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Abstract. We discuss solutions of the acceleration equation, the equation associated to the

Friedman equation, in the light of the theory of regularly varying functions, also known as

Karamata functions. As a result we obtain that the solutions of the acceleration equation

might have a multiplicative term which is a slowly varying function. Under usual assumptions

for the scale factor a(t), such as a(t) = tα, it appears that this slowly varying term exists.

Slowly varying term may explain some phenomena in the standard models of the evolution of

the Universe. This paper is an announcement of the more detailed research in this area.

1. INTRODUCTION

The Friedman acceleration equation
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together with the fluid equation
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and the Friedman equation
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determines the expansion scale factor a(t) of the Universe. Here ρ is the mass density
while p is the pressure of the material in the Universe. The nature of the solution of
(1) strongly depends on the energy density term

E = ρ + 3p/c2, (4)
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particularly of the sign of E. In order to explain the acceleration of the expansion of
the Universe the cosmological constant Λ is added in (1):
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The modified energy density term for Λ 6= 0
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admits negative values, giving more possibilities in modelling of possible scenarios of
the past and the evolution of the Universe (e.g. Coles, et al., 2002; Hogan 2007, Lidle,
et al., 2000; Narlikar, 2002; Peacock, 1999; Vikman 2005). We note the following two
remarks in regards to Λ. First, under the transformations

ρ′ = ρ + Λ/(8πG), p′ = p − Λ/(8πG) (7)

the equation (5) transforms into (1), but now referring it to the terms ρ′ and p′.
Therefore, our discussion will be concentrated further on the mathematical solutions
of the equation (1). However, we shall abandon in certain situations the strong energy
condition E > 0. Secondly, it is well known that there are significant discrepancies
in the predictions of what order should be the value of Λ. The reason may lay in
the course tuned asymptotic description of the scale factor a(t). In order to avoid
this situation a better asymptotic analysis is needed. The theory of regularly varying
function in the Karamata sense provides the means for such an analysis, particularly
for solutions of the second order differential equations as it is (1). This theory is quite
well developed (Bingham at al., 1987; Hille, 1948; Howard, et al., 1990; Marić, 2000;
Marić et al, 1990; Omey, 1981; Seneta, 1976; Swanson, 1968), but it seems it has not
been much applied in cosmology and in astrophysics in general. Yet, there are few to
mention (Mijajlović et al., 2007; Molchanov, et al., 1997; Stern, 1997).

2. REGULAR VARIATION

In this section we shall briefly review the basic notions related to the regularly
varying functions. We shall discuss also some properties of solutions of the second
order differential equation of the form

y′′ + f(x)y = 0 (8)

related to the regularly varying functions. Observe that the acceleration equation has
the form (8).

2.1. Regularly varying functions

A regular variation is related to the power-law distributions, a kind of polyno-
mial relationship between two quantities. It exhibits the property of scale invariance
represented by

f(x) = axk + o(xk) (9)
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where a and k are constants, and o(xk) is an asymptotically small function of xk.
Here, k is the scaling exponent, i.e. a power-law function satisfies f(λx) ∝ f(x)
where λ is a constant. So, a rescaling of the function’s argument changes the con-
stant of proportionality but preserves the shape of the function itself. Power-law
relations characterize a large number of natural phenomena, particularly in physics
and astronomy. Examples are the Stefan-Boltzman law, gravitational potential and
the scale factor a(t) in various cosmological models. A particular interest in a power
law can be found in the study of probability distribution and the large fluctuations
that occur in the tail of the distribution – the part of the distribution representing
large but rare events.

The most general form of a power law is given by

f(x) = L(x)xα, or f(x) ∝ xα (10)

where L(x) is a slowly varying function i.e. L(x) is positive continuous function
(more generally measurable function, but in this article we are dealing anyway only
with continuous functions) defined on some neighborhood [a,∞] of the infinity which
satisfies

lim
x→∞

L(λx)

L(x)
= 1, for each λ > 0 (11)

The real number α is called the index of regular variation.

A positive continuous function R defined on some neighborhood [a,∞] is the
regularly varying of index α if and only if it satisfies

lim
x→∞

R(λx)

R(x)
= λα, for each λ > 0 (12)

It immediately follows that the regularly varying function R(x) has the form

R(x) = L(x)xα (13)

where L(x) is slowly regular.

Jovan Karamata (Karamata, 1930) introduced the conceptions of slowly varying
function and regularly varying functions. He also proved the following two fundamen-
tal theorems.

Examples of slowly varying functions includes iterated logarithms, but there are
more complicated examples e.g.

L1(x) =
1

x

∫

x

a

dt

ln(t)
, (14)

L2(x) = exp
(

(ln(x)
1

3 cos(ln(x))
1

3

)

(15)

The second example is interesting since L2(X) oscillates infinitely many times
between 0 and infinity.
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3. REGULARLY VARIATION AND ACCELERATION EQUATION

We shall represent the acceleration equation (5) in the form

ä +
µ(t)

t2
a = 0. (16)

The Hubble parameter H(t) and the deceleration parameter q(t) are defined by

H(t) =
ȧ(t)

a(t)
, q(t) = −

ä(t)

a(t)

1

H(t)2
(17)

where a(t) is the expansion scale factor of the Universe. Therefore, the equation (16)
can be written as

ä +
q(t)(H(t)t)2

t2
a = 0, (18)

hence
µ(t) = q(t)(H(t)t)2. (19)

Observe that µ(t) is a dimensionless parameter. Let us remind that the density
parameter Ω(t) and the density parameter for the cosmological constant Λ are defined
by

Ω =
ρ

ρc

, ΩΛ =
Λ

3H2

where ρc is the critical density.
The Friedman acceleration equation (1) has two different fundamental solutions

that satisfy a power law if and only if the limit

γ = lim
x→∞

x

∫

∞

x

µ(t)

t2
dt (20)

exists and γ < 1

4
. According to the theory of of regularly varying functions and

differential equations, if −∞ < γ < 1/4 and α1 < α2 are two roots of the equation

α2 − α + γ = 0. (21)

then there exist two linearly independent regularly varying solutions of the equation
y′′ + f(x)y = 0 of the form

yi(x) = xαiLi(x), i = 1, 2, (22)

if and only if lim
x→∞

x

∫

∞

x

f(t)dt = γ. Here, Li, i=1,2 denote two normalized slowly

varying functions. We see that this observation directly applies to the Friedman
acceleration equation (16). Thus, the expansion scale factor a(t) satisfies the power
law if and only if γ < 1

4
.

We discuss only the existence and the possible values of the limit lim
t→∞

µ(t). The

existence of this limit is the sufficient condition for the existence of (20) and in this case
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γ = lim
t→∞

µ(t). It appears that the values of the constant γ determine the asymptotical

behavior at the infinity of the solutions of the acceleration equation, i.e. of the
expansion scale factor a(t) of the Universe. If the matter-dominated evolution of the
Universe is assumed, that is, dominated by some form of pressureless material since
the certain time moment t0 then the expression H(t)t depends solely on the parameter
Ω. In this case we will be able to estimate the possible values of γ. We discuss also
the status of the constant γ and the related asymptotic behavior of a(t) for the flat
Universe including the cosmological constant Λ and the open Universe with Λ = 0.
Detailed proofs of will be published somewhere else.

4. CONCLUSION

A new constant γ is introduced by (20) related to the Friedman acceleration
equation (1). The values of the constant γ determine the asymptotical behavior at
the infinity of the solutions of the acceleration equation, i.e. of the expansion scale
factor a(t) of the Universe. The instance γ < 1

4
is appropriate for the both cases,

the flat and open Universe, and gives the sufficient and necessary condition that the
solutions of the acceleration equation are in the Karamata class of functions; more
specifically that they satisfy a power law. This property of the acceleration equation is
formulated as the power law conclusion in the subsection 3.3. As power law functions
are the most frequently occurring type of the solutions of the Friedman equation, the
study of the constant γ and the related function µ(t) defined by (19) might be of a
particular interest.
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Marić, V.: 2000, Regular Variation and Differential Equations, Springer-Verlag, Berlin.
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