 2.1, we can now formulate
the Cauchy problem, as follows. (In the following, we focus on the future evolution of
the data so that M is taken to be the past boundary of the spacetime.)

Definition 2.2. Given an initial data set (Mg, go, ko, Po, ¢1), the initial value problem
for the FEinstein equations consists of finding a Lorentzian manifold (M, g) (endowed
with a time-orientation) and a scalar field ¢ : M — R such that:

o (M, g) satisfies Finstein’s field equations (L2])-(L3)-(LI3).

o There exists an embedding i : (Mo, go) — (M, g) with pull-back metric i*g = go
and second fundamental form ko, so one can write My C M.

o The field ¢y coincides with the restriction ¢|y,, while ¢1 coincides with the Lie
derivative L, ¢|n,, where n denotes the unit future-oriented normal along M.

A solution satisfying the conditions in Definition 2.8 is referred to as Einstein’s
Cauchy development of the initial data set (Mg, go, ko, Po, ¢1). Moreover, by definition,
a globally hyperbolic development is a solution such that every inextendible causal
curve (whose tangent vector is either timelike or null) meets the initial hypersurface
exactly once. Furthermore, by analogy with the theory of ordinary differential equa-
tions, one actually seek for the maximal development associated with a given initial
data set. These notions were introduced in Choquet-Bruhat together with Geroch [29];
see [44] and the textbook [30] for further details.

The main challenge of the gravitation theory. In general relativity, the main
mathematical chalenge is to determine, at least for certain classes of initial data sets,
the global geometry of the Cauchy developments. It is known that solutions can
become “singular” and the evolution may lead to the formation of trapped surfaces
and eventually to the formation of black holes. (Cf. the textbook by Hawking and Ellis
[58].)

It is natural to restrict this problem to initial data sets that are perturbations of
particular solutions and, of course, the Minkowski geometry stands out as the ground
state of the theory of gravity. By considering perturbations of Minkowski spacetime,
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possibly in presence of matter as we do in this Monograph, the challenge is to establish
that the Cauchy developments in Definition are geodesically complete in future
timelike directions. This means that a timelike geodesic can be extended for arbitrary
large values of its affine parameter. From a physical standpoint, in such a spacetime,
an observer (represented by a timelike curve) can live forever and its proper time may
approach infinity.

2.2 The formulation of the f(R)-gravity theory
2.2.1 Evolution of the scalar curvature

A new unknown metric. Next, we turn our attention to the f(R)-field equations
(7)) which, as we already pointed out, are fourth-order in the metric g. Remarkably,
these equations can be conformally transformed to a third-order form, as follows.

Definition 2.3. The (unphysical) conformal metric g1 associated with a solution (M, g)
to the f(R)-field equations (L) is defined from the (physical) metric g by setting

1
0'as =005, p=—In(f(R,)), (2.4)

in which the conformal factor p : (M, g) — R is referred to as the scalar curvature
field.

In view of ([L6]), we have f'(R) ~ 1+ kR, so that the field p approaches the scalar
curvature R in the limit x — 0. Denoting by V! and Og+ the Levi-Civita connection
and wave operator associated with the conformal metric ¢', respectively, the trace
equation (L9) yields us

30,1 f'(Ry) = 8me g™ Ty + e (2 F(R,) — f’(Rg)Rg)  3k2g°V oV .
It is straightforward to check the identity
Oyt f'(Ry) =0y = e (m Ogtp — K gTaﬁVTapVTﬁp>,
and we therefore obtain

3k Oy p = Sme~20gt0 T, 5 4 e=2v0 (2 F(R,) - f/(Rg)Rg). (2.5)
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A Klein-Gordon equation. To better extract the structure of the equation (2.1,

it is then convenient to introduce the following notation:

o We set H(R)
= iy

e* = f'(R), R eR.

e The Legendre transform of the function f, by definition, reads

f*(y) :=supy R — f(R)

ReR

=f(R(y))R(y) — f(R(y)),  [(R(y) =y =e"

Hence, we find
fl(s) :_6—2Ii8f‘*(6li8)’ seR

and thus the last term in (2.5 reads

e (21 (Ry) = /() Ry ) = folp) + Fi(p) = 0+ falp).

We can thus rewrite (Z.3]) as follows.

(2.7)

(2.8)

Proposition 2.4. With the notation above, the f(R)-field equations (LT) imply the

following Klein-Gordon equation for the curvature field

3k 01p — p = falp) + 8™ *g " Top,

in which fo(p) = kO(p?) is of quadratic order at least, as follows from (LG)).

2.2.2 Field equations for the conformal metric

Modified gravity tensor. Next, rewriting (L8) as

1
Nag :6’ipRa5 - §f(R)ga5 + ke <ga5 Dg - VQVB>p

+ K2 (gagg(Vp, Vp) — Va,oVﬁp>
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and, recalling the conformal transformation formula for the Ricci curvature

K2 K
R.p = RLB +VoVsp — ?VapVBp + 5 (Dgp + kg(Vp, Vp))gag,
we obtain 2,2 5
Nag :e“pRlﬁ - ie"@pVOCpVB,O + —Ke“pgagﬂgp
40 2 X 2 (2.10)
K
+ =€ 9as9(V, V) = 5/ (R)gas-
The trace of this tensor reads
tr (N) =f'(R)R —2f(R) + 30, f'(R)
—/(R)R = 2(R) + 3k Dy p + 3129(Vp, V)
and, therefore, from (2.10) we deduce that
2kp 1 R ! 2 _2kp
Ske™Ugip = Str (Ng) + f(R) = 5 f/(R) = 6K°™g(Vp, Vp).
Hence, the identity (2.I0]) is equivalent to saying
1 1
Nog = 59astt (N) = 7R+ = (F(R) = Rf (R)) gas — 65%6™"VoapVsp.  (2.11)

In view of this relation, we have reached the following.

Proposition 2.5. With the notation above, the f(R)-field equations (L)) take the
equivalent form

1 1 o' B
e Ry — 6k N 0pV 50 — S f1(p) glag = 87 (Taa = 559" ’ Touaf), (2.12)

which will be referred to as the conformal field equations of the f(R)-gravity theory
and in which f1(p) = kO(p?) is of quadratic order.

A third-order modification of Einstein equations. At this stage, the following

observations are in order:

e Our reduced equations involve up to three derivatives of the new metric, only.
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e The expression (2.12)) contains

— Ricci curvature terms,
— only up to first-order derivatives of the scalar curvature,
— but no other third-order derivatives,

— nor fourth-order derivative of the new metric.

e Also, it is easy to compute the limit x — 0 in (2I2)) and, since f(r) — r and
f1(r) = 0, we obtain g — ¢,

p— R,
i 20t STt 4 ket pr(280) of (2.13)
Ry = 65" V'apVisp + e f1(€77) 9o = Rag
and in this limit (2.I2]) are nothing but Einstein’s equations
RZ&B = 871'Ta5 — 47Tga5 (ga/ﬁ,Ta/B/) . (214)

2.2.3 The conformal field formulation of f(R)-gravity

Coupling to matter fields. Although the vacuum f(R)-equations are interesting
in their own sake, in our analysis we also allow for the coupling with a massive scalar
field, denoted again by ¢ and described by the same energy-momentum tensor (LI3).
In the physics literature, the f(R)-equations (LT)-(LI3]) are referred to as the Jordan
coupling.

On the other hand, we point out that the alternative formulation of the matter
model in which the physical metric is replaced by the conformal metric leads to an ill-
posed evolution problem; see [89] for more details. We also point out that it would not
be difficult to generalize the nonlinear stability theory established in this Monograph
and encompass the coupling with a massless scalar field.

A summary. In summary, in terms of the conformal metric g7 defined in ([2.4), the
field equations of modified gravity (7)) contain only up to third-order derivatives of
the metric ¢ and read

1
RLB — 6K” Dupdsp + 56_4Kpf*(€2ﬁp) gTaB

(2.15)
= 87 (Vg V s+ T U(9) gl ).
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while the scalar curvature field p : M — R satisfies
360,10 — p = fo(p) — 87 (4" V100V 10 + 420U (6) ), (2.16)
and the matter field ¢ : M — R satisfies
ﬁgmb — =7 (e‘“p — 1)qz5 + /ﬁgTaﬁﬁagbagp. (2.17)

The following definition (cf. [89]) is motivated by the fact that the compatibility
condition p = 5= In(f'(R,)) does hold throughout the spacetime, provided it holds
(together with a timelike Lie derivative of this condition) on a Cauchy hypersurface.
This property is stated in Proposition 2.9 below, after introducing a suitable notion
of Cauchy development.

Definition 2.6. The conformal field formulation of f(R)-gravity consists of

o the equations (2I0)—(2IT), which provide one with a second-order system in
(gT’ p’ ¢))

e together with the defining condition relating p to the spacetime scalar curvature
R, of the physical metric gop = 6_2“pgTa5 :

1

p= 5= In(f(R,)). (2.18)

2.3 The Cauchy problem for the f(R)-field equations
2.3.1 The f(R)-constraint equations

Since p satisfies a second-order evolution equation, we may anticipate that, similarly to
what we did for the matter field ¢, two initial data for p are required for formulating the
initial value problem. Indeed, the formulation of the initial value problem associated
with the f(R)-equations requires an initial data set (J\/[O, 9o, ko, Ro, R1, ¢o, gbl) which,
in addition to the intrinsic and extrinsic geometry and matter content, also provides
us with the spacetime scalar curvature, denoted by Ry, and its Lie derivative in time
R;. Observe again that the following definition is very general and does not require
any topological or asymptotic assumptions.
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Definition 2.7. An initial data set for modified gravity consists of data

(Mo, 9o, ko, Ro, R1, po, p1)

satisfying the following conditions:

o My is a 3—dimensional manifold, endowed with a Riemannian metric gy and a
symmetric 2-covariant tensor field ky.

e Ry and Ry denote two scalar fields defined on My, which represent the scalar
curvature field and a timelike Lie derivative of this field.

e ¢g and ¢, denote two scalar fields defined on My, which represent the matter field
and a timelike Lie deriwative of this field.

o In terms of the conformal metric g%, and the conformal second fundamental form
kYo defined (by analogy with 2.4)) by

gTo,aﬁ = f/(RO)QO,aﬁv

T / ) (2.19)
k0.0 = f'(Ro)ko.ap + f"(Ro) R190.as,
the Hamiltonian constraint of modified gravity holds:
aa’  +bb
Rlo—g'y" g'0 Kloawkiowy + (k)
K ab K
_ 8 e (gg V0000V 000 + (61)2 + de POU(%)) (2.20)

ab
+6k2(p1)% + 6K2g5 VioapoVioppo — €200 f*(e20),

in which Ry denotes the scalar curvature of the Riemannian metric gg, and V1,
is the corresponding Levi-Clivita connection.

e The momentum constraints of modified gravity hold:

Viook 0, = VieakTgy =87 e ¢1 Vo 40 + 6571 Vi pp0. (2.21)
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2.3.2 The notion of f(R)-Cauchy developments

We are now able to generalize Definition (which concerned the Einstein equations),
as follows.

Definition 2.8. Given an initial data set (Mo, go, ko, Ro, R1, ¢o, ¢1) as in Definition[2.7,
the initial value problem for modified gravity consists of finding a Lorentzian manifold
(M, g) (endowed with a time-orientation) and scalar fields p, ¢ defined on M such that:

o The field equations of modified gravity (L7)-(L8)-(LI3) are satisfied.

o There exists an embedding i : (Mo, go) — (M, g) with pull-back metric i*g = go
and second fundamental form ko, hence one can write My C M.

o The field py coincides with the restriction p|y,, while py coincides with the Lie
derivative L, ply,, where n denotes the unit future-oriented normal to M.

e The scalar fields ¢y and ¢, coincide with the restriction of ¢ and its Lie derivative
L,0 on My, respectively.

A solution satisfying the conditions in Definition 2.8 is referred to as a modified
gravity Cauchy development of the initial data set (Mo, go, ko, Ro, R1, ¢0, ¢1). The no-
tion of maximally hyperbolic development then follows by straightforwardly extending
the definition in Choquet-Bruhat [30]. In comparison with the classical gravity the-
ory, the modified gravity theory has two extra degrees of freedom specified from the
two additional data (Rg, R;y). Similarly as in classical gravity, these fields cannot be
arbitrarily prescribed and suitable constraint equations must be assumed, as stated by
&.20)- 2.21).

The following observations are in order:

e From Definition 2.8 in the special case of vanishing geometric data Ry = Ry =
0o = ¢1 = 0 we recover the classical formulation in Definition 2.8l

e On the other hand, by taking a vanishing matter field ¢ = 0 but non-vanishing
geometric data (Rg, R;), the spacetimes in Definition 2.8 generally do not satisfy
Einstein’s vacuum equations.
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2.3.3 Equivalent formulation in the conformal metric

All of the above notions could be equivalently stated in terms of the conformal metric
g', while regarding the field p as an independent unknown. This standpoint is justified
by the following property of the f(R)-field equations [89].

Proposition 2.9. If (M, g7, p, ¢) is a Cauchy development to the augmented conformal
system of modified gravity (2.10)-(2.10)-(2.17), then by introducing the physical metric

—2Kp

Gap = € g:;ﬁa

the condition

p= 5 n(F'(Ry) (2.22)

holds throughout the spacetime M, provided it holds on the initial Cauchy hypersurface
My and the same identity also holds for the normal time Lie derivative on M.

While the conformal formulation will play an essential role in the forthcoming
proofs, as far as the statements of our main results are concerned it is more natural to
give statements in the physical metric ¢ rather than in the unphysical metric gf., as we
have done in this section. However, let us also observe that the scalar curvature data
Ry, Ry can be equivalently replaced by initial data pg, p; with the correspondence:

1 _ L/
=iy, = U

R;. (2.23)

27



Part II
Nonlinear stability statements

3 The global stability of Minkowski space

3.1 Initial data sets of interest
3.1.1 Minkowski and Schwarzschild spacetimes

Minkowski metric. We are interested in solving the initial value problem when the
initial data sets represent perturbations of a flat hypersurface in Minkowski spacetime.
The initial data sets are assumed to have the topology of R? and be covered by a single
coordinate chart denoted by z = (2%) = (z,) € R® with a = 1,2,3. Our spacetimes
will also be endowed with a foliation determined by a global time function denoted by
t: M — [1,400) in which {t = 1} represents the initial hypersurface. It is convenient
also to define the radial vector (w,) and the radius r > 0 by

Wy 1= &, r? = Z(m“)Q. (3.1)

Recall first that, in standard Cartesian coordinates (which are also wave coordi-
nates, in the sense (4.2) below), the Minkowski metric g); reads

3
av = (Gmap) = —dt® + Z(dxa)2
a=1
= —dt* + (gMﬂb) = —dt* + (5ab)-

We also use the notation
grr0 = (ap) (3.3)

to denote the restriction of the Minkowski metric on ¢ = 1.
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Schwarzschild metric. By the positive mass theorem [115][139], a metric coinciding
with the flat metric outside a compact region necessarily coincides with the Minkowski
metric. Hence, only mild decay in spacelike directions is compatible with the Einstein
equations.

Given any parameter mg > 0, consider next the so-called Schwarzschild metric
defined for » > mg by its components

. r—mg
gs,00 = r+mg
4Ss,0a = 07 (34)
r 4+ mg r 4+ mg)?
9s.ab = WaWp + %(51117 - wawb)a
r—mg T

in which we use the notation ([BI]). This metric represents the geometry of a spherically
symmetric and static black hole with mass mg > 0 and, more precisely, the domain of
outer communication of this solution to the vacuum Einstein equations. As observed
in [7], the formulas ([B.4]) provide the metric in wave coordinates (cf. (£.2) below).
Furthermore, the restriction of the Schwarzschild metric to a hypersurface of con-
stant time ¢ = and the corresponding second fundamental form kg, of this hypersur-

face satisfy
Qms

~ <ms 2 (. —2
9S.ab ™ (1 + " >5ab+ (ms)*O(r—=), r — 400, (3.5)
ks.a =0,
since the coefficients in (8.4]) is independent of t.

For our purpose, the Schwarzschild metric only tells us about the asymptotic be-
havior at spacelike infinity which is compatible with the constraint equations and,
therefore, physically admissible. We conclude that (3.5) is the typical asymptotic be-
havior that our global stability theory should cover. In fact, our framework will be

more general and will include (B.5) as a special case.

3.1.2 The class of initial data sets of interest

Asymptotically tame data. We begin by presenting our sup-norm conditions which
play a special role in the present work and have no analogue within the standard global
existence theory for nonlinear wave equations. These conditions concern the geometry
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of the initial hypersurface but not the matter and curvature components of the initial
data sets. In addition the conditions below, “small energy” conditions will be also
required on the initial data sets (cf. (3.11) and (B.12), below).

Definition 3.1. Let € > 0 and o € [0,1/2) be given parameters and N be an integer.
An initial data set

(Mo ~ R, go, ko, ¢o, $1) (as in Definition[2.2)

r (MO >~ R3, 9o, ]{50, R(], Rl, ¢0, (]51) (CLS m DEﬁnZtZOTL )
is said to be (o,¢, N)-asymptotically tame if in a coordinate chart (z%) = (r,w?)
(with r = |x| and A = 1,2) the components of the metric hg = go — ¢ and the 2-tensor
field k

Tr 1 a 1 al a
hy = ﬁh(),abx ?, kéA = /r_2k:07ab (5 b_ g :L'b), (3.6)
satisfy the decay conditions for all r = |z| < R:

0" hg" (2)] < e(L+r) 7T I <N+ 1,
0" kg a(2)] < €L+ r)HI=2Fe I < N,

— / (K ). (0= ) Vg (). B ) o) < (38)

over the sphere Sg(z) :== {y € R®/ |z — y| = R}.

Examples of initial data sets. Other formulations of our asymptotic decay con-
ditions will be provided and discussed below. At this stage, let us mention that it
is straightforward to check that the Schwarzschild metric does satisfy both conditions
B7) and (3.8]) with o = 0 while € can be taken to be a multiple of the mass mg (arising
in [3.3)). Our theory for the stability of Minkowski spacetime for instance applies to
this important class of metrics with Schwarzschild-like behavior. Our decay conditions
in [B.1) allow for a decay at a slower rate in comparison to the Schwarzschild metric.
For instance let us recall that the condition o < 1/2 suffices in order for the ADM
mass to be well-defined. Observe also that the decay (B.7)) is guaranteed in [2§] for a
broad class of data sets with ¢ possibly arbitrarily close to 1.
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3.2 Three main results of nonlinear stability
3.2.1 The Einstein theory

The global existence statement. The first mathematical result concerning the
local-in-time existence for the Einstein equations (possibly coupled to matter fields)
was established by Choquet-Bruhat in 1952 and in subsequent works; see the textbook
[30] and the references therein. Solutions are defined according to Definition 2.2
Several theorems that are global-in-nature are established in this work.

We begin with our existence statements. The initial data are assumed to have small
“energy” defined as a weighted Sobolev-type norm which involves the Killing fields of
Minkowski spacetime. As far as the initial data sets are concerned, in addition to the
spatial translations corresponding to the vector fields

O0uy, a=1,2,3, (3.9)
we also rely on the spatial rotations corresponding to the vector fields
Qup = 140, — a0y, a,b=1,2,3. (3.10)
The notation 0% is used in which I; and I, are multi-indices in 1,2, 3.

Theorem 3.2 (Nonlinear stability of Minkowski space for self-gravitating massive
fields). For all sufficiently small e > 0 and all sufficiently large integer N, one can find
o,n > 0 depending upon (¢, N) so that the following property holds.

Consider any (o, €, N)—asymptotically tame initial data set (cf. Definitions[2.2 and
[31) for the Einstein-massive field system (L2), i.e.

(MO = R37 9o, kOv (r/)07 ¢1)7

which is assumed to be sufficiently close to a flat and vacuum spacelike slice of Minkowski

spacetime (R3TY gar) in the sense that, in a global coordinate chart x = (x%) with
r= |£L’|,

11+ 7)™ 127090 — garo)llr2es) < e,

1L+ 7)™ Z ko p2esy < e,

||(1 + 7’)77+‘I‘+1/2Z1¢0HL2(R3) <e,

(L + )™ 22 0 | 2 sy < e

(3.11)
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for all Z1 = 01 Q12 with |I|+|Is| < N, in which garo = (0ap). Then, the corresponding
initial value problem associated with (L2) admits a globally hyperbolic Cauchy devel-
opment (M, g, ¢), which is future causally geodesically completzﬂ and asymptotically
approaches Minkowski spacetime.

Properties of the solutions. The following observations should be made:

e In our proof we will establish energy and sup-norm estimates on the difference
g — gy, which show that the spacetime metric and the Minkowski metric are
globally close to each other and the difference tends to zero in causal and spacelike
directions.

e For instance, for the Schwarzschild metric (in the domain of outer communication
away from the horizon), the energy (B.I1)) is finite and, therefore, our theorem
applies to metrics that have a Schwarzschild-like decay (B.5) at spacelike infinity.

e In comparison with the geometric data (go, ko), a stronger decay is assumed on
the matter data (¢, ¢1). Analyzing a possible long-range eﬁec‘&é in these fields

is out of the scope of the present work.

Remark 3.3. Our proof will use the radial part of the spacetime boosts, defined as
L, := t0, + r0;. Our energy functional will be formulated in terms of the derivatives
Oxh of the spacetime correction h := g — gy, and the weight arising in the first two
inequalities in ([BI1]) will be motivated from the following schematic calculation:

OLL] (g — ga)Inee == 0L0]0(g — gar)ney + (1 + 7710207 (g — gar) oy
~ (1 —+ r)“”@I@J@(gO — gM70) + (1 + 7’)“”8]8‘%0.
3.2.2 The theory of f(R)-gravity

The method leading to Theorem can be generalized in order to establish the fol-

lowing result in which k is viewed as a fixed parameter.

'We recall that a future causally geodesically complete spacetime, by definition, has the property
that every affinely parameterized geodesic (of null or timelike type) can be extended toward the future
(for all values of its affine parameter).

2This question was recently studied in [24, [123] for 1 + 1 scalar equations.
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Theorem 3.4 (Nonlinear stability of Minkowski space in modified gravity). Let f =
f(R) be a function satisfying the condition (LG) for some k € (0,1). For all sufficiently
small € > 0 and all sufficiently large integer N, one can find o,n depending upon (e, N)
so that the following property holds.

Consider any (o, €, N)—asymptotically tame initial data set (cf. Definitions[2.8 and
[51) for the field equations of modified gravity (L), i.e.

(MO = Rgu 9o, k07 R07 R17 ¢07 ¢1)7

which is assumed to be sufficiently close to a flat spacelike slice of Minkowski spacetime
(R3TY gar) in the sense that, in a global coordinate chart x = () with r = |z,

11+ 7)™ M2 0(g0 — gar)ll 2es) < €,
(1 + 7)1 Z k|| L2 sy < e,

(1 + 7)™ 2 ZT Ry || 2 gsy < e,

(1 + 7)™ 2 ZI Ry | sy < e,
(14 )220 o | 2 sy < e,

(1 4 )2 ZE 60| 2 sy < e

(3.12)

for all ZT = 0" Q2 with |I,| + || < N. Then, the corresponding initial value problem
associated with (L) admits a globally hyperbolic Cauchy development (M, g, ¢), which
15 causally geodesically complete and asymptotically approaches Minkowski spacetime.

More precise versions of our existence results will be stated in Section [l after
introducing a spacetime foliation and weighted Sobolev-type energy norms adapted to
our problem. (Cf. Theorems 5.1l and [5.21)

3.2.3 The infinite mass problem

The nonlinear function f(R). In order to study the limit f(R) — R, we will

be able to specify the dependency of our estimates with respect to the parameter
k€ (0,1):

e We are primarily interested in the quadratic action

/M (Rg + g(RQ)2 + 167 L[¢, g]> dv,, (3.13)
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which is most often considered in the physics literature (and corresponds to a
vanishing right-hand side in (3.14) below).

e More generally, expanding the function f at the origin we can assume that, in
some interval [—r,, .| at least,

d’n

drm

at any order n = 0,..., M up to a sufficiently large (but fixed) M.

(f(r) —r— gr2> ‘ < KPR, rE [—Te, Ty, (3.14)

Hence, the pointwise convergence property f(R) — R is equivalent to the condition
that xk converges to zero.

Resolution of the singular limit problem. Our convergence statement below
addresses the fundamental question of the mathematical consistency of the modified
gravity theory: the field equations admit a well-defined limit x — 0 and we recover
the Einstein theory. Our theorem applies to a sequence of initial data sets for the
f(R)-theory which is assumed to satisfy suitable x-independent uniform bounds (to be
specified later).

Theorem 3.5 (Convergence of the modified gravity theory toward Einstein’s gravity
theory). Suppose that the condition ([B14) holds. Then, in the limit k — 0 when
the defining function f(R) arising in the generalized action (LBl approaches the scalar
curvature function R, the Cauchy developments (M, g, @) of f(R)-modified gravity given
by Theorem [3.4] converge to Einstein’s Cauchy developments given by Theorem[3.2

4 The wave-Klein-Gordon formulation in EH folia-

tions

4.1 A class of wave-Klein-Gordon systems
4.1.1 Gauge freedom

Choosing the coordinate functions. Since the field equations under considera-
tion are geometric in nature, it is essential to fix the degrees of gauge freedom before
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tackling any stability issue from the perspective of the initial value problem for partial
differential equations. As already pointed out, our analysis relies on a single global
coordinate chart (x%) = (¢, 2*) and, more specifically, on a choice of coordinate func-
tions x satisfying the homogeneous linear wave equation in the unknown metric. This
means that we impose that the functions x® : M — R satisfy the so-called wave gauge
conditions (o = 0,1,2,3)

Ogz® =0  for the Einstein field equations, (4.1)

and, more generally, these functions are chosen to satisfy the conformal wave gauge
conditions as we call them here (o =0, 1,2, 3)

Oyiz® =0  for the f(R)-field equations. (4.2)

Second-order systems. In such a gauge, we obtain a nonlinear system of second-
order partial differential equations with second-order constraints, as follows:

e For the Einstein theory, the unknowns are the metric coefficients g,z in the chosen
coordinates together with the scalar field ¢. It is well-known that the constraints
are preserved during the time evolution [30].

e For the f(R)-theory, the unknowns are also the conformal metric coefficients
gTaﬁ, the scalar curvature field p, and the matter field ¢. It was established in
[89] that the associated constraints are preserved during the time evolution.

In the present section, we write the equations in a schematic form, while the al-
gebraic structure of this system of nonlinear and coupled equations will be analyzed
in further details later in Part [Vl In the case of Einstein’s gravity theory and a mass-
less scalar field, we recover the nonlinear structure exhibited first by Lindblad and
Rodnianski [94].

4.1.2 The formulation in coordinates

Christoffel symbols and Ricci curvature. Following [89], we thus choose coordi-
nate functions x® satisfying (£2) or, equivalently,

rie — gf*’rt? . — o, (4.3)
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in terms of the Christoffel symbols of the conformal metric g':

A 1 o
FTaﬁ - §9T (aochBA’ + 059 n — 5A'glg)- (4.4)

We also introduce the modified wave operator

ﬁT = ﬁ o= gTalﬁlﬁa@B/, (45)

g

which, in the coordinates under consideration, coincides with the geometric wave op-
erator whenever the conditions ([A3]) are enforced.

While we postpone the discussion of the expression of the Ricci curvature to Propo-
sition [13.1 below, let us just recall here that the Ricci curvature reads

A A A 6 A é
Rizﬁ = 8)\FTQB - 8aFTB)\ + FTaﬁrT)\(s - FTO“;FTB)\, (46)

which is second-order in the unknown metric. The functions F,5 = F,5(g', dg') arising
in ([@.7) below represent the quadratic nonlinearities of the Ricci curvature.

The nonlinear wave system. The following formulation is explained further in
Section {.1.4] below.

Proposition 4.1 (The f(R)-gravity equations in conformal wave gauge). In the con-
formal wave gauge ([E3J), the field equations of modified gravity (L) for a massive
field ¢ satisfying (LI3)) take the following form of a nonlinear system of 11 coupled
wave and Klein-Gordon equations for the conformal metric components glﬁ, the scalar
curvature field p, and the matter field ¢:

ﬁTg:LB = Faﬁ(gTu agT) + Aaﬁ + Baﬁv
30t — p = Wi(p) — o, (4.7)
Otg — U'(¢) = 2k 9" Dupdso,

in which
Aaﬁ = —3&28ap85p - VH(ﬂ)QTaﬁ7

Begs := 167 ( — e " 000050 + U(p)e > g:;ﬁ)v (4.8)
o= 8me " <gTa58a¢8g¢ +4 e‘“pU(@) )

for some nonlinear functions V., = V,.(p) and W,, = W(p).
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The algebraic and differential constraints. We observe the following:

e The functions V,; and W, are quadratic, since (with the notation p = 1 log f'(R))

Vip) = f(R) - RJ;(R> — — 27 4 120(p"),
J'(R) 2 (4.9)
We(p) : 6 Vxlp) —p+ S = £O(p").

P r(R) F(R?

e The system (4.7)) is also supplemented with the algebraic constraint on the scalar
curvature, that is,

1
p= P log f'(Ry), gTaB = €"gagp. (4.10)

e It must as well be supplemented with the gauge wave constraints (4.3)-(4.4]), and
the Hamiltonian and momentum constraints of modified gravity (2:20)-(2.21).
4.1.3 The formal limit toward Einstein’s equations

In the limit k — 0 we can formally recover the Einstein equations since we find
f(R) = R and g' — g, so that

Aaﬁ — 0,
; (4.11)
Bag — 167 ( — 020030 + U(9) g.5).
Moreover, the wave equation for p yields us (again formally)
p— 8m(g*°VadVsd +4U(¢)) when k — 0, (4.12)

which is the standard expression for the spacetime curvature of an Einstein-scalar field
spacetime.

Proposition 4.2 (The Einstein equations in wave gauge). In wave gauge ([A1l), the
FEinstein equations ([L2) for a massive field ¢ satisfying (LI3) take the following form
of a nonlinear system of 10 coupled wave-Klein-Gordon equations for the metric com-
ponents gop and the scalar field ¢:

Ogap = Fap(g,8g) + 167 ( — addpd + U(0) gus),

. (4.13)
O — U'(¢) =0.
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Furthermore, the system (4.I3)) must be supplemented

e with the gauge wave constraints (4.3))-(4.4)), that is,

I =g*T), =0,

1Y
Fgﬁ = 59” (8a96N + O3gax — 5A'9a5),

(4.14)

e and with Einstein’s Hamiltonian and momentum constraints (2.2))-(2.3).

4.1.4 Derivation of the wave-Klein-Gordon system

We give a proof of Proposition [4.1], which relies on the previous calculations made in
[89]. We recall the following set of equations:

Ya i L oy 8t
Ny = 5500 (Ng) = ¥ RLy + 56 gug W (p5) — 6670205,
1
Tus = 505tt (T) = 0a6036 — U0,
o Welp®) | W) |t (N) (4.15)
gtP" = Go2ht Gelto' Gedrtt

VI, = e 2" VOT, 5 + 4¢™70, ¥ T 5,
Ogr — U'(6) = 24'(Vp*, Vo),

in which, in [89], we set g5 = 20 Gag for the conformal metric and p# = $log f'(R,)
is regarded as an additional unknown. The potential functions szm and Wgﬁ are defined
by
flr) = f'(r)r

fiir)y 7 (4.16)
W (p#) = f(r), = f(r), TER

Wi (o) =

Let us define the new functions (with p# = $log f'(r)):

v’fﬁ(pﬁﬁ) — f(T)f&:)J;'(T)’ W’gﬁ(pﬁﬁ) — W;Bﬁ(Pw) p¥ f(r) (4.17)
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With the notation above and according to [89], the field equations of modified
gravity in conformal wave gauge read

DTgTaB = Faﬁ(gTa agT) + AO&B + BO!B’

O pt g_tz — WH(pH) — x#, (4.18)
O'o — U'(6) = 2™ 0030,
where we have set
Aap = = 1200p%950" — VE(p¥)g' o,
Bos =87 (= 267" 0,000 + 2U(8)e™"* gl ), (4.19)
i :%ﬂe—?ﬂ“” (9700030 + 4" U (9)).
Expressing the above equations in our notation, we write p = % p* and we set V. (p) 1=

VE(p*), We(p) := 6 WH(p*), and o := 6 X%, This is equivalent to the system stated
in Proposition @1l

4.2 The Euclidian-hyperboloidal foliation (EHF)

4.2.1 A decomposition of the spacetime

Three distinct regions. It remains to specify the time slicing of our spacetime.
Our choice of a foliation is based on a decomposition of the future M of the initial
hypersurface My, which distinguishes between three regions, referred to as the interior
domain, transition domain, and exterior domain, respectively, and denoted by

M= MO U MR g M, (4.20)

Without loss of generality, we label the initial hypersurface as {t = 1} in our global
coordinate chart (¢, z', 2% x3). Recall also that r? = (z%)2.

After identification, we thus write
M~ {t>1} c R*, (4.21)

and we can use the symmetries of Minkowski spacetime and regard them as approxi-
mate symmetries for our spacetime M.
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The symmetries of Minkowski spacetime. The vector field method we propose
in this Monograph relies on the following:

e The translations generated by the vector fields
0o, a=0,1,2,3, (4.22)
which, for instance, will be tangent to the time slices in the exterior domain.

e The Lorentz boosts generated by the vector fields
Ly, = 2,0, +t0,, a=1,2,3, (4.23)
which, for instance, will be tangent to the time slices in the interior domain.

e The spatial rotations generated by the vector fields
Qab = xaﬁb — :):bﬁa, a = 1, 2, 3, (424)

which will be tangent to the time slices in, both, the exterior and the interior
domains.

We refer to (£.22)—(@.24) as the family of admissible vector fieds. Importantly, these
fields commute with the wave and Klein-Gordon operators in Minkowski spacetime,

namely
[Z, Ogr — 02}¢ =0 for all admissible fields Z, (4.25)

so that, for any solution to the wave equation or Klein-Gordon equation,

O,y ¢ —Co=f imply 0O,,7¢—cZ¢=27f, (4.26)

for any vector field Z in the list above.
Importantly, throughout our analysis we avoid to rely on Minkowski’s scaling field,
defined as
S =t0; + 0, (4.27)

or, at least, we never apply this vector field to our equations, since it does not commute
with the Klein-Gordon operator in Minkowski spacetime.
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Decay of solutions. More precisely, our basic strategy is as follows:

e Within an interior domain denoted by M, we rely on the foliation based on the
hyperboloidal slices
{t? = r* =3} CR*! (4.28)

with hyperbolic radiu s > 2. These slices are most convenient in order to
analyze wave propagation issues and establish the decay of solutions in timelike

directions.

e Within an exterior domain denoted by M, we rely on Euclidian slices of con-

stant time ¢ > 1
[t =c} CR¥L

These slices are most relevant in order to analyze the asymptotic behavior of
solutions in spacelike directions and the properties of asymptotically flat space-

times.

4.2.2 Definition of the time foliation of interest

The time function. In order to take advantage of both foliations above, we propose
to glue them together by introducing a transition region M as follows. Consider a
cut-off function x = x(y) (see next paragraph) satisfying

x(y) = N (4.29)
y

which is globally smooth and is increasing within the interval (0, 1). Then, we introduce
the following transition function

E(s,r) :=1—x(r+1-s%/2) €]0,1], (4.30)
which is globally smooth and is defined for all s > 1 and all r > 0. It also satisfies

1, < —145%/2,
&(s,r) = = =/ (4.31)
0, r>s?/2.

IThe region s € [1,2] will require a specific treatment.
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Hence, the function £ is not constant precisely in a transition region around the light
cone 2r ~ s? = 2 — 2,

Definition 4.3. The Euclidian-hyperboloidal time function is the function T = T'(s, )
defined by the following ordinary differential problem:

8TT(S,T’) = X(S - 1)5('9’ T)

T(s,0)=s> 1.

.
VR (4.32)

Then, by definition, the Fuclidian-Hyperboloidal foliation is determined from this
time function and consists of the following family of spacelike hypersurfaces

M, = {(t,z) /t = T(s,|z])}. (4.33)

Analyzing the spacetime foliation. It is convenient to also define the following

spacetime regions:

8081] _{ /TSOv |$D§ < (817|x‘ }CR3+17 (4 34)
so+oo :_{ /TSO>|':E| S }CR3+1
and the interior, transition, and exterior domains (with r = |z|)
Mt = {t2 =547 r<-—1+4 32/2} hyperboloidal region,
M ={t=T(s,r), —1+s/2<r<s*/2} transition region,  (4.35)
M= {t = s), r>s°/2} Euclidian region.

By construction, we thus have:

e In the interior, the relation 7% = s? + r2 holds and the slices consist of hyper-
boloids of Minkowski spacetime.

e In the exterior, one has T = T'(s) ~ s* which is independent of r and represents
a “slow time”, and the slices consists of flat hyperplanes of Minkowski spacetime.

One important task will be to analyze the geometric and algebraic properties of this
foliation; see Part
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4.2.3 Weighted Sobolev-type energy norms

In order to state our nonlinear stability theorems, we still need to define the Sobolev-
type norm of interest. We use the energy norm associated to the wave and Klein-
Gordon equations and induced on our Euclidian-hyperboloidal slices. In addition, in
the exterior domain we introduce a weight function which provides us with the required
control of the decay in spacelike directions.

Our weight depends upon the variable

q:=r—t, 4.36
(

that is, the distance to the light cone from the origin and so, for some 1 € (0, 1] and
using our cut-off function ([£29), we set

wy(t,r) =x(@)(1+¢@)"=x(r —t)(1+r—1)". (4.37)

Clearly, w,, is a smooth function vanishing in {r < t}.
To any function v defined in the domain Mjy, ) limited by two slices of our foliation
(say 1 < sg < s < s1), we define the (flat) energy functional

E,(s,v)
= /Ms(l + wn)z((l —x(1 - 5)252%2) (8151))2 + Za: (59“;@@ + 8av>2 + czv2>dx,

in which, by definition, one has t = T'(s,r) and r = |z| on M,. With the notation (see
Part [Tl below)
04 := 0,T(5,7)0, + 0,

1 o (4.38)
- X( - 8)5(87 T>T(S, 7") tU + a)
we obtain the alternative form
Eyc(s,0) = / (1 +wn>2(\<<s,r)8tv\2 + ) |0av)? +c2v2) da, (4.39)
M, -
in which the coefficient ¢ = ((s,7) € [0,1] is defined as
2+ x3(r— 1+ s%2/2)r?
= x(1 — ) 4.40
= (1 - oy UL (4.40)
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This energy (together with its generalization to a curved metric) will lead us to a control
of the weighted wave-Klein-Gordon energy associated with the operator v — c?v with
c> 0.

The choice of the cut-off function will be presented later in Part 3.

5 The nonlinear stability in wave gauge

5.1 Main results
5.1.1 Einstein equations in wave gauge

We are now in a position to state our main results in coordinates. We treat first the
Einstein equations (I.2]) in which case the physical and the conformal metrics coincide.
It is convenient to denote by

Z1 =0 LRQk T = (1,15, 1),
an arbitrary combination of translations, boosts, and rotations, that is
86 {80781782783}7 LE {L17L27L3}7 Q € {91279137923}' (51)

Theorem 5.1 (Global nonlinear stability of self-gravitating massive fields). For all suf-
ficiently small e > 0 and all sufficiently large integer N, one can find o € [0,1), n,d €
(0,1), and Cy > 0 depending upon (¢, N) so that the following property holds for the
Finstein-massive field equations in wave gauge ([AI3) in the Euclidian-Hyperboloidal
Foliation (EHF) (cf. Definition[{.3).

Consider any (o, ¢, N)—asymptotically tame initial data (hap = Gop — GM.aps D)s
prescribed on the hypersurface {t = 1} = {s = 1} and satisfying the energy bounds

Ey(1, 2 hap)"? + Eepirja(1, Z70)? < e, |I| < N, (5.2)

as well as the sup-norm estimates [B1) in Definition [31. Then, a global solution
(hag = Gop — GM.ap, ) satisfying the Einstein equations ([LI3)) exists, which enjoys the
following bounds (for all s > 1)

E,(s, Z"h(w)U2 < Cyes®, [I] < N,
Benaja(s, Z'9)? < Coes” /2, [I| <N, (5.3)
Ec,n+1/2(8, ZI¢)1/2 S C()ES(S, |[| S N — 4.

44



Moreover, the spacetime (M ~ R3, g, ) determined by this solution is future timelike
geodesically complete.

5.1.2 The f(R)-equations in wave gauge
Next, our statement for the f(R)-theory reads as follows.

Theorem 5.2 (Global nonlinear stability for the theory of modified gravity). Let f =
f(R) be a function satisfying the condition ([LL6)) for some k € (0,1). For all sufficiently
small € > 0 and all sufficiently large integer N, one can find o € [0,1), n,0 € (0,1),
and Cy > 0 depending upon (€, N, k) so that the following property holds for the f(R)-
field equations in wave gauge (LT) in the Euclidian-Hyperboloidal Foliation (EHF)
(cf. Definition[].3).

Consider any (o, €, N)—-asymptotically tame initial data consisting of a metric hog ==
9o — 9M.aB, G Scalar curvature field p, and a matter field ¢ prescribed on the hyper-
surface {t = 1} = {s = 1} and satisfying the energy bounds

1
B, (1, Z hog)'? + EEb,n+1/2(1a Z'p)'? + Eepny12(1, ZI)? <, [I| <N, (54)

in which b := k=2, as well as the sup-norm estimates ([3.7) in Definition [31. Then
a global solution (hag = g0 — 9 a1.ap, . @) satisfying the f(R)-field equations in con-
formal wave gauge (LT exists, which enjoys the following bounds for all s > 1

B, (s, Z hap)'/? < Coes’, 1| < N,
Eypi1y2(s, Z" p)Y? < Cobes® 172, |I] < N,
Eyi1/2(s, Z1p)/* < Cobes’, 11| < N —4. (5.5)
Ees1ya(s, Z'¢)'? < Coes™ 72, [I| <N,
Eepi1ja(s, Z2'9)1? < Cyes’, II| < N —4.

Moreover, the spacetime (M ~ R3, g7, p, ¢) determined by this solution is future timelike
geodesically complete.

The mathematical validity of the theory of modified gravity will be justified by
establishing that our estimates can be made to be essentially independent of x € (0, 1)
and by next analyzing the convergence xk — 0.
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Remark 5.3. 1. Note that the energy may grow in time. We will actually show that
the exponent § = §(€) can be chosen to approach zero when the initial norms approach
zero, that is, limsup,_,,d(e) = 0. This type of behavior was first observed by Lindblad
and Rodnianski [95] for asymptotically flat foliations of vacuum spacetimes.

2. Sup-norm bounds will also be established for g — gy which shows that our sup-
norm conditions ([B.1) in Definition[31 also hold within the spacetime.

5.2 A new strategy of proof: the EHF method
5.2.1 Dealing simultaneously with the Einstein and f(R)-equations

While a more technical description of our method will be given in the next parts, at
this stage we can already outline our strategy of proof.

Before we can proceed with the analysis of the Cauchy problem for the f(R)-system
we perform a conformal formulation based on the unknown scalar curvature. Namely,
as explained earlier, we propose to express the field equations and the initial value
problem in terms of a conformally equivalent metric denoted by g'. Following [89],
we supplement the field equations (I.7) with the equation (L9]) satisfied by the scalar
curvature field.

We also emphasize that Theorems [5.1] and are going to be established simul-
taneously. We write all of our estimates in the context of the f(R)-gravity equations.
By taking x = 0 and suppressing the equation for the scalar curvature field, we will
establish that (essentially) all of our estimates carry over to the Einstein equations. In
the last part of the analysis, we will give a proof of Theorem by analyzing carefully
the dependency of our estimates with respect to the mass parameter x.

5.2.2 The notion of Euclidian-Hyperboloidal Foliation (EFH)

Our method is based on distinguishing between interior and exterior spacetime do-
mains, in which different foliations are required, which we will glue together along a
transition region concentrated near the light cone from the origin in our coordinate
system.

e Interior domain. In our approach, this region M™ C M is foliated by spacelike
hypersurfaces which are (truncated) hyperboloids in Minkowski spacetime R3*?
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and coincides with the future of a truncated asymptotically hyperboloidal initial
hypersurface. We could solve the field equations globally from an initial data set
prescribed on such a hypersurface.

e Exterior domain. In our approach, this region M*™* C M is foliated by
asymptotically flat hypersurfaces of M, which are flat spacelike hypersurfaces
in Minkowski spacetime R3*!. We can solve the field equations in this exterior
domain (containing spacelike infinity) by prescribing suitable initial data.

e Transition domain. These two domains are glued together by introducing a
transition region around the light cone in which the geometry of the foliation
changes drastically from begin hyperboloidal to being Euclidian in nature.

We distinguish between several frames of vector fields. The Cartesian frame d,,

the semi-hyperboloidal frame 0, as well as the null frame 9, will be used at various

Yol

stages of our analysis:

e Vector fields tangent to the foliation: 9, = (x,/t)0; + 9, in the interior domain
and 0, in the exterior domain, which for instance are used in expressing the
energy estimates.

e Vector fields relevant for decomposing the metric and the nonlinearities: 9, in

the interior domain and 8, = (2°/r)d, + 8, in the exterior domain.

5.2.3 Main challenge and difficulties

A major challenge is to cope with the nonlinear coupling taking place between the
geometry and the matter terms of the gravity field equations, which potentially could
lead to a blow-up phenomena and prevent global existence. To proceed, we need to
handle the following difficulties:

e The Einstein equations, and more generally the f(R)-equations as we discuss
them here, do not satisfy the standard null condition. Importantly, understand-
ing the quasi-null structure of the (Einstein or f(R)) field equations is essential in
the proof and requires understanding the interplay with the wave gauge condition
and identifying certain cancellations.
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e According to the positive mass theorem, physically admissible initial data (with
the exception of Minkowski spacetime itself) must have a non-trivial tail at spa-
tial infinity which typically behaves like Schwarzschild spacetime. We include a
spatial weight w, in our energy norm which allows to encompass this behavior.

e We will formulate a bootstrap argument and establish (uniform in x) energy
bounds of sufficiently high order satisfied by the metric, the scalar curvature
field, and the scalar matter field. Our bootstrap involves a suitable hierarchy of
(almost optimal) energy and pointwise bounds, and distinguishes between low-
and high-order derivatives of the solutions.

5.2.4 Main technical contributions in this Monograph

We rely on basic high-order energy estimates obtained by applying the translations,
boosts, and spatial rotations of Minkowski spacetime.

e Considering a simpler model first and then analyzing the full problem of interest,
we provide a classification of the nonlinearities arising in wave-Klein-Gordon
equations and systematically we compare them with the terms we control with
our energy functional.

e By proposing a general and synthetic proof, we establish that our frames of
vector fields enjoy favorable commutator estimates in order for high-order energy
estimates to be derived, and, especially, enjoy good commutation properties with
the Killing fields of Minkowski spacetime

e We derive new Sobolev inequalities for Euclidian-hyperboloidal foliations, which
are established by studying cone-like domains first.

e We establish sharp sup-norm estimates for solutions to wave and Klein-Gordon
equations on curved spacetime, after decomposing the solution operators in suit-
able frames and building on the following three approaches: an ordinary differ-
ential equation argument along rays, a characteristic integration argument, and
Kirchhoft’s explicit formula.
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The wave gauge conditions play a central role in the derivation of energy and
pointwise bounds and especially provide a control on the components of the metric
associated with a propagation equation that does not satisfy the null condition.

Importantly, the dependency w.r.t. the mass parameter x must be carefully traced
throughout, in order to encompass the regime x — 0. We introduce a scaling of the
scalar curvature field which is most suitable for deriving uniform bounds and analyzing
the singular convergence £ — 0.

5.2.5 From geometric data to wave gauge data

Wave conditions on the initial hypersurface In order to complete the formula-
tion in coordinates (4.7), we must connect the initial data required in wave coordinates
to the prescribed geometric initial data introduced in Definitions 2.1] and 2.7 While
the field equations are coordinate-independent, our analysis does require a choice of
coordinates and all geometric degrees of freedom must be fixed.

This is a standard issue which is extensively treated in the literature on the local-in-
time existence theory [30} [136] and we only briefly discuss this issue here. The starting
point is the four wave gauge conditions for the conformal metric gf, that is,

9" (200915, — 0,91,5) =0, v =0,....3, (5.6)
By imposing the orthogonality condition
g0 =0 ont=1, (5.7)
on the initial slice (only), we obtain
QTOOathoo - gTabathab =0,

t (9, of t (5:8)
atg Oa + 29 (abg ac — Oad bc) =0.

9 gTOO

This suggests us how to define the initial data in coordinates on the initial hypersurface
from the prescribed geometric data g and k.

Lapse function The precise definition may depend on the choice of asymptotic
conditions assumed on the initial data set. When the lapse function on the initial
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hypersurface is chosen to be 1, one defines the initial data for (4.7) on {t = 1} as
follows:
gTOO‘tzl = -1 gTOG‘tzl =0, gTab‘tzl - gTOQb’

ab
8th00}t:1 = QQ(T) kTOab>

be ]. be (59)
g% 0al i = 95 OcGina — 595 uine

8thab‘t:1 = =2 kfgaw

while, for the matter and curvature fields,

p}t=1 = Po; atp‘t:(] = P1; ¢}t:1 = oo, at¢}t:0 = ¢1. (5.10)

On the other hand, for the class of metrics that are asymptotic to a given Schwarz-
schild metric with mass mg, we can choose the lapse function [ > 0 on the initial
hypersurface from its expression for the Schwarzschild metric expressed in wave gauge.
In this case, we select a smooth interpolating function [ satisfying

1, r<1/2,

l(r) = ) <1/ (5.11)
r—2mg
I r > 1.

We define the initial data for (@7) on {¢ =1} as follows:

gToo‘tzl = _12’ gTOa‘tzl =0, gTab‘tZI — gToal”
ab
athoo‘tzl = 21398 kTOaba
T 9 fbe t I +be 1 (512)
g Oa‘tzl =190 Ocopa — PEL 9aYop: — 10l
athab}tzl =2l k(T)aw
while, for the matter and curvature fields, we have
Pl =0 Oupl,g =lpr. 0|, =00, 0|, =Io1. (5.13)
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Part III
The notion of
Euclidian-Hyperboloidal foliations

6 Defining Euclidian-hyperboloidal foliations (EHF)

6.1 Defining the time function

The cut-off function This part together with the next one presents some of main
tools required for the EHF method (with the exception of the sup-norm estimates that
will be presented later), while the treatment of a class of equations is presented in the
following. From now on we focus on the region s > sy = 2, so that the factor y(s — 1)
introduced in the previous part is now identically 1. For this reason and for clarity in
the presentation, we allow ourselves to repeat some of the notation that were introduce
earlier. Hence, this Part together with the next one can be read mostly independently
from the previous two Parts and therefore provide the reader an introduction to the
new tools required in our method.

First of all, a cut-off function x : R — [0, 1] is defined by introducing first a function
p:R —[0,+00) by

@ 0 <y<1,

ply) = (6.1)
0, otherwise,

which is clearly globally smooth. Setting

po = /_+OO p(y) dy :/0 p(y) dy > 0, (6.2)

[e.e]

our cut-off function is defined as

() = oy / " o)y, yeR (6.3)
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It follows that x is a smooth function satisfying

0, y <0,

x(y) = (6.4)
y =1,

which is also strictly increasing on the interval (0, 1).
Within the spacetime, we define a smooth functio X = x(s,7) by

E(s,r)i=1—x(r—1+5*/2), s>2,7>0, (6.5)

which satisfies

1, r<-—1+s2/2,
E(s,7) = 2 (66)
0, r>s°/2.

This function is chosen to be non-constant precisely in a neighborhood of the light
cone, as will become clear below.

The time function. We define the function 7' = T'(s,r) > 1 by the following two

conditions:
r

V2 + 52
In view of (€.0]), it is clear that, for sufficiently small values of r,

T(s,r) =Vs2+7r2 forallr<—1+s?/2. (6.8)

On the other hand, in the intermediate region, we find

8,T(s,7) = E(s,7) T(s,0) = s. (6.7)

1 T
75,1 =5V 1+ [ P0G o
—1+s%/2 .

for all s2/2 >r > —1+s%/2,

and finally
s2/2

1
T(s,r) = 5VsTa+ [ (54 ) (s pldp
2 ~14s2/2 (6.10)

=:T(s) forall r>s*/2,
which does not depend upon the radius r. Observe that this last coefficient satisfies
1 1
5\/s4+4<T(s) < 5\/84—1-482. (6.11)

'We now restrict attention to s > 2.
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6.2 Defining the foliation

The slices. Consider the family of slices associated with the time function 7"
M, = {(t,z) eERxR*/t =T(s,r), r = |z|}. (6.12)

The following property is easily checked. The slices My form a family of smooth
3-dimensional spacelike hypersurfaces, whose future oriented normal vector ng (with
respect to the Euclidian metric) reads

1
ng = V2 +r2 —a%(s,r 6.13
VT e o) o
and whose volume element o, (with respect to the Euclidian metric) reads
V2 + 121+ E(s,7)?2)
05 =
Ve

We introduce the following notation:

da. (6.14)

M= {(t2) € R™ /= V& 77, r < —1+5%/2},
Mgran - {(t,l’) c R3+1 /t — T(S,T), —1+ 52/2 <r< 32/2} (615)
M= {(t,z) e R*™ [t =t(s), r > 5°/2}.

The decomposition of the spacetime. Our construction provides us with a de-
composition of each slice in three parts

M, = MU M G e, (6.16)

Next, we set

Misp400) 1 = {(t,2) € R?*! [t > t(s0,7)}, (6.17)
Misesr) = {(t,2) € R** [t(s0,7) <t < t(s1,7)},
and we thus have
Mg 00 = | Mo (6.18)

$>50
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This foliation is referred to as the Euclidian-Hyperboloidal Foliation (EHF). We also

write

1nt 1nt

[507+OO U M
$>50

tran tran

M = J Mg (6.19)
$>50

ext ext

Mt = me,

$>50

and we refer to these regions as the interior, transition, and exterior domains of the
spacetime, respectively.

Choice of coordinates. In M, ;) we rely on the coordinate functions

70 =s, T4 = 12",

and the natural frame associated with this parametrization reads

0s = 05T (s,7)0,
x%€(s, 1) 9 (6.20)

Then we analyse the transition region MY" we can write

T = 0o + 0uT(5,7)0; = 0u +

1 " d
t—r="T(s,r)—r=— 84+4—1+82/2—|—/ M—(r—l—i—szﬂ)
2 —14s2/2 /8% + p?
2 " {(s,r)pdp 2
- n SR (1 4 2/9),
V14457441 — 2572 /_1+82/2 V82 + p? ( /)
(6.21)

thus we obtain the folllowing lower and upper bounds for the distance to the light cone
within the transition region:

2 2
1< —1<t—r<

<2
V1+4s71+1—2s72 T V14457441 — 2572 (6.22)

in the transition region M.
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6.3 Jacobian of the coordinate transformation

The following identity relates the volume elements in both coordinates (¢, z) and (s, x):
drdt = Jduds, (6.23)

in which J denotes the Jacobian of the corresponding change of variables, that is,
J =|0sT(s,r)|. The following technical observation will play a role later.

Lemma 6.1. The Euclidian-hyperboloidal time-function T' = T(s,r) satisfies

T(z,r) - (82+j2)1/2’ r S —1 + 82/2’
0T (5, 1) S § #8im +2(1 = &(s,m))s,  —1+s2/2<r<s?/2,  (6.24)
2Sa r Z 82/2’

in which the tmplied constant is a universal constant.

Thanks for this lemma, we thus obtain

s/t = ey r<-—-1+s%/2,
IS 7(838;5;?/2 +2(1=&(s,1))s, —14+8*/2<r <s%/2, (6.25)
2s, r>s2/2.

Proof. We have

0,0,T(s,1) = 0,0,T(s,1) = 705§ (8, 1) B sré(s,r)

Vs (&t rpn
and observe that 0;£(s,r) = —s0,£(s, 1), so that

5,0, (s,r) = —0&&1)r __sre(s, 1) (6.26)

Vs2 + 12 (s2 4 r2)3/2"

Recall that, at the center r = 0, one has t(s,0) = s and thus 0,7'(s,0) = 1. Then we
see that for 0 <7 < —1 + s%/2,

sp 5

T =1- T oanafP = S ———
T (s,r) /0 (82+p2)3/2dp V2 + 12
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For —1+s%/2 <r < %, we have

—1+52/2 -
0;T(s, 1) =1~ / (Sipdp — / M
0

52 4 p2)3/2 C1ps2 (874 p?)32
N s/r 9:£(s, p)pdp
—1+s2/2 \/82 + p?
spé(s, p)dp S/T 9,£(s, p)pdp

v 84 e (TP e (8242
_ 88, 7“) 9 / p0,&(s,r)dp

(s2 +72)1/2 1422 (824 pP)12
- % + 25Ty (r).

We write Ty(p) := = Jprp2 and, by integration by parts, we find

—1+s2/2 r
Ty(r) = £(s.p)T(p) + / £(s. )T (p)dp

1+s2/2

= (&(s, =1+ 57/2) = &(s, 7)) Tu(r) + &(5, =1+ 5°/2) (To(—1 + 5%/2) —
+/ (s, p)TL(p)dp

—1+s2/2

(1= €(s, )LL) + (To(=1+ 82/2) — Tu(r)) + / L s )T ).

s
1+s2/2

We observe that T7(p) > 0 and £(s,r) < 1, hence
[ cenmiodes [ Todp < T0) - T(-1+ 82).
—1+s2/2 —1+4s2/2
Thus we see that
Ti(r) < (1 =&(s,7))T(r) < 1—&(s,7)
and this conclude the case —1 + 82/2 <r< 32/2.
For r > s%/2, we see that

S spdp FI2 0 spe(s, p)dp
95T (s,r) =1 — (s2 + 2)3/2 o (52 + 2)3/2
0 ST p 14522 \ ST TP
_ 8/82/2 9:&(s, p)pdp
148272 /824 p? ’
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thus we keep the bound given in the last case with r = s?/2. O

7 Frames of interest and the null condition

7.1 The semi-hyperboloidal frame (SHF)

We now introduce several frames of vector fields, which will play a key role on our
analysis. From [85], we recall the definition of the semi-hyperboloidal frame defined
globally in Mz ;) by

o= D=0+ 0 (7.1)
The transition matrix between this frame and the natural frame 0, is given by the
relations
0y =0 0w,  Bo=1, O =a"/t, (7.2)
that is
1 000
'/t 1.0 0
PP) = 7.3
(22) 22/t 01 0 (7.3)
»/t 0 0 1
The inverse of @ is denoted by ¥ and satisfies
1 000
) —zt/t 1.0 0
Oo =W00,, W= 2 (7.4)
—z?/t 0 1 0
23/t 0 0 1
We also introduce the corresponding dual frame associated with 0, that is,
0° =dt — (z*/1)0,, 0" = da". (7.5)

Finally, observe that, in the semi-hyperboloidal frame, the Minkowski metric gy, =

mreads as follows:
1—(r/t)? 24/t 22/t 23/t

N N z/t -1 0 0
(@) == L o oo | (76)
3/t 0 0o -1
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The semi-hyperboloidal frame will be most suitable in the interior domain in order to
exhibit the (quasi-)null form structure of the nonlinearities of the field equations.

7.2 The null frame (NF)

Within the region {r > ¢/2} N M3 1), we have r > % so that the radial variable is
bounded below and we can introduce the null frame (NF):

B =08, O,:= %a + D, (7.7)

The transition matrix between this frame and the canonical frame is given by

1 000
1
~ ~ 1
0, =005 3= 5’32/T 00 (7.8)
z*/r 01 0
2/r 0 0 1
The inverse of this transition matrix reads
1 0 00
1
~ — 1
B = x2 /T 00 (7.9)
—x*/r 0 1 0
—23/r 0 0 1
We also note that the dual frame associated with this null frame is
00 :=dt — (z*/r)dz®, 0% = da®. (7.10)
Finally, in the null frame, the Minkowski metric takes the following simple form:
0 at/r 2*/r 23)r
1
~ap\ _ (~aBy _ xt/r =1 0 0 711
(gM) (m?) 2 0 1 0 | (7.11)

»/r 0 0o -1

The null frame will be most suitable in the exterior domain in order to exhibit the
(quasi-)null form structure of the nonlinearities of the field equations.
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7.3 The Euclidian-hyperboloidal frame (EHF)

Based on the parametrization of M3 10y by (s, 2%), we introduce the following Fuclidian-
hyperboloidal frame (EHF)

\50 = 8t7
= i _&(s, )t (7.12)
8a = 8at0t + 8a = ([L’ /r)@rtat +0a = ﬁ@t +0a,

(which we sometimes call the Euclidian-semi-hyperboloidal frame (ESHF)). The tran-
sition matrix between this frame and the canonical natural frame is given by

1 000
&(s,r)a?
- B8 _8 1 00
D, =® 0, o = 52477 , (7.13)
a¥B o E(s,r)x 010
s24712
£(syr)x3 00 1
Vs2+r2
while its inverse reads
1 0 0O
—§(s,7")$1
_B 1 00
U, =| Wi (7.14)
2 001 0
—&(s,r)z3

This frame coincides with the semi-hyperboloidal frame in the interior domain, but
with the canonical frame in the exterior domain. In the region of transition, 9, are
also tangent to the slices Mtn.

The corresponding dual frame is given by

—0 E(s,r)x —a

0 =dt — —~—dx“, 0 =dx*. 7.15
V82 +r? (7.15)
In this frame the Minkowski metric g, takes the form

1_52(877’)7“2 szt E(sr)z? g(s,r)a’
52472 Vs24r2  Vs24r2 /s24r2

£(syr)at -1 0 0
g37) = (") = RAYE . 7.16
(9 M Eor)a? 0 _q 0 (7.16)
S +7’3
E(s,r) 0 0 -1

2412

e

3

i
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The Euclidian-hyperboloidal frame is appropriate in order to express our (high-order)
energy functionals associated with solutions to the field equations.
Later, it will be convenient to use the coefficient ¢ = ((s,r) defined by

, &2 (s, r)r?
Finally, we also point out the relation
O = (0st) 10, = J10,. (7.18)

Of course, a tensor can be expressed in different frames and we adopt the following
notation for any two-tensor 7T

T=T%9,® Op = IQBQQ ®Qﬁ

—af— - ~ o~ ~ (719)
=T 8a®05:T°‘58a®85.

8 The weighted energy estimate
8.1 Statement of the energy estimate
In the domain My, 4o, We introduce the distance to the light cone

q=r1r—1
and for any n > 0 we define

0, g<0&t>r,
wy(q) = (8.1)

(@1 +¢q)" ¢>0&r>t
Clearly, w, is smooth within My, 4 and

aaw?? = wvly(q)aaq
_{0, ¢<0et>r (8.2)
(@A +9)"+nx(@)1+ 9" ") dag.  q=0&r>t,

while wy (¢) > 0.
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We are ready to establish a basic energy estimate. Recall that the wave operator
on Minkowski spacetime is denoted by

3
O =0y = —00 + Y _ 0l (8.3)

a=1

A weighted energy estimate valid in a general curved spacetime will also be established
later on.

Proposition 8.1 (Weighted energy estimate in flat spacetime). Let u be a smooth
function defined in M, s, and decaying sufficiently fast at infinity (with respect to
r—oo). If

Ou — c*u = f, (8.4)

then the following estimate holds
Epe(s,u)'”? < Byo(s0,0)'"? + O fll 200
+OL+ Q=& )28) [ ooy (85)
+ Clls(1+ wy) fllz2ovge)

for some uniform constant C > 0, in which the energy on the slice My is defined by

E,(s,u) == / (14 wy) (Sz (1= &s,m)r (Oyu)?

S2_|_fra2

2
2.2
—I-Z( 32—|—r2 +0u) +cu)d:v.

(8.6)

8.2 Derivation of the energy estimate

We provide here a proof of Proposition 8.1l by applying the classical multiplier d;u to
the equation (84]). We obtain

2(1 + wy)?ullu = 0, ((1 w20 + 3 (8au)2)

s (2(1 v wn)zatu&lu> (8.7)
+2(1 + wy)wl(q) Y (2 /r)dhu — Dyu)’.

a
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Let
Vy = (14 wp)?(|0ul? + > (0au)”, —20,ud,u) (8.8)

be the associated energy flux. Integrating the identity (8.7)) in the region M, s, and
assuming that u tends to zero sufficiently fast, Stokes’ theorem applies and gives us

2 / (1 + w,)?0pu Du dzdt
M

[s0:s1]

= / V, - g, dog, —/ Vi - nsydo,
T T,

s1 s

4 22 / (1 -+ wy)! () (2 /1)yt — Byus)? dird.

Misg,s1)
This leads us to the energy identity

2 / (1 + wy,)?0pu Ou Jdxds
M

50,51]

:/ V, - ng dos, —/ Vi, - ng,dos,
Fsy F

S0

+2 Z/ (14 wy)w'(q) (2 /r)du — Ogu)? Jdxds.
We then differentiate the above equation with respect to s and obtain

/ (14 wy,)0uOu Jdx = di/ Vi, - nsdo
F

s S1

3 / (140 @)f () (0" )0~ 00" Jdz - (39)

d
> — V, - ngdog.
dS ‘(’:Fsl

62



Introducing as in (8.6])

E, . (s,u) :/ V, - nsdos
Ms

= wp)? ul? u)? %, r)z ul,u | dx
_/MS(1+ n) <|at|+§ (Oau)” + 82+T28ta )d

o [+ (1 2 ’
:/Ms(l+wn) < +(52+71(2 |at | +§ ( +0u) ) dx

or

Eyo(s,u) = /M <(s/t)2|8tu|2 +y (%a@tu + 8au>2) dx

a

we see that

/ (1 + w,)?0u Ou Jdz

(/ /M can gt ) (8.10)

J\/s2 +r? \/82 + (1 —&2(s,r))r?

14+w Oy Du Jdz.
V2 + (1—&%(s r))rQ( V2 412 '
Finally, we use the following bound deduced from (6.25))
Vs 12 L M,
J +
<Ol sy/T &), M (811)
V82 + (1 —&(s,r))r?
2s, M,
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Now (8.I0) leads to (observing also that |w,(g)| =1 on M™)

/ (1 + w,)?0u Ou Jdz
Ms

< C E,.(s,u)? (Hmu”mw) (L4 (1= &) ) (L + wg) Ol Loy, (8.12)

+ ||5(1 + WU)DU||L2(ngt)> .

Combining the above estimate with (89), we arrive at

a4
ds
< € Byels, 0 (10ulzay 411+ 50— &)1+ )00 2y

E,(s,v)

)
+ (1 + wn)DuHLz(ngc))

which leads us to

d
£En,c(s, )2 < C(HDUHLQ(Misnt) + H(l +5(1— &@)Y?)(1+ wn)DuHLz(

M‘tsran)

+ ||$(1 + Wn)DUHm(ngt)) .

It remains to integrate this inequality in s over an interval [sg, s1].
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Part IV
Sobolev and commutator estimates

for EHF

9 Revisiting standard Sobolev’s inequalities

9.1 A Sobolev inequality on positive cones. I

With the notation x = (z*) € R" and a = 1,...,n we introduce the region
R" = {z € R"/2° > 0}

and throughout this Part we restrict attention to sufficiently regular functions defined
in R} and smoothly extendible outside R’!. As usual, a function v : R} — R is said
to be compactly supported if there exists a real R > 0 such that u(x) vanishes for all
lz| > R.

We begin with the following result.

Proposition 9.1. For all sufficiently reqular and compactly supported functions u
defined on R, one has the inequality

3
||U||L6(R1) S Z ||8au||L2(R1)a (9.1)
a=1
where the implied constant is a universal constant.

Proof. Writing 0,u® = 6u°d,u and integrating this identity with respect to the variable

%, we obtain

+oo
ut < 6/ |u® |Ou| dz®. (9.2)
0
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Then, introducing the functions

w'(x) = w' (2% 2”) := sup |u(z)]?,
z1>0

wA(w) = (el %) i= sup (o), o)
x2>0

w?(x) = w(xt, 2?) := sup |u(z)]>
23>0

We thus see that e
lw(z)* < 6/ |u?] |Oqu| da. (9.4)
0

Next, writing di! = dz?dx®, di? = da'ds?, and di® = dx'da?, we can write for each

a=1,2,3
+o0o
/ (w*)2d® < 6/ / |u?] |Opu|dz”
2v>0,b%a 2b>0,b%a J 0

:6/ 3] |Ou|dz (9.5)

R3

< 6||U3||L2(Ri) ||8au||L2(R3)~

On the other hand, we can write
/ uSdz < / w'(x) w?(x) w?(z) dr. (9.6)
R% R%
We see that
\ [ wat et wet oot < e e 0 ) (00
m1>0

an

‘ / (2%, 23 w? (2!, %) w (2, xz)dxld:v2‘
:cl,:c2>0

< ||w2(x17$3)HLz(R;)/ w' (2, 2°)| lw’(a, 2%)|| o s, d2®

! >0 (9.8)
< ||w2($1>I3)||L2(Rj1)|| ( )HL? (R:,) H”w ! » & )||L2(R+ HL2(R:2)
= w(e!, 2%)| 2o Ilw' (2 )IILQ(R;Q)HUJ (@1, 22) 2w, )
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Then we have
‘/ wh(2?, 2°) w?(xt, %) w3(x1,x2)dx1dx2dx3‘
R3

< (s, 22)ll oo, ) / (@, 7)o 1w (22, 2%) | e, A
xt,T IESZO
3 17,2 ,.3\(12 20,1 ,.3\]12
S Hw (x17x2)||L2(R;r1’12) HHw (LL’ » L )||L2(RI2)HL2(R:3) HHw (LL’ » L )HL2(RI1)HL2(RI3)

= ||wl($2ax3)||L2(R:2,x3)||w2(l’lax3)||L2(R:1,x3)||w3(xlax2)||L2(]R;r1,x2)'
Then applying ([@.5]), we find
’/3 wh(2?, 2°) w? (2h, 23) w3 (2!, 2?)do' doPda®
R
< CHU?’HL?(Ri)||81UHL2(R1)||82UHL2(R1)H33U||L2(R1)

and combined with (9.6), we obtain

1/
o) < € (10nell oy |19l 2geg 19l coges )
< CZ ||aau||L2(Ri)-

]
9.2 A Sobolev inequality on positive cones. 11
Next, to any point z € R? and any scale p > 0, we associate the cube
= {y e Rz <y* <a”+ph. (9.9)
We then establish the following result.
Proposition 9.2. For all sufficiently reqular functions u defined on R3 | one has
u(z)| < Clp) > 10"l 2,y T €RL, p>0, (9.10)

[]<2

where C(p) > 0 is a constant depending upon p only.
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Proof. Fix a point zo € R} and consider the cube C,,,. For all z € C, ,,, we have

1
lu(zg) — u(z)] < / |(x — o) - Vu(zg + (z — x0)t)| dt,
0
which leads us to

’u(xo) — p_?’/c u(x)d:)s’ < ,0_3/c lu(z) — u(xo)|dz

P> £,TQ

1
< p_3/ / |(z — x0) - Vu(zo + (2 — x0)t)| dtdx
Cpag /0

_ /01/0 (& — 2) - Vulwo + (x — 20)t)]| dtda

p,z0

and, therefore,

1
(o) — o~ / u(w)de| < O / / Vulzo + (2 — 20)t)| da dt
Coo 0 o (9.11)

1
_Cp? / 45 / V(o + y)|dy dt.
0 Cip,0
We then observe that
/ Vu(zo + y)ldy < |Vu(zo + )| sy, 0)* < IVullzsc, ., (tp)*?
Ctp,O

and we write

‘u(a:o) — ,0_3/ u(:v)d:z‘ < C’pl/2||Vu||Le(prxO). (9.12)
Cp.zg
In the same manner we obtain
u(er) o™ / u(x)dz| < Cp* |Vl (9.13)
Cp.zg

Combining (0.12)) and ([@.12), we thus arrive at the inequality:

[uzo) — u()| < Cp |Vl oc, .y (9.14)
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Next, we introduce a cut-off function y defined on R, which is smooth and satisfy
x(z) =0 for x < 0 and x(z) = 1 for x > 1. We use this cut-off function in order to
construct, from the given function u, an auxiliary function v defined by

Ugo (%) = (1 = x(d 7?2 — zo]%)) u(2), x € Cygp. (9.15)
We also set @1 := (zf + d, 23 + d, 3 + d) and then we see that
Vg (T0) = u(xo), Vgo (1) =0 (9.16)

as well as
V20 (20) = Vag (1) < C(A)[[Vvgg | 280y, )- (9.17)

The function d,v,, is sufficiently regular and by construction is compactly supported
in R?, thus we conclude that

[020 (20) = Vro (@) < C(d) Y (10 0o | 2ges)

1<|1]<2

= C(d) Z H8[U-TOHL2(C¢1,EO)'

1<|1]<2

This establishes the desired result since, in view of (@.13]), the norm of v can be bounded
by the norm of u, namely

Z ||81Uwo||L2(Cd,zo) <C Z ||aluHL2(Cd@0)’

1<1]<2 11<2
O
10 Sobolev inequalities for EHF
10.1 Notation
We introduce the following regions in R3:
Dis(s) = {z e R® /|z| > -1 + s*/2},
ws(5) = { / |z| /2} (10.1)

Dexi(s) == {z € R* / |z| > s*/2},
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consider functions defined on Dy(s) or on Dey(s), which are assumed to be sufficiently
regular and extendible outside their domain of definition. As usual, such a function
u is said to be compactly supported, if there exists a real R > —1 + s?/2 or a real
R > s?/2 such that u vanishes outside the ball {|z| > R}.

Recall our expressions of the boosts and rotations generated by the vector fields:

L, = 2%0, + td,, Qup = %0y — 2°0,, a,b=1,2,3. (10.2)

In the parametrization (s,2%) of My, 4oo) introduced earlier, the associated canonical

frame is
ot - ot
gat, 0, =0, + —8x“8t'

Observe that, in the interior domain {r < —1 4+ s*/2} N Mjs,o0), one has

0s =

= (s/1)0,

0 (10.3)
= O,t(a* )0, + 8, = 0, + 0.

Ds
Da
First of all, by combining Propositions and together, we deduce the following

result.

Proposition 10.1. For any sufficiently reqular and compactly supported function u
defined on Dy.s(s) or D.y(s), respectively, one has

sup [ul < C (10"l 2(pyis)):

o = (10.4)

sup [ul < O ][0l e '
p > L2(Degt(s))

Dewtle) 1]<2

respectively

10.2 A sup-norm Sobolev estimate

We begin with the following preliminary inequality.
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Proposition 10.2. For any sufficiently reqular function u defined on Dy,s(S) o1 Dey(S),
respectively, the following inequalities hold:

(@) < CL+ 2™ DY 10" ull sy, |2l > —1+5°/2,
[1]+]J]1<2

(@) < C1+1al™) Y 10Vl 2> /2,

[T|+]J|<2

(10.5)

respectively.

Proof. We only treat the case of Dey(s), since the case of Dy(s) is completely anal-
ogous. For a point zg € Dey(s), without loss of generality we can suppose that
zo = (r0,0,0) (by a rotation). Then we consider the standard spherical coordinates,
and we consider the following region:

Ryyi={ro<r<ry+1,0<0<7/6, 7/3<p<m/2}. (10.6)

Case 1y > 1. We focus first on the difficut case ro > 1 and we consider the function
,UIO (T? 9) 90) = u(l’la xza x3)
with
x' = rsin g cosé, 2?2 = rsin g sin 6, 3 = rcos .

Observe that
Oy = sin ¢ (29, 0, = —sin Qg3 — cos 63,

0905 = sin® v V1209,
0p0yp = — sin? ¢ Q49893 + sin @ - Qi3 — sin p cos O Q128 h3,
0,0, = sin? o Qo393 + sin ¢ cos 0 1223
+ cos fsin ¢ (93823 + cos? 0 Q13015 — cos © Qog.

Now we observe the function v,, taking (r, 6, ¢) as its variables with ¢ = 7/2 — ¢, is a
function defined in the truncated positive cone

{ro<r<ry+1,0<60<7/6,0<¢<m/6}.
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Thus by Proposition [0.2] we have

[u(@0)] = [0z ()] < C Y 10" 0s4ll22610)-

[7]<2
And we observe that
Vg, < C Y 10aul + C Y |Qupf
o ab
and
0" vg| <C Y 10", I <2
]+ J]<2
On the other hand, we see that for a

1 vl = [ 10 enlrs0, )t

+,1/2

< > / 1077 u|? drdfdy
RS

1)+]J]<2 7 B ,1/2

< COry? Z / 107 u|? r? sin pdrdfdey,

|1]+]J|<2 ¥ Feo

(10.7)

where we have used that, in R,,, 1 < r/ro < 2 and that \/§/2 <sinp < 1. Then we

see that

/ —
10" sl oy, < Ca® > 10"l
’ [I|+[7]<2

<C(+m)* Y 10 ulfe(p o)

[T|+]J|<2

In combination with (I0.7), the desired result is established for ro > 1.

Case rp < 1. This region is treated by a standard Sobolev inequality and details are

omitted.

O

10.3 A Sobolev inequality for the transition and exterior do-

mains

Proposition 10.3 (Global Sobolev inequality for the transition and exterior domains).

For all sufficiently reqular functions defined on My, 5, with 2 < sy < s < sy, one has
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for all x € M™ U Met

_ —=I
(@) < CL+r)" S 11700 s pugeniacen. (10.8)

H[+|J]<2

and for all x € M

(@) < CL+r)"" Y 100972 oee)- (10.9)

[T|+]J[<2

Here, gi denotes any |I|-order operator determined from the fields {04 }a=1.23, while
O denotes any a |I|-order operator determined from the fields {0y }a=123-

Proof. We consider the parametrization (s,r) of My, 1o, and recall that on MY U
Mt s is constant and t = T'(s,7), —1 + s2/2 < r. We consider the restriction of u on
My Mt that is, the function

vs(x) = u(T'(s,7), ) (10.10)

and we remark the relations

Oavs = Oqu = (za/r)%ﬁtu + Oyu =
Dy0qvs = Oqu, (10.11)

Qupvs = (20 — 2°0,)u = Qgyu.

SS(Tt)x Oyu + Ogu,

Now we apply Proposition [I0.2 on v,, and we see that (I0.8)) is established, while (I0.9])
is established in the same manner. O

10.4 A Sobolev inequality for the interior domain

Proposition 10.4 (Global Sobolev inequality for interior domain). For all sufficiently
int

reqular functions defined in a neighborhood of the hypersurface MY, the following

estimate holds
2 u(2)] < Y I ulleey,  w € MM (10.12)
|J]<2

for some uniform constant C > 0.
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Proof. We consider the restriction of the function u on the hyperboloid H, with |z| <
—1+ s%/2:
vs(x) == u(Vs? + 12, ).
Then we see that
aavs = gau = t_lLau = (82 —+ 7"2)_1/2Lau,

Take a o € H(,, with out loss of generality, we can suppose that zo = —37/2(ro, ro, o).
We consider the positive cone Cya,, C {|J2] < —1 4 s?/2}. (Recall that s > 2 is
assumed throughout.)

In this cone we introduce the following change of variable:

y* = sz — xf).

and we define
Ws 0 (Y) = Vs(sy + T0), Y € Ciyap. (10.13)

Therefore, we obtain

S

OuWs 2y = S0,Vs = ———=L,u,
) N
, s (10.14)
01,0@108@0 = meLau — Ssz(32 + 7’2)_3/2Lau.

Thus, for |I| < 2, we obtain
|0 Wy 00| < C Y L.
|J]<2
Then by Proposition [0.2] we see that
Wy (0)* < C Y 10" Wy 00| dy = Cs™ Y / | L ul?dz,
|1]1<2 C'1/2,0 |J|<2 C'1/2,0

which leads to
lu(z0)| < Cs™2|| L7 u| 230, (10.15)

On the other hand, when ry > 1, we consider the cone C,; /., and we introduce
the function
Wy (y) = vs(roy + o), Y€ Ci/20-
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It is clear that
Lou (10.16)

and
,
OO Wy = ﬂifsszLau — rﬁxb(sz + 7‘2)_3/2Lau.

In the cube C,, /24, one has r > @7’0. Thus for |I| < 2 we find

|0 wa) < D 1L7ul.

|J]<2

Then by Proposition [@.2, we have

w(20)]? = 12y (0 |2<02/ 0w,y Pdy

‘J|<2 Cl/2 0
=Crg® > / |Lul?dz,
l7j<2V C1/2,0
which leads us to
u(zo)| < Crg®? > | L7 ul| 2goe,. (10.17)
|J]<2
When 79 < 1, we have /s? +r < 2s, thus it remains to combine (I0.I6) with
(I0.I7) and the desired result is proved. O

11 Commutators in the interior domain. A sum-

mary

11.1 Objective

An essential role will be played by the commutators [X,Y]u = X(Yu) — Y(Xu)
of certain operators X,Y, applied to function u and associated with the Euclidian-
hyperboloidal foliation and the wave operators. We therefore present here various
results concerning such commutators, by distinguishing between the exterior and inte-

rior domains.
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Considering commutators involving the translations, Lorentz boosts, and hyper-
boloidal frame vectors, we will begin by deriving the estimates in M, since this is
comparatively easier and, in order to derive suitably uniform bounds, we will rely on
homogeneity arguments and on the observation that all the coefficients in the follow-
ing decomposition are smooth in M™®. On the other hand, dealing with M®* is more
involved and require to introduce suitable weights, as we discuss below.

First of all, all admissible vector fields 0, L, under consideration are Killing fields
for the flat wave operator [, so that the following commutation relations hold:

00, 0] =0, [L,, O =0. (11.1)

11.2 Commutators for vector fields in the interior domain

We find it convenient to summarize our results in this section first for M, before
providing a detailed proof covering both the interior and the exterior domains in the
next section. All the estimates this section are restricted to M,

We now analyze the relevant commutators of the vector fields under consideration
(in the future of the hypersurface Hs,). On one hand, we need to decompose the
differential operators of interest in the frame J;,0, and, on the other hand, we will
be using the translations &' and the boosts L. In any given equation or inequality,
the contribution due to the commutators have better decay (compared to the vector
fields under consideration): they either involve good derivatives (tangential to the
hyperboloids) or contain a weight providing better decay in time.

¢ Commutators of the semi-hyperboloidal frame:

Zq
2

0,0, = =50, [0,.0,] = 0. (11.2)

e Commutators for the boosts and tangent fields:

Lh,0,)= > of59,L7,  [o"LMays] Sl (11.3)
|7,K1<]1|

e Commutators for the translations and tangent fields:

T =t pho, oh L7 pl | < ¢1hl (11.4)

|JK|<[I]
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e Commutators for the translations and boosts:

Z ¢k, I being constant,
|J K| <|T] 115)
(L7, 0a] = Z QQJ@L‘], 95} being constant. )
12Kl<1
Y

e Commutators of the semi-hyperboloidal frame and the admissible fields:

aILJ Z 9[?/6]/ aﬁaI,LJ, (]‘1 6)
[J/<]J]
[1|<1]
$8=0,...,3
and
t—lh\’ |J’| < |J|’
‘ah[;hQij/ﬁJ/ S t—|11\—1’ |]/| < |I|’ (117)
0, otherwise.

Next from the decompositions above, for the operators &/ L7 we deduce that

0L 00ul > Y 18,07 L u[+ 7Y (0" L ul, (11.8)
|J'1<|J] b=1,2,3 [7]<|1|
[1<1] |J,KI<|J|
0"L7 dalu| S > 1050"L7ul, (11.9)
g’_’(\)ﬂﬂ

and

0L D Jul St > > 190" L u[+ > Y |9:0" L] (11.10)

[’1<|1] =0,...,3 |1'|<|1| g=0,...,3
[71<1J] [771<]J]

Observe again that the terms in the right-hand sides contain either fewer derivatives
in L or a favorable factor 1/t.
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11.3 Commutators and estimates for second-order operators

Similarly, still in the interior region, for the second-order operators 9,05 and 9,0,, we
find

0" L7 0a0sJu| S Y- Y ]0,040"L"u (11.11)
[ <1’ ~,4'=0,...,3
[J7<|1|
and
[0"L7,0,0,u| + |[0' L7, 8,0,)u]
S Y D> je,0" L+ Y Y 710,0,0" L u
|[I)1<|1] e=1,2,3 |I'|<|I] ¢=1,2,3
177<|J)| ~=0,...,3 |J71<|J| ~v=0,...,3 (1112)

+ 30 > 0,0 L.

[1|<|1| v=0,...,3
1< 1]

We now derive further identities involving the semi-hyperboloidal frame and the
boosts. These inequalities allow us to replace tangential derivatives (arising in our
decomposition of the wave and Klein-Gordon operators) by Lorentz boosts (arising in
our definition of the high-order energy). First of all, since 9, = t~1L,, we write

O'L79u=0"L' (t" Leu) = > "L (t7)9"”L" Lo,

I1+Ip=1I
Ji+Jdo=J

therefore we have proven the following.

Lemma 11.1. An expression involving the semi-hyperbloidal derivatives 0, can be

controlled from the boosts and translations, as follows:

0'L70,ul St71 > 0" L Laul. (11.13)

1<
L7 <I1]

It follows that, with now one tangential derivative and one arbitrary derivative,

0'L70,0,ul St7 Y |0" L Ldu| =t > 0" L Ly (2 0,u)

<] <]
L7 <1] 1<

Y

in which the coefficients Q,’jl are homogeneous of degree 0, implying the following result.
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Lemma 11.2. An expression involving a tangential derivative and a semi-hyperboloidal
deriwative can be controlled as follows:

|0"L70,0u] + [0' L7 00,u| St > 10" L7 Laou|

<]
[71<1J]

(11.14)

Finally, with two tangential derivatives, we find

' L7(9,0,u) = O"L7 (t 7" Lo (t ™" Ly)u)
= 0'L7 (t*LoLyu) + ' L7 (t 7' Lo (t7")u)
= Y LN (t7?)0RL LoLyu+ Y 0L (¢ Lo(t7))0" L Ly,

I +Ip=1 I +Ig=1
Jy+Jo=J Ji+Jo=J

so that (improving upon (I1.14]), since we now consider only tangential derivatives) we
reach the following conclusion.

Lemma 11.3. An expression involving two tangential derivative can be controlled as

follows:

0" L7 (0,0u)| St > |0"L LoLyu| +t72 > 0" L Lyul.

I1|<|1| I1'|1< |1
<] [7/1<1J]

(11.15)

12 A general framework for the commutator esti-
mates on the EHF

12.1 Basic commutation relations and homogeneous functions

We now present a general framework for establishing commutator estimates valid for
the Euclidian-hyperboloidal foliation. We point out the following relations:

[0y, Ly] = O, [0, L) = dasO;,
[81&7 ch] = 07 [am ch] = 5abac - 5(10867 (121)
[Laa ch] = 5(1ch - 5acLb-
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In{r<t—1}N{t > 1} one has

[(s/8)0h, L] = (s/)3y,
94, L] = (/1) 0,

[(5/)0h; ] = 0, (12.2)
Akl Y S et (t—a)a® o (t—a")a
[Qm ch] = 5abTQc - 5acTQb + 5QCT - abTat.
In {r >t/2} N {t > 1} one has
r—t r—tx tr—t
[ ataLb] - ab“‘_ at,
ror
~ a __ a.b _
[8[1, Lb] = I_ab + <5ab - %) U t&g,
" r r (12.3)
r—t
[ ata ch] - 0,

r

[5117 ch] = 5ca5b - 5cbga-
For convenience, we introduce the following families of vector fields:
T ={0.}, 7 :={(s/t),9,}, T = {(r —t)r'8;,8,}
To:={0),  Z,={2.), 7, = {0a},
L ={L.}, X = {Quw}.

We also introduce a special class of smooth functions defined in the interior domain
{t =1 > r} or in the exterior domain {r > t/2}.

Definition 12.1 (Homogeneous functions in the exterior domain). A smooth function
u defined in the region {r > t/2} N {t > 0} is called homogeneous of degree k in the
exterior domain (EH of degree k for short) if u satisfies the following two properties:

u(Mt, Ax) = Nu(t, x), A>0,
0 u(t,w)] < C(I), weSL0<t<2.

The set of EH functions of degree k is denoted by EHy,. We also denote by

EHy, == J EH;.

Jj<k
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An example of EH functions is given by the functions z/r, which are of degree
Zero.

Definition 12.2 (Homogeneous functions in the interior domain). A smooth function
u defined in the region {r < t} N{t > 1} is called homogeneous of degree k in the
interior domain (IH of degree k for short) if u satisfies the following two properties:

u(Mt, M) = Nu(t, x), A >0,
10u(2, 22)| < O(I), lz] < 1.

The set of IH functions of degree k is denoted by IH, and one also write

9%, == | J IH;.

J<k

An example of TH functions is the functions z®/t¢, which are of degree zero. Then
we discuss the relation between homogeneous functions and vector fields.

Lemma 12.3. One has
f € FH,, AGXU%,AJFEE’H]@,

and
f € IHy, AGXU%,AfEIHk.

Furthermore, one has
fEEH, AcTUZ,UJ, Af € EH, i,

and

felH, AeTUZ,UIT, Af €IH, 1,

Lemma 12.4. Let u be EH of degree k. Then there exists a positive constant C,
determined by I, J, K and u such that the following estimate holds in {r > t/2} N{t >

1}:
TQK L7 u| < cr 1, (12.4)

Furthermore, 0'QX L7u is EH of degree k — |I].

81



Proof. Differentiate the following identity
u(Mt, Ax) = Neu(t, 2),

we obtain

ODau( M, Ax) = N tu(t, x) (12.5)
that is, d,u is EH of degree k — 1. This fact leads to
Lou(Mt, Ax) = N Lou(t, ),  Qupu(Mt, Ax) = NeQu(t, ). (12.6)

That is, L,u and Qu are EH of degree k. Thus it is direct by recurrence that 9'Q% L7u
is EH of degree k — |I|.
Now for a EH function u of degree k, we observe that for r > /2 > 0,

u(t, ) = r*u(t/r, z%/r)

and 0 < t/r <2, (2%/r)a=123 € S?, thus bounded. So (IZ4) is established. O

12.2 Decompositions of commutators. I

Definition 12.5. Let D be a region of RY. Suppose that o = {Ay}aes and B =
{Bgs}seg be two families of vector field (with 3,3 finite sets for index) defined on D:

Ay € A, Bs € A, [Aa, Bs] = T34,
in which the coefficients Flﬁ € are constant, then one says that B < < .

It is clear that in D =R* Z < %, # < T, Z# < 7 and £ < 7. Then we have
the following result.

Lemma 12.6. Let A, € o/, B’ be a J—th order derivative composed with operators
in B. Suppose that B < <f , then

[Aa, B = Y T25,A5B7,

Bed
[J/]<]J]

where the coefficients FQJ, are constants.
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Proof. This result is proven by induction as follows on |J|. Observe that for |J| =1 it
is guaranteed by the definition (I2.9). Now we consider

[AOMBB ] [AOHBB]BJ_I'BB([AG’BJ])
=T0,A4,8 + 3 B (},4,8”)

eI
[771<]J]

=T7,A,B"+ > T} BsA,B”

771<171
STLAB Y T A BB+ S Tl B A8
vy€I vy€ed
| 71<1] 1771<1]
SO
[Aa, BsBY| =T1,A.B” + Y T ABsB” — > 17,19, A:B”.
7111 <)
This concludes our proof by induction. O

Lemma 12.7. Let AY, B be I—th and J—th order derivatives composed with operators
in o and B respectively. Suppose that B < <. Then

A" B = Y 1}/, A"B”, (12.7)
e

where the coefficients T'Y,, are constants.

Proof. This result is proven by induction as follows on I. The case |I| = 1 is guaranteed
by lemma [12.6 Then we consider the following calculation:

[ATAq, B'] = A'[A,, B'] + [A" BT|A, = Y T0,ATAsB” + > Ti/,A"B7 A,

aJ’
BeI |1’ |=|1)
1771<1J] PARY
For the second term, we find
U U U ! J’ U 1"
A'BT Ay = A"AB” — N TN AT AsBT.
BEeI

U”\<\J’\

Thus the desired result is established. O
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Now we recall the relation (I2.I)) and see that in D = RY, #Z < %, # < T,
X < T and £ < 7. Then we establish the following relation:
o', L= > 11,0 L,

[ |=|1]
L7/ 1<|7]|

0", Q= Y i 0"k

[1|=|1]
|K|<|K]

27,05 = Y T3S L7X

RUEE]
|K/|<|K]|

Proposition 12.8. For all multi-indices 1,1, J,J" and K, K’ and all sufficiently reg-
ular functions u defined on R*, one has

LK A LI Oy = > DL KL L7 QR y, (12.9)

=11+ =]+
K" <IK|+|K|

(12.8)

. G ’
where the coefficients UL EALTE are constants.

Proof. This is established by induction from the previous identity. O

12.3 Decomposition of commutators. II

Definition 12.9. Let D be a region of RY. suppose that &/ = {Ay}tacs and B =
{Bgs}seg be two families of vector field (with 1,3 finite sets for index) defined on D. Let
Hom be a class of smooth functions defined on D. If f € Hom, Bg € A, Bgf € Hom

and

Ay € 4, Bse B, [A.,Bsl =T

aBA’Y‘

with Flﬁ € Hom, then we say B <pom A .
Then we derive a general decomposition formula for the commutators.

Lemma 12.10. Let A, € &7/, B’ be a J—th order derivative composed with operators
in B. Suppose that B <pom <, then one has

(Ao, B} = Y T25,4:B7, (12.10)
<l

where FJJ, € Hom.
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Proof. This result is proven by induction as follows on |J|. Observe that for |J| =1 it
is guaranteed by the definition (I2.9). Now we consider

[Aa, BgB’] = [Aq, Bs|B” + Bg([Aa, BY))
=104, + 3 By (103,4,8”)

eI

[7/1<]J]
=T0,AB"+ > BeI'W) AB” + > T ByA,B”
\J;/\ij\f\ \J;YSU\
=T7,AB'+ Y BgIW, AB" + > TV, AByB”
\J;/\ij\J\ \17\€<J\J\
J !
+ Z Fa}’ [BﬁvA“/]BJv

vy€eJ
[7/1<]J]

SO
[Aa, BsB'] = =T1,A,B” + Y Bgl')}, A,B” + Z 17, A,BsB”

oy
[J1<]J] \J’\<\J\
Jy 1é J’
> TUI,AsB
v,6€7
[J/1<]J]

Recall that in the above expression, Bgl’ i}, € Hom, and the proof by induction is
completed. O

Proposition 12.11. Let A, € «. Suppose that B’ CX are |J|—th and |K|—th order
derivatives composed with operators in % and € respectively. Suppose that B, 6 < tom
o, then

(Ao, B'CK] = > 175, A,B7 CK

[T <] K< | K|
[T/ |+IK | <] |+|K|,B€T

where F‘]J, € Hom.

Proof. For convenience, we denote by (cf. Lemma [[2.10)

(Ao, B = Y T2 AsB7, [A,,CFl= > ANl ABY

BeI Bed
[J/1<]J] IK'|<|K|
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with

Fﬁ,, Afﬁ, € Hom.

Then we see that
(Ao, B'CY] = [A,, B'|C® + B[A,, C¥]
= Y A Y B (Al ac)

~ed ISy
1/1<11 |K/<IK]
Y rHABICN e Y BUANL BRACK
~ed s€3,J1+J9=J
/1<1] K/ <IK]
We observe that
B2 A;CK' = AsBR2CK — A5, BR)OK = AsBRCK — YT TR ABRCN
2
BET| I3 <| 2|
and recall that B/*AX?, € Hom. This establishes the desired result. O

We take Hom = IHp,and observe that f € Hom, L,f, Quf € Hom. Thus we
see that Z, % <uom Z,. Then apply Proposition [2.T1] and obtain the following

decomposition:
0, L'0K] = [255,0,L7 0 (12.11)

where I'/5%.,0, 17" are TH functions of degree zero.

We take Hom = EHj, and observe that f € Hom, L,f, Quf € Hom. Thus we
see that Z,.Z <Hom 7. Then apply Proposition [2.11] and obtain the following key
decompositions:

~ = T _t ! ! = ~ ! /
JOK E JKO J' K § JKb J ' OK
[aa,L Q j| = FGJ/K/T@@ Q + FaJ/K/abL Q 5
[T K <] K| b,|J/|<|J| K |<|K|
[T/ |+ K <[ |+ K| [T/ |+ K< ||+ K|
r—t ~ r—t ’ ’ ~ ~ ’ ’
[ a,, LJQK} D D v/ 1 ;2 o R N v L W A
T r
[T <1J],| K| <| K| b,|J/|<|J| | K/ |<|K|
[T+ K <|J]+] K] [T+ K <|J]+] K]
(12.12)

the coefficients fi?l}(@b[f’ " begin EH functions of degree zero.

86



12.4 Decomposition of commutators. III
We first establish the following properties.
Lemma 12.12. For all multi-indices I, J one has

L(s/t), || =|K| =0,
8ILJ(3/t) = Z (S/t)l_%Eé, (1213)

I+1g--I=I
where I'” € IHy and T}, € IH_ ).

Lemma 12.13. For all multi-indices I, K one has

0, K| >1,
1" =t _ ) Tt I1>1, |K|=0
o — = T7, [ =1, [K|=0, (12.14)
T
—t
L 1=|K[=0,

where T1 € EH_p.
Lemma 12.14. For all multi-indices I, L, K one has

0, K[ =1,

_ (12.15)
I —|I
Fw,’y(l +Q)’y | ‘7

N1 +w,) = {

where f;{w are smooth functions defined on {r > t/2} N {t > 1}, with all their deriva-

tives bounded.

12.5 Decomposition of commutators. IV

We now focus on the tangent derivatives 9, on the region M. We recall the parametriza-
tion of M o) by coordinates (z°, 7). We see that

[04,0p] =0 (12.16)

and
[gaa ch] = 6ab50 - 5ac5b~ (1217)
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We denote by 7, = {04} a=123- The above calculation shows that % < 7 5. Then by
(I2.6), in the region M, s,

0,4, Q] = Z 9,08, (12.18)

b, | K'[<|K|

where the coefficients ff;?, are constants. We thus see that for a function u defined in
Misy,s1, sufficiently regular,

9,05 8,0' L' Q%u = 0,0,050'L'Q%u — Y Tal9,0,05 9" L0 .
b| K" |<| K|

Now recall Proposition [[2.8] we see that both terms in right-hand-side of the above
identity are linear combinations of the following terms with constant coefficients:

9,0,0" L w, I = 1), (T =], K] < K|+ 2
Finally, we establish the following estimate.

Proposition 12.15. For all multi-index I with |I| < 2, the following estimate holds
m M[s()’sﬂ . B
0a0,ul < C Y 0,0 ul. (12.19)

b
l1<2

88



Part V
Field equations for self-gravitating

matter

13 Nonlinear structure of the field equations in con-

formal wave gauge

13.1 The wave Klein-Gordon formulation in symbolic nota-
tion

Wave-Klein-Gordon system. We will need to establish energy and sup-norm es-
timates for the Einstein system and its f(R)-generalization. For the latter, we seek
for estimates that should be uniform and encompass the whole range « € (0, 1]. Later,
we will distinguish between bounds satisfied by the metric, the scalar curvature, and
the matter fields and between various orders of differentiation. In order to express
such bounds, it is essential to suitably rescale the scalar curvature variable and this
motivates us to introduce the notation:

V= (), pti=kp,

W=, 0), o=k, (13.1)

Observe that no rescaling is required on ¢. Moreover, in view of kp? = p’? and from

(LI5) and (49), we can write

Vi(p) =00,  Walp) = 0(p"?),
U(¢) = 0(¢°),

together with analogous statements for the derivatives of these functions.

(13.2)
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We can motivate our choice of scaling above by observing that the energy for the
curvature field will take the schematic form

(06°)* + (0")?, (13.3)

that is, does not explicitly involve the parameter x. Hence, both p' and p* will be
uniformly controlled, although at different order of differentiability. However, the
function p which formally approaches the scalar curvature R as k — 0 will not be
controlled at a first stage of our analysis (e.g. in the bootstrap argument presented
below) and a specific investigation will be necessary to establish that p converges
(again with an unavoidable loss of derivatives).

We therefore consider the wave-Klein-Gordon formulation of the f(R)-gravity sys-
tem in conformal wave coordinates, which was derived in Proposition L1 With our
notation (I3.1]), this system reads

a]LgJ[aB = Faﬁ(gTa agT) + Aocﬁ + Baﬁa
30t — k7120 = =5 + Wy(p) ~ —0 + O(p"?), (13.4)
O — U'(¢) = 29" 0up 050

We recall the notation OIf = gt ”aﬂay for the modified wave operator, while the Ricci
nonlinearity Fops = Pas + Qap will be computed explicitly in Proposition [[3.1] below.
Since constant coefficients within the nonlinearities are irrelevant for the purpose of
establishing global existence, it is convenient to use a symbolic notation and, with
obvious convention, in view of (A.8]) we express the nonlinearities A,g, Bog, o arising

in (I34) in the form
ap
Aap 2 0apOpp* + Vilp)g™ = 0up* 00" + O("%)g o,
Bag ~ ¢ 7 040030 + U(@)e " gly = e 0a6056 + 0(6)% " g, (13.5)
o~ e g1 0,005 + e U () = e g1 0,050 + e 2 O(¢?).
Expression of the Ricci curvature. Before we can proceed with the analysis of

the system (I3.4)-(I35), we need to compute the expression of the Ricci curvature
nonlinearity F,g arising in the metric equation in (I3.4]). In general coordinates, the
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contracted Christoffel symbols read

Y aB Y 1 af +vo
' =g¢"™rf = 59* 9" (0ng" 45 + 959l 5 — 059" us)

5 o 1 op oo (13.6)
=9""9"" 0ag"55 = 59" 9" 09" o
and, therefore,
ap L iap
FT)\ — gTMF’Y — gT aochﬁ)\ _ §gT a)\gTaB.
The Ricci curvature in arbitrary coordinates, that is,
R, =0\, — 0,00 + Tty — 1Tt (13.7)

is nox decomposed into several very different contributions. The desired structure will
be achieved by working in wave coordinates, which by definition satisfy I'™™ = 0 but
we not assume this in the following statement.

Proposition 13.1 (Expression of the curvature in coordinates). The Ricci curvature
of the metric g' admits the following decompositio

1 s 1
R, = —§gT ~F.p, (13.8)

2
where Fog = Fog(g",09") := P.g + Qas + Wag is a sum of null terms, that is,
B B B B B

1
0A8(;gl6 + 5(%1“% + 8BFTQ) +

Qap : = Y TM 859 a)\’85’g B QTM o7 (859 a,\/8A9 88 — 859T55'8A9Ta>\')
+ QTM QT&; (aag o Osg' bV Doy’ 28959 ,\'5/)
+ %QTAAIQTé(S/ (aoch)\BanT&S’ - agT&S’a)\’gTAB)
+ 9™ g1 (D59x5 059" sa — 59120059 1)
+ ;QTM 17 (559 )\aa)\’g 56— aﬁg s50n g )\a)
quasi-null term
L oo o0 L ;o0 TA)\

Puy:=—29""9g aagTM&ﬁgT,\af + 49 859 &sfaag AN

2
and a remainder

86"
W =g (%gLﬁF*(s/ — T, 5.
!This decomposition was derived first in [94], while the terminology “quasi-null term” was proposed
in [88].
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The full derivation of this decomposition is postponed to Section [I5

13.2 Homogeneous functions and nonlinearities of the field

equations

Nonlinearities of the field equations. Recall that the notion of “homogeneous
function” was introduced in Section [[2 The notion above is now applied in order to
classify the nonlinearities arising in our system (I3.4)-(I3.5)). Recall our notation

hap = 9'as — Iras, (13.9)

The expressions of interest will be expressed from a limited list of nonlinear terms in
h,p*, p°, and ¢. In the interior domain M™, the coefficient r/t is bounded above (by
1) and ¢ is bounded away from zero.

Definition 13.2. An ezpression (of derivatives of the metric, curvature, and matter
field) is said to be a bounded linear combination if it can be expressed as a sum
with homogeneous coefficients of degree < 0.

We are thus able to treat simultaneously the interior and exterior domains by using
our global notation. We distinguish between the following classes of linear combinations
with homogeneous coefficients of degree < 0. Except for the last type of terms in our
list, all terms are quadratic expressions in h, p, ¢.

It is important to unify our notation and use

~ a, in the interior Mt
9, =14~ (13.10)
Oy in the transition and exterior M®™a" U Vext,

|
)

Another useul notation is obtain by writing an arbitrary combination of Killing fields

in the form:
7K = o' LT QK. (13.11)

We also use the notation (for instance)

T, K| = |J| +|K]. (13.12)
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Quasi-linear terms.
e Metric-metric interactions@ Qnr(p, k):
ZIlJlKlha’B’ZIQJZKZauthaﬁa |Ila I2| S p— k‘, |J1> K1> J2a K2| S ka |IZ> J2a K2| S p— 1a
P30, 0,0" L ho, I, J, K| <p, |],K|<k.
e Metric-curvature interactions Qy,,:(p, k):
ZIlJlKlha/ﬁ/ZIQJQKQa“a,,pﬁ, |Il, IQ‘ S P — ]{Z, |J1, Kl, JQ, KQ‘ S ]{7, ‘127 Jg, KQ‘ S pP— 1,
P 0,0, Z1 7K pF \I,J, K| <p, |J, K| <Ek.
e Metric-matter interactions Q. (p, k):
ZIlJlKlha’ﬁ’ZI2J2K2a/Jal/¢7 |II7I2‘ S b — k7 |J17 K17 ']27K2‘ S k7 ‘127 J27 KZ‘ S b — 17
P 0,0, 21K p, I, J, K| <p, |J, K| <k.
e In view of the notation (I3.1]), we define Qyy:(p, k) := Qp e (p, k) U Qpg(p, k).

Good quasi-linear terms.

e Metric-metric interactions GQy,(p, k):
Zh M 5 20720 0 has, | L) < p—k, | Jy K1, Ja, Kol <k, I, Ja, Ko < p—1,
leJlKlha’B'ZIQJQKzéuébham |, L] <p—Fk, |Ji, Ki, Jo, Ko| <k, |1y, Jo, Ko| < p—1,
harp 2175 0,0, hagp, hap 2750, 00h0s, |1, 1. K| <p, |J K| <k

e Metric-curvature interactions GQ,:(p, k):
20N 21202820 9 o L L < p— Ky |y, Ky Jay Kol S Ky [Ty Jay K| < p— 1,
ZthKlha’B'ZszKzéuébPﬁ7 11, L] <p—Fk, |Ji, Ky, Jo, Ko| <k, |Iy, Jo, Ko <p—1,
hap Z'750,0,.0%, hap Z'750,0,0°, |1, 0, K| <p, |J, K| <k

e Metric-matter interactions G@h¢(p, k):
2N e 27820 96, 1L L < p—k, |, Ky Joy K| < Ky [Ty Jay K| < p— 1,
ZthKlha’B'ZszKzéuéb(?a 11, L] <p—Fk, |Ji, Ky, Jo, Ko| <k, |Iy, Jo, Ko <p—1,
hap Z'7%0,0,0, hap Z'7%0,0,0, |I,J.K| <p, |J K| <k

e In view of (I3.1]), we analogously define GQ,:(p, k).

Lp is the total number of vector fields while k is the total number of boosts and rotations.
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Semi-linear terms.

e Metric-metric interactions Sy, (p, k):

ZNIE hog Z 720, by, \Ih, J1, K1, Lo, Jo, Ko| <p, |1, K1, Jo, Ko < k.

Curvature-curvature interactions of first order S :(p, k):

ZIlJlKlaMpﬁZIZJZKZanﬁa |117J17Kla[27<]27K2| S b, |J1>K1>J2aK2| S k.

Curvature-curvature interactions of zero order S (p, k):

Zh K g 71Tz g |1, Ji, K1, 1o, Jo, Ko < p, |J1, Ky, J2, Ko| < k.

Curvature-matter interactions S, (p, k):

Zh Ik, pf 712, 0, |1, Ji, Ko, Lo, Jo, K| <p, |J1, Ky, Jo, K| < K.

Matter-matter interactions S,4(p, k) (of zero or first orders):
ZIlJlKlau¢ZI2J2KZaV¢7 |]1aJ1>K17]27<]27K2| Spa |J1>K1>J2aK2| Ska
ZIlJ1K1¢ZI2J2K2¢> |[17J17K1712>J27K2| Spa |J1,K1,J2,K2| Sk
e In view of (I3.1]), we analogously define Sy:y:(p, k) and Sy (p, k).

Good semi-linear terms (including null terms).

e Metric-metric interactions GSy,(p, k):
209 hog 27520, hovr, 11, i, K, I, Jo, Ko| <, |1, Ko, o, K| <,
and in the interior M™ only:
2
j_QZhJlKlQOh'OcBZIZJ2K2QOh'O/ﬁ’a |[laJ1>K1>IQ>J2aK2| Spa |J17K17J2>K2| S ka
in which we recall that éo = 0.
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e Curvature-curvature interactions of first order GS: (p, k):
ZIIJlKléaPﬁZIQhKQém,Pﬁ, 1y, Ju, Ko, Iy, Jo, K| <, b, Ky, J, K| <K,
and in the interior M™ only:
i_jaIlLJlgopﬁathQopﬁa |, Ji, K1, 1o, Jo, Ko| < p, |1, Ky, Jo, Ko| < k.

e Curvature-matter interactions GS,(p, k):
2N 7 6 L T K Dy o Kol < py | K Do Ko <,
ZIlJlKléa¢ZI2J2Kzéfypﬁ7 |1y, Ji, K, Lo, Jo, Kol <p, |, Ko, Jo, Ko| <R,
and in the interior M™ only:

2
%ZIlJlKIQOpﬁﬁllLJIQO¢7 ‘]17']17K17]27']27K2| Spu ‘J17K17J27K2‘ S k.

e Matter-matter interactions of first order GSy,(p, k):
ZIlJlKléaQSZszKzéfyasa |[17J17K1712>J27K2| Spa |J1,K1,J2,K2| Ska

and in the interior M™ only:
2
%Z11J1K1Q0¢ZIQJ2K2QO¢7 |[1,J1,K1,]2,J2,K2| Sp, ‘J17K17J2,K2‘ < k.

e Moreover, in view of (I3.1]), we analogously define GS:y:(p, k).

Higher-order terms.

e Change of frame terms F(p, k), which arise when a second-order derivative is
transformed from the canonical frame to the semi-hyperboloidal frame:

1 1
ZI1J1K1h VZ12J2K28 h - ZhJ1K1h ,,812Lj2h -
t+r : L (t+1)? a e
1 1
ZI1J1K10 ha ZI2J2K20,, ﬁ’ ZIIJIKla ha ZI2J2K28V ’
t+r niad g t+r nitas ¢
1 1
zhhKip VZI2J2K2 i ASTUNSUN VZI2J2K2
(t+r)? : P (t+r)? g ¢

|\, L) <p—k, |, Ky, Jo, Ks| <K,
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and
1

1
—3S k), ——S k —3S k).
ttr hh(p7 )7 t+r ¢¢(p7 )7 t+r d>pﬁ(p7 )

e Cubic interactions C(p, k). Such terms enjoy better decay in time and we will
not list them in full detail. We only observe that these interaction terms include:

— cubic (or higher-order) terms in p°, and
— cubic (or higher-order) terms in (hags, p*, ¢),

— except cubic (nor higher-order) terms h,g (which do not arise).

We have summarized our notation in Table [I3.2l Furthermore, when an expression
C' is decomposed into a sum of terms in the above classes, for instance, in Sp;(p, k)
and F(p, k), we use the symbolic notation

C ~ Shh(p, ]{3) + F(p, ]{7) (1313)
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Quasi-linear Metric-metric Qur(p, k) Zhhkap g2k 9o,
Metric-curvature Quyt (. k) VALY WAEREUE o)

Metric-matter Quo(p, k) ZhhKip 712J2K2 55

Good quasi-linear Metric-metric GQpuu(p, k) ZhNEip 7Kg dpy
Metric-curvature | GQpys (p, k) ARV AL WY

Metric-matter GQuy(p, k) Zh I K 71222 ) Hy

Semi-linear Metric-metric Shr(p, k) Zh K gp 7122829
Curvature-curvature | S (p, k) ZNN KL gt 7127282 ) ol

Sy (p, k) ZIIEK pp 71 12K
Curvature-matter Syes(ps k) ZNIiKL g b 712 72K2 0 ¢
Matter-matter See(p, k) 20K 9g 71272K2 9,
ZIIEK gl [
Good semi-linear Metric-metric GSun(p, k) ZIlJlKléahZhJ?K?éh

Curvature-curvature

Curvature-matter

Matter-matter

GSpﬁpﬁ (p, k)

GSP“(ﬁ(pa k)

GSys(p, k)

interior only:
(32/152)8[1LJlQOhZIQJQKQQoh
ZflJlKléapﬁthKéépﬁ
interior only:
(5200 L 0,107 L0,
811LJ1Q9pﬂZI2J2K2~Q¢
ZIlJlKlQpﬁZbJQKQQaQS
interior only:

(s2/12) Z K g i 712 laKa g g
71K b ZIQJ2K2’5¢
interior only:

(82/12) D599 712K

Table: Quasi-linear and semi-linear terms (with the range of indices omitted)

97




14 The quasi-null structure for the null-hyperbo-

loidal frame

14.1 The nonlinear wave equations for the metric components

We now analyze the metric equations in the frame of interest. Here and in the rest of
this Monograph, we rely on a symbolic notation in order to express the nonlinearities
arising in the problem and, in particular, we suppress (irrelevant) numerical constants.
As already pointed out, the general algebraic structure of the field equations in the
interior and exterior domains are the same, except for the weight functions that we
take into account in our estimates.

We use the notation E to denote either h in the interior domain or E in the transition

or exterior domains.

Lemma 14.1. In terms of their components in the null-semi-hyperboloidal frame, the
field equations of modified gravity take the following for .

ﬁgTEOO ~ Eoo +0(1) (éop@opﬁ + O(l)éoﬁbéoﬁb)

+ o) (pb2 + ¢2>§M700 + GSpr(0,0) + C(0,0),

o B L . I (14.1)
Olon = oo+ 18, + O (5 oo + O (2ur st + B,0810)
+O(1) (2 + 6 )T+ G 0,0) + C(0,0),
~ o~ ~ r ~ 1 1 ~ T
0 ~ P 5 |9, T3 )l
P —““+O((t+7“)2>Qa 00+o<(t+7“)2> OO_I_—t+7“Qah0a+O((t+r)3>h0a

+0(1) (870,67 +2,00,0) +0(1) (0 + %),

+ GSpi(0,0) + C(0,0) (a=1,2,3),
(14.2)

!t is convenient to keep here the components hqp in the right-hand sides.

98



and
OBy = Py + +G81(0,0) + 0(1) (2D + 2,00, )

+ (9( 2) (éahoo + ébhoo) +0 <t—|—%) (éahOb + éahOa)

t+7) (14.3)

+ o(ﬁ) hoo + o(ﬁ) (Boa + hob)
+0() (P +6%)g,,,, + C0,0)  (a D)

A similar statement holds for any derivative 81L‘@aﬁ of the null-semi-hyperboloidal
components.

Proof. The general identity
@gf (uv) =u ﬁgw +wv ﬁgfu +2 gTaﬁﬁauﬁgv

allows us to decompose the modified wave operator ﬁgT in the conformal metric, as
follows:

Byt has = Oyt (B B By

~a! ~f ~ ~ ~a/ ~p' ~a' _
= D, B3 Ogthary + hargOgi (D6, ©5) + 29" 0,(2 ©5) 0, harsy,
in which we are going to use the expressions of the transition matrices in (Z.3]) and
(). In the interior domain, we have
P = 1, 000 =z, /t,  BIBY =1,

14.4
B e S P Py (144)

which are bounded functions in M™ and, more precisely, are coefficients of degree
zero. On the other hand, in the transition and exterior domains we have chosen the

null frame and we have
DYDY = 1, QP =z, /r, DL =1,
0 La®o = 7a/ I (14.5)
PO = xomy /12, VD =, /7, PIPY =1,

which also are bounded functions in M™® U M*" and, more precisely, are coefficients
) Y
of degree zero.
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Consider first the component hy,. From the wave-Klein-Gordon system ([3.4)-
(I3.5) and in view of the decomposition of F,z given in Proposition [[3.1] we find

ﬁgTEOO = Eoo + igligl@x’ﬁ’ + o(l)éop@opti + O(l)e_pnéoﬁbéoﬁb
+ (01 + 0(1)e ¥ 6?) 3l
= Py + GSi(0,0) + 0(1)2,p* 0y + O(1)e ™" D0,
+ (072 + (1) 6?) G, o, + C(0,0),

in which the contribution of the exponential factors can be absorbed in cubic terms.
We treat similarly, the terms

B Bige = Pou + B B Qurgr + O(1)D, 00 + O(1)e 0, 60,6
b2 —2pt 12\ ~t _
+ (0010 + 0 ), + 0(1) =Bk — O(1)

~ Py, + GSii(0,0) + 0(1)(8,0°000* + 8,60, )

2x,

(t+r)3 frao

+ (O(l)pb2 +O(1)e ¥ ¢ ) a0 T C(0,0) + ﬂ—lzéahoo + O(ﬁ)hooa

where cubic terms are denoted with the symbolic notation C(0,0). Next, for any
a=1,2,3 we compute

Oy hag =~ Py + B2 B, Quy + O(1)3, 08,0 + O(1)8, 60,6
+(0(1)7* +0(1)e —2p“¢2)~*

4z, 4z, 2 6|:13a|2
3.h 3 ho, — —2Fa_p _ h
+(t+ BE 00+T—“ 0o s +<(t+r)2 (t+r)4> 00

= Py + G (0,0) + (1) (Do Dus + 8,60, )

+0() (P +6%)g,,,, +C0,0)

2

+ o(ﬁﬁ“hm * ((t+1r)2 * O((tirﬁ))hoo

+ o(%)a foa + o(( fr)g)h(m.
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Finally, for a # b we write similarly

o~ o~ ~o ~B/ ~ ~ ~
Ughgy = Py + ‘I) @, Qup +0(1 )aapﬁabpti + 0(1)0,900,¢

+ 0(1) (Pb2 + ¢2>~T + % (xba hoo + %abhm)

oM -3 0 hoa

+0( )t+r—“ Ob+t+r_b 0

. 65(7al’b . 21’[1 B — 25(7(,
E+r) "+ )

~ P, + +GSpi(0,0) + 0(1)0,0 90" + O(1),00,¢
2

+ O(ﬁ)éahoo + O(ﬁ)abhoo + O<m>hoo
+o( t+r )a h°b+o<m>h°b+o<tir>5 h°“+o<(t4fr)3>h°“

+0) (P2 +6%)g,,,, + C0,0) (a D),

This completes the proof of Lemma I4.11 ]

hoa + C(0,0)

14.2 Reduction of the expression of quasi-null terms

The quasi-null terms in the Fuclidian—semi-hyperboloidal frame are

1 ! 66/~ ~ 1 / 66l~ ~
Ps= ng 9" 03hs0shysy — §gm 9" Oyl Dghss . (14.6)

Clearly, the components P P s (but not the component POO) are null terms since they
involve at least one derivative tangential to the hyperboloids in the interior domain
and tangential to the light cone in the transition and exterior domains. Hence, the
following statement is immediate.

Lemma 14.2. The (a, 3)-components of the quasi-null terms have the property
P5 =~ GS(0,0) + C(0,0) (14.7)
and, more generally,

O'LIOKP, 5 =~ GSpu(p, k) + Clp, k),

(14.8)
p=I[+|J|+|K|, [J]+]|K|]=k.
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Consequently, in the equations satisfied by the components Eaﬁ (but excluding
EOO), the relevant quasi-null component Eaﬁ are null terms and, consequently, we will
be able to establish a good decay estimate for these components. On the other hand,
the component Eom whose evolution equation involves Eom requires special analysis
(based on the next section).

Lemma 14.3. The component Eoo satisfies, up to wrrelevant multiplicative coefficients
of degree <0,

+ GShh(O, 0) + F(0, o) + C(O, 0).

Proof. By changes of frame formulas, such as

¥ se
gT 66 ath*yéath 18!
mne__ st

iy 668 S =8 = >
gTPY’Y at 'Y‘Sﬁt ~' 8 + gT’Y\/ gT //y/&t (\I] \II(; )8t (g,yl gél )E—y’”&’”

_I_/g«'i"\/ﬁ/ ~T55 \I/ \:[16 ath ”5//8t (CI/I’Y {\1}(5’ )’]in 11§11

~ ,\/// ~ 5"

+ gT'Y’Y ~T66 a (q] \Il6 )h //6//\:[] qyél at ///6///’

we can put Eoo in the form

~ 1 — /. / ~ ~ 1~ /. / ~ ~
Poy= 3" 5" O, 50rhoys — 5877 G Dby Otz

1ty —tsr Lty 1w h
~ 49TW g &fhw@th o — §9TW g 5th Oihss + F(0,0).

Moreover, modulo cubic terms, the curved metric can be replaced by the flat one, i.e.

Loy &JL

~ 1 e~ ~
2907 Gy Ol 50rhyy — G0 0 Oihss + F(0,0) + C(0,0).

29m I
O

We again rely on the wave gauge condition and in view of the decomposition (14.9)
of Eoo and thanks to Proposition [I4.5], we arrive at the following conclusion, which
shows that it will remain only to control the term atﬁwatﬁbﬁ (and its derivatives 9! L),
which is not a null term and will require an improved decay estimate on Oh,,
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Proposition 14.4 (Quasi-null interactions in the null-semi-hyperboloidal frame). The

quasi-null terms satisfy

EOO = atﬁaa&fﬁbﬁ + GShh(()’ 0) + C(Ov O) + F(Ov O)v

~ (14.10)
P.s =~ GSp(0,0) + C(0,0) +F(0,0).
More generally, this statement also holds for their derivatives:
O'L? Pyy = 9' L7 (0hguOilty5) + GSpn(p, k) + C(p, k) + F(p, k), 1411)

aILJ aﬁ — GShh(p> k) + C(pa k) + F(pa k)a

with p = |I| and k = |J|, provided |0" L”'h| + |0" L”'0h| is sufficiently small for all
'+ |J| <p+k.

Proof. Step 1. We first claim that

Gloa' 5188 g,
9 0 td., 8t9 /
o o =P (14.12)
=g QOQOa_ QOQOI, + GShh(O, 0) + F(O, 0) + C(O, O)
Indeed, the wave gauge condition
Q 1 «
9P 0,hg, = §gT SN (14.13)
reads, in the null-semi-hyperboloidal frame,
~tay ~ ~ /~ - ~ﬁ/ ~ A~ ~ ~toy ~tor
§°0,hs, + & 570, (T, gz,)@%,, = 1598 b+ o5 5570, (5 05 ) By

Lettin v =0, we find
~ta ~ o ~n~ a NBI~ 1" ~ —~ Nﬁ/
which we put in the form
T 0y = 25700 + 20" 0,10 + 285 570, (U5 90, )1
g thag = gMaBO_I_ Ngy + 09 1 g1
~af3
- g30.(¥, \Ifﬁ>h »

/ OCB B NC!{B o Bl
+ 20 10, (W0 Vg — B0 (WS WS Y

LObserve that, in contrast, «y is replaced by @ = 1,2, 3 in the proof of Proposition [Z.5]
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In the right-hand side, except for the first term, we have at least quadratic terms or

terms containing an extra decay factor such as d, (iﬁ iz ) So, in the expression of

interest gmahgw B ’atgla,a{g; g the only term to be treated is

75T Do shse. (14.14)

We also emphasize that, provided @ is sufficiently small, Eaﬁ can be expressed as a
power series in h,g (Without zero-order terms), which is itself a linear combination of

has (with homogeneous coefficients of degree < 0). So, similarly, Eaﬁ can be expressed
as a power series in hqg.

We deduce that all the terms within the key product QTO‘QQW B ,0@20‘,0@; & belong
to C(0,0) or F(0,0), with the possible exception of the term

75T 90D she. (14.15)

We therefore focus on this term and write
(G55 Doravo) (T5) Dshso)
- (gﬁléaﬁa’o + 53250500 + QOJ\ZEOEOG’> (gﬁg/ébﬁﬁ’o + gooéoﬁoo + Q%EOE%)
= (Naalé h a0 T 50050%00) (~b6,51ﬁ5'0 + ?2250%00 +4 M80h0b>
+ 3% Dohg (h B+ §uhon ) + G Ouho 3Dy,

The last term is already listed in (IZIZ). The remaining terms are null quadratic
terms (recall that g% = s*/77?).

Step 2. The term QTW/?&S/@EW,&EM, being treated in Step 1, it remains to discuss

the term
77 0hys0ihys. (14.16)

e In the interior domain, we have

2
I7J 00 S o _ S : in
'L S5 IS gy =g M (14.17)
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— On one hand, by letting (v,~") = (0,0) or (4,d") = (0,0), the corresponding
term g}(}’ gf\j Oth. s0th s is a good term, since it contains the favorable factor
(s/1)*.

— On the other hand, with (v,7") # (0,0) and (4, 9") # (0,0), we can introduce
the notation (v,7") = (a,«) and (§,8') = (b,3), and we conclude that
g}]/ g‘;\fll Oth.s0ih 5 s a linear combination of dih,,0;h,5 with homogeneous
coefficients of degree zero.

e In the transition and exterior domain
LGy =0 g <1 in M (14.18)

— On one hand, by letting (v,+") = (0,0) or (4,40") = (0,0), the corresponding
term Wlﬁﬁlﬁtﬁwgﬁtﬁwf vanishes.

— On the other hand, with (v,7") # (0,0) and (4,9") # (0,0), we can intro-
duce the notation (v,v") = (a,«) and (6,0") = (b, 3), and we obtain that
ﬂ}fq’ﬁj’ atﬁwatﬁw is a linear combination of 8t%aa8tﬁb5 with homogeneous
coefficients of degree zero.

[

14.3 The null-semi-hyperboloidal (0,0)-component
Next, we rely on the notation

B = WP, ey = hap O (14.19)
and 5

he? = gt — g3, hap = glg — 9M,ap;

o s s ¢ - (14.20)

b =9" =9y hoas =905~ Gasas

~00
Proposition 14.5. The metric component 0;h  in the semi-hyperboloidal frame can
be decomposed as follows:

~00  ~~ 1 ~ ~_~ 1~ j—j&E in M™,

14.21
ttr— = t+r 0 in M U M, (1420



Proof. The wave gauge condition gTaﬁF jjﬁ = 0 is equivalent to

af 1 af
gTﬁaﬁagT = iglﬁang (14.22)
and therefore, in the null-semi-hyperboloidal frame, reads
~t 7 ~af t ~v'~af ’“T ’“T B~ ~a =B
3,007+l 81 0, (8 8)) = 37 57 + 13 177D, (@14))
or, equivalently,
~ ~ ~aff 1~J[ 1 ]L ~a'Bf'~ ~a ~p
G, . 0. 0.0" + 57 "D, (303,
M, By 2 af=" ,NB,V( " i)N , (14.23)
5/ /(I)'y h 8 ((I)a @B ) - hﬁvgah
We replace the index v by a Latin index ¢ = 1,2, 3 and obtain
~ =~ ~af 1~ = 1 t
g Qaﬁ —g 8h+ha8h+gh 8(I>(I>,
=M, e - 25Map ’ (E35) (14.24)

Bl /¢c ﬁ a (éa gﬁ ) - hﬁcQah

which is of the form g n16c 0 h = 2 It 8 h +l o0.t., in which l.o.t. are terms of the
form given in the right- hand side of (E@I[D
The left-hand side of (I£.24]) admits the following decomposition:

~ ~af

d.,h

_ ~ = ~ >~ ~af
Im Be=a— QM,OCQ()EOO + QM,chOE)b + Im ,ﬁcQaﬁ

or, equivalently,

Dol 9.0 Dh™ d,h.

gMOc gMﬁ “ Irpe R
After multiplication by g° M, we obtain the identity:

~ ~a5

PG Ok =7%G R G b —§*F. . B.h (14.25)

ImInoc InIn pe I pl ~ I I pe

e Next, within the interior domain M™, we have
990 = 1) Ny, = —(s/D (/) in M, (14.26)
and we rewrite (I4.29) as
Tp . “ . N ' .
(r/t)?9oh™ = (S/t)27Qoﬁ0b - g?ngﬂcQaﬁ b+ gg/[gMﬂCQaﬁ s in V™
(14.27)
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e Still in the interior domain, by replacing in (I4.27) the term Q%QM,gcQa L by
its expression given by the wave condition (I4.24)), we arrive at

00 _ 5% T o o af’
_8 h t (9 h gMgMB (‘) h
1 74
i aﬁ T pdp a §08
+ gM(Q 580}11 29056@ Qc(@a/@@)

— 5!, @Y B 00 (B ©F) — s, haﬁ) in v,
We therefore have (in symbolic notation)
om0 = S0 1 o, h + 11 ko e 1 L h e
e e ¢ P ’
and we conclude with 1 = (r/t) + (s/t)? in M.
e On the other hand, in the transition and exterior domains, we use the relations
gni 9aroe =1, g Garpe = 0. (14.28)
We now rewrite (I4.25) as
Foh™ = — 335G 5e0uh™ + G35Ga1,8:0a0°7  in MU M, (14.29)
]

We use the short-hand notation : ,

ric, its derivatives, and tangential derivatives, respectively. Recall that within our
bootstrap argument, all the component of A and its derivatives are small. The “bad”
derivative of EOO is now shown to be bounded by tangential derivatives or terms with
better decay —thanks to the favorable factor s*/t? in the interior. For clarity, in
the following statement we distinguish between the interior, transition, and exterior
domains.

Corollary 14.6. The following estimate holds:
2[00 + |0n] + 11| + |on] |1 in MO,

S (14.30)
O] + 7 B| + |on] 1] in M U M,

~00 ‘

|0,k
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More generally, one has
‘aILJatEOO‘ I }ataILJEOO‘
/ o~ 1 / 1~ ~ ~
S X (|9 + o R+ Y |otL ] (00" L

~

1141071 2]+ ] I+l < 1]
1771211 Iy 1+175121]
2 / 137 .
s I'rJ ; int
S i< 52 |007 L7k, in M,
1771211
0, i VT U e,

(14.31)

~00
Proof. By Proposition [I4.5], the expression 0;h is a linear combination ((])Of the terms
in (TZ2I)) with homogeneous coefficients of degree < 0. Hence, 0'L/9;h " is again a
linear combination with coefficients of degree < |I| of:
orr” ((s/t)2aaﬁﬁ”) in the interior) only,)
/ AV -G ]_ / Ve
'L’ (Qaf”), —a"L"(h B),
t+r
o' L (ﬁaﬁﬁvﬁa A )’
1

t+r
with [I'] < |I] and |J'| < |J|. We observe that

e (o)

~a'B!

"L (hasgh )

2
ST 0L @) i e

<[]
[7"<]]

These terms are bounded by the commutator estimates in Sections [I1] and and
~00 ~00
we thus control d/L70,h . The statement for 9,0'L’h  similarly follows from the

commutator estimates. ]

15 Ricci curvature in conformal wave coordinates

15.1 Expression of the curvature

We give here a proof of Proposition 3.1l For simplicity, we write g,I’,... instead of
g",I'T, ... throughout this proof. Consider the first two terms in the expression of the
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Ricci curvature R,g, which involve second-order derivatives of the metric. Writing

1 1 1
Moy =— §9A58A359a/3 + §9A53A8a9ﬁ5 + §9A53A859a5

1
+ 5(%9% (0n9ss + 039as — O59as)

and ] ]
5QFEA = 5%%%5 + 55049&5369&5,

we obtain the identity

1 1 1 1
MLhs — 0l = _59)\60>\869a6 + =9 0a0x955 + = 9"°030\G60 — §9Maaaﬁgm

2 2
Y [ PY [ PSY P ESY
23Ag 0sGap + 28)\9 0u9ss + 28Ag 08905 28ag 0395

(15.1)
The first line contains second-order terms while the second line contains quadratic
products of first-order terms.

15.2 Higher-order contributions

On the other hand, let us compute the combination d,I's 4+ 93", which appears in our
decomposition. We obtain

o 1 (7
I =g}, = 59 97 (9agss + 959as — O59ap)

[0 1 [0
= 9" ¢*%00985 — 59 #9705 g

and therefore

1
= QAWIW = gaﬁﬁagﬁ)‘ o §ga68)‘gaﬁv

so that
1
9l = 0a(9"05928) — §8a (9°059x5)
1 1
= "2 0,05975 — 59”%@3%5 -3 0005955 + 009”05 925-
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We have obtained the identity

8aF5 + 851“a = gM(?aaAgM + gmaga)\g(sa — g)\éaaagg)\g
Ao Ao 1 Y 1 Ao (152)
+ 009" 05928 + 039"° 059 ra — 58/39 Oalrs — 50a9 039>

Next, oobserve that the last term of (I5.2)) coincides with the last term of (I5.1]).
The second-order terms in d,1'5+ 031, are three of the (four) second-order terms that
arise in O\I'h5 — 9,13, Hence, we find

1 1

1 1 1
— 5(‘9)\9)‘6859&5 - 5&9”(%955 + §a>\g)\68590¢5

1 1 1 1
~3 G 005 grg — 5859A5859Aa ~1 0005005 + Zaﬁg)\éaag)\éa

therefore, using also the relation

A8 AN 66
=—g"" g% 0agns,

0ag
we have

1 1
8)\1—‘());6 — 8(11—‘2)\ = —§8>\g’\68(;ga5 + 5(8061“5 + 851—‘&)

1 / ! 1 / !
+ QQM 955 OnInsOsGap — §9M 955 OG5 0agss
1 ! ! 1 ! !
- §9M 966 O\gx508Gas + EQM 966 Oagxns'O8grs
1 / ! 1 / ! 1 / !
+ QQM 955 8a9,\'5'859A6 + §9M 955 86%'6’859/\(1 - ZQM 955 869»5'8«1%5-

Remarkably, the two underlined terms cancel each other, and the quadratic terms in
8,\F(;\B — 8aFg/\ are the following ones:

]. ! ! 1 / ! 1 ! !

§QM g% Orgn505Gap, —égM g% O\gn5'0a9ps, —égM g% Orgr5'08Gas, (153)
1 ! ! 1 / ! ’
igM 9% Dagrs D5 9rs, igM 9° 039505 Gxa-

110



15.3 Quadratic contributions

Returning now to the expression of the Ricci curvature, we can consider the two prod-

ucts
]_ ! !
FABF =19 g g% (07gs5Ongpx + OgarOrgss — Ox GapOrgss' ),
1 ! !
F)\érw\ = gM 966 (aagé)\’aﬁg)\é’ + aagé)\’a)\gﬁé’ - aagaxaafgw

4
+ 059ax 039xs + O5Gar Orgps — OsGar Os gax

— On9as0s9rs — On GasOrgss + Ox GasOs gs»)

and we arrive at

Tasl%s — TasTa
1N L v s 1NV
=—79"9 OxGapOrgss + 199 05Gax O gpx + 17 Ox GasOrGg3s
1 PR 154
- ZQM 9% 0agsx DG (15.4)
1 ! ! 1 / 1 / !
+ EQM 9 O\gs50agpn + 49M RN §9M 9% D5 Gan Orgps -

The first three terms in the right-hand side are null terms, but the fourth term fails
to be a null term and is included as a quasi-null term. The two underlined terms
will cancel out with the two underlined terms in the equation (I5.7]), which we derive
below. Hence, only the last term still remains to be considered.

We can therefore now focus on the following six terms:

1 / ! 1 / ! 1 / !
AN 56 2™ 6% 9, g O 955, g™ g%

9" 9°° O\Gn5059ap; O\gx5'08Gas,

2 12 12 (15.5)
§9M 9% 0u g5 05928, §9M 9% 039505 Grars —359 9™ 6% D5garOrgss:-
The identities
af 1 af af 1 af
97 0ngps — 59 059ap = I's, 935029 — igaﬁaég =TI}, (15.6)
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allow us to decompose the first three terms in (I5.5]) as follows:

1 ! ! 1 ! 1 ! !
§9M 9% O\gx5 05 Gap = 5966 059asls + ZQM 9% 0590505 Gox
L v e 1 s L v ser
— = 8 llaa — — = 8& F/—— a/ /aa
29 g AIN§' OG5 29 gpsl s 49 g 05 gxx0adps (15'7)
1 )\)\/ 66/ 1

! 1 ! !
—59 g 8A9N6f869a5 = —5966 8Bga6F6’ - ZQM 966 56/9,waﬁgaa-

In the first line,the last term is exactly one of our quasi-null terms stated. The two
underlined terms cancel out with the two underlined terms in (I5.4]), as we explained

earlier.
Next, we treat the fourth term in (I5.5]) by writing

%gwgwﬁa.@w@&g,\ﬁ
= %gwg&s’ (Oagrs 05975 — 0agrslsgne) + %gwgéélaagwaagx&
= %QMIQW (Oagne059r3 — OagrsOsgns ) + %g”@agwl}/ + %gwg‘s‘y@agwﬁxg&y,
therefore
%gwgwﬁagxyaag,\ﬁ
= %gwg&s’ (%gxaf&sgw - 8&9)\6869)\’6’) + igwgw (8(19/\5@’956/ - 5a965/&\/£h5)
+ %gwaagwf,\f + igwgwﬁag&s@x%ﬁ’
and so
%gxklgéélaagw@agw
= %9”955/ (Oagns 0sgrs — Oagrpdsgrs ) + igwg(w (009r30x gss' — Oagss On grs)
+ %g)‘)‘laagwl—‘ x + igéélaag&s'r 3+ %gwgwaagéafaﬁgw-
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For the fifth term in the expression (I5.3), we have

1 ! !
§9M 9% 059505920
]. 1 ! 1 / !
= §9M 9" (0895505970 — D39ra0s9xs) + ZQM 9% (059200 g5 — V3955 O Gra)
1 ! 1 ! 1 ! !
+ igM Dsgral v + 1955 0955l + 5955 9™ 05955 OG-

Finally, we deal with the last term in (I5.5]) by writing

1 ! !
- §9M 9 D5 garOrgps
1 / ! ]. ! !
= —§9M 9% (059ar0rgss — 5955 Orgar') — §QM 9% 05955 Orgax
1 / ! 1 ! 1 ! !
= —§9M 9% (059ax0rgss — D59p5 Orgar') — §9M NnGaxT'p — ZQM 9% 05955 Orgax
therefore
_ } AN 55’8 )
29 9" OsGaxOrgBs
L oo 1NV L s
=599 (059arOrgas — 05955 Orgax) — 59" 0gaxTs = 79” 0955 T
]. ! !
— ggM 9% 0agon Opgss
and so
_1 AN 55’8 B
29 9" OsGaxOxgBs
1 PR 1 1 .o 1 .o
- —§9M 9% (859ax 02955 — 05955 02Gax) — §F ol — 1966 Oagss'l'g — ZQ&S 039551
1 ! !
- ggM 9% O grn s Gss -
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15.4 Concluding the calculation

In conclusion, the quadratic nonlinearities in the expression of the Ricci curvature R,z
are

1 ! ! 1 ! !

§9M 9° Osgaxn Oy gax — §9M 9" (05gan Orgps — Dsgp5 Organ)
1 / ! ]_ / !

+ §9M 966 (aagwfaégw - axgwaagw’) + ZQM 966 (axgwaxg&s' - axg&sfaxgw)
1 ! ! ]_ ! !

+ §9M 9 (05955 059ra — Op9ra0sgrs) + ZQM 9 (059200 gs5 — 03955 Ox Gra)

1 ! ! 1 ! / 1 ! 1
- ZQM 9% 00 gsxOpgrsr + §966 9™ 05955 Ongon + 5966 05Gapl'sr — §Farﬁ-

This completes the proof of Proposition [13.1]
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