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The distribution of Kummer sums
at prime arguments

By D. R. Heath-Brown and S. J. Patterson at Cambridge

1. Introduction and results

Let w=¢*"" and let (-/-), be the cubic residue symbol in Q(w). For ¢ e Z[w],
¢=1(3) the cubic Gauss sum g(c) is defined by

gla)= 2 (d/o), e(dfc)
d(mod c)
(c,d)=1
where, for ze C,
e(z)=exp(2ni(z+2)).
It is well known that (cf. [5] pp. 443—445)
g(e’=p(o) c?e,
where u denotes the Mdobius function in Q(w). In particular, if ¢ is square-free
lg () =lcl.
Now let N be the norm of Q(w)/Q and define
g(c)=g(c)/N ()"
one then has
g’ =p(e) c/lel,

and, if c is square-free

1g(c)|=1.

If ¢ is not square-free then
‘ g(0)=§(0)=0.
If t=1(3) is a prime in Z[w] and p=N(n) is a prime in Z then one can show

that

P"l .

gmy= 3 (j/m), ™"
Jj=1
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112 Heath-Brown and Patterson, Distribution of Kummer sums

(cf. [16], Appendix II). This is the more usual definition. Also one should note that many
authors normalize 7 by 7 = —1(3).

From the formulae quoted above one has

g(m)*=—n/|xl,

and, by analogy with Gauss’ famous determination of the sign of the quadratic Gauss
sum, one can ask whether there exists some method of selecting which cube root of
—n/|%| one should take. This was the problem which Kummer investigated in [10]. He
found algorithms for computing g(z) but they give no real theoretical insight. Having
found no rule for computing g(n) in terms of congruence conditions on 7 Kummer exam-
ined his evaluations of g(n) from a statistical point of view. This he did by dividing the
primes of Z[w], = 1(3), into three classes, I, II, III according to whether Re(g(n))< —1/2,
—1/2<Re(g(n))<1/2 or 1/2<Re(g(n)). He considered, for J=1I, II, III

N,(X)=Card{n: N(n) £ X, n of class J}.
From his calculations he found that, approximately
N,(500): N, (500) : N, (500)::1:2:3,

and he suggested, rather cautiously, that this might be asymptotically true, [10] pp. 353 —4.
This was later raised to the status of a conjecture by Hasse [5] p. 453 ff. who also discussed
it at some length from the point of view of class-field theory.

However, later computations [14], [11], [1] showed that Kummer’s original sugges-
tion was premature and a folklore conjecture arose that the g(m) were uniformly dis-
tributed on the unit circle. The numerical evidence supports this but is not very con-
clusive. An interesting, but unsuccessful, attempt to prove this was made in 1967 by
A. 1. Vinogradov [20].

The first real insight came from the pioneer work of T. Kubota [8], [9]. Further
development of these ideas led to the determination of the asymptotic distribution of
£(c) as ¢ runs over all integers = 1(3) in Z[w], [16].

At the same time that these techniques were developed there also came available
a new and powerful method, due to R. C. Vaughan [19], for bounding sums over primes;
in [19] Vaughan found bounds on the “minor arcs” for certain trigonometric sums over
primes which are used in the Hardy-Littlewood ‘circle” method. By using these two
techniques it has been possible for us to demonstrate that the g(n) are indeed uniformly
distributed on the unit circle. To describe our results more precisely we denote by A(c)
the von Mangoldt function in Z[w]; recall that if ¢c=1(3) then

A(c)=logN(n)  (c=n* = prime, k>1)
=0 (otherwise).

Then our main result is:

Theorem 1. With the notations above we have, for any fixed ¢> 0,

3 8()A(C) (¢f|c)) < X30B*e || x93 +e

N@)=X
c=1(3)

where 1€ Z. The implied constant depends only on e.
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From this, as we shall show in Section 2, it is easy to deduce that the g(n)
(m prime, 7 =1(3)) are uniformly distributed in the following sense:

Theorem 2. There exists an absolute constant A>0 so that for 050, <0,<2n

0,—0
3 = 27

N(n)sX
0; <arg(§(m)) <02

L Li(X)+ O (X exp(—A(logX)'2)).

Theorem 1 does not express what we expect to be the ultimate truth about the
distribution of the g(n). By a formal argument one is led to believe that much more is
true; in [16] the following, in a slightly weaker form, was conjectured.

Conjecture. With the notations above we have, for any ¢>0, € Z,

Y 2(0) A(0) (@/le) =bX¥°+O(X'27%)  (I1=0)
N()=X

c=1(3) =0(X12+9 (/#+0)
where

b=2(21)*3/ST(2/3).

As was discussed in [16] Appendix II this conjecture is supported by the numerical
evidence available. It expresses a bias of the g(n) towards being positive and real, which
“explains” the fact that from the earlier calculations it was not at all clear that the g(n)
would be uniformly distributed.

Theorem 1 is neither the most general or most precise result of its type, for we
have preferred to give as direct and as simple an account as possible. The exponents in
the right-hand side of the estimate of Theorem 1 can be improved by a more sophisticated
treatment. Also, on the left-hand side one can replace the term (¢/|c|)’ by any unitary
GroBencharakter, but then the right-hand side must be suitably modified. From this it
follows that arg(g()) cannot be determined in any simple way by congruence conditions
on 7.

A rather remarkable feature of Theorem 1 is that the saving over the trivial
estimate is a power of X. This is in marked contrast to the present state of knowledge
concerning the generalized prime-number theorem. It is, in fact, the comparitive weakness
of the generalized prime-number theorem which is responsible for the difference between
the error terms of Theorems 1 and 2.

The results above are purely “statistical”’; they give no insight into the determination
of the individual g(c). Following an entirely different line of thought, J. W. S. Cassels
[2], [3] has proposed an explicit formula for g(c) as a product of division values of an
elliptic function which has recently been proved by C. R. Matthews [13]. By means of
a technique of A.J. McGetterick these can be expressed in “‘elementary” terms (cf. [2],
[13]) which are closely related to some further conjectures of J. H. Loxton [12]. Analogues
of these exist for biquadratic Gauss sums. It would be of considerable interest to under-
stand the connection between this circle of ideas and ours.
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Finally it is worth noting that our results are not restricted to cubic Gauss sums.
In an algebraic number field k containing the n'* roots of unity one can form Gauss sums
of order n, although the definition requires more care when k no longer has class-
number 1. The techniques of this paper are again applicable as long as n> 2. The one
point of apparent difficulty is in the use of the results of [15] which we quote in Section 4.
However, we need only [15] Theorem 6. 1 although we also use Theorem 9. 1 for sim-
plicity. But Theorem 6. 1 is a consequence of the theory of Eisenstein series on metaplectic
groups and this is generally valid although it has not been discussed in detail in print.

2. First steps

In this section we shall first state two theorems from which we shall deduce Theorem 1.
Then we shall show how Theorem 2 follows from Theorem 1.

To formulate our results it is convenient to introduce the function
£§(=8 ¢/lc)}  (c=1(3)).
Then we define
HX)= X gl A(),

N@)=X
c=1(3)

and, for a € Z[w],
FX, )= 2 §/(0).
N(@)=£X

c=1(3)
c=0(a)

Theorem 3. With the notations above, and u< X''?, ¢>0, we have

HQEX)—HX)<X (Xu®+ ¥  Max |F(z o))
Na@ysu? Y5752X

a=1(3)
The implied constant depends only on ¢.
Theorem 4. If a € Z[w] satisfies N(«) < X?? and ¢>0 then
F (X, ) <0 X3SN(a) ™' + N(o) " 38X3**e 4 ]| N(a) 14 X12%e)
where 6,=1 (I=0), =0(l#0). The implied constant depends only on &.

The proofs of these two theorems are based on different ideas and it is for this
reason that we have separated them.

Proof of Theorem 1. We can apply the result of Theorem 4 immediately to the
bound for H, given in Theorem 3; thus if ¥ <X"/? and u?> < X?? we have

H,(2X)— H,(X) < X*(Xu™'° + X321 4+ 1| X1 20312 + 5, X% logu).
We take u=X°*' which yields
H,(2X)— H/(X) < X*(X30P" 4 |1| X131y,
Finally one deduces Theorem 1 by replacing X by X/2, X/4,... and summing.
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Proof of Theorem 2. We shall begin this proof by showing that there exists an
absolute constant 4 >0 so that, if ne Z, n+0, |n| <exp((logX)'/?) then

Y g(m)"< Xexp(—A(logX)'?),
Nm=<X

where n denotes a prime of Z[w], n=1(3). To prove this one considers separately the
cases n=0(3), n=1(3) and n=—1(3).

Suppose then that n=0(3) so that n=3/ (/€ Z). Then as g(n)* = —n/|n| one has
X gm=(-1)" X (/|
N(m <X N(msX
By Kubilyus [7] Lemma 4 there exists an absolute constant 4’> 0 so that, if /%0
Y (n/Inl) < X exp(— 4’ logX/(log|!| + (log X)"/?)).
Nm<X

From this the asserted estimate, when n=0(3), follows immediately.

Suppose next that n=1(3); then there exists /€ Z so that n=1-—3/ and hence

X =" X & &/

N(m) =X N(m=X

—(=1' ¥ &m.

N(m=sX
But from Theorem 1 and partial summation one has, for fixed ¢> 0,
> §,(0) A(0)/logN(c) < X?(X3OP! + 1) X%,
N@=X
In this one notes that A(c)=0 unless ¢ is of the form n* (k>0), and g(n*)=0 unless
k=1. Thus
Z gl(n) < Xs(x30/31 + |1|X29/31).
N(m)sX

The asserted estimate is merely a weakened form of this.

Only the case n= —1(3) remains, but this can be reduced to the previous case,
n=1(3), by observing that

g(@)=g(0).

We shall now apply the theorem of Erdos-Turan [4]. This is a quantitative version
of Weyl’s criterion for uniform distribution; it states that if we have a sequence (,, {,,. ..
of complex numbers so that |{,|=1, and if we define, for Y=1, 0<60=2n,

NO, V)= X 1,

k<Y
O<arg(lx) =<0

then the dispersion

D(Y)=Sup|N(0, Y)~ Y0/2m)|

satisfies
D(Y)<<(Ym“‘+ 3 k! )

k=1

s ¢

JgY
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where m is any positive integer and the implied constant is absolute. In our case we
arrange the primes of Z[w], = 1(3), in order of increasing norm; if two primes have the
same norm then their order is immaterial. Then set

Cj=g~(7'tj).
We also let X be a parameter and let
Y(X)=Card{j: N(n)<X}.

Then, by the Erdds-Turan theorem and the preceding estimate, we have, if
m < exp ((logX)'/?),

D(Y(X))< Y(X)m™' + Y(X) exp(—A(log X)'?) logm.
From the generalised prime-number theorem we know that
Y(X)~ Li(X)
and thus, taking m =exp((logX)'/?), we see that
D(Y(X))< X exp(—A"(logX)'/?)

where
A"=Min(1, A4).

From the definition of D(Y) it follows that

Y 1=0Y(X)/2n)+ O(X exp(—A"(logX)"?)).
Nm=sX
0<arg(g(n) <6

If we use the generalised prime-number theorem again we see that therc cxists a con-
stant 4,>0 so that the right-hand side becomes

0 Li(X)/(2n) + O (X exp(—4,(logX)'"?)).
To obtain Theorem 2 now one merely notes that

> 1= ¥ 1- ¥ 1

N(m =X N =X N@m) =X
61 <arg(@(n)) <6, 0 <arg(g(m)) <0 0<arg(@(n)=6:
3. Proof of Theorem 3

The proof of Theorem 3 will be based on an identity due to R. C. Vaughan [19]
which allows us to replace a summation involving the von Mangoldt function by certain
multiple sums. These sums can then be estimated by appropriate methods.
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We shall now define these sums, denoted by X2 j(X ,u) (0£j=<4) where X, u are
positive real numbers, by

2,X, =% A(a) ub) g (abc)
a,b,c

where a, b, ¢ run through square-free integers of Z[w], a, b, c=1(3), and the range of
summation is

if j=0 X<N(abe)£2X, N(bc)=Zu,
j=1 X<N(abe)Z£2X, NbB)=u,
j=2 X< N(abc)£2X, N@=u, N(b)Zu,
j=3 X<N(abc)£2X, N(@@)>u, N(bc)>u, N(b)Zu,
j=4 X< N(abe)=2X, Nbc)=u, N@) =u.

Then Vaughan’s identity is the following combinatorial statement,
X w+2Z,(X, w+2Z,(X,u)=2 (X, u) + 2,(X, u).

Note that our conventions are not quite the same as those of Vaughan. In this identity
X, (X, u) will turn out to be the quantity which we want to estimate, 2, (X, u), 2, (X, u)
can be estimated in terms of the F(z, «), and X,(X, u), the term which causes most
trouble, is estimated by the classical method of 1. M. Vinogradov. If, as we shall hence-
forth assume,

1SusX'?,
then, as the range of summation is empty,

=, (X, u)=0.

Proposition 1. (i) 2 (X, u)= H,(2X)— H/(X),
(i) 12, (X,w|=3log(2X) ¥ Max |F(z, )l
Nesu X2222X
(i) |X,(X,u)|<4logu > Max |F,(z, o)|.
N@) <u? <z=2X

Proof. (i) We have, on writing d=bc,
LXw= ¥  A@gad) X ud).

X<N(ad)£2X bld
N(d)Su

The inner sum is zero unless d=1; hence

X, wy= X A(a) §(a)=H,2X)— H/(X).

X<N@z=2X

(i) For 2, (X, u) we set d=ac which yields

2 Xw= X  ubgddZ Aa).
X<N@pd)s2X ald
N(b)<u

Journal fiir Mathematik. Band 310 16
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Now the inner sum is log N(d). On replacing bd by d we have

2, X, 0w X Y £/(d) (logN(d)—logN (b)) .
N(b)Zu x<d1~;(g)(§)2x

But with F,(z, o) defined as above we find on summing by parts

2X
Y §,(d)logN(d)=F,(2X, b) log2 X — F,(X, b) logX — [ F,(x, b)x~'dx.
X

X<N@)=s2X
a=0()

Hence

PIRAC) logN(d)I <2log2X) Max |F(z b)l.
X<N@)=2X Xgz52X
d=0(b)

We also have

DI A logN(b)’§210gu Max |F,(z, b)l,
X<N@d)s2X X<z52X
d=0(b)

whence (ii) follows as u< X'/2,

(iii) This time we set d=ab. For the moment, let

hd)y= %  ula) A(da),
ald,N(a)Su
N(d/a)=Zu
and note that
lh(d)| =X A(d/a)=logN(d).
ald
Now
I, Xw= ¥ h@g(d)= X hd X g,

X<N(d)s2X N(d)su? X<N()sS2X
N(d)Su? c=0(d)

from which it follows that

12, nls X |h@)]

N(d)su?

DI A

X<N@)s2X
c=0(d)

<4logu ¥ Max |F(z d)|.

Ndy<u? XS252X

This is assertion (iii) and Proposition 1 is now proved.

Proposition 2. If ¢ >0 then
Z, (X, u) < X (X8 + Xu™1P%),
where the implied constant depends only on e.

Proof of Theorem 3. Since u<X'? one has X"®<Xu~'®; hence Theorem 3
follows from Vaughan’s identity, Propositions 1 and 2. It only remains to prove Propo-
sition 2.
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Proof of Proposition 2. We set
A(a)=A(a) §,(a),

D,(d) =( 2z u(b)> £(d).

ald
NMb)Zu

Then, since we have ([5] pp. 443—75)

g/(ad)=(a/d), (d|a), §(a) §(d)  (if (a,d)=1)
=0 (otherwise),

it follows that on writing d=bc, we can express X, (X, ) in the form

L;(X,w= X A(a) D,(d) (a/d), (d]a),.
N(a), N(d)>u
X<N(ad)£2X
(a,d)=1

We now define
M (X)= Max |A(a)|

N@=s2X
M, (X, )= Max |D,(),
and we note that, if ¢>0,
M X)< X, M,X, <X’
where the implied constants depend only on e.
We now divide the range of summation into those over the sets
{a: 2u<N(@ <2}, {d: 2u<Nd) <2 u},

where i, j are non-negative integers and a, d are restricted to square-free integers, =1(3).
In the summation above, as X < N(ad) <2X, we must have

) log(X/u?) —2 < (i+/) log2 < log (X/u?) + 1
and so there are at most 8(2+ log(X/u?)) relevant pairs (i, j).

We now split the sum further. For each pair (i, j) we let Q(i,j) be a positive
integer satisfying

Q(i, ) £Min(2'u, 2u);

it is a new parameter to be chosen later. Then, for g satisfying 1 <¢=<0Q(,j) we in-
troduce intervals I°(i, j, q), J°(i, j, q); if i=j then these are defined by

I°G,j, q) = {x: 2'u<x<2""uj,

.. ; q-1 ~ q
JOU, j,)=<y: 2ul1+ ,,>< §2’u<1+ >},
2.4) {y ( 0in)<” 0G,7)
and, if i<, then correspondingly by

0f: + N )y ni qg—1 i q
I (I’J’q)_{x'zu(1+Q(i,j)><x§2u(1+Q(i,j)>}’
S, ), @) =A{y: Qu<y<2"'u}.

16*
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Then, with these notations
Q. j)

X, =% ¥ 2 A(@) D) (a/d), (d]a);.
i,j a=1 N@eI, j,q)
N@e IO, j,q)
X<N(ad)£2X

We shall now remove the condition X <N(ad)<2X. To do this we define intervals
1G,j, q), J(i, j, q); if i=2)

I(i’j, ¢1)= x: Max 2‘u, <x§Min 2,+1u, 2X

. qg—1 . q ’
2ul 1 2J
“( * Q(LJ’)) " (1 * Q(i,j)>
J(i, 7, 9)=J°(,J, q),

and correspondingly if i<j. We next define
M(X)=Ma§ Card{b: N(b)=z};
zs2

it is well-known that, if ¢> 0,
MX)< X°
Finally we note that
2X 2X

. g—1 ) L ( q )
2Qul{1+ — 2Zul1+ —
( 0@, Jj) G, Jj)
which shows that if we allow for the rounding error we have

Z,(X, 0= X 2 A(a) D,(d) (ald), (dla),
i,j,q IN(@el(,J,q)
N(@deJ(i, ), @)

+O(M,(X) My(X, w) M(X) ¥ 2u2u Q(, /) ?)

i,j.q

2> A(a) D,(d)(ald), (dla),
N(a)el(i,j,q)
N(@d)eJ (i, j,q)

Now, if I is any bounded subinterval of (0, o) let
1(I)=Sup(l)
C()y={aeZ[w]: N(a) eI, a=1(3), a square-free},
n(Iy=Card(C(I)).

We shall prove, using methods of Vinogradov and Jutila [6], the following lemma.

<2uQ(, )",

+0(X1+3sz Q(l,j)_l)

iJj

=2

i,j,q

Lemma 1. Let I, J be bounded subintervals of (1, ) and let X (resp. Y) be a complex-
valued function on C(I) (resp. C(J)) so that |X(a)| <1 (resp. |Y(b)|£1). Then, for >0

> X(a) Y(b) (a/b), (bla)s| < (¢(D) t(NY (n(D)'* t(D'? n(J)""®
aeC(I)

beC(J) +n(D)'* n(J) t(J)'*),

where the implied constant depends only on e.
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Before we prove this we show how it leads to Proposition 2. If i>; we apply
Lemma 1 with I=1(, j, q), 7=J(, }, 9), X(a)=M,(X) ' A(a), Y(b)= M, (X, u)"' D,(b).
Note that

n() < 2'u, t(I) < 2'u,
n(J)<2uMX)0G,j)"", tJ)<2u.

If i<j then we reverse I, J etc.; we assume also that Q(i, /)= Q(/, ). Then, from
Lemma 1, we have <

1530, W< B (Qu20)* () @) 0, )+ @) 1))+ X1 0G0 ) ™).

Next, from (1) we note that X < 2'u 2/u< X, and that, to each allowable value of j
there correspond at most 5 values of i. We now choose

Q(, j)=Min([2'w)'°], [(27w)'"]),
and sum over the range 2/ <2X"'?/u. Since
> Q2w @wP 06N <X T @u < Xum,
S QW Qut < X12Y Q< X7,
X0 N < Xum,
it now follows that
125 (X, w)| < X** (X7B+Xu™ 7).
This proves Proposition 2.

Proof of Lemma 1. We shall make use of the following inequality which is easily
deduced from the Cauchy-Schwarz inequality and which embodies Vinogradov’s method

of handling double sums
m n m 2 1/4
<<<Z Ixilz> 2| yl2> ( 2 ) ;
i=1 j=1 i= j= ii'=1

where x,(1<ism), y,(1=j<n), ¢;(1<i<m,1<j<n) are complex numbers. In our
case this yields

n
2yl

j=1

2\1/4
S X(@) Y(b) (afb); (bla)s| <n(D)'72 n(J)"? <2 5 Lo (@) ) :
aeC() bi,ba |l a
beC(J)

where
th; (a) = (a/b1)3 (bl/a)g, (a/b2)3 (bz/a)3 (lf (a’ bl bz) =1 )’
=0 (otherwise).

Note that this does not only depend on the product b,b,. To the sum over b,, b, we
apply the Cauchy-Schwarz inequality which shows that
4)1/8

2 Apyp, (@)

a

T X(a) Y() (afb); (bla),
b

<n(I)'"? n(J)** ( 2

by, b2
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The remainder of the proof is devoted to the character sum appearing here; in this
we essentially follow Jutila [6].

Since, on expanding one has
4.

2
s

Z Xb.bz (a) Z*, T(a*) Abiby (a*)

where T'(a*) is the number of ways of representing a* as a,a, (a,, a, € C(I)), it follows
that

4

=2 T(a)) T(@3)

* g%
af,a%

2
2 :

b1, bz

Z Xb:bz (a)

a

2 L aras(P)
b

However T(a*) < t(I)® whence

4 2
< t(1)28 Z e—2n(N(a;’)+N(a§))/l(I)2

* %
ar, a3

z

b1, b2

where we now let af, aj run through all integers, = 1(3). On reversing the order of
summations on the right-hand side we obtain

2 Aoyp, (@)

a

3

Z /( a’fag(b)
b

4
<t()® T 10(t(D)72, 2y,
b1, b2

2z

b1, by

2 Yoy, (@

a

where, for any congruence character y of modulus f we define

0w, )= X xlae >"N@v.
a=1(3)
(a, f)=1

We now need the following lemma.
Lemma 2. Let y be a character of modulus f (= 1), not necessarily primitive. Then,
ifwgl, >0,
0w, ) <E@w™' +N(H" 972,
where E(x)=1 if y is principal, =0 otherwise. The implied constant depends only on .

In our case, as b,, b, are square-free, y, , is principal if and only if b, =b,. More-
over, the modulus f, , of x,, satisfies

Nfpp) SO,

Thus we obtain

2 4<<t(l)2‘ (n(J) t(D*+n(J)? t(J)21+9)

by, b2

and from this it follows that

2 Xpup, (@

a

3 X(a) Y(b) (ajb)y (bla),| < t(D** (n())"® n(DV? 12+ n (D' n(JT) 1())*9")

aeC(I)
beC(J)

which leads immediately to the asserted inequality.
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Proof of Lemma 2. Let x, be the primitive character associated with y, and let f,
be its conductor. Define

Ris, =TI (1—y,(m) N(m)~*),
n|f
ntf1

where 7 is understood to be a prime of Z[w]. Let L(s, x,) be the usual L-series over
Q(w) with character y,, and write

A(s, 1) =Q2m)~* I'(s) L(s, x,)-

This satisfies the functional equation
A(s, x) =W, (3N()27° Al =5, 7,)s

where |W,|=1. The inverse Mellin transform now yields

1
O(Ws 0D=—— j w™ A(s, X1) R(s, X)dS

27” Re(s)=a

where ¢ > 1. Since, if f+1, A(s, x,) R(s, x) is holomorphic in Re(s) <1 even when yx is
principal, we may move the line of integration to Re(s)=0. There is a pole of the
integrand at s=1 with residue (6 1/5)"‘ R(1, y)w™ ! if x is principal, and none otherwise;
thus

R
00w, x)=—g(‘—’[§)—E(x)W“+0( [ 16, 2,) RGs. )l lds]).

Re(s)=0
If y is principal then |R(1, x)| < 1. Moreover, by applying the Phragmen-Lindel6f theorem
to L(s, x,) R(s, ) in the strip —e&/2 < Re(s) £1+¢/2 we see that, on Re(s)=0
A (s, x;) R, Dl << N(f)! T2 N(f)72 e o0
and hence

[ 14Gs, x,) RGs, )l lds| < N(f)'72*2.

Re(s)=0

From this Lemma 2 follows immediately.

4. P_roof of Theorem 4

The proof of Theorem 4 is based on the ideas developed in [15], [16]. We shall
first define a generalised cubic Gauss sum; for ¢, re Z[w], c=1(3) we let

glr,0)= X (dfc), e(rdfc),
d(modc)
so that g(c)=g(1, ¢). We shall need some algebraic properties of these sums. First of
all, if se Z[w], (s, ¢)=1 then

g(rs, o) =(s/c); g(r, o).
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Next, if ¢, ¢,=1(3), (¢;, ¢,)=1 then

g(ra CICZ) = (61/6’2)3 (62/61)3 g(r, Cl) g(r, 62)
= (61/c2)3 g(ra Cl) g(r, cz)
=g(c,r,c)) g(r, cy).

Now let 7 be a prime of Z[w], n=1(3). Then, if (z, ¥)=1 one has the following

g(r,o)=0 if n?|c,
g(rm,¢)=0 unless (c,m)=1 or =n?|c,

g(rn, n*)=N(n) g(r, m).
We shall consider three families of Dirichlet series. The first is

Y5, D= X g, N (@/lc)! (eZ)
c=1(3)
which converges absolutely if Re(s) > 3/2. Next, let a € Z[w], « =1(3), o square-free and
define
Y., )= X g, N (@/le) (e

c=1(3)
c=0(a)

and
b5, =% gr,o N (/le). (eZ)

c=1(3)
(c,a)=1

We shall also need, with notations as above,
(s, )= X N(7*(@/le)*, (eZ)
c=1(3)
4,6, =TT (1 =N(@?** (@/|x)*),
where 7(=1(3)) runs through the prime divisors of a. Our first problem is to express
the ¥ (r, s, [) in terms of the ¥(r, s, /). In order to make the formulae more compact
we shall define

Q()=N(e)™* (¢/lcl)f

and we shall write ¥ (r, Q), etc., in place of ¥ (r, s, I), etc. Clearly 2 is a GroBencharakter
of conductor dividing 3.

Lemma 3. Let (o, r)=1 and let o be square-free. Then
() ¥ (ar, D 4, Q= T p(d) N(d) Q(d*) glra/d, d) Y (ro/d, Q),

dla
d=1(3)

(i) ¥,(r, Q=) g(r, ) ¥, (ra, Q),
(iii) ¥,(r, Q 4,(Q= X u(d) N(d@*) Q(d*) Q@) g(r, o/d) Y (ra/d, Q).

dla
d=1(3)
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Remark Assertion (i) is a reflection of the Hecke theory of the metaplectic group
applied to Eisenstein series.

Proof. (i) This we prove by induction on the number of primes dividing «; the
assertion is trivial if « =1. Suppose now that « is square-free and that == 1(3) is a prime
of Z[w], nyoar. We consider the Dirichlet series defining ¥ (r, Q); this can be written as

U, Q=% X g nh) Q.
k=0 ¢'=1(3)
(¢’ ma)=1
However, g(r, ¢'n*)=0 unless k=0, 1 and
g(r, c'n)=g(rn, c’) g(r, m),
whence
Va(r, Q=1 (r, Q)+ Q(m) g(r, m) ¥, (rm, ).
Similarly, one proves that
U, rm, @ =, (rm, Q)+ Q(n*) N(m) g(r, @) ¥, (r, Q).
From these two equations one has, on eliminating lﬁu(r, Q),
Jonrm, @) 4,(Q) = (rm, Q) — Q(n?) N(n) g(r, 1) ¥, (r, Q).

Now we shall assume that (i) is true for « and all r; we shall verify that it is true
with a replaced by an. Indeed, by the above with ar in place of r, we find on multi-
plying through by 4 (£2)

¥, (anr, Q) 4, (Q) =y (anr, Q) 4,(Q) — Q(n?) N(n) g(ar, n) y, (ar, Q) 4,(Q).

We now make use of the induction hypothesis which shows that the right-hand side is
equal to

Y u(d) N(d) Q(d*) g(ran/d, d) Y (ran/d, Q)

dla

+X u(dn) N(dn) Q(d*n?) g(rajd, d) g(ro, m) Y (ra/d, Q).
d|a
Since g(ro/d, d) g(ra, n) =g (ra/d, dn) we may replace dr in the second sum by d, which
yields for the expression above
3 u(d) N(d) Q(d?) g(ran/d, d) y (ran/d, Q).
dlan

This completes the induction step and the proof of (i).

To prove (ii) we merely remark that if g(r, ¢)+0 and c=0(x) then ¢ is of the
form c¢,a where (c,, )=1. Thus
Y (r, Q= 3 g(r,c,0) Q(c,0)

ca=1(3)
(cr,@)=1

=< > g(ra,c) Q(cl)) g(r, o) ()

1 =1(3)
(c1,0)=1

=Q(a) g(r, o) ¥, (re, Q),
as asserted.

Journal fiir Mathematik. Band 310 17
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From (i), (i) formula (iii) follows at once since

g(r, o) g(ra/d, d)=g(r, o/d) g(ar/d, d) g(ar/d, d)
=N(d) g(r, a/d).

Whereas Lemma 3 is essentially formal the next lemma is a consequence of Kubota’s
theory, as developed in [15], and in this rests the possibility of making the estimates
we need.

Lemma 4. The function Y (r, s, l) can be continued as a meromorphic function of s
to the complex plane; it is entire in Re(s)>1 if [+0, and has at most a simple pole at
s=4/3 if =0. If r=1(3), r square-free, the residue of Y (r, s, 0) at s=4/3 is

Po(N=cog(, ) N~

where c, is a known constant. Consequently  (r,s, 1) ((r,®)=1, a square-free) can be
meromorphically continued to the complex plane; it is also entire in Re(s)>1 if [+0,
and if 1=0 it has at most a simple pole at s=4/3. If r=1(3), r square-free, the residue

p(, r) of Y (r,s,0) at s=4/3 is
P, )=c,N@) ' gd,n NN PTI(1+Nm™') .

|
Lete>0and o, =3/2+e. If s=o+it,0, 2020,—1/2, |s—4/3|>1/12 then
Y, (r, s, [) < N(0)>2=9 L N(p)1 /209 (1 4 P4 27170,
where the implied constant depends only on e.

Proof. The meromorphic continuation of ¥ (r, s,/) and hence, by Lemma 3, that
of ¥ (r, s, [) follows from [15] Theorem 6.1 as does the assertion about the poles in
Re(s) > 1. The residue p,(r) is given by [15] Theorem 9.1 and [15] II, from which it
follows that

co=(2m)%3 (3372 8F(2/3)£Q(w)(2))“,
where (4, (s) is the Dedekind zeta-function of Q(w). From Lemma 3 (iii) we have
P, r)=c,4,(4/3,07" X u(d) N(@)~2 N(r)~?? g(r, o/d) g (1, ar/d)

d|a
=c,N(N*P N~ g, 4,4/3,07" % p(d) Nd)™,
d=1(3)

from which the stated result follows easily.
It therefore remains to prove the estimates. Let
G()=Qmn)" > I'(s+|ll/2—1/3) ' (s+11|/2—2/3)
and
F(r,s,)=G,(s) Y (r,s,1){(3s—2,1).

Then it is shown in [15] Theorem 6.1 that F(r, s, /) can be continued to the complex
plane as an entire function if /40, and as a meromorphic function having at most
simple poles at s=4/3, 2/3 if /=0. Note that consequently ¥ (r, s, /) {(3s —2, /) is regular
at s=2/3. In vertical strips of finite width F(s, r, /) remains bounded as |Im(s)| — oo.



Heath-Brown and Patterson, Distribution of Kummer sums 127

Moreover, there is a functional equation which expresses F(r,2—s, —/) as a linear
combination of functions N(r)*"! F(rn, s, ) where n runs through the divisors of 9
(in Z[w]). The coefficients of this linear combination are quotients of finite Dirichlet
series. The precise statement is not relevant at the moment since we use it only to derive
an upper bound for ¥ (r, s, /) {(35—2, 1) on Re(s)=2—o,. Indeed, if r' has no squared
factors other than powers of ]/——3 then, on Re(s)=a,,

v, s, D{Bs—-2, <1,

where the implied constant depends only on ¢; this follows from the multiplicativity
of |g(r, ¢)| in ¢ whence one obtains, if ¢ =Re(s) > 3/2, the following majorization

e, s, DIS T (1+N@Y77) T1 (1+N@>*7>)< T1 (1+N@'"*7).

nir’ w|r’ )V -3
n*l -3 n¥l -3

From the functional equation one deduces that if Re(s)=2—o0,

Y(r,s, 1) {(3s=2, ) < NN~ |G,(2—5)/G,(5)I.
But

(5/3—s+11/2) [&/3—5+1]/2)
T(s—1/3+12) T(s—2/3+[1]]2)

from which one obtains, by Stirling’s formula, that on Re(s)=2—o¢,

G,(2—-5)/G/(s)= m)*e—b,

IG,(2—5)/G,(s)| << (1 4[>+ 1F)2r= D),
where ¢=1Im(s). Thus, on Re(s)=2—o0,
U, s, {Bs—=2, )< NF)" (142422,
We may now consider the entire function
(s—4/3)s ' (r,s,1){(Bs—2,1)

in the strip 2—0g, SRe(s)<o,; it satisfies the conditions of the precise form of the
Phragmen-Lindel6f theorem due to Rademacher [17] p. 66 from which one deduces that
if |s—4/3|>1/12,2—0, <Re(s)=0 <0, then

(5, 1) {Bs—2, ) < N2~ (1 + 12 41277

On noting that 4_(s, /) is made up of local factors of {(3s—2, /) (those corresponding to
primes dividing «) we see that

(Aa(s, ND{Bs—2, l))“<<1, (6,—1)250=0)).
Hence

W(r, 5, 1) A (s, 1) H < N2 (14 12 4 2 =°

if |s—4/3|>1/12,06,—1/2<0 <0,. This does not require that (x, r)=1.

17*
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We now use Lemma 3 (iii) which yields

‘//a(r’ s, l) <<N(a)1/2“0+1/2(o'1—a} N(r)l/l(al—a') (1 +12 + t2)a'1—o' Z N(d)2—26—1/2-1/2(o'x—a)
dla

in the same region. But as

2-20—-1/2-1/2(c,—0)< —3/4
it follows that

Z N(d)2—20—1/2—1/2(01_6)<<N(O()E,

dja

Thus, as o, =3/2+¢, we see that
|//u(r, s, l)<<N(a)3/2(o'1—a)—l N(r)l/Z(ul—a) (1 +12+ tz)o,—a,

as asserted. Lemma 4 is now proved.

We are now in a position to prove Theorem 4 which is achieved by a Tauberian
argument. We let

2 £0);

N(c)=n
c=1(3)
c=0(a)

note that a,=0 unless n=0(N(x)). Define the Dirichlet series
fE=N@*Yan =Ny, (1,s+1/2,1).
We shall apply [18] Lemma 3. 12 to this function. To justify this we note that if s> 1

2lan=N@)’ X 1§(IN(@)*
c=1(3)
c=0(a)

£ X NoO*<G-D!
c=1(3)
as s — 1. Also, for fixed ¢>0

&/2
anma) <«<n'e,

where the implied constant depends only on e. If also X/N(x)=1/2 (mod 1) then [18]
Lemma 3. 12 shows that

ay+iT

S a=oe [ f) (XINGPs1ds+O(XN@)™ T-1),

n
neX 2ni

where o, =1+¢. The left-hand side is F,(X, «); an application of Cauchy’s theorem to
the right-hand side yields now, if 6,=0,—1/2,

dz—iT

a3—iT o3+iT o2+iT
F(X,0)=0,p(a, 1) 6/5 X/ + <

[+ 1+ )f(s) (X/N(@)fs~"ds

a2—-iT o63—iT a3+iT

O(X"*N(@) ™' T").
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We shall estimate the three integrals using Lemma 4; we shall assume that ¢ < 1/4. Since
our bound for

Lf(s) (X/N (@)Yl
is monotonic on the horizontal lines the first and third integrals are bounded by
O(X*N(@) ™ ' T~ ")+ O (X (1 + >+ TH'2 Ny~ ' T-1),

The second integral is bounded by

T
0<X"3N(oc)'”4 f a+r2+13)12 (1+t2)'“2dt>.

-T

However, as

A+ + )2 <@ +tH2 41,

we have

T
[ A+P+)2 (1 +13) " 2di< T+l logT.

-T
These results taken together show that
F(X,0)=08,p(a, 1) 6/5X°°+O(X*N() ' T™')+ O(X*N(x)~"*T)
+O(X*N()~"*]l| logT).
Assuming that N(x) < X2 we take T=N(x) 38 X'* 50 that
F (X, 0)=0,p(a, 1) 6/5 X35+ O(X>***N (o)~ *®)+ O (X'***N(o)"'*|I| log X ).
This, together with the observation from Lemma 4 that

pl, )< N(@)™,

proves Theorem 4.

Remark. Had we not known p(a, 1) it would still have been possible to estimate
it by the Phragmen-Lindelof theorem. This would have shown that
P, 1) << N(@)~ 347,

which would have been quite sufficient to prove Theorem 1. Thus, as indicated in
Section 1, we could have avoided using [15] Theorem 9. 1.
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