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Abstract. The Oseen operators are ∆−1∂xj
∂xk

et∆, where ∆ is the standard
Laplace operator and t ∈ R+. We give an explicit expression for the kernels
of these Fourier multipliers which involves the incomplete gamma function and
the confluent hypergeometric functions of the first kind. This explicit expression
provides directly the classical decay estimates with sharp bounds. Although the
computations are elementary and the definition of the Oseen kernels goes back
to the 1911 paper of this author, we were not able to find the simple explicit
expression below in the literature.
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1. Introduction

The (Marcel) Riesz operators (Rj)1≤j≤n are the following Fourier multipliers (we

use the notation û for the Fourier transform of u: our normalization is given in the

formula (3.1) of our appendix)

(1.1) (R̂ju)(ξ) = ξj|ξ|−1û(ξ), Rj = Dj/|D| = (−∆)−1/2 ∂

i∂xj

.

The Rj are selfadjoint bounded operators on L2(Rn) with norm 1. The Riesz op-

erators are the natural multidimensional generalization of the Hilbert transform,

given by the convolution with pv i
πx

which is the one-dimensional Fourier multiplier

by sign ξ. These operators are the paradigmatic singular integrals, introduced by

Calderón and Zygmund and are bounded on Lp(Rn) for 1 < p < ∞ and send L1

into L1
w. However they are not continuous on the Schwartz class, because of the

singularity at the origin. The Leray-Hopf projector1 is the following matrix valued

Fourier multiplier, given by

(1.2) P(ξ) = Id−ξ ⊗ ξ

|ξ|2
=

(
δjk − |ξ|−2ξjξk

)
1≤j,k≤n

, P = P(D) = Id−R⊗R.

We can also consider the n × n matrix of operators given by Q = R ⊗ R =

(RjRk)1≤j,k≤n sending the vector space of L2(Rn) vector fields into itself. The

operator Q is selfadjoint and is a projection since
∑

l R
2
l = Id so that Q2 =

(
∑

l RjRlRlRk)j,k = Q. As a result the operator

(1.3) P = Id−R⊗R = Id−|D|−2(D ⊗D) = Id−∆−1(∇⊗∇)

Date: April 1, 2008.
1That projector is also called the Helmholtz-Weyl projector by some authors.
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is also an orthogonal projection, the Leray-Hopf projector (a.k.a. the Helmholtz-

Weyl projector); the operator P is in fact the orthogonal projection onto the closed

subspace of L2 vector fields with null divergence. We have for a vector field u =∑
j uj∂j, the identity grad div u = ∇(∇ · u), and thus

grad div = ∇⊗∇ = ∆ R⊗R, so that(1.4)

Q = R⊗R = ∆−1 grad div, div R⊗R = div,(1.5)

which implies div Pu = div u− div(R⊗ R)u = 0, and if div u = 0, we have Qu = 0

and u = Qu + Pu = Pu. This operator plays an important role in fluid mechanics

since the Navier-Stokes system ([7], [3], [6]) for incompressible fluids can be written

as

(1.6)

∂tv + P((v · ∇)v)− ν4v = 0,
Pv = v,
v|t=0 = v0.

As already said for the Riesz operators, P is not a classical pseudodifferential opera-

tor, because of the singularity at the origin: however it is indeed a Fourier multiplier

with the same continuity properties as those of R, and in particular is bounded on

Lp for p ∈ (1, +∞). In three dimensions the curl operator is given by the matrix

(1.7) curl =

 0 −∂3 ∂2

∂3 0 −∂1

−∂2 ∂1 0

 = curl∗

so that curl2 = −∆ Id + grad div and (the Biot-Savard law)

(1.8) Id = (−∆)−1 curl2 +∆−1 grad div = (−∆)−1 curl2 + Id−P,

which gives

(1.9) curl2 = −∆P,

so that [P, curl] = 0 and

Pcurl = curlP = curl(−∆)−1 curl2 = curl
(
Id−∆−1 grad div

)
= curl(1.10)

since curl grad = 0 (note also that the transposition of the latter gives div curl = 0).

The solutions of (1.6) are satisfying

v(t) = etν∆v0 −
∫ t

0

e(t−s)ν∆P∇
(
v(s)⊗ v(s)

)
ds.

2. The action of the Leray projector on Gaussian functions

We want now to compute the action of P on Gaussian functions.
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Lemma 2.1. Let n ≥ 1 be an integer, 1 ≤ j, k ≤ n and a > 0. Then, with

ua(x) = an/2e−πa|x|2, we have

for j 6= k, (RjRkua)(x) = −xjxk|x|−n−2γ(1 +
n

2
, aπ|x|2)π−n/2,

(2.1)

(R2
jua)(x) = −x2

j |x|−n−2γ(1 +
n

2
, aπ|x|2)π−n/2 +

1

2
|x|−nγ(

n

2
, aπ|x|2)π−n/2,(2.2)

where γ is the incomplete gamma function (see below a reminder).

A reminder. We recall the definition of the (lower) incomplete Gamma function

(see e.g. [2], [1]),

(2.3) γ(a, x) =

∫ x

0

ta−1e−tdt

= a−1xae−x
1F1(1; 1 + a; x) = a−1xa

1F1(a; 1 + a;−x),

where 1F1 is the confluent hypergeometric function of the first kind. Also for n

positive integer, we have

γ(n, x) = (n− 1)!
(
1− e−x

∑
0≤k≤n−1

xk

k!

)
= Γ(n)

(
1− e−x

∑
0≤k<n

xk

k!

)
.

The confluent hypergeometric function has a hypergeometric series given by

1F1(a; b; z) = 1 +
a

b
z +

a(a + 1)

b(b + 1)

z2

2!
+ · · · =

∑
k≥0

(a)k

(b)k

zk

k!
,

where (x)n stands for the Pochhammer symbol

(x)n =
Γ(x + n)

Γ(x)
= x(x + 1) . . . (x + n− 1).

We note also the following identity

(2.4) ∀a ∈ C\Z∗
−, 1F1(1; 1 + a; z) =

∑
k≥0

zk

(a + 1) . . . (a + k)

which is an entire function of the variable z for these values of a; as a result, we can

write for Re a > 0, x ≥ 0,

(2.5) γ(a, x) = a−1xae−x
∑
k≥0

xk

(a + 1) . . . (a + k)
,

and this implies that

(2.6) ∀a > 0,∀x ≥ 0, a−1xae−x ≤ γ(a, x) ≤ min
(
Γ(a), a−1xa

)
.

We have also

(2.7) γ(1 + a, x) = aγ(a, x)− xae−x.
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Remark 2.2. The above lemma can be generalized easily to the case where A is

a complex-valued symmetric matrix with a positive definite real part, with uA(x) =

(det A)1/2e−π〈Ax,x〉, with (det A)1/2 = e
1
2

trace Log A (see the appendix for the choice of

the determination of Log A).

Proof of the lemma. We consider, for t > 0 the smooth function

(2.8) Fj,k(t, x) =

∫
Rn

e2iπxξe−t4π2|ξ|2ξjξk|ξ|−2dξ,

and we note that

(2.9)
∂Fjk

∂t
(t, x) = −4π2

∫
e2iπxξe−t4π2|ξ|2ξjξkdξ

= −4π2 1

(2iπ)2
∂xj

∂xk

∫
e2iπxξe−t4π2|ξ|2dξ = ∂xj

∂xk
(e−

|x|2
4t )(4πt)−n/2,

so that

for j 6= k,
∂Fjk

∂t
(t, x) = (4πt)−n/2e−

|x|2
4t (

xjxk

4t2
),(2.10)

for j = k,
∂Fjj

∂t
(t, x) = (4πt)−n/2e−

|x|2
4t (

x2
j

4t2
− 1

2t
).(2.11)

Since we have also Fj,k(+∞, x) = 0, we obtain for j 6= k, x 6= 0,

(2.12) Fjk(
1

4π
, x) =

∫ 1/4π

+∞
(4πt)−n/2e−

|x|2
4t

xjxk

4t2
dt

= −xjxk

∫ π|x|2

0

sn/2|x|−ne−s4s2|x|−4|x|2s−2dsπ−n/2

= −xjxk|x|−n−2

∫ π|x|2

0

sn/2e−sdsπ−n/2,

i.e. for j 6= k,

(2.13)

∫
Rn

e2iπxξe−π|ξ|2ξjξk|ξ|−2dξ = −xjxk|x|−n−2

∫ π|x|2

0

sn/2e−sdsπ−n/2.

For j = k, we have

(2.14) Fjj(
1

4π
, x) =

∫ 1/4π

+∞
(4πt)−n/2e−

|x|2
4t (

x2
j

4t2
− 1

2t
)dt

= −x2
j |x|−n−2

∫ π|x|2

0

sn/2e−sdsπ−n/2 +
1

2
|x|−n

∫ π|x|2

0

s
n
2
−1e−sdsπ−n/2,

so that

(2.15)

∫
Rn

e2iπxξe−π|ξ|2ξ2
j |ξ|−2dξ

= −x2
j |x|−n−2

∫ π|x|2

0

sn/2e−sdsπ−n/2 +
1

2
|x|−n

∫ π|x|2

0

s
n
2
−1e−sdsπ−n/2.
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As a consequence, for t > 0, j 6= k, we have

(2.16) Fjk(t, x) = −γ(1 +
n

2
,
|x|2

4t
)π−n/2 xjxk

|x|2+n
,

and

(2.17) Fjj(t, x) = −γ(1 +
n

2
,
|x|2

4t
)π−n/2

x2
j

|x|2+n
+

1

2
γ(

n

2
,
|x|2

4t
)π−n/2 1

|x|n
.

As a result, we have indeed, with a > 0, j 6= k,

(RjRkua)(x) =

∫
Rn

e2iπxξe−πa−1|ξ|2ξjξk|ξ|−2dξ(2.18)

= an/2

∫
Rn

e2iπa1/2xξe−π|ξ|2ξjξk|ξ|−2dξ(2.19)

= an/2Fjk(
1

4π
, a1/2x)(2.20)

= −xjxk|x|−n−2γ(1 +
n

2
, aπ|x|2)π−n/2,(2.21)

and for j = k,

(R2
jua)(x) =

∫
Rn

e2iπxξe−πa−1|ξ|2ξ2
j |ξ|−2dξ(2.22)

= an/2

∫
Rn

e2iπa1/2xξe−π|ξ|2ξ2
j |ξ|−2dξ(2.23)

= an/2Fjj(
1

4π
, a1/2x)(2.24)

= −x2
j |x|−n−2γ(1 +

n

2
, aπ|x|2)π−n/2 +

1

2
|x|−nγ(

n

2
, aπ|x|2)π−n/2.�

Theorem 2.3. Let n ≥ 1 be an integer and ∆ =
∑

1≤j≤n ∂2
xj

be the standard Laplace

operator on Rn. For t ≥ 0, we define the Oseen matrix operator

(2.25) Ω(t) = ∆−1(∇⊗∇)et∆ = (I −P)et∆ = ∆−1(∂xj
⊗ ∂xk

)1≤j,k≤ne
t∆.

The operator Ω(t) is the Fourier multiplier by the matrix Ω(t, ξ) = |ξ|−2(ξ⊗ξ)e−4πt|ξ|2

and is given by the convolution (w.r.t. the variable x) with the matrix
(
Fjk(t, x)

)
1≤j,k≤n

where

for j 6= k, Fjk(t, x) = −xjxk|x|−n−2γ(1 +
n

2
,
|x|2

4t
)π−n/2,(2.26)

Fjj(t, x) = −x2
j |x|−n−2γ(1 +

n

2
,
|x|2

4t
)π−n/2 +

1

2
|x|−nγ(

n

2
,
|x|2

4t
)π−n/2,(2.27)

Fjj(t, x) = γ(
n

2
,
|x|2

4t
)π−n/2 1

2
|x|−n−2

(
|x|2 − nx2

j

)
+ x2

j |x|−2(4πt)−n/2e−
|x|2
4t .(2.28)

On t > 0, the functions Fjk are real analytic functions of the variable t−1/2x multi-

plied by t−n/2. We have also

(2.29) Fjk(t, x) = (4πt)−n/2Fjk

( 1

4π
, x(4πt)−1/2

)
,
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and with |Sn−1| = 2πn/2

Γ(n/2)
,

(2.30) |Fjk(t, x)| ≤ |x|−n n + 1

|Sn−1|
, |Fjk(t, x)| ≤

( |x|2

2(n + 2)t
+

1

n

)
(4πt)−n/2.

Moreover we have

for j 6= k, Fjk(t, x) = − 2

n + 2

xjxk

4t
(4πt)−n/2e−

|x|2
4t 1F1(1; 2 +

n

2
;
|x|2

4t
)(2.31)

and

(2.32) Fjj(t, x) = − 2

n + 2

x2
j

4t
(4πt)−n/2e−

|x|2
4t 1F1(1; 2 +

n

2
;
|x|2

4t
)

+
1

n
(4πt)−

n
2 e−

|x|2
4t 1F1(1; 1 +

n

2
;
|x|2

4t
).

The proof is an immediate consequence of (2.16), (2.17), (2.6). �

Remark 2.4. This theorem provides a direct proof, using special functions, of the

estimates established in a more general context in [4] as well as those stated on page

27 of [6].

Remark 2.5. We get easily from the first part of the previous theorem that the

kernel of the operator I − P, which is the matrix Fourier multiplier |ξ|−2(ξ ⊗ ξ),

is the singular integral given by the (principal-value) convolution with the matrix

(fjk(x)) where

for j 6= k, fjk(x) = −xjxk|x|−n−2Γ(1 +
n

2
)π−n/2 = −xjxk|x|−n−2 n

|Sn−1|
,(2.33)

fjj(x) = |x|−n−2(|x|2 − nx2
j)|Sn−1|−1 + n−1δ0(x).(2.34)

We note also that the functions gjk = fjk − n−1δj,kδ0 are homogeneous of degree −n

on Rn\{0} with integral 0 on Sn−1 so that the principal value

〈Tjk, ϕ〉 = lim
ε→0+

∫
|x|≥ε

gjk(x)ϕ(x)dx

actually defines a homogeneous distribution Tjk of degree −n on Rn ([5]).

3. Appendix

The Fourier transformation. The Fourier transform of a function u in the Schwartz

class S (Rn) is defined by the formula

(3.1) û(ξ) =

∫
e−2iπxξu(x)dx,

and it is an isomorphism of S (Rn) so that u(x) =
∫

e2iπxξû(ξ)dξ. That isomor-

phism extends to an isomorphism of the temperate distributions S ′(Rn) via the

duality formula 〈T̂ , φ〉S ′,S = 〈T, φ̂〉S ′,S . The Fourier transform is also a unitary

transformation of L2(Rn).
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The logarithm of a nonsingular symmetric matrix. The set C\R− is star-

shaped with respect to 1, so that we can define the principal determination of the

logarithm for z ∈ C\R− by the formula

(3.2) Log z =

∮
[1,z]

dζ

ζ
.

The function Log is holomorphic on C\R− and we have Log z = ln z for z ∈ R∗
+

and by analytic continuation eLog z = z for z ∈ C\R−. We get also by analytic

continuation, that Log ez = z for | Im z| < π.

Let Υ+ be the set of symmetric nonsingular n× n matrices with complex entries

and nonnegative real part. The set Υ+ is star-shaped with respect to the Id: for

A ∈ Υ+, the segment [1, A] =
(
(1 − t) Id +tA

)
t∈[0,1]

is obviously made with sym-

metric matrices with nonnegative real part which are invertible, since for 0 ≤ t < 1,

Re
(
(1− t) Id +tA

)
≥ (1 − t) Id > 0 and for t = 1, A is assumed to be invertible.

We can now define for A ∈ Υ+

(3.3) Log A =

∫ 1

0

(A− I)
(
I + t(A− I)

)−1
dt.

We note that A commutes with (I + sA) (and thus with Log A), so that, for θ > 0,

d

dθ
Log(A + θI) =

∫ 1

0

(
I + t(A + θI − I)

)−1
dt

−
∫ 1

0

(
A + θI − I

)
t
(
I + t(A + θI − I)

)−2
dt,

and since d
dt

{(
I + t(A+θI−I)

)−1
}

= −
(
I + t(A+θI−I)

)−2
(A+θI−I), we obtain

by integration by parts d
dθ

Log(A + θI) = (A + θI)−1. As a result, we find that for

θ > 0, A ∈ Υ+, since all the matrices involved are commuting,

d

dθ

(
(A + θI)−1eLog(A+θI)

)
= 0,

so that, using the limit θ → +∞, we get that ∀A ∈ Υ+,∀θ > 0, eLog(A+θI) = (A+θI),

and by continuity

(3.4) ∀A ∈ Υ+, eLog A = A, which implies det A = etrace Log A.

Using (3.4), we can define for A ∈ Υ+, using (3.3)

(3.5) (det A)−1/2 = e−
1
2

trace Log A = | det A|−1/2e−
i
2

Im(trace Log A).

• When A is a positive definite matrix, Log A is real-valued and (det A)−1/2 =

| det A|−1/2.

• When A = −iB where B is a real nonsingular symmetric matrix, we note

that B = PDtP with P ∈ O(n) and D diagonal. We see directly on the

formulas (3.3),(3.2) that

Log A = Log(−iB) = P (Log(−iD))tP, trace Log A = trace Log(−iD)
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and thus, with (µj) the (real) eigenvalues of B, we have Im (trace Log A) =

Im
∑

1≤j≤n Log(−iµj), where the last Log is given by (3.2). Finally we get,

Im (trace Log A) = −π

2

∑
1≤j≤n

sign µj = −π

2
sign B

where sign B is the signature of B. As a result, we have when A = −iB, B

real symmetric nonsingular matrix

(3.6) (det A)−1/2 = | det A|−1/2ei π
4

sign(iA) = | det B|−1/2ei π
4

sign B.

Proposition 3.1. Let A be a symmetric nonsingular n × n matrix with complex

entries such that Re A ≥ 0. We define the Gaussian function vA on Rn by vA(x) =

e−π〈Ax,x〉. The Fourier transform of vA is

(3.7) v̂A(ξ) = (det A)−1/2e−π〈A−1ξ,ξ〉,

where (det A)−1/2 is defined according to the formula (3.5). In particular, when

A = −iB with a symmetric real nonsingular matrix B, we get

Fourier(eiπ〈Bx,x〉)(ξ) = v̂−iB(ξ) = | det B|−1/2ei π
4

sign Be−iπ〈B−1ξ,ξ〉.

Proof. Let us define Υ∗
+ as the set of symmetric n × n complex matrices with a

positive definite real part (naturally these matrices are nonsingular since Ax = 0 for

x ∈ Cn implies 0 = Re〈Ax, x̄〉 = 〈(Re A)x, x̄〉, so that Υ∗
+ ⊂ Υ+).

Let us assume first that A ∈ Υ∗
+; then the function vA is in the Schwartz class

(and so is its Fourier transform). The set Υ∗
+ is an open convex subset of Cn(n+1)/2

and the function Υ∗
+ 3 A 7→ v̂A(ξ) is holomorphic and given on Υ∗

+ ∩ Rn(n+1)/2 by

(3.7). On the other hand the function Υ∗
+ 3 A 7→ e−

1
2

trace Log Ae−π〈A−1ξ,ξ〉 is also

holomorphic and coincides with previous one on Rn(n+1)/2. By analytic continuation

this proves (3.7) for A ∈ Υ∗
+.

If A ∈ Υ+ and ϕ ∈ S (Rn), we have 〈v̂A, ϕ〉S ′,S =
∫

vA(x)ϕ̂(x)dx so that

Υ+ 3 A 7→ 〈v̂A, ϕ〉 is continuous and thus (note that the mapping A 7→ A−1 is

an homeomorphism of Υ+), using the previous result on Υ∗
+,

〈v̂A, ϕ〉 = lim
ε→0+

〈v̂A+εI , ϕ〉 = lim
ε→0+

∫
e−

1
2

trace Log(A+εI)e−π〈(A+εI)−1ξ,ξ〉ϕ(ξ)dξ

(by continuity of Log on Υ+ and domin. cv.) =

∫
e−

1
2

trace Log Ae−π〈A−1ξ,ξ〉ϕ(ξ)dξ,

which is the sought result. �

Some standard examples of Fourier transform. Let us consider the Heaviside

function defined on R by H(x) = 1 for x > 0, H(x) = 0 for x ≤ 0. With the notation

of this section, we have, with δ0 the Dirac mass at 0, Ȟ(x) = H(−x),

Ĥ + ̂̌H = 1̂ = δ0, Ĥ − ̂̌H = ŝign,
1

iπ
=

1

2iπ
2δ̂0(ξ) = D̂ sign(ξ) = ξŝignξ
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so that ξ
(
ŝignξ − 1

iπ
pv(1/ξ)

)
= 0 and ŝignξ − 1

iπ
pv(1/ξ) = cδ0 with c = 0 since the

lhs is odd. We get

(3.8) ŝign(ξ) =
1

iπ
pv

1

ξ
,

̂
pv(

1

πx
) = −i sign ξ, Ĥ =

δ0

2
+

1

2iπ
pv(

1

ξ
).
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