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We claim that an alternative Kummer function based Zeta function theory overcomes current challenges of 
several RH criteria. The probably most elegant RH criterion is the Hilbert-Polya conjecture, which is basically 
about the existence of a convolution integral representation of the Zeta function, including an appropriately 
defined domain. The following few pages are about a Kummer function based approach to prove the Hilbert-Polya 
conjecture, which is basically about a replacement of the exponential function 𝑔(𝑥) ≔ 𝑒−𝑥 by 
 

𝑔∗(𝑥) ≔ ∫ 𝐹1 1 (
1

2
,

3

2
; −t)

𝑑𝑡

𝑡

∞

𝑥
   with −𝑥𝑔∗′(𝑥) = 𝐹1 1 (

1

2
,

3

2
; −x) , (+) 

 

Putting 𝜇(𝑥): = − ∫ 𝑒−𝑡 𝑑𝑡

𝑡

∞

𝑥
 where  𝑑𝜇(𝑥) = 𝑒−𝑥 𝑑𝑥

𝑥
, and 𝜗(𝑥): = − ∫ 𝐹1 1 (

1

2
,

3

2
; −t)

𝑑𝑡

𝑡

∞

𝑥
 where  𝑑𝜗(𝑥) = 𝐹1 1 (

1

2
,

3

2
; −x)

𝑑𝑥

𝑥
 this 

leads to the following Mellin transforms relationship 

 
𝛤(

𝑠

2
)

1−𝑠
=

1

1−𝑠
∫ 𝑥𝑠/2𝑑𝜇(𝑥) = ∫ 𝑥𝑠/2𝑑𝜗(𝑥)

∞

0

∞

0
 . 

 
Regarding the entire Zeta function 
 

𝜉(𝑠): =
𝑠

2
𝛤(

𝑠

2
)(𝑠 − 1)𝜋−𝑠/2휁(𝑠) 

 

the concerned Mellin transforms 1ort h underlying Gaussian function 𝑔(𝜋𝑥2) = 𝑒−𝜋𝑥2
 are given by 

 

𝑀[𝑒−𝜋𝑥2
](𝑠) =

1

2
𝜋−𝑠/2𝛤(

𝑠

2
)  resp.   𝑀[−𝑥𝑔′(𝑥)](𝑠) =

𝑠

2
𝜋−

𝑠

2𝛤 (
𝑠

2
) = 𝜋−

𝑠

2𝛤 (1 +
𝑠

2
). 

 
The Poisson summation formula applied to 
 

𝐺(𝑥): = ∑ 𝑔(𝜋𝑛2𝑥2)∞
−∞ = ∑ 𝑒−𝜋𝑛2𝑥2∞

−∞           , 𝜓(𝑥2): = 2 ∑ 𝑔(𝜋𝑛2𝑥2)∞
𝑛=1 = 2 ∑ 𝑒−𝜋𝑛2𝑥2∞

𝑛=1  
 

leads to the “duality” equation 𝐺(𝑥) = 1 + 𝜓(𝑥2) =
1

𝑥
𝐺 (

1

𝑥
) =

1

𝑥
[1 + 𝜓(

1

𝑥2
)], which is equivalent to the Riemann duality 

equation 𝜉(𝑠) = 𝜉(1 − 𝑠) (*). The underlying formula 
 

  𝛤 (
𝑠

2
) 𝜋−

𝑠

2휁(𝑠) = ∫ 𝑥𝑠/2𝜓(𝑥)
𝑑𝑥

𝑥

∞

0
= ∫ 𝜓(𝑥)[𝑥𝑠/2 + 𝑥(1−𝑠)/2]

𝑑𝑥

𝑥
−

1

𝑠(1−𝑠)

∞

1
    (**) 

 

results into the following (Fourier) integral representations 
 

𝜉(𝑠) = 4 ∫
𝑑

𝑑𝑥

∞

1
[𝑥

3

2𝜓′(𝑥)] 𝑥−
1

4𝑐𝑜𝑠ℎ [
1

2
(𝑠 −

1

2
) 𝑙𝑜𝑔 𝑥)] 𝑑𝑥 , 𝑅𝑒(𝑠) > 1     (***), (****) 

 

𝜉(𝑠) = 𝜉(
1

2
+ 𝑖𝑡) = ∑ 𝑎2𝑛(𝑠 −

1

2
)2𝑛∞

𝑛=0    with  𝑎2𝑛: = 4 ∫ 𝑥−1/4
(

1

2
𝑙𝑜𝑔 𝑥)2𝑛

(2𝑛)!

𝑑

𝑑𝑥

∞

1
[𝑥3/2𝜓′(𝑥)]𝑑𝑥. 

 

Riemann stated that this series representation of 𝜉(𝑠) as an even function of 𝑠 −
1

2
 “converges very rapidly“, i.e. 

𝜉(𝑠) is like a polynomial of infinite degree. Hadamard proved that the rapid decrease of the coefficients 𝑎2𝑛 is 

neccessary and sufficient to the validity of Riemann’s infinite product formula of 𝜉(𝑠). 
 

(+) The considered Kummer functions are related 1ort h Gaussian function by the following formulas, (GrI) 3.952, (sin(2𝑥𝑦) = √𝜋𝑥𝑦𝐽1

2
(2𝑥𝑦)) 

 

𝑥𝑒−𝑥2
𝐹1 1 (

1

2
,

3

2
; 𝑥2) = 𝑥 𝐹1 1 (1,

3

2
; −𝑥2) = ∫ 𝑒−𝑦2

sin(2𝑥𝑦) 𝑑𝑦
∞

0
  , √𝜋𝑥𝑒−𝑥2

𝐹1 1 (1,
3

2
; 𝑥2) = √𝜋𝑥 𝐹1 1 (

1

2
,

3

2
; −𝑥2) = ∫ 𝑒−𝑦2

sin(2𝑥𝑦)
𝑑𝑦

𝑦

∞

0
 

 

The functions are the two eigenfunctions 1ort h Differential Whittaker operator 𝐴[𝑤](z) ≔ z𝑤′′(𝑧) + (
3

2
− 𝑧)𝑤′(𝑧)   with eigenvalues 1/2 and 1, (GrI) 9.220. 

 

(*) An equivalent formulation is given by (TiE) (2.1.9) 

휁(𝑠) = 𝜒(𝑠)휁(1 − 𝑠), where  𝜒(𝑠): =
𝜋

𝑠
2

𝜋
1−𝑠

2

𝛤(
1−𝑠

2
)

𝛤(
𝑠

2
)

=
1

𝜒(1−𝑠)
  and  𝜒(1 − 𝑠) = 𝑂(|𝑡|𝜎−1/2). 

 

(**) (EdH) 1.7: „Because of 𝜓(𝑥) decreases more rapidly than any power of 𝑥 as 𝑥 → ∞, the integral in this formula converges for all 𝑠. This gives, therefore, another 

formula for 휁(𝑠) which is „valid for all 𝑠“ other than 𝑠 = 0,1.“  
 

(***)  resp., as Riemann writes, (EdH) 1.8:  𝛯(𝑡) ≔ 𝜉(
1

2
+ 𝑖𝑡) = 4 ∫ 𝑥−1/4 𝑑

𝑑𝑥

∞

1
[𝑥3/2𝜓′(𝑥)] 𝑐𝑜𝑠(

𝑡

2
𝑙𝑜𝑔 𝑥)𝑑𝑥 

 

(****)  
1

2
[𝑥𝑠 + 𝑥1−𝑠] = √𝑥 [ 

1

2
(𝑥(𝑠−

1

2
) + 𝑥−(𝑠−

1

2
))] = √𝑥𝑐𝑜𝑠ℎ [(𝑠 −

1

2
) 𝑙𝑜𝑔𝑥] = √𝑥 ∑

(𝑙𝑜𝑔𝑥)2𝑛

(2𝑛)!
(𝑠 −

1

2
)2𝑛∞

𝑛=0   
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The Hilbert-Polya conjecture is about the existence of a convolution integral representation of 𝜉(𝑠), including an 
appropriately defined domain (CaD). There is an only formally valid representation, (EdH) 10.3, 
 

∫ 𝑥1−𝑠𝐺(𝑥)
𝑑𝑥

𝑥

∞

0
=

2𝜉(𝑠)

𝑠(𝑠−1)
, 

 

as the integral ∫ 𝑥−𝑠𝐺(𝑥)𝑑𝑥
∞

0
 does not converge for any 𝑠. This is because of  𝐺(𝑥) = 1 + 𝜓(𝑥2) =

1

𝑥
[1 + 𝜓(

1

𝑥2
)], 

i.e. mathematically speaking, because the constant Fourier term of the Gaussian function 𝑒−𝑎𝜋𝑥2
 does not vanish. 

 

Alternatively to 𝑔(𝑥) ≔ 𝑒−𝑥 we consider the Kummer function based function 𝑔∗(𝑥) defined by 
 

𝑔∗(𝑥) ≔ ∫ 𝐹1 1 (
1

2
,

3

2
; −t)

𝑑𝑡

𝑡

∞

𝑥
  with −𝑥𝑔∗′(𝑥) ≔ 𝐹1 1 (

1

2
,

3

2
; −x)  

 

leading to a corresponding replacement of 𝜓(𝑥2) by  
 

𝜓∗(𝑥): =
√𝜋

2
∑ 𝑔∗(𝑛2𝑥) =

√𝜋

2
∑ ∫ 𝐹1 1 (

1

2
,

3

2
; −𝑛2𝑡)

𝑑𝑡

𝑡

∞

𝑥
∞
𝑛=1

∞
𝑛=1  . 

 

The corresponding Mellin transform of 𝑔∗(𝜋𝑛2𝑥) is given by (see Lemma 2 below) 
 

𝑀[𝑔∗(𝜋𝑛2𝑥)] (
𝑠

2
) =

1

𝑛𝑠 𝜋−
𝑠

2
2𝛤(

𝑠

2
)

𝑠(1−𝑠)
 . 

 
From (SlL) (3.2.26) we recall the formulae (𝑅𝑒(𝑧) > 0) 
 

𝐹1 1 (
1

2
,

3

2
; z) =

√𝜋

2
𝑒𝑧𝑧1/4 ∫ 𝑒−𝑡𝑡−

1

4𝐽1

2

(2√𝑧𝑡)𝑑𝑡
∞

0
 resp. 𝐹1 1 (

1

2
,

3

2
; 𝑥2) = 𝑒𝑥2

∫ 𝑒−𝑦2
sin(2𝑥𝑦) 𝑑𝑦

∞

0
. 

 
With respect to the related Poisson formula we note that the Fourier transform of the real, odd function 

𝑒𝑥2
sin(𝑎𝑥) = 𝑒𝑥2 1

2𝑖
[𝑒𝑎𝑖𝑥 − 𝑒−𝑎𝑖𝑥] is imaginary and odd. For the corresponding Fourier terms it holds 𝑎0 = 𝑎𝑛 = 0, i.e. 

the constant Fourier term vanishes (in oppposite to the „trouble maker“ constant term of the Gaussian function). 
 

Putting 𝜉∗(𝑠): = 𝜋
1−𝑠

2 𝛤 (
𝑠

2
) 휁(𝑠) = 𝜉∗(1 − 𝑠) one gets the 

 
Theorem: In the critical stripe it holds 
 

∫ 𝑥𝑠/2𝜓∗(𝑥)
𝑑𝑥

𝑥

∞

0
=

𝜉∗(𝑠)

𝑠(1−𝑠)
=

𝜉∗(1−𝑠)

𝑠(1−𝑠)
= ∫ 𝑥(1−𝑠)/2𝜓∗(𝑥)

𝑑𝑥

𝑥

∞

0
  

resp.  

∫ 𝑥
𝑠

2𝜓∗(𝑥)
𝑑𝑥

𝑥

∞

0
=

1

2
[∫ 𝑥

𝑠

2𝜓∗(𝑥)
𝑑𝑥

𝑥

∞

0
+ ∫ 𝑥

1−𝑠

2 𝜓∗(𝑥)
𝑑𝑥

𝑥

∞

0
].  

 
Proof: From the lemma above one gets 
 

∫ 𝑥𝑠/2𝜓∗(𝑥)
𝑑𝑥

𝑥

∞

0
=

√𝜋

2
∫ 𝑥𝑠/2 ∑ 𝑔∗(𝑛2𝑥)∞

𝑛=1
𝑑𝑥

𝑥

∞

0
=

√𝜋

2
𝜋−

𝑠

2
2𝛤(

𝑠

2
)

𝑠(1−𝑠)
∑

1

𝑛𝑠
∞
𝑛=1 = 𝜋

1−𝑠

2
𝛤(

𝑠

2
)

𝑠(1−𝑠)
휁(𝑠) . 

 

Applying the duality equation, (TiE) (2.1.9), 𝜋
1−𝑠

2 𝛤 (
𝑠

2
) 휁(𝑠) = 𝜋

𝑠

2𝛤 (
1−𝑠

2
) 휁(1 − 𝑠) leads to 

 

∫ 𝑥𝑠/2𝜓∗(𝑥)
𝑑𝑥

𝑥

∞

0
=

1

√𝜋

𝜋
1−𝑠

2 𝛤(
𝑠

2
) (𝑠)

𝑠(1−𝑠)
=

1

√𝜋

𝜋
𝑠
2𝛤(

1−𝑠

2
) (1−𝑠)

𝑠(1−𝑠)
= ∫ 𝑥(1−𝑠)/2𝜓∗(𝑥)

𝑑𝑥

𝑥

∞

0
 . 

 
The above theorem in combination with the formula 
 

1

2
[𝑥

𝑠

2 + 𝑥
1−𝑠

2 ] = 𝑥1/4 [ 
1

2
(𝑥−

1

2
(

1

2
−𝑠) + 𝑥

1

2
(

1

2
−𝑠))] = 𝑥1/4𝑐𝑜𝑠ℎ [

1

2
(

1

2
− 𝑠) 𝑙𝑜𝑔𝑥] = 𝑥1/4 ∑

(
1

2
𝑙𝑜𝑔𝑥)2𝑛

(2𝑛)!
(

1

2
− s)2𝑛∞

𝑛=0   

 
leads to the 
 

Corollary: In the critical stripe it holds 
 

𝜉∗(𝑠)

𝑠(1−𝑠)
= ∫ 𝑥1/4𝑐𝑜𝑠ℎ [

1

2
(

1

2
− 𝑠) 𝑙𝑜𝑔𝑥] 𝜓∗(𝑥)

𝑑𝑥

𝑥

∞

0
  

resp. 
 

𝜉∗(𝑠)

𝑠(1−𝑠)
= ∑ 𝑎2𝑛

∗ (
1

2
− s)2𝑛∞

𝑛=0   where   𝑎2𝑛
∗ ≔ ∫ 𝑥1/4

(
1

2
𝑙𝑜𝑔𝑥)2𝑛

(2𝑛)!
𝜓∗(𝑥)

𝑑𝑥

𝑥

∞

0
. 
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Lemma 1: 
 

∫ 𝑥𝑠−1 𝐹1 1(𝑎, 𝑐, −𝑥)𝑑𝑥 =
𝛤(𝑐)

𝛤(𝑎)
𝛤(𝑠)

𝛤(𝑎−𝑠)

𝛤(𝑐−𝑠)

∞

0
 ,  0 < 𝑅𝑒(𝑠) < 𝑅𝑒(𝑎). 

 
Proof: (GrI) 7.612 

 
 

Lemma 2: In the critical stripe it holds 
 

𝑀[𝑔∗(𝜋𝑛2𝑥)] (
𝑠

2
) =

1

𝑛𝑠 𝜋−
𝑠

2
2𝛤(

𝑠

2
)

𝑠(1−𝑠)
 . 

 
Proof: From Lemma 1 it follows 
 

𝑀 [ 𝐹1 1 (
1

2
,

3

2
; −𝑥)] (

𝑠

2
) =

𝛤(
𝑠

2
)

𝑠(1−𝑠)
 , 0 < 𝑅𝑒(𝑠) < 1. 

 

The Mellin transform of 𝑔∗(𝑥) follows from the general rule  𝑀[ℎ](𝑠) =
1

𝑠
𝑀[−𝑥ℎ′(𝑥)](𝑠), i.e. 

 

𝑀[𝑔∗(𝑥)] (
𝑠

2
) =

2

𝑠
𝑀[−𝑥𝑔∗′(𝑥)] (

𝑠

2
) =

2

𝑠
𝑀 [ 𝐹1 1 (

1

2
,

3

2
; −𝑥)] (

𝑠

2
) =

2𝛤(
𝑠

2
)

𝑠(1−𝑠)
 . 

 
Substituting the integration variable results into 
 

𝑀[𝑔∗(𝜋𝑛2𝑥)] (
𝑠

2
) =

2

𝑠
𝑀[−𝑥𝑔∗′(𝑥)] (

𝑠

2
) =

2

𝑠
𝑀 [ 𝐹1 1 (

1

2
,

3

2
; −𝜋𝑛2𝑥)] (

𝑠

2
) =

1

𝑛𝑠
𝜋−

𝑠

2
2𝛤(

𝑠

2
)

𝑠(1−𝑠)
  . 

 
 

Using the series − log(1 − 𝑥) = ∑
1

𝑛
𝑥𝑛∞

𝑛=1  puts the Euler product formula in the form 

 

𝑙𝑜𝑔휁𝑠) = ∑ ∑
1

𝑛
𝑝−𝑛𝑠 = ∑ ∑

1

𝑛
(𝑝𝑛)−𝑠

𝑛𝑝𝑛𝑝 . 

 

In combination with Riemann’s density function 𝐽(𝑥): =
1

2
[∑

1

𝑛𝑝𝑛<𝑥 + ∑
1

𝑛𝑝𝑛≤𝑥 ] this results into the Stieltjes integral 

representation 
 

𝑙𝑜𝑔휁𝑠) = ∫ 𝑥−𝑠𝑑𝐽(𝑥) = 𝑠 ∫ 𝑥−𝑠𝐽(𝑥)
𝑑𝑥

𝑥

∞

0

∞

0
 , (𝑅𝑒(𝑠) > 1, 

 
providing the Riemann density function representation, (EdH) 1.13, 
 

𝐽(𝑥) =
1

2𝜋𝑖
∫ 𝑙𝑜𝑔휁(𝑠)𝑥𝑠 𝑑𝑠

𝑠

𝑎+𝑖∞

𝑎−𝑖∞
=

1

2𝜋
∫

𝑙𝑜𝑔 (𝑎+𝑖𝑦)

𝑎+𝑖𝑦
𝑥𝑎+𝑖𝑦𝑑𝑦

∞

−∞
 , 𝑎 > 1 

 

and the related Riemann errror function (derived from the formula, 𝑙𝑜𝑔휁(𝑠) = 𝑙𝑜𝑔𝜉(𝑠) − log [𝛤(1 +
𝑠

2
)(𝑠 − 1)𝜋−𝑠/2]) 

 

∫
𝑑𝑡

𝑡(𝑡2−1) 𝑙𝑜𝑔 𝑡

∞

𝑥
=

1

2𝜋𝑖

1

𝑙𝑜𝑔 𝑥
∫

𝑑

𝑑𝑠
[

𝑙𝑜𝑔 𝛤(1+
𝑠

2
)

𝑠
]

𝑎+𝑖∞

𝑎−𝑖∞
𝑥𝑠𝑑𝑠 ≅ −

1

2𝜋𝑖
∫ 𝑙𝑜𝑔𝛤(1 +

𝑠

2
)

𝑎+𝑖∞

𝑎−𝑖∞
𝑥𝑠 𝑑𝑠

𝑠
 . 

 
The following formula  
 

 ∫ 𝑥𝑛 [∑ 𝜑(𝑘)
(−𝑥)𝑘

𝑘!
∞
𝑘=0 ]

𝑑𝑥

𝑥
= 𝛤(𝑛)𝜑(−𝑛)

∞

0
 𝑛 > 0, 

 
from Ramanujan’s notebook, „of which he was especially fond and made conditional use“, (BeB) chapter 4, 
leads to 
 

1

2
𝑀[𝑔∗(𝑥)](𝑛) =

1

2
𝑀 [∫ 𝐹1 1 (

1

2
,

3

2
; −t)

𝑑𝑡

𝑡

∞

𝑥
] (𝑛) ~ ∫ 𝑥𝑛 [∑

1

2𝑘

1

2𝑘+1

(−𝑥)𝑘

𝑘!
∞
𝑘=1 ]

𝑑𝑥

𝑥
=

𝛤(𝑛)

2𝑛(2𝑛−1)

∞

0
. 

 
The series representation of  
 

𝑔∗(𝑥) = −𝜗(𝑥) = ∫ 𝐹1 1 (
1

2
,

3

2
; −t)

𝑑𝑡

𝑡

∞

𝑥
~ ∑

1

2𝑘

1

2𝑘+1

(−𝑥)𝑘

𝑘!
∞
𝑘=1   

 

may be used alternatively to  ∑
1

𝑛
𝑥𝑛∞

𝑛=1  to consider the Stieltjes integral represention 

 

𝑙𝑜𝑔휁̃(𝑠) = ∑ ∑
1

𝑛

1

𝑛+1/2
𝑝−𝑛𝑠 =𝑛𝑝 ∫ 𝑥−𝑠𝑑𝐽∗(𝑥)𝑑𝑥

∞

0
. 
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When applying the Fourier theorem to conclude  
 

𝐽∗(𝑥) =
1

2𝜋𝑖
∫ 𝑙𝑜𝑔휁̃(𝑠)𝑥𝑠 𝑑𝑠

𝑠

𝑎+𝑖∞

𝑎−𝑖∞
=

1

2𝜋
∫

𝑙𝑜𝑔̃(𝑎+𝑖𝑦)

𝑎+𝑖𝑦
𝑥

1

2
+𝑖𝑦𝑑𝑦

∞

−∞
  

 
it is now possible to put 𝑎 = 1/2.  
 
The relationship between the two densities 𝐽(𝑥) and 𝐽∗(𝑥) is accompanied by the formula 
 

𝜗(𝑥) − 𝜇(𝑥) = 𝐹1 1 (
1

2
,

3

2
; −𝑥)  

 
and the corresponding Mellin transform formulas. 
 
The class of sine-type functions 𝑆0 was introduced in calculus by Levin, (LeB1), playing an important role in non-
harmonic analysis with specific interests on those sine-type functions, which were not Fourier-Stieltjes transforms. 

The link to the considered Kummer functions is provided by the generalized classes 𝑆𝛼, (SeA). In case 
𝛤(𝑎)

𝛤(𝑐−𝑎)
 is 

defined the function 
 

𝐹(𝑧) ≔ 𝑒−𝑖𝜋𝑧 𝐹1 1(𝑎, 𝑐; 2𝜋𝑖𝑧) 
 
belongs to the class 𝑆𝑅𝑒(𝑎). The special case 𝑅𝑒(𝑐) = 1 + 𝑅𝑒(𝑎) provides additional interesting properties, 

e.g. for 𝑅𝑒(𝑠) > −1, 𝛽 > 0 it holds (Gri) 3.761, lemma 4 and p. 15 below, 

∫ 𝑥𝑠𝑒2𝜋𝑖𝛽𝑥 𝑑𝑥

𝑥
= ∫ 𝑦−𝑠𝑒

2𝜋𝑖
𝛽

𝑦
𝑑𝑦

𝑦

∞

1
=

1

𝑠
𝐹1 1(𝑠, 𝑠 + 1; 2𝜋𝑖𝛽)

1

0
=

𝑒−1

2𝜋𝑖𝛽
{∑ (−1)𝑘(1 − 𝑠)𝑘(2𝜋𝑖𝛽)−𝑘 + 𝑂(|2𝜋𝑖𝛽|−𝑛−1𝑛

𝑘=0 }. 

With respect to the Beurling RH criterion, (BeA1), we note that the Mellin transforms of the {𝑒2𝜋𝑖𝛽𝑥)} system is 

given by, (GrI) 3.761 
 

∫ 𝑥𝑠−1𝑒2𝜋𝑖𝛽𝑥𝑑𝑥
∞

0
= ∫ 𝑥𝑠−1𝑒2𝜋𝑖𝛽𝑥𝑑𝑥

1

0
+ ∫ 𝑥𝑠−1𝑒2𝜋𝑖𝛽𝑥𝑑𝑥

∞

1
= ∫ 𝑦−𝑠𝑒

2𝜋𝑖
𝛽

𝑦
𝑑𝑦

𝑦

∞

0
=

𝛤(𝑠)

(2𝜋𝛽)𝑠
𝑒𝑖

𝜋

2
𝑠
 . 

 
 
The proposed Kummer functions 
 

𝐹1 1 (
1

2
,

3

2
; x) = ∑

1

2𝑘+1

𝑥𝑘

𝑘!
∞
𝑘=0   (*)  ,   𝐹1 1 (1,

3

2
, 𝑥) = 𝑒𝑥 𝐹1 1(

1

2
,

3

2
, −𝑥)   

with 

𝐹1 1 (
1

2
,

3

2
; x) ~

1

2

𝑒𝑥

𝑥
∑ (

1

2
)𝑘(

1

𝑥
)𝑘∞

𝑘=0  resp. 𝐹1 1 (
1

2
,

3

2
; logx) ~

1

2

𝑥

𝑙𝑜𝑔𝑥
∑ (

1

2
)𝑘(

1

𝑙𝑜𝑔𝑥
)𝑘∞

𝑘=0  

 

are linked to the 𝑒𝑟𝑓 − function and the Dawson function 𝐹(𝑥): = 𝑒−𝑥2
∫ 𝑒𝑡2

𝑑𝑡
𝑥

0
= ∑ (−1)𝑘 2𝑘𝑥2𝑘+1

1⋅3⋅..(2𝑘+1)

∞
𝑘=0  by the following 

formulas   

𝑒𝑟𝑓(𝑥) = 𝑥 𝐹1 1 (
1

2
,

3

2
, −𝑥2) = 𝑥𝑒−𝑥2

𝐹1 1 (1,
3

2
, 𝑥2) = ∑

(−1)𝑘

𝑘!

𝑥2𝑘+1

(2𝑘+1)
∞
𝑘=0   

 

𝐹(𝑥) = 𝑥 𝐹1 1(1,
3

2
, −𝑥2) = 𝑥 𝑒1

−𝑥2
𝐹1 1(

1

2
,

3

2
, 𝑥2) = ∫ 𝑒−𝑡2

𝑠𝑖𝑛( 2𝑥𝑡)𝑑𝑡
∞

0
 . 

 
 
The Mellin transforms and asymptotics of the concerned Kummer functions are given by (lemma 1 & 4) 
 

Lemma 3:  
 

i) ∫ 𝑥
𝑠

2 𝐹1 1 (
1

2
,

3

2
; −x)

𝑑𝑥

𝑥
=

𝛤(
𝑠

2
)

1−𝑠

∞

0
,  0 < 𝑅𝑒(𝑠) < 1, 

 

ii) ∫ 𝑥
𝑠

2 𝐹1 1 (1,
3

2
; −𝑥)

𝑑𝑥

𝑥
=

1

2
𝛤 (

𝑠

2
)

𝛤(
1−𝑠

2
)

𝛤(1−
𝑠

2
)

=
1

2
𝛤 (

𝑠

2
) 𝑡𝑎𝑛 (

𝜋

2
𝑠)

∞

0
,  0 < 𝑅𝑒(𝑠) < 1, 

 

 because of    
1

2
𝛤 (

𝑠

2
)

𝛤(
1−𝑠

2
)

𝛤(1−
𝑠

2
)

=
1

2
𝛤 (

𝑠

2
)

𝜋

𝛤(
1+𝑠

2 ) 𝑐𝑜𝑠(
𝜋
2𝑠)

𝜋

𝛤(
𝑠
2) 𝑠𝑖𝑛(

𝜋
2𝑠)

=
1

2
𝛤 (

𝑠

2
)

𝛤(
𝑠

2
) 𝑠𝑖𝑛(

𝜋

2
𝑠)

𝛤(
1+𝑠

2
) 𝑐𝑜𝑠(

𝜋

2
𝑠)

=
1

2
𝛤 (

𝑠

2
) tan (

𝜋

2
𝑠)  

 

iii) 𝐹1 1 (
1

2
,

3

2
; 𝑥2) = 𝑒𝑥2

∫ 𝑒−𝑦2
sin(2𝑥𝑦) 𝑑𝑦

∞

0
 (SlL) (3.2.26) 

 

iv) 𝐹1 1 (
1

2
,

3

2
; 𝑥) = − F1 1

′
(−

1

2
,

1

2
; x) ~

𝑒𝑥

𝑥
∑

1

2
(

1

2
)𝑘𝑥−𝑘∞

𝑘=0 =
𝑒𝑥

𝑥
[

1

2
+ ∑

1

2
(

1

2
)𝑘(

1

𝑥
)𝑘∞

𝑘=1 ], (SlL) 4.2.  
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Note: Lemm 3 grants an alternative approximation function to the „number of primes less than 𝑥 
function“ 𝜋(𝑥) (𝑁 ≥ 1), 
 

 𝜋(𝑥)  ~ 
𝑥

𝑙𝑜𝑔𝑥
 ~ ∫

𝑑𝑡

𝑙𝑜𝑔𝑡

𝑥

2
 ~ 𝐹1 1 (

1

2
,

3

2
; 𝑙𝑜𝑔𝑥) ~ 

𝑥

𝑙𝑜𝑔𝑥
[

1

2
+ ∑

1

2
(

1

2
)

𝑘
(

1

𝑙𝑜𝑔𝑥
)

𝑘
∞
𝑘=1 ] ~ 

𝑥

𝑙𝑜𝑔𝑥
[

1

2
+ ∑

1

2
(

1

2
)

𝑘
(

1

𝑙𝑜𝑔𝑥
)

𝑘
𝑁
𝑘=1 ]. 

 
 From the general rules 𝑀[(𝑥ℎ)′(𝑥)](𝑠) = (1 − s)𝑀[h(𝑥)](𝑠) and 𝑀[−𝑥ℎ′(𝑥)](𝑠) = 𝑠𝑀[ℎ](𝑠) it follows 
 

𝑀 [
𝑑

𝑑𝑥
(−𝑥 𝐹1 1 (1,

3

2
; −𝑥))] (

𝑠

2
) =

1

2
(𝑠 − 1)𝛤 (

𝑠

2
) tan (

𝜋

2
𝑠)  

resp. 

4𝑀 [
𝑑

𝑑𝑥
(−𝑥2 𝐹1 1 (1,

3

2
; −𝜋𝑥2))] (𝑠) = 𝜋−𝑠/2(𝑠 − 1)𝛤 (

𝑠

2
)

1

𝜋
tan (

𝜋

2
𝑠). 

 

The asymptotics tan (
𝜋

2
𝑠) ~ 

𝜋

2
𝑠 provides the link to the entire Zeta function 𝜉(𝑠): =

𝑠

2
𝛤(

𝑠

2
)(𝑠 − 1)𝜋−𝑠/2휁(𝑠), while the 

entire function 𝜉∗∗(𝑠): = 𝜋(1−𝑠)/2(𝑠 − 1)휁(𝑠) 𝛤(
𝑠

2
)(tan (

𝜋

2
𝑠) is governed by the same set of critical zeros than 𝜉(𝑠).  

 
The Riemann density function is given by 
 

𝐽(𝑥) = 𝐿𝑖(𝑥) − ∑ [𝐿𝑖(𝑥𝜌) + 𝐿𝑖(𝑥1−𝜌)]𝐼𝑚(𝜌)>0 + ∑ ∫
𝑡−2𝑛

𝑙𝑜𝑔𝑡

𝑑𝑡

𝑡

∞

𝑥
∞
𝑛=1 + 𝑙𝑜𝑔

1

2
 , 

where 

∑ 𝐿𝑖(𝑥𝜌) + 𝐿𝑖(𝑥1−𝜌)𝐼𝑚(𝜌)>0 = ∑ 𝑙𝑜𝑔( 1 −
𝑠

𝜌𝜌 ) , ∑ ∫
𝑡−2𝑛

𝑙𝑜𝑔𝑡

𝑑𝑡

𝑡

∞

𝑥
∞
𝑛=1 = ∫

𝑑𝑡

𝑡(𝑡2−1)𝑙𝑜𝑔𝑡

∞

𝑥
 , and 𝑙𝑜𝑔

1

2
= 𝑙𝑜𝑔𝜉(0). 

 

By differentiation one finds, (EdH) 1.18, 𝑑𝐽 = [(1 −
1

√𝑥
∑ 2cos (𝛼 ∙ 𝑙𝑜𝑔𝑥)𝑅𝑒(𝛼)>0 ]

𝑑𝑥

𝑙𝑜𝑔𝑥
−

1

𝑥(𝑥2−1)

𝑑𝑥

𝑙𝑜𝑔𝑥
, resp. in a distributional 

sense, (LaG) 〈𝜓〉′ = 〈1〉′ −
1

√𝑥
∑ 〈2cos (𝛼 ∙ 𝑙𝑜𝑔𝑥)〉𝑅𝑒(𝛼)>0 − 〈

1

𝑥(𝑥2−1)
〉, where 𝛼 ranges over all values such that 𝜌 =

1

2
+ 𝑖𝛼, 

resp. 𝛼 = −𝑖(𝜌 −
1

2
) where 𝜌 ranges over the roots, so that 

 

𝑥𝜌−1 + 𝑥−𝜌 = 𝑥−1/2[𝑥𝑖𝛼 + 𝑥−𝑖𝛼] = 2𝑥−1/2cos (𝛼 ∙ 𝑙𝑜𝑔𝑥).  

 
Riemann’s suggested (best known) approximation to 𝜋(𝑥) (denoting the number of primes less than 𝑥) is given by 
 

𝜋(𝑥) ~ 𝐿𝑖(𝑥) + ∑
𝜇(𝑛)

𝑛
𝐿𝑖(𝑥1/𝑛)∞

𝑛=2 . 

 
Regarding the considered Kummer function we note the possible split (see lemma 4 below) 
 

𝐿𝑖(𝑥) = 𝐿𝑖(1)(𝑥) + 𝐿𝑖(1)(𝑥): = ∫ 𝐹1 1 (
1

2
,

3

2
; t)

𝑑𝑡

𝑡

logx

−∞
+ 𝐹1 1 (

1

2
,

3

2
; logx). 

 
With respect to the above proposed „circular“ adequate domain of the zeta function the correspondingly modified 

von Mangoldt formula (
′(0)

(0)
= log (2𝜋) 

𝜓0
∗(𝑥): = 𝑥 − [∑

𝑥𝜌

𝜌
+ ∑

𝑥−2𝑛

−2𝑛𝑛≥1𝐼𝑚(𝜌)>0 ] − log (2𝜋)  

 
enables estimates in the form 
 

|𝐽∗(𝑥) − 𝐿𝑖(𝑥) − 𝑙𝑜𝑔2| ≤ |∑ 𝐿𝑖(1)(𝑥𝜌) + ∑ 𝐿𝑖(2)(𝑥−2𝑛)∞
𝑛=1𝐼𝑚(𝜌)>0 | . 

 
 

The Chebyshev point measure 𝑑𝜓 assigns the weight 
1

𝑛
log (𝑝𝑛) to prime powers 𝑝𝑛, and the weight 0 to all other 

points, i.e. 𝜓(𝑥) = ∑ 𝑙𝑜𝑔𝑝𝑝𝑛<𝑥 . The corresponding Riemann point measure is given by 

 

𝐽(𝑥) =
1

2
[∑

1

𝑛
+ ∑

1

𝑛𝑝𝑛≤𝑥𝑝𝑛<𝑥 ]. 

 
The counterparts to the split 𝐿𝑖(𝑥) = 𝐿𝑖(1)(𝑥) + 𝐿𝑖(1)(𝑥) can be derived by the split (see lemma 4 below) 
 

𝑝𝑛 = 𝐹1 1 (
1

2
,

3

2
; 𝑛𝑙𝑜𝑔𝑝) +

2

3
𝑛𝑙𝑜𝑔𝑝 ∙ 𝐹1 1 (

3

2
,

5

2
; 𝑛𝑙𝑜𝑔𝑝). 

 

Alternatively to the divergent series ∑
1

𝑝𝑝  (e.g. (InA)), it is proposed to replace the series by ∑ 𝐹1 1 (
1

2
,

3

2
; 𝑙𝑜𝑔

1

𝑝
)𝑝 . For 

the related asymptotics of 𝐹1 1 (
1

2
,

3

2
; −𝑙𝑜𝑔𝑥) we refer to (SeA). 
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Putting 𝑇(𝑥) ≔ ∑ 𝜓(
𝑥

𝑛
)∞

𝑛=1  we note the formula for the Chebyshev density function, (PrK) p. 231, (EdH), 

 

𝜓0(𝑥) =
1

2
[𝜓(x + 0) + 𝜓(x − 0)] = 𝑥 − [∑

𝑥𝜌

𝜌
+ ∑

𝑥−2𝑛

−2𝑛𝑛≥1𝜌 ] −
′(0)

(0)
= ∑ 𝜇(𝑛)𝑇(

𝑥

𝑛
)∞

𝑛=1   , 𝑥 ≥ 2, 

 

i.e. 𝜓0(𝑥) is built from the trivial and non-trivial zeros of the Zeta function. 
 

 

Remark: If the RH is true, then 𝐼𝑚(𝜌) ≤
1

2
, resp. |

𝑥𝜌

𝜌
 | ≤

𝑥1/2

𝜌
, and therefore |𝜋(𝑥) − 𝐿𝑖(𝑥)| ≤ 3√𝑥𝑙𝑜𝑔𝑥. 

 
 

The Riemann error term ∫
𝑑𝑡

𝑡(1−𝑡2) 𝑙𝑜𝑔 𝑡

∞

𝑥
 , reflects the trivial zeros of the Zeta function; it is derived from the formula, 

EdH) 1.16, 
 

𝛤 (1 +
𝑠

2
) = ∏ (1 −

𝑠

−2𝑛
)

−1
(1 +

1

𝑛
)

𝑠/2
 resp.  

1

𝛤(1+
𝑠

2
)

= ∏ (1 +
𝑠

2𝑛
) (1 +

1

𝑛
)

−𝑠/2
= 𝑒𝛾𝑠/2 ∏ (1 +

𝑠

2𝑛
) 𝑒−𝑠/(2𝑛). 

 
With lemma 4 below this leads to the following alternative representations  
 

𝐹1 1(
1

2
,
3

2
;𝑠)

𝛤(1+
𝑠

2
)

= 𝑒𝑠(
𝛾

2
+

1

3
) ∏ (1 +

𝑠

2𝑛
) (1 −

𝑠

𝛼𝑛
) 𝑒

𝑠(
1

𝛼𝑛
−

1

2𝑛
)
  

 

𝛤 (1 +
𝑠

2
) = 𝐹1 1 (

1

2
,

3

2
;

𝑠

2
) 𝑒−

𝑠

2
(𝛾+

1

3
) ∏ [(1 −

𝑠

(−2𝑛)
) (1 −

𝑠

2𝛼𝑛
)]

−1
𝑒

−
𝑠

2
(

1

𝛼𝑛
−

1

𝑛
)
,   𝑅𝑒(2𝛼𝑛) > 1. 

 
 

Remark: With respect to the below proposed replacement of 𝜉(𝑠): =
𝑠

2
𝛤(

𝑠

2
)(𝑠 − 1)𝜋−𝑠/2휁(𝑠) →  𝜉∗∗(𝑠) resp. the 

proposed „circular model“, we note that −𝜉(𝑠) is bounded by 𝑂(𝑒|𝑠|𝛼
) for any 𝑎 > 1, as there exists a 

constant 𝑐 > 0 such that for every 𝑠 ∈ 𝐶  

 

|𝑠𝛤(
𝑠

2
)(1 − 𝑠)𝜋−𝑠/2휁(𝑠)| < 𝑐𝑒

1

2
|𝑠−

1

2
|𝑙𝑜𝑔+(|𝑠−

1

2
|)

, 𝑙𝑜𝑔+(𝑥) ≔ 𝑚𝑎𝑥{0, 𝑙𝑜𝑔𝑥}, 

 

and is therefore a holomorphic integral function of order 1, (PaS) chapter 3. 
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For the considered Kummer function we summarize the following formulae / properties  
 

Lemma 4: 
 

i) The infinite set of zeros 𝛼𝑛 of 𝐹1 1 (
1

2
,

3

2
; 𝑠) has only imaginary zeros 𝛼𝑛 fulfilling, (SeA), 

 

𝑛 − 1 <
|𝐼𝑚(𝛼𝑛)|−𝜋

2𝜋
< 𝑛 −

1

2
<

|𝐼𝑚(𝛼𝑛)|

2𝜋
< 𝑛 , 𝑅𝑒( 𝛼𝑛) > 1/2. 

 

With respect to the below we mention that the mapping z = 1 −
1

𝑠
   ↔   𝑠 =

1

1−𝑧
 takes the right 

half plane 𝑅𝑒( 𝑠) > 1/2 to the interior of the unit circle in the complex 𝑧 -plane., i.e. all zeros of 

𝐹1 1(
1

2
;

3

2
, 𝑧) lie in the interior of the unit circle. With respect to CaD), (CaD1) and the underlying 

Polya theorem we note that 𝐹1 1 (
1

2
,

3

2
; i𝑠) has only real zeros. 

ii) 𝑀 [ 𝐹1 1 (
1

2
,

3

2
; −𝑥)] (

𝑠

2
) =

𝛤(
𝑠

2
)

(1−𝑠)
 , 𝑀 [−𝑥 𝐹1 1

′
(

1

2
,

3

2
; −𝑥)] (

𝑠

2
) =

𝛤(1+
𝑠

2
)

(1−𝑠)
, 0 < 𝑅𝑒(𝑠) < 1, (GrI) 7.612 

 

i) ∫ 𝐹1 1 (
1

2
,

3

2
, −𝑥2) cos(2𝑥𝑦)𝑑𝑥 =

∞

0

1

4
∫ 𝑒−(1+𝑡)𝑦2 𝑑𝑡

1+𝑡

∞

0
=

1

4
∫ 𝑒−𝑥𝑦2 𝑑𝑥

𝑥

∞

1
 , (GrI) 7.642, 9.210 

 

ii) 𝐹1 1 (
1

2
,

3

2
; 𝑠) = 𝑒

1

3
𝑠 ∏ (1 −

𝑠

𝛼𝑛
) 𝑒

𝑠

𝛼𝑛 with ∑
1

αn
1+𝜀

∞
𝑛=1 < ∞ for 휀 > 0, (BuH) p.184 

 

iii) ∫ 𝑒−𝑠𝑥 [𝑥1/4𝑒−𝑥/2 𝐹1 1 (
1

2
,

3

2
; 𝑥)]

2
𝑑𝑥

∞

0
= ∫ 𝑒−𝑠𝑥𝑀1

4
;
1

4

2 (𝑥)
𝑑𝑥

𝑥

∞

0
=

√𝜋

2

1

√1+𝑠
arcsin (

1

𝑠
) , 𝑅𝑒(𝑠) > 1 , 

 

 where   𝑀1

4
;
1

4

2 (𝑧) = (
𝑧

2
)3/2 ∫ (1 + 𝑡)−1/2𝑒

(
𝑧

2
)𝑡

𝑑𝑡
1

−1
 ,  (GrI) 7.622, 9.121, 9.220, 9.221 

 

iv) 𝐹𝑛(𝑠) ≔
F1 1(

1

2
,
3

2
;s)

𝐹1 1

′
(

1

2
,
3

2
;𝛼𝑛 ))(𝑠−𝛼𝑛 )

=
2𝛼𝑛

𝑠−𝛼𝑛
𝑒−𝛼𝑛 𝐹1 1

(
1

2
,

3

2
; 𝑠) =

2𝛼𝑛

𝑠−𝛼𝑛
𝑒−𝛼𝑛𝑒

1

3
𝑠 ∏ (1 −

𝑠

𝛼𝑘
) 𝑒

𝑠

𝛼𝑘 

 

i.e.  𝐹𝑛(𝑠) =
F1 1(

1

2
,
3

2
;s)

𝐹1 1

′
(

1

2
,
3

2
;𝛼𝑛 ))(𝑠−𝛼𝑛 )

= −2𝑒−
2

3
𝑠 ∏ (

𝛼𝑘−𝑠

𝛼𝑘
𝛼𝑛−𝑠

𝛼𝑛

) 𝑒
𝑠

𝛼𝑘𝑒−(𝛼𝑛−𝑠). 
 

v) 𝐹1 1(𝑎, 𝑐, 𝑧) =
𝛤(𝑐)

𝛤(𝑐−𝑎)
𝑒±𝑎𝜋𝑖𝑧−𝑎 {∑

(−1)𝑘(𝑎)𝑘(1+𝑎−𝑐)𝑘

𝑘!
𝑧−𝑘 + 𝑂(|𝑧|−𝑛−1𝑛

𝑘=0 }. 
 

                            +
𝛤(𝑐)

𝛤(𝑎)
𝑒−(𝑐−𝑎)𝑧−(𝑐−𝑎) {∑

(−1)𝑘(1−𝑎)𝑘(𝑐−𝑎)𝑘

𝑘!
𝑧−𝑘 + 𝑂(|𝑧|−𝑛−1𝑛

𝑘=0 }  (LeN) 9.12 
 

vi)   𝐹1 1(𝑎, 𝑎 + 1; 𝑥)~a
𝑒𝑥

𝑥
∑ (

1

2
)𝑘𝑥−𝑘∞

𝑘=0 , (SlL) 4.2 
 

vii) 𝐹𝑎(𝑧) ≔ 𝐹1 1(𝑎, 𝑎 + 1, 𝑧) ~
1

𝛤(𝑎)

𝑒𝑧

𝑧
  ,  𝑧 → ∞, 𝑝ℎ(𝑧) = 0, (OlF) p.257 

 

viii) 𝐹𝑎
(𝑛)

(𝑧) =
𝑎

𝑎+𝑛
𝐹𝑎+𝑛(𝑧)  ,  

1

2

𝑑

𝑑𝑥
𝐹𝑎

2(𝑥) =
𝑎

𝑎+1
𝐹𝑎(𝑥) ∙ 𝐹𝑎+1(𝑥) ~ 

1

𝑎+1

1

𝛤2(𝑎)
(

𝑒𝑥

𝑥
)2. 

 
 
With respect to lemma 4i) above we note that for the zeros 𝑧𝑛 of the function 𝛹(𝑥) it holds, (GiI) 
 

𝑛 −
1

2
< −𝑧𝑛 < 𝑛 . 

 

The periodical Hilbert space 𝐿2 (−𝜋, 𝜋) resp. the corresponding generalized Hilbert scale framework 𝐻𝛼
# ≅ 𝑙2

𝛼 , 𝛼 ∈
𝑅, is built on the 2𝜋 −periodic Hilbert space 𝐿2

#(Γ) with Γ ≔ 𝑆1(𝑅2), i.e. Γ is the boundary of the unit circle sphere. 

For 𝑢 ∈ 𝐿2
#(𝛤) and for real 𝛽 ∈ 𝑅, 𝑛 ∈ 𝑍 the Fourier coefficients 𝑢𝑛 ≔

1

2𝜋
∮ 𝑢(𝑥)𝑒𝑖𝑛𝑥𝑑𝑥 enable the definition of the 

norms ‖𝑢‖𝛽
2 ≔ ∑ |𝑛|2𝛽|𝑢𝑛|2∞

𝑛=−∞ .  

 
The relationship between the Dirichlet series 
 

𝑓(𝑠): = ∑ 𝑎𝑛𝑒−𝑠 𝑙𝑜𝑔 𝑛∞
1   𝑔(𝑠): = ∑ 𝑏𝑛𝑒−𝑠 𝑙𝑜𝑔 𝑛∞

1  
 

and the Hilbert space 𝐻−1/2
# ≅ 𝑙2

−1/2
on the critical line is given by ([LaE] §227, Satz 40): 

 

((𝑓, 𝑔))−1/2: = 𝑙𝑖𝑚
𝜔→∞

1

2𝜔
∫ 𝑓(

1

2
+ 𝑖𝑡)𝑔(1/2 − 𝑖𝑡)𝑑𝑡 =

𝜔

−𝜔
∑

1

𝑛
𝑎𝑛𝑏𝑛

∞
1 . 
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The cardinal series theory is an extension of the Dirichlet series theory. Property vi) puts the spot on non-
harmonic Fourier series theory and the related „generalized“ trigonometric moment problem in 𝐿2 (−𝜋, 𝜋) 
given by, (YoR) p.124, 
 

(*)   
1

2𝜋
∫ 𝜑(𝑡)𝑒𝑖𝜆𝑛 𝑡𝑑𝑡 = 𝑐𝑛

𝜋

−𝜋
. 

 

In case {𝑒𝑖𝜆𝑛 𝑡} is a Riesz basis its moment space is 𝑙2 and (*) admits a solution whenever 𝑐𝑛  is square-

summable, and for these sequences only. If {𝑔𝑛} is the unique sequence in 𝐿2 (−𝜋, 𝜋) biorthogonal to 

{𝑒𝑖𝜆𝑛 𝑡}, then the unique solution to (*) is given by the norm-convergent series 𝜑(𝑡) = ∑ 𝑐𝑛𝑔𝑛(𝑡)∞
−∞ .  

 
The replacement of 𝜉(𝑠) →  𝜉∗∗(𝑠) with 

 

𝜉∗∗(𝑠): = 𝜋
1−𝑠

2 (𝑠 − 1)휁(𝑠) 𝛤(
𝑠

2
)(tan (

𝜋

2
𝑠) = 𝜉∗(𝑠)(𝑠 − 1) tan (

𝜋

2
𝑠)  

 
where 

 

𝜉∗∗(𝑠)
𝑡𝑎𝑛(

𝜋

2
(1−𝑠))

1−𝑠
= 𝜉∗∗(1 − 𝑠)

𝑡𝑎𝑛(
𝜋

2
𝑠)

𝑠
  

 
leads to a corresponding replacement of the Riemann error function in the following form  
 

∫
𝑑𝑡

𝑡(1−𝑡2) 𝑙𝑜𝑔 𝑡

∞

𝑥
=

1

2𝜋𝑖
∫ 𝑙𝑜𝑔𝛤(1 +

𝑠

2
)

𝑎+𝑖∞

𝑎−𝑖∞
𝑥𝑠 𝑑𝑠

𝑠
 →  

1

2𝜋𝑖
[∫ 𝑙𝑜𝑔𝛤 (

𝑠

2
) + l𝑜𝑔 (𝑡𝑎𝑛 (

𝜋

2
𝑠))

1/2+𝑖∞

1/2−𝑖∞
] 𝑥𝑠 𝑑𝑠

𝑠
 . 

 
 

Putting 2ℎ𝑛: = ∑
2

2𝑘−1

𝑛
𝑘=1 = 2𝐻2𝑛 − 𝐻𝑛 resp. 𝑐𝑛 ≔

2ℎ𝑛

𝑛
, where 𝐻𝑛 = ∑

1

𝑘

𝑛
𝑘=1  denote the harmonic numbers, a Fourier series 

based analysis is supported by the following two lemma 5 and lemma 6: 
 

Lemma 5:  
 

i) ∫ 𝑙𝑜𝑔 (𝑡𝑎𝑛(
𝜋

2
𝑥)) 𝑐𝑜𝑠(𝑘𝜋𝑥) 𝑑𝑥 = {

−1/𝑘
0

1

0
𝑘
𝑘

𝑜𝑑𝑑
𝑒𝑣𝑒𝑛

 
 

ii) 
𝜋

2
𝑙𝑜𝑔 (𝑡𝑎𝑛 (

𝜋

2
𝑥)) = − ∑

2ℎ𝑛

𝑛
𝑠𝑖𝑛(2𝜋𝑛𝑥) = − ∑ 𝑐𝑛 𝑠𝑖𝑛(2𝜋𝑛𝑥)    

 

iii)   
𝜋

2
𝑙𝑜𝑔 (𝑡𝑎𝑛 (

𝜋

2
𝑥)) ∈ 𝐿2

#(0,1), and therefore, because of  ∑ 𝑐𝑛
2 < ∞∞

𝑛=1 ,  
 

  𝑙𝑜𝑔′ (𝑡𝑎𝑛 (𝜋
𝑥

2
)) =

𝜋

𝑠𝑖𝑛 (𝜋𝑠)
∈ 𝐻−1

# (0,1) 
 

iv) 𝑙𝑜𝑔 (𝑐𝑜𝑡 (
𝜋

2
𝑥)) = 2 ∑

cos (2𝑘−1)𝜋𝑥

(2𝑘−1)
 , 𝑙𝑜𝑔 (𝑡𝑎𝑛 (

𝜋

2
𝑥)) = −2 ∑

cos ((2𝑘+1)𝜋𝑥)

(2𝑘+1)
, 0 < 𝑥 < 1. 

 
 

Proof: for i)-iii) see (ElL); for iv) see (GrI) 1.442. 
 
Following the notations of (KuE) we put 
 

𝐴0: =
1

2
log (2𝜋)   , 𝐴𝑘: =

1

4𝑘
, 

 

 𝐵1: =
1

2𝜋
[𝛾 + 𝑙og (2𝜋)]   , 𝐵𝑘: = 𝐵1 +

1

2𝜋

log (𝑘)

𝑘
. 

 
Lemma 6:  
 
i) For 0 < x < 1 it holds   𝑙𝑜𝑔𝛤(𝑥) = 𝐴0 + 2 ∑ 𝐴𝑘𝑐𝑜𝑠 (2𝜋𝑘𝑥) + 2 ∑ 𝐵𝑘𝑠𝑖𝑛 (2𝜋𝑘𝑥)∞

𝑘=1
∞
𝑘=1  

 

ii) ∑ 𝑙𝑜𝑔𝛤 (𝑥 +
𝑘−1

𝑛
) − 𝑙𝑜𝑔𝛤(𝑛𝑥) =

1

2
(𝑛 − 1) log(2𝜋) +

1

2
(1 − 2𝑛𝑥) log(𝑛)𝑛

𝑘=1  

 
 
Proof: see (KuE) resp. (BeB) 8, Entry 17 iv), resp. (WhE) XII and (GrI) 8.335. 
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Corollary: For 0 < x < 1 it holds 
 

𝑙𝑜𝑔𝛤(𝑥) +
𝜋

2
𝑙𝑜𝑔 (𝑡𝑎𝑛 (

𝜋

2
𝑥)) = 𝐴0 + 2 ∑ 𝐴𝑘cos (2𝜋𝑘𝑥) + 2 ∑ [𝐵𝑘 −

2ℎ𝑘

𝑘
] sin (2𝜋𝑘𝑥)∞

𝑘=1
∞
𝑘=1  ,  

with 

 𝐵1 −
2ℎ1

1
=

1

2𝜋
[𝛾 + log(2𝜋) − 4𝜋] , 𝐵𝑘 −

2ℎ𝑘

𝑘
= 𝐵1 +

1

2𝜋
[

logk−[∑
4π

2𝑘−1

𝑛
𝑘=1 ]

𝑘
] , 

resp.  
 

𝑙𝑜𝑔𝛤 (
𝑥

2
) +

𝜋

2
𝑙𝑜𝑔 (𝑡𝑎𝑛 (

𝜋

2
𝑥)) = 𝐴0 + ∑ 2𝐴𝑘𝑐𝑜𝑠 (𝜋𝑘𝑥) + ∑ 2𝐵𝑘𝑠𝑖𝑛 (𝜋𝑘𝑥) − ∑

2ℎ𝑘

𝑘
𝑠𝑖𝑛(2𝜋𝑘𝑥)∞

𝑘=1
∞
𝑘=1 .  

 
The link between the considered Hilbert spaces and the Banach space of continuous functions is given by 
the Sobolev embedding theorem. In case of space dimension 𝑛 = 1 it states that the Hilbert space 𝐻1

2
+

=

𝐻
−

1

2
−

∗  is continuously embedded into 𝐶0. 

 
Remark: Lemma 6 goes back to E. Kummer (KuE). It is a special case (𝑓(𝑥) ≔ 𝑙𝑜𝑔𝛤(𝑥)) of the general 
property of a Fourier series 𝑓(𝑥) = 𝐴0 + 2 ∑ 𝐴𝑘𝑐𝑜𝑠 (2𝜋𝑘𝑥) + 2 ∑ 𝐵𝑘𝑠𝑖𝑛 (2𝜋𝑘𝑥)∞

𝑘=1
∞
𝑘=1 , (0 < x < 1) in relationship to 

corresponding Fourier series in the form 
 

𝐹(𝑥): = 𝐴0 + 2 ∑ 𝐴2𝑘𝑐𝑜𝑠 (2𝜋𝑘𝑥) + 2 ∑ 𝐵2𝑘𝑠𝑖𝑛 (2𝜋𝑘𝑥)∞
𝑘=1

∞
𝑘=1  , 0 < x <

1

𝑛
. 

It holds, (KuE), 
 

(*)    ∑ 𝑓 (𝑥 +
𝑘−1

𝑛
) = 𝑛𝐹(𝑛𝑥)∞

𝑘=1 . 

 
In the special case 𝑓(𝑥) ≔ 𝑙𝑜𝑔𝛤(𝑥) the property 𝛤(1 + 𝑥) = 𝑥𝛤(𝑥) ensures its validity for 0 < x < 1.  
 
From (KuE) we quote: 
 

„The type of formula (*) namely occurs in the theory of transcendental numbers. It is only interesting 
for analysis, if there is another relationship between the both functions, 𝑓(𝑥) and 𝐹(𝑥)“. 

 

In other words, Kummer’s „contribution to the theory of the function 𝛤(𝑥) = ∫ 𝑒−𝑣𝑣𝑥−1𝑑𝑣
∞

0
.“ is also 

applicable to the function 𝑓1(𝑥) ≔
𝜋

2
𝑙𝑜𝑔 (𝑡𝑎𝑛 (

𝜋

2
𝑥)), but not only in the context of the alternatively proposed 

Zeta function theory.  
 
The Fourier series approach is also applicable in the context of the theory of irrational and transcendental 
numbers, e.g. ((BaA), (LaS), (ScT), (ShA). We note that the „deus ex machina“ method from Lindemann’s 
proof of the irrationality of 𝜋 enables also a simple proof of the transcendence of 𝑒, (HeG). Hilbert’s related 
proof is basically based on an appropriately defined rational function 𝑓(𝑡) and its related Hermite integral 

𝐹(𝑐) = 𝑒𝑐 ∫ 𝑒−𝑥𝑓(𝑥)𝑑𝑥
∞

𝑐
 (HeG). 

 
The Hilbert (Gamma function & integral calculus related) power series 2-parts approach, (HeG) VIII), is 
about a number theoretical and an analytical part, i.e. 
 

i) part 1: If 𝑓(𝑥) = ∑ 𝑎𝑘(𝑥 − 𝑐)𝑘 then 𝐹(𝑥) = ∑ 𝑎𝑘𝑘! 
 

ii) part 2: an appropriate estimation of 𝑒𝑐𝐹(0) − 𝐹(𝑐). 
 

 
Remark: Formal differentiation of lemma 6 i) resp. the corrollary results into the divergent series 
 

𝛾 = −𝑙𝑜𝑔′𝛤(1) = −2 ∑ [2𝜋𝑘𝐵1 + log 𝑘]∞
𝑘=1  , where  𝐵1: =

1

2𝜋
[𝛾 + 𝑙og (2𝜋)]   

resp. 
 

𝑙𝑜𝑔′𝛤 (
𝑥

2
) +

𝜋

2
𝑙𝑜𝑔′ (𝑡𝑎𝑛 (

𝜋

4
𝑥)) = −

𝜋

2
∑ 𝑠𝑖𝑛 (𝜋𝑘𝑥) + ∑ [𝑘[𝛾 + 𝑙og (2𝜋)] + 𝑙𝑜𝑔𝑘 − 2𝜋ℎ𝑘]𝑐𝑜𝑠 (𝜋𝑘𝑥)∞

𝑘=1
∞
𝑘=1 . 

 
 
Remark: The Fourier coefficient function 𝑙𝑜𝑔 (𝑘) is typical for number theoretical problems, especially in the 
context of the harmonic numbers, but it is inappropriate for a harmonic Fourier series based analysis. However, 

the odd number based numbers ℎ𝑛: = ∑
1

2𝑘−1

𝑛
𝑘=1  resp. 𝑐𝑛 ≔

2ℎ𝑛

𝑛
 are appropriate for a Hilbert space based analysis, 

whereby the link to the zeta function theory is given by, (ElL), ∑
ℎ𝑛

𝑛
𝑒−𝑛𝑥 =

1

4
𝑙𝑜𝑔2(𝑡𝑎𝑛ℎ

𝑥

4
). 
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The standard tool trying to prove the tertiary and binary Goldbach conjecture is about the Hardy-Littlewood circle 

method. It is about a dissection of the circle 𝑥 = 𝑒2𝜋𝑖𝛼, or rather a smaller concentric circle, into „Farey arcs“. The 
„major arcs“, or „basic intervals“, provide the main term in the asymptotic formula for the number of 
representations. Their treatment does not give rise to any very serious difficulties compared to the problems 
presented by the „minor arcs“, or „supplementary intervals“. The latter ones are analyzed by estimates of the 
Weyl (trigonometrical) sums 
 

𝑆(𝑥) ≔ ∑ 𝑒2𝜋𝑖𝑛𝑥
𝑛   

 
without taking any (Goldbach) problem relevant information into account. We note that an asymptotic behavior in 

the form 𝑂(𝑁
1

2
+ ) of the Farey series is equivalent to to the Riemann Hypothesis (LaE5). 

 
 
The Hardy-Littlewood circle method is concerned with the set of the winding numbers of the unit circle, related to 

the zeros of the Weyl sum components, which are the basis functions 𝑒2𝜋𝑖𝑛𝑥.  The method itself is about Fourier 

analysis over 𝑍, which acts on the circle 𝑅/𝑍. The analyzed functions are complex-valued power series  
 

𝑓(𝑥) = ∑ 𝑎𝑛𝑧𝑛∞
0    ,   |𝑧| < 1. 

 
The key principle of the circle method is the fact, that for 𝑁 being an integer it holds 

 

∫ 𝑒2𝜋𝑖𝑁𝛼𝑑𝛼 = {
1
0

1

0

𝑖𝑓 𝑁 = 0
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

   

 
which can be reformulated in the form 

 
Lemma 7:   Let 𝑓(𝑥) = ∑ 𝑎𝑛𝑥𝑛∞

0  with |𝑥| < 1, then for 0 < 𝑟 < 1 it holds 
 

𝑟𝑛𝑎𝑛 = ∫ 𝑓(𝑟𝑒2𝜋𝑖𝑡)𝑒−2𝜋𝑖𝑛𝑡1

0
. 

 

The alternatively proposed to be analyzed functions are „functions“ with domain 𝛤 = 𝑆1(𝑅2), which are elements of 

an appropriately defined distributional, periodical Hilbert space 𝐻𝛼
#(0,1). The corresponding alternative fundamental 

principle is given by 
 

−𝑛𝑓𝑛(𝑥) =
1

2
∫

𝑓𝑛(𝑦)

𝑠𝑖𝑛2(𝜋(𝑥−𝑦))

1

0
𝑑𝑦 =

1

2
∫ 𝑐𝑜𝑡( 𝜋(𝑥 − 𝑦))𝑓𝑛

′1

0
𝑑𝑦  

 
with 𝑓𝑛(𝑦): = 𝑎𝑛 𝑐𝑜𝑠 2 𝜋𝑛𝑦 + 𝑏𝑛 𝑠𝑖𝑛 2 𝜋𝑛𝑦. 
 
The right side of the above formula describes the Hilbert transform of 𝑓𝑛

′ (𝑥). Therefore, the corresponding integral 
operator with domain 𝐿2

#(0,1) = 𝐻0
#(0,1) is well defined with respect to the weak 𝐻−1/2

# (0,1) (inner product induced) 

topology.  
 
The proposed truly circle method (not a rather smaller concentric circle within the unit disc) is about the 𝐻−1/2

# (0,1) 

framework in combination with the alternatively considered zeros of the Kummer function 𝐹1 1 (
1

2
,

3

2
; 𝑧). Its imaginary 

parts 𝜔𝑛 enable the definition of sequences like 𝜆𝑛
(1)

= 𝜔𝑛 resp. 𝜆𝑛
(2)

=
1

2
(𝜔𝑛 + 𝜔𝑛+1), and the average 

1

2
(𝜆𝑛

(1)
+ 𝜆𝑛

(2)
).  

 

The pair (𝜆𝑛
(1)

, 𝜆𝑛
(2)

) can be interpreted as a pair of semi-winding numbers for the left and the right unit semi-circle, 
while at the same point in time both sequences do have Snirelman density ½.  
 

The average 
1

2
(𝜆𝑛

(1)
+ 𝜆𝑛

(2)
) provides the link to Kadec‘s 

1

4
-theorem.  

 
The distributional Hilbert space framework 𝐻𝛼

# comes along with generalized harmonic Fourier series theory. The 
proposed truly circle method is based on the theory of nonharmonic Fourier series, allowing to replace the integer 
(winding number) 𝑛 of the Hardy-Littlewood „nearly“ circle method) by appropriate sequences 𝜆𝑛

∗  accompanied by 
the Riesz basis concept as central element of in the nonharmonic Fourier series theory.  
 
Therefore, the proposed truly circle method provides an appropriate tool for additive number theory, especially for 
the proof of the binary Goldbach problem. 
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A brief overview of nonharmonic Fourier series (YoR) 
 
 
A basis for a Hilbert space is a Riesz basis, if it is equivalent to an orthogonal basis, that is, if it is obtained 
from an orthogonal basis by means of a bounded invertable operator. 
 
A number of important characteristic properties of Riesz bases for a separable Hilbert space 𝐻 are the 
following equivalent statements: 
 

- The sequence {𝑓𝑛 } forms a Riesz basis 

- There is an equivalent inner product on 𝐻, with respect to which the sequence {𝑓𝑛 } becomes an 

orthogonal basis for 𝐻 

- The sequence {𝑓𝑛 } is complete in 𝐻, and there exist positive constants 𝐴 and 𝐵 such that for an 

arbitrary positive integer 𝑛 and arbitrary scalars 𝑐1 , 𝑐2 , … 𝑐𝑛  one has 
 

𝐴 ∑ 𝑐𝑖
2n

𝑖=1 ≤ ‖∑ 𝑐𝑖𝑓𝑖
n
𝑖=1 ‖2 ≤ 𝐵 ∑ 𝑐𝑖

2n
𝑖=1     

 

- The sequence {𝑓𝑛 } is complete in 𝐻, and its Gram matrix ((𝑓𝑖 , 𝑓𝑙 ))𝑖,𝑗=1
∞   generates a bounded 

invertable operator on  {𝑙2 } 

- The sequence sequence {𝑓𝑛 } is complete in 𝐻 and possesses a complete biorthogonal 

sequence sequence {𝑔𝑛 } such that 

 
∑ |(𝑓, 𝑓𝑛)|2 < ∞∞

𝑛=1  and  ∑ |(𝑓, 𝑔𝑛)|2 < ∞∞
𝑛=1  for every 𝑓 in 𝐻 

 

- The sequence {𝑓𝑛 } is both, a Bessel basis and a Hilbert basis 

- The sequence {𝑓𝑛 } is an exact frame, (YoR) p. 157. 

 
The totality of all entire functions of exponential type at most 𝜋 that are square integrable on the real axis is 

known as the Paley-Wiener (separable Hilbert) space 𝑷, equipped with the inner product  (𝑓, 𝑔) =

∫ 𝑓(𝑥)𝑔(𝑥)̅̅ ̅̅ ̅̅ 𝑑𝑥
∞

−∞
, which is isometrically isomorph to 𝐿2 (−π, π). The isomorphism between 𝑷 and 𝐿2 (−π, π) 

has far-reaching consequences, e.g. regarding known properties of 𝐿2 (−π, π) which can be transformed 
easily into nontrivial assertions about 𝑷. 
 

If 𝑓 belongs to 𝑷 and has the representation 𝑓(𝑧) ≔
1

2𝜋
∫ 𝜑(𝑡)𝑒𝑖𝑧𝑡𝑑𝑡

𝜋

−𝜋
, with 𝜑 ∈ 𝐿2 (−π, π), then Planchel’s 

theorem shows that ‖𝑓‖2 = ‖φ‖2. By taking the Fourier transform of 𝑒𝑖n𝑡 (𝑛 = 0, ±1, ±2, ± ⋯ ), we see that 

the set of functions {
𝑠𝑖𝑛 𝜋(𝑧−𝑛)

𝜋(𝑧−𝑛)
} forms an orthogonal basis for 𝑷. Accordingly every function 𝑓 in 𝑷 has an 

unique expansion of the form  
 

𝑓(𝑧) = ∑ 𝑐𝑛
𝑠𝑖𝑛 𝜋(𝑧−𝑛)

𝜋(𝑧−𝑛)
∞
−∞  with ∑ |𝑐𝑛|2∞

−∞ < ∞. 

 
Every function 𝑓 ∈ 𝑷 can be recaptured from its values at the integers, which is achieved by the cardinal 
series representation of 𝑓, (YoR) p. 90. 
 
The Paley-Wiener criterion is nothing more than the assertion that the mapping  𝑇: 𝑒𝑛  →  𝑓𝑛 for  𝑛 = 1,2. … 
can be extended to an isomorphism on all of the separable Hilbert space 𝐻 with its orthogonal basis {𝑒𝑛} 

for which ‖𝐼 − 𝑇‖ < 1. 
 
The trigonometric system is stable  𝐿2 (−π, π) under „sufficiently small“ perturbances of the integers. This 

means that if 𝜆𝑛  is a sequence of real or complex numbers for which {𝜆𝑛 − 𝑛} is in some sense „small“, 

then the system {𝑒𝑖𝜆𝑛 𝑡} will form a basis for 𝐿2 (−π, π), in fact, a Riesz basis. Accordingly, every function 𝑓 ∈

𝐿2 (−π, π) will have an unique nonharmonic Fourier series expansion 
 

𝑓(𝑡) = ∑ 𝑐𝑛 𝑒𝑖𝜆𝑛 𝑡∞
−∞  (in the mean) 

 
with  ∑ |𝑐𝑛|2∞

−∞ < ∞. The possibility of such nonharmonic expansions was discovered by Paley and Wiener. 
…. In the present setting that criterion takes the form 
 

 (*)  ‖∑ 𝑐𝑛 (𝑒𝑖n𝑡 − 𝑒𝑖𝜆𝑛 𝑡)∞
−∞ ‖ ≤ 𝜆 < 1  , whenever  ∑ |𝑐𝑛|2∞

−∞ ≤ 1.  

 
Remark: We note that the sequence {|𝑡|𝛼𝑒𝑖𝑛𝑡} with 0 < 𝛼 < 1/2 is not a Riesz basis (YoR) p. 30. 
 

Remark: From the Theorem of Levinson, (YoR), p. 100, it can be concluded that the system {𝑒𝑖𝜆𝑛 𝑡} is complete in 𝐿2 (−π, π) 
 

Remark: A complete sequence of vectors in a separable Hilbert space is a Riesz basis if and only if its moment space is equal to 𝑙2, (YoR) p. 141 
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When shall the sequence {𝜆𝑛 − 𝑛} be considered „small“? Based on what has already been established, 

one might well suppose that the condition 𝜆𝑛 − 𝑛 → 0 as 𝑛 → ±∞ is, at the very least, neccessary. 
Surprisingly, it is not, which is shown by, (YoR) p. 36,  
 

Kadec’s -
𝟏

𝟒
-Theorem: If 𝜆𝑛  is a sequence of real numbers for which 

 

|𝜆𝑛 − 𝑛| ≤ 𝐿 <
1

4
 for 𝑛 = 0, ±1, ±2, ± ⋯, 

 

then {𝑒𝑖𝜆𝑛 𝑡} satisfies the Paley-Wiener criterion and so forms a Riesz basis for 𝐿2 (−π, π). 

 
Proof: (YoR) p. 36; to prove the theorem it is to be shown that the Paley-Wiener criterion (*) is 
fulfilled, whenever ∑ |𝑐𝑛|2∞

−∞ ≤ 1, which is the case for 𝜆 = 1 − cos(𝜋𝐿) + sin (𝜋𝐿). The trick to prove this 

is to expand the function 1 − 𝑒𝑖(𝜆𝑛 −𝑛)𝑡 in a Fourier series relative to the complete orthogonal system 

{1, cos (𝑛𝑡), sin (((𝑛 −
1

2
) 𝑡)}

𝑛=1

∞
.  

 
Remark (YoR) p.37, p. 102: The result is sharp in the sense that the constant 𝐿 cannot be improved. In 

fact, if  𝐿 =
1

4
 then the conclusion of Kadec’s theorem no longer holds:  

 
A counterpart is provided by the sequence {𝜆𝑛

∗ }, with 
 

𝜆𝑛
∗ = {

𝑛 −
1

4
, 𝑛 > 0

0        , 𝑛 = 0

𝑛 +
1

4
, 𝑛 < 0

  

 

which is complete in 𝐿2 (−𝜋, 𝜋), and the entire function  𝑓(𝑧) ≔ 𝑎 ∫ (𝑐𝑜𝑠
1

2
𝑡)−1/2𝑒𝑖𝑧𝑡𝑑𝑡

𝜋

−𝜋
 (see also (GrI) 

3.892, 8.338), where the constant 𝑎 is chosen so that 𝑓(0) = 1. It holds 𝑓(𝜆𝑛 ) = 0 for every 𝜆𝑛  and 

(see also (GrI) 8.325) 
 

𝑓(𝑧) ≔
𝛤2(

3

4
)

𝛤((
3

4
+𝑧)𝛤((

3

4
−𝑧)

= ∏ [(1 +
𝑧

3

4
+𝑘

)(1 −
𝑧

3

4
+𝑘

)]𝑘=0→∞ . 

 

The condition 𝑓(0) = 1 is crucial to enable the application of Hadamard’s factorization theorem to 

show that 𝑓(𝑧) can vanish only at the  𝜆𝑛 ‘s. It further holds, when 𝑛 is positive, 
 

𝑓′(𝜆𝑛 ) = (−1)𝑛𝛤2(
3

4
)

𝛤(𝑛)

𝛤(𝑛∗1/2)
    with    

𝛤(𝑛)

𝛤(𝑛∗1/2)
~

1

√𝑛
   as 𝑛 → ∞. 

 

Suppose to the contrary that the set {𝑒𝑖𝜆𝑛 𝑡} were a Riesz basis for 𝐿2 (−𝜋, 𝜋). The we could write 1 =

∑ 𝑐𝑛 𝑒𝑖𝜆𝑛 𝑡∞
−∞ . The sequence of coefficients {𝑐𝑛 } is unique and belongs to 𝑙2 . By means of the Fourier 

isometry, the entire discussion can be transfered into the Paley-Wiener space. The exponentials 

𝑒𝑖𝜆𝑛 𝑡 are transformed into the reproducing functions 
 

𝐾𝑛(𝑧) =
𝑠𝑖𝑛 𝜋(𝑧−𝜆𝑛 )

𝜋(𝑧−𝜆𝑛 )
  

and the expansion 
𝑠𝑖𝑛𝜋𝑧

𝜋𝑧
= ∑ 𝑐𝑛 𝐾𝑛 (𝑧)∞

−∞   

 

Is valid in the topology of the Paley-Wiener space 𝑷. Define a sequence {𝑓𝑛 } of functions of 𝑷 by 

setting 

𝑓𝑛(𝑧): =
𝑓(𝑧)

𝑓′(𝜆𝑛 )(𝑧−𝜆𝑛 )
 . 

 

 Then{𝑓𝑛 } and {𝐾𝑛 } are biorthogonal, since (𝑓𝑛 , 𝐾𝑚 ) = (𝑓𝑛 (𝜆𝑚) = 𝛿𝑚𝑛 . Therefore  

 

𝑐𝑛 = (
𝑠𝑖𝑛𝜋𝑧

𝜋𝑧
, 𝑓𝑛 ) = 𝑓𝑛 (0) =

−1

𝑓′(𝜆𝑛 )𝜆𝑛
.  

 

Using the asymptotic formula 
𝛤(𝑛)

𝛤(𝑛∗1/2)
~

1

√𝑛
   as 𝑛 → ∞ we conclude that ∑ |𝑐𝑛|2∞

−∞  diverges. This 

contraction completes the proof. 
 
 
Remark: A system {𝑒𝑖𝜆𝑛 𝑡} of complex exponentials is a Riesz basis for 𝐿2 (−π, π) if and only if {𝜆𝑛 } is a complete interpolating sequence for 𝑷, (YoR) p. 143 

Remark: (WaG) p. 503: for  𝑛 > 𝑁  the Bessel function 𝐽0(𝑥) has precisely one zero in each of the intervals (𝜋 (𝑛 −
1

4
)) , (𝜋 (𝑛 +

1

4
)) 
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Remark:  A striking generalization of "Kadec's 1/4-theorem" (YoR) p. 178, is  
 

„Avdonin's Theorem 1/4 in the mean": Let 𝜆𝑛 = 𝑛 + 𝛿𝑛 (𝑛 = 0, ±1, ±2, …. be a separated sequence of 

real or complex numbers. If there exists a positive integer 𝑁 and a constant 𝑑, 0 ≤ 𝑑 <
1

4
, such that 

 

|∑ 𝛿𝑘
(m+1)N
𝑘=𝑚𝑁+1 | ≤ 𝑑𝑁   

 

for all integers 𝑚, then the system {𝑒𝑖𝜆𝑛 𝑡} is a Riesz basis for 𝐿2 (−𝜋, 𝜋). 

 

 
Remark (LeN2): For the sequence fulfilling |𝜆𝑛 − 𝑛| ≤ 𝐿 < 1/4 , 𝑛 = 0, ±1, ±2, ±3, … .. let 
 

𝐹(𝑥) ≔ ∏(1 −
x

𝜆𝑛
)(1 −

x

𝜆−𝑛
) . 

 
Then there exists an absolute constant 𝐴 such that 
 

∫ |𝐹(𝑥)|2𝑑𝑥 <
∞

−∞

𝐴

(1−4𝐿)2
 ,  ∫ |𝐹(𝑥)|2𝑑𝑥 <

∞

𝑐

𝐴𝑐−(1−4𝐿)

(1−4𝐿)2
 , for 𝑐 > 1,   i.e.     𝐹(𝑥) ∈ 𝐿2(−∞, ∞). 

 
The „generalized“ trigonometric moment problem in 𝐿2 (−𝜋, 𝜋) is given by, (YoR) p.124, 
 

(*)   
1

2𝜋
∫ 𝜑(𝑡)𝑒𝑖𝜆𝑛 𝑡𝑑𝑡 = 𝑐𝑛

𝜋

−𝜋
. 

 

As {𝑒𝑖𝜆𝑛 𝑡} is a Riesz basis its moment space is 𝑙2 and (*) admits a solution whenever 𝑐𝑛  is square-

summable, and for these sequences only. If {𝑔𝑛} is the unique sequence in 𝐿2 (−𝜋, 𝜋) biorthogonal to 

{𝑒𝑖𝜆𝑛 𝑡}, then the unique solution to (*) is given by the norm-convergent series 

 
𝜑(𝑡) = ∑ 𝑐𝑛𝑔𝑛(𝑡)∞

−∞ .  
 
Putting       

                                                                        𝐺(𝑧): = 𝑧 ∏ (1 −
z2

λn
2)k=0→∞    

then  

𝐺𝑛(𝑧): =
𝐺(𝑧)

𝐺′(𝜆𝑛 )(𝑧−𝜆𝑛 )
  

 
belongs to the Paley-Wiener space 𝑷 and 𝑔𝑛(𝑡) is the inverse Fourier transform of 𝐺𝑛(𝑧), i.e. for almost all 𝑡 ∈
[−𝜋, 𝜋], 

𝑔𝑛(𝑡) = ∫ 𝐺𝑛(𝑧)𝑒𝑖𝑥𝑡𝑑𝑡
∞

−∞
.  

 
By means of the Fourier isometry, we can transform the above into the Paley-Wiener space. The 

exponentials 𝑒𝑖𝜆𝑛 𝑡 are transformed into the reproducing functions 𝐾𝑛(𝑧) =
𝑠𝑖𝑛 𝜋(𝑧−𝜆𝑛 )

𝜋(𝑧−𝜆𝑛 )
 , 𝑔𝑛(𝑡) is transformed 

into 𝐺𝑛(𝑧), while the moment problem itself becomes 𝑓(𝜆𝑛 ) = 0, 𝑛 = 0, ±1, ±2, ±3, … .., since 𝑓(𝜆𝑛 ) = (𝑓, 𝐾𝑛). 

Here 𝑐𝑛 ∈ 𝑙2 and 𝑓 ∈ 𝑷 is to be found. The solution is given by 
 

 (**)  𝑓(𝑧) = ∑ 𝑐𝑛
𝐺𝑛(𝑧)

𝐺𝑛
′ (𝜆𝑛 )(𝑧−𝜆𝑛 )

∞
−∞ .  

 

Moreover, since the expansion 𝑓 = ∑ (𝑓, 𝐾𝑛)𝐺𝑛
∞
−∞  is valid for every function 𝑓 belonging to 𝑷 and {𝐺𝑛} is a 

Riesz basis for 𝑷,  ∑ |𝑓(𝜆𝑛 )|
2

< ∞∞
−∞   for all 𝑓. Thus (**) with 𝑐𝑛 ∈ 𝑙2 represents the most general function in 

𝑷.  
 
Remark: The Fourier function 𝑙𝑜𝑔 (𝑛) is inappropriate for a harmonic Fourier series based analysis. However, the 

odd number based numbers ℎ𝑛: = ∑
1

2𝑘−1

𝑛
𝑘=1  resp. 𝑐𝑛

∗ ≔ (
2

𝜋
)2 ℎ𝑛

𝑛
, are appropriate for a Hilbert space based analysis, 

whereby the link to the zeta function theory is given by, (ElL), 
 

∑
ℎ𝑛

𝑛
𝑒−𝑛𝑥 =

1

4
𝑙𝑜𝑔2(𝑡𝑎𝑛ℎ

𝑥

4
). 

 

The link to the proposed nonharmonic Fourier series analysis framework is provided by the fact that  𝑐𝑛
∗ ∈ 𝑙2 with 

∑ 𝑐𝑛
∗ 2 =

1

2
< ∞∞

𝑛=1 , see also below. Regarding the Kadec condition we mention that log (
1

4
) = −2𝑙𝑜𝑔2. 
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Remark: The Fourier analysis for extended (𝑛 →  𝜆𝑛 ) Cardinal functions (including coefficient terms like 𝑙𝑜𝑔𝑛, 

(WhJ1), the link to the Hilbert transform, (TiE1), and a „rationality result concering 휁(2𝑛), (TiE2)) is provided in 
(WhJ1-3), (TiE1-2). The formula (**) above is a simple example of a „generalized“ Lagrange interpolation fomula 

for an entire function with values 𝑐𝑛 at the points 𝜆𝑛 . The formula is valid whenever {𝜆𝑛 } is real, symmetric, and 

Kadec’s condition is fulfilled. If one choose 𝜆𝑛 = 𝑛, then (**) reduces to the „cardinal series“ for 𝑓(𝑧), (YoR) p. 126. 
 
 
 

Theorem 8 (YoR) p. 139: A complete sequence of vectors belonging to a separable Hilbert space 

is a Riesz basis if and only if its moment space coincides with 𝑙2 . 

 
 
Regarding interpolation in the Paley-Wiener space 𝑷 this leads to the 
 

Theorem 9 (YoR) p. 143: A system {𝑒𝑖𝜆𝑛 𝑡} of complex exponentials is a Riesz basis for 𝐿2 (−𝜋, 𝜋) if 

and only if {𝜆𝑛 } is a complete interpolation sequence in 𝑷. 

 
 
A sub -class of the entire functions of exponential type 𝜋 are sine-type-functions (regarding the considered 
Kummer function we refer to (SeA)):  
 

Theorem 10 (YoR) p. 144: if {𝜆𝑛 } is the set of zeros of sine-type, then the system {𝑒𝑖𝜆𝑛 𝑡} is a Riesz 

basis for 𝐿2 (−𝜋, 𝜋). 

 

 

Regarding the stability of the class of Riesz bases {𝑒𝑖𝜆𝑛 𝑡} in 𝐿2 (−𝜋, 𝜋) Kadec’s theorem can be dramatically 

improved, first under „small“ displacements of the 𝜆𝑛 ‘s and then under more general „vertical“ displacements.  
 
The modus operandi is to combine the stability of interpolating sequences with the stability of frames, (YoR) pp. 
160 ff.: 
 

Theorem 13. If the system {𝑒𝑖𝜆𝑛 𝑡} is a frame in 𝐿2 (−𝜋, 𝜋), then there is a positive constant 𝐿 with the 

property that {𝑒𝑖𝜇𝑛 𝑡}  is also a frame in 𝐿2 (−𝜋, 𝜋) whenever |𝜆𝑛 − 𝜇
𝑛

| ≤ 𝐿 for every 𝑛. 

 

Corrollary. If the system {𝑒𝑖𝜆𝑛 𝑡} is a Riesz basis for 𝐿2 (−𝜋, 𝜋) then there is a positive constant 𝐿 with 

the property that {𝑒𝑖𝜇𝑛 𝑡} is also a Riesz basis for 𝐿2 (−𝜋, 𝜋) whenever |𝜆𝑛 − 𝜇
𝑛

| ≤ 𝐿  for every 𝑛. 

 
Theorem 14. Let {𝜆1 , 𝜆2 , 𝜆3 , … . } be a sequence of points lying in a strip parallel to the real axis. If 

the system {𝑒𝑖𝑅𝑒(𝜆𝑛 )𝑡} is a frame in 𝐿2 (−𝜋, 𝜋), then so is {𝑒𝑖𝜆𝑛 𝑡}. 

 
Corollary 1. Let {𝜆1 , 𝜆2 , 𝜆3 , … . } be a sequence of points lying in a strip parallel to the real axis. If the 

system {𝑒𝑖𝑅𝑒(𝜆𝑛 )𝑡} is a Riesz basis for 𝐿2 (−𝜋, 𝜋), then so is {𝑒𝑖𝜆𝑛 𝑡}. 

 

Corollary 2. If {𝜆𝑛 }
𝑛=−∞

𝑛=∞
 is a sequence of scalars for which 

 

|𝑅𝑒(𝜆𝑛 ) − 𝑛| <
1

4
, 

 

then the system {𝑒𝑖𝜆𝑛 𝑡}
𝑛=−∞

𝑛=∞

 is a Riesz basis for 𝐿2 (−𝜋, 𝜋). 

 
 
Remark: Assuming the series 𝑓(𝑥) = ∑ 𝑐𝑛𝑒2𝜋𝑖𝑘𝑥 is real valued and the coefficients 𝑐𝑛 ∈ 𝑅. Then 𝑓(𝑥) =
∑ 𝑐𝑛cos (2𝜋𝑖𝑘𝑥). 
 
From the above we recall, (LeN2) 
 

Remark: for 𝐹(𝑥) ≔ ∏(1 −
x

𝜆𝑛
)(1 −

x

𝜆−𝑛
) with {𝜆𝑛}𝑛∈𝑍 fulfilling |𝜆𝑛 − 𝑛| ≤ 𝐿 < 1/4 , 𝑛 = 0, ±1, ±2, ±3, … it holds 𝐹(𝑥) ∈

𝐿2(−∞, ∞). 
 
Remark: Let 𝐹(𝑧) be a sine-type function, let the width of its indicator diagram be 2𝜋, and let 𝜆𝑛 be its zero set. 

Then  the system of functions {
𝐹(𝑧)

𝐹′ (𝜆𝑛 )(𝑧−𝜆𝑛 )
}

𝑛=−∞

𝑛=∞

is a Riesz basis in 𝐿𝜋
2 , (LeB) p. 169. 
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Let 𝜔𝑛 denote the imaginary parts of the zeros of the Kummer function 𝐹1 1 (
1

2
,

3

2
; 2π𝑧), whereby none of the zeros 

lie on the critical line (!), fulfilling the inequalities, (SeA), 
 

2𝑛 − 1 < 2𝜔𝑛 < 2𝑛 < 𝜔𝑛 + 𝜔𝑛+1 < 2𝑛 + 1   resp.  𝑛 −
1

4
< 𝜆𝑛 ≔

3𝜔𝑛+𝜔𝑛+1

4
< 𝑛 +

1

4
 , 𝑛 = 1,2, …. . 

 

Therefore, it holds the 
 

Theorem: For any 𝜔0 ∈ (−
1

2,
, 0) ((*) and 𝜆−𝑛 ≔ −𝜆𝑛 the Kadec condition is fulfilled, i.e. it holds 

 
|𝜆𝑛 − 𝑛| ≤ 𝐿 < 1/4 , 𝑛 = 0, ±1, ±2, ±3, … .. . 

 
In the following some cornerstones of a 𝐻𝛼

#(0,1) based Hilbert space Zeta funtion theory are collected, where the 

distributional Hilbert spaces 𝐻𝛼
#(0,1) are built on the separable Hilbert space 𝐿2 (0,1) with its underlying harmonic 

orthogonal basis {𝑒𝑛}. With respect to a link back to the RH in the context of the considered Kummer function, the 
Paley-Wiener space 𝑷 and the related Paley-Wiener criterion we refer to (BaB), (BeA1). 
 

Remark: The trigonometric moment problem in 𝐿2 (−𝜋, 𝜋) is given by, (YoR) p.124, 
 

1

2𝜋
∫ 𝜑(𝑡)𝑒𝑖𝑛𝑡𝑑𝑡 = 𝑐𝑛

𝜋

−𝜋
. 

 
 
Remark: The Mellin transforms of the {sin(𝑛𝑥) , cos (𝑛𝑥)} system is given by, (GrI) 3.761 
 

∫ 𝑥𝑠−1 𝑠𝑖𝑛(𝑎𝑥) 𝑑𝑥
∞

0
=

𝛤(𝑠)

𝑎𝑠
sin (

𝜋

2
𝑠)   ,     ∫ 𝑥𝑠−1 𝑐𝑜𝑠(𝑎𝑥) 𝑑𝑥

∞

0
=

𝛤(𝑠)

𝑎𝑠
cos (

𝜋

2
𝑠) , 0 < |𝑅𝑒(𝑠)| < 1, 𝑎 > 0. 

 
resp.  
 

∫ 𝑥𝑠−1𝑒𝑖𝑎𝑥𝑑𝑥
∞

0
=

𝛤(𝑠)

𝑎𝑠 𝑒𝑖
𝜋

2
𝑠
 . 

 
For the related zeta function representations we refer to (TiE) chapter II. The corresponding circular counterparts 
of the Mellin transforms above are given by, (GrI) 3.761 
 

i) ∫ 𝑥𝑠−1 𝑠𝑖𝑛(𝑎𝑥) 𝑑𝑥
1

0
= −

𝑖

2𝑠
[ 𝐹1 1(𝑠, 𝑠 + 1; 𝑖𝑎) − 𝐹1 1(𝑠, 𝑠 + 1; −𝑖𝑎)]  ,   𝑅𝑒(𝑠) > −1, 𝑎 > 0 , 

 

ii) ∫ 𝑥𝑠−1 𝑐𝑜𝑠(𝑎𝑥) 𝑑𝑥
1

0
=

1

2𝑠
[ 𝐹1 1(𝑠, 𝑠 + 1; 𝑖𝑎) + 𝐹1 1(𝑠, 𝑠 + 1; −𝑖𝑎)]  ,   𝑅𝑒(𝑠) > −1, 𝑎 > 0 . 

 
leading to  
 

Lemma 8 ((Gri) 3.761, (SeA)): For 𝑅𝑒(𝑠) > −1, 𝑎 > 0 it holds 

∫ 𝑥𝑠−1𝑒𝑖𝑎𝑥𝑑𝑥 =
1

𝑠
𝐹1 1(𝑠, 𝑠 + 1; 𝑖𝑎) = 𝛤(𝑠)(−𝑖𝑎)−𝑠 [1 + 𝑂(

1

(𝑖𝑎)2)] +
𝑒𝑖𝑎

𝑖𝑎
[1 +

1+𝑠

𝑖𝑎
+ 𝑂(

1

(𝑖𝑎)2)]
1

0
. 

Remark: The integral ∫ 𝑥𝑠−1𝑒𝑖𝑎𝑥𝑑𝑥
∞

1
 links to the (generalized) Dirichlet series and integrals, (InA) V. The formula in 

lemma 8 is supposed to overcome the „domain gap“ −1 < 𝑅𝑒(𝑠) < 0 of the zeta function representation given by, 
(TiE) (2.1.7) 
 

휁(𝑠) = 𝑠 ∫ ([𝑥] − 𝑥 +
1

2
) 𝑥−𝑠−1𝑑𝑥

∞

0
= 𝑠 ∫ (∑

sin (2𝜋𝑛𝑥)

𝜋𝑛

∞
𝑛=1 ) 𝑥−𝑠−1𝑑𝑥

∞

0
. 

 

Remark: From (BeA1) we recall for 0 < 𝑅𝑒(𝑠), 𝜌(𝑥) ≔ 𝑥 − [𝑥] ∈ 𝐿2
#(0,1, 0 < 𝜗 ≤ 1 

 

∫ 𝜌(
𝜗

𝑥
)𝑥𝑠−1𝑑𝑥

1

0
=

𝜗

𝑠−1
−

𝜗𝑠휁(𝑠)

𝑠
. 

 

Remark: Riemann’s density function 𝐽(𝑥) =
1

2
[∑

1

𝑛
+ ∑

1

𝑛𝑝𝑛≤𝑥𝑝𝑛<𝑥 ] is derived from the formula 𝑝−𝑛𝑠 = 𝑠 ∫ 𝑥−𝑠−1𝑑𝑥
∞

𝑝𝑛  (EdH) 

1.11, i.e. lemma 6 above provides the basis for an alternative, circular density function with domain 𝛤 = 𝑆1(𝑅2) 

accompanied by properly chosen 𝑎 > 0, where the winding number 𝑛 is replaced by a non-harmonic sequence, 

enabling a corresponding 𝐻𝛼
#(0,1) based Fourier inversion, analogue to EdH) 1.12. 

 

Remark: Riemann’s Fourier inversion of  
𝑙𝑜𝑔 (𝑠)

𝑠
 to derive the formula for 𝐽(𝑥), (EdH) 1.12, is built on the Fourier 

inverse formula 𝑓(𝑥) =
1

2𝜋
∫ ∫ 𝑓(𝜔)𝑒𝑖(𝑥−𝜔)𝑡𝑑𝜔𝑑𝑡

∞

−∞

∞

−∞
. Its periodical counterpart is given by 

 

𝑔(𝑥) =
1

2𝜋
∑ ∫ 𝑔(𝜔)𝑒𝑖(𝑥−𝜔)𝑛𝑑𝜔 =

𝜋

−𝜋
𝑛=∞
𝑛=−∞ ∑ 𝑐𝑛𝑒𝑖𝑛𝑥𝑛=∞

𝑛=−∞ , 𝑐𝑛 ≔
1

2𝜋
∫ 𝑔(𝜔)𝑒𝑖𝑛𝜔𝑑𝜔

𝜋

−𝜋
. 
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Remark: From lemma 4 above we recall 
 

𝐹𝑛(𝑠): =
F1 1(

1

2
,
3

2
;s)

𝐹1 1

′
(

1

2
,
3

2
;𝛼𝑛 ))(𝑠−𝛼𝑛 )

= −2𝑒−
2

3
𝑠 ∏ (

𝛼𝑘−𝑠

𝛼𝑘
𝛼𝑛−𝑠

𝛼𝑛

) 𝑒
𝑠

𝛼𝑘𝑒−(𝛼𝑛−𝑠). 

 

Remark: For some specific properties of 𝐹1 1(𝑎, 𝑎 + 1; 𝑧) we refer to the above and the Barnes-type contour 
integral representation, (AbM) 13.2.9, 
 

𝑎 𝐹1 1(𝑎, 𝑎 + 1; 𝑧) =
𝛤(𝑎+1)

𝛤(𝑎)
𝐹1 1(𝑎, 𝑎 + 1; 𝑧) =

1

2𝜋𝑖
∫

𝛤(−𝑠)𝛤(𝑎+𝑠)

𝛤(𝑎+1+𝑠)

𝑐+𝑖∞

𝑐−𝑖∞
(−𝑧)𝑠𝑑𝑠 = −

1

2𝜋𝑖
∫

𝛤(1−𝑠)

(𝑎+𝑠)

𝑐+𝑖∞

𝑐−𝑖∞
(−𝑧)𝑠 𝑑𝑠

𝑠
. 

 
Remark: With respect to the below mentioned replacement of the function 𝛹(𝑥) by 𝛽(𝑥), when changing to the 
„circular modelling framework“ we recall from (GrI) 4.532 
 

i) ∫ 𝑡𝑥 𝑎𝑟𝑐𝑡𝑎𝑛(𝑡)
𝑑𝑡

𝑡
=

1

2𝑥
[

𝜋

2
+ 𝛽(

𝑥+1)

2
]

1

0
 for 𝑥 > 0 

 

ii) ∫ 𝑡𝑥 𝑎𝑟𝑐𝑡𝑎𝑛(𝑡)
𝑑𝑡

𝑡
=

1

𝑥

𝜋/2

𝑐𝑜𝑠 (
𝜋

2
𝑥)

∞

0
 for 0 < 𝑥 < 1. 

 

Remark: The Hilbert kernel for the circular Hilbert transform can be obtained by making the Cauchy kernel 
1

𝑥
 

periodic, i.e. 
 

1

2
𝑐𝑜𝑡

𝑥

2
=

1

𝑥
+ [∑

1

𝑥+2𝑛𝜋
+

1

𝑥−2𝑛𝜋
∞
𝑛=1 ], |𝑥| ≤ 𝜋,  

 

resp. 
 

 𝜋𝑐𝑜𝑡𝜋𝑥 =
1

𝑥
+ [∑

1

𝑛
+

1

𝑥−𝑛

∞
𝑛=−∞

𝑛≠0
] = 𝜓(1 − 𝑥) − 𝜓(𝑥), |𝑥| ≤ 1. 

 

 
A corresponding Riesz basis based nonharmonic circular kernel is given by, (see also (GrI) (1.421), (8.365)),  
 

1

2
𝑐𝑜𝑡∗(

𝑥

2
) = ∑

1

𝜆𝑛

+
2𝜋

𝑥−2𝜋𝜆𝑛

∞
𝑛=−∞  , |𝑥| ≤ 𝜋, resp.  𝜋𝑐𝑜𝑡∗(𝜋𝑥) = ∑

1

𝜆𝑛

+
1

𝑥−𝜆𝑛

=: 𝜓∗(1 − 𝑥) − 𝜓∗(𝑥)∞
𝑛=−∞ , |𝑥| ≤ 1. 

 

Remark: We mention the formula 𝜓(𝑛 + 1) + 𝛾 = 𝐻𝑛, (HaJ), and the approximate equation, (TiE) 4.14, 
 

휁(𝑠) − ∑ 𝑛−𝑠
𝑛<𝑥 = ∑ 𝑛−𝑠

𝑛>𝑥 =
1

2𝜋𝑖
∫ 𝑧−𝑠(𝜋 cot(𝜋𝑧) 𝑑𝑧

𝑥+𝑖∞

𝑥−𝑖∞
 , 

 
where without loss of generality 𝑥 is half an odd integer; the function 𝜋 cot(𝜋𝑧) is holomorphic except the pole 𝑧 = 1. 

We further note that for the zeros 𝑍𝑛 of the Kummer function 𝐹1 1 (
1

2
,

3

2
; 𝑧) it holds (𝑅𝑒(𝑧𝑛) > 1/2, while for the zeros of 

its derivative 𝐹1 1

′
(

1

2
,

3

2
; 𝑧) it holds (𝑅𝑒(𝑧𝑛

∗ ) < 1/2, ((SeA), also with respect to the link to sine-type functions, playing 

an important role in nonharmonic analysis, which are not Fourier-Stieljes transforms. 
 

Remark: The divergent Fourier series representation of 𝜌𝐻
′ (𝑥), (*)  
 

− 𝑐𝑜𝑡(𝜋𝑥) = − ∑ 𝑠𝑖𝑛 2 𝜋𝜈𝑥∞
1 = 𝐻[𝜌′ ](𝑥) = 𝜌𝐻

′ (𝑥)  

 

where, (ZyA) p. 5, 𝜌(𝑥) = 𝑥 − [𝑥] =
1

2
− ∑

𝑠𝑖𝑛 2𝜋𝜈𝑥

𝜋𝜈
∈ 𝐿2

#(0,1)∞
1 , resp. 

 

𝜌𝐻(𝑥) = ∑
𝑐𝑜𝑠 2𝜋𝜈𝑥

𝜋𝜈
∞
1 = −

1

𝜋
𝑙𝑜𝑔 2 |𝑠𝑖𝑛( 𝜋𝑥)| ∈ 𝐿2

#(0,1)  

 
is convergent with respect to the weak 𝐻−1/2

# (0,1) topology (**). 

 
Remark: In the context of the Fourier character of conjugate series, lacunary series, and  𝛼 − resp. logarithmic 

capacities of sets and conjugate Fourier series like ∑
𝑠𝑖𝑛𝑛𝑥

𝑛

∞
𝑛=1 , ∑

𝑐𝑜𝑠𝑛𝑥

𝑛

∞
𝑛=1  resp. ∑

𝑠𝑖𝑛𝑛𝑥

𝑛𝑙𝑜𝑔𝑛

∞
𝑛=1 , ∑

𝑐𝑜𝑠𝑛𝑥

𝑛𝑙𝑜𝑔𝑛

∞
𝑛=1  we refer to (ZyA) I-

2, VI-3, VII-2, XII-11. 
 

(*) we note the best bounds of harmonic sequence, (ChC),      
1

2𝑛+(
1

1−𝛾
−2)

≤ ∑
1

𝑘

𝑛
1 − 𝑙𝑜𝑔𝑛 − 𝛾 <

1

2𝑛+
1

3

  , where  
1

1−𝛾
− 2 ~ 0,3652721.. 

(**) The series is Cesàro summable representing the 𝑐𝑜𝑡 function if 𝑥 is not an element of 𝑍, and zero otherwise.  
 

Regarding the distributional theory of asymptotic expansions we recall from (EsR) p. 139 the formula  𝐹. 𝑝. (𝑃. 𝑣 ∫ 𝑡𝑥 𝑑𝑡

𝑡−1

∞

0
= {

𝑜
𝜋 cot(𝜋𝑥)

𝑥∈𝑍

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 , 

 

where P.v. denotes „Principle value“ and F.p. denotes Hadarmard‘s „Finite part“. We mention the link between the 𝑐𝑜𝑡 function and the Bernoulli numbers in the form, 
(BeB) 5, entry 13, 
 

𝑥

2
𝑐𝑜𝑡

𝑥

2
= ∑ (−1)𝑛 𝐵2𝑛

(2𝑛)!
𝑥2𝑛∞

𝑛=0  , |𝑥| < 2𝜋 

 

𝛤(𝑧) =
(−1)𝑘

𝑘!
[

1

𝑧+𝑘
+ 𝛹(1 + 𝑘) + 𝑂(|𝑧 + 𝑘|)] , (PeB) p. 114 
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Remark: For a Riesz basis  {𝑒𝑖𝜆𝑛 𝑡}
 𝑛∈𝑍 

 and the related biorthogonal system {𝜑𝑛} 𝑛∈𝑍  in 𝐿2 (−𝜋, 𝜋)  it holds  

 
i) any 𝑓 ∈ 𝐿2 (−𝜋, 𝜋) can be written as 𝑓 = ∑ (𝑓, 𝑒𝑖𝜆𝑛(∙))𝜑𝑛𝑛∈𝑍 = ∑ (𝑓, 𝜑𝑛)𝑒𝑖𝜆𝑛(∙)

𝑛∈𝑍  (YoR) p. 22 
 

ii) 2𝑘 − 1 < 2(𝜆𝑛+𝑘 − 𝜆𝑛) > 2𝑘 + 1, i.e. the sequence of even integers {2𝑘}𝑘∈𝑁 could be replaced by 

{2(𝜆𝑛+𝑘 − 𝜆𝑛)}𝑘∈𝑁, where e.g. 𝑛 counts the nth run on the unit circle. 
 
Remark: In order to build an appropriate circular counterpart of 휁(𝑠) resp. to define a proper mapping anticipating 
the advantages of a Riesz basis framework we propose to consider the zeta function on the unit circle built on the 
following two sets of domains, 

𝐷𝑒𝑣𝑒𝑛 ≔ (−∞,
1

2
] and 𝐷𝑜𝑑𝑑 ≔ (

1

2
,

1

2
+ 𝑖∞). 

 
We note that none of the zeros 𝛼𝑛 of the considered Kummer function lie on the critical line and that cardinal 

series are interpolations at finite lattice points (WhJ3). The interval 𝐷𝑒𝑣𝑒𝑛 contains all trivial zeros of 휁(𝑠), while the 

interval 𝐷𝑜𝑑𝑑 contains all non-trivial zeros with positive imaginary part, in case the RH is true. The domain lines 

can be mapped by interpolating Möbius transforms to the unit circle governed by the winding number 𝑛 applying 

the three point formulae to the lattice points governed by the two sequences {𝜆−𝑛}𝑘∈𝑁0
 and {𝜆𝑛}𝑘∈𝑁 in the following 

way 

{(
1

2
, 0), (

1

2
,

1

2
+ 𝑖 ∙ (𝐼𝑚(𝛼𝑛)), (

1

2
, ∞)}

𝑛∈𝑁
↔  {(1,0), 𝑒2𝜋𝑖𝜆𝑛 , (−1,0)}

𝑛∈𝑁
    

and 
{(−∞, 0), (−2𝑛, 0), (−1,0)}𝑛∈𝑁 ↔  {(−1,0), 𝑒2𝜋𝑖𝜆−𝑛 , 𝑒2𝜋𝑖𝜆0}

𝑛∈𝑁
. 

 

We note that the sequence {1,2𝑛}𝑛∈𝑁 has Snirelman density ½. In the context of the Hilbert-Polya conjecture the 
„eigenstate“ or „eigenvibration value“ 𝜆0 might be interpreted as the „ground eigenstate“ of an (unbounded) normal 

self-adjoint operator, (BeM), in a corresponding distributional generalized Hilbert space 𝐻𝛼
#(0,1), based on the 

2𝜋 −periodic Hilbert space 𝐿2
#(Γ) with domain Γ ≔ 𝑆1(𝑅2), which is the (full) boundary of the unit circle sphere, 

LaG) (*). 
 
Remark: We note that all zeros 𝑧𝑛 of 𝛹(𝑥) lie on the negative real line, fulfilling the same properties as the 

imaginary parts of the zeros 𝛼𝑛 of the considered Kummer function. It holds, (GiI), 
 

(*)  𝑛 −
1

2
< −𝑧𝑛, 𝜔𝑛 ,

𝜔𝑛−𝑧𝑛

2
< 𝑛. 

 
At the same time, all zeros of the function 1/𝛤(𝑥) also lie on the negative real line, but at 𝑥 = −𝑛.  
 
Remark: The inequalities (*) enable the construction of appropriate sequences fulfilling the Kadec condition, 
allowing the construction of general (non-Z based) interpolation sequences in the context of (generalized) Paley-
Wiener spaces and their related (generalized) Hilbert scales (****), e.g. building interpolation function of 𝛹(𝑥), 𝑓(𝑧) ≔

1

𝛤(𝑧)
 (***), or the modified von Mangoldt formula, (PrK) (4.37) 

 

𝜓0
∗(𝑥): = 𝑥 − [∑

𝑥𝜌

𝜌
+ ∑

𝑥−2𝑛

−2𝑛𝑛≥1𝐼𝑚(𝜌)>0 ] −
′(0)

(0)
 . 

 
Their corresponding mapping onto the above (Riesz bases based) generalized Hilbert scale framework 

(with underlying unit circle domain), additionally provides the term 𝑒2𝜋𝑖𝜆0 to govern numerical values like 
 

𝛤′(1)

𝛤(1)
= −𝛾 = lim

→0
{

1
− ∑

1

𝑛1+𝜀
∞
𝑛=1 }, (HeK) p.9), or   

′(0)

(0)
=

−log (2𝜋)

2
∙

1

−1/2
= log (2𝜋), (PrK) p.232. 

 

All zeros 𝑧𝑛 of 𝛹(𝑥) lie on the negative real line. All zeros 𝛼𝑛 of the considered Kummer function lie on the 
rigth side of the „positive“ critical line, ( 𝑅𝑒(𝛼𝑛) > 1/2). The two sets are proposed to be applied to the above 
interpolating Möbius transform mapping to the following functions 
 

𝛹(𝑧): =
𝛤′(z)

𝛤(𝑧)
, (**) resp. 𝑔(𝑧) ≔ 2𝛽(𝑥) ≔ 𝛹 (

𝑧+1

2
) − 𝛹 (

𝑧

2
), (**). 

 

Remark: We note that 𝛹(𝑧) = −
𝑓′(𝑧)

𝑓(𝑧)
 , −

𝑓′(𝑧)

𝛤′(𝑧)
= 𝑓2(𝑧), 𝑓(𝑧), 

𝛹(z)

𝛤(𝑧)
= 𝑓(𝑧) ∙ 𝛹(𝑧) = −𝑒2𝛾𝑧 ∏ {1 −

𝑧

𝑥𝑘
}

𝑧

𝑥𝑘 , and 
  𝛹′(z)

𝛤2(𝑧)
=

(𝛹2)
′
(𝑧)

(𝛤2)′(𝑧)
 are 

entire, transcendental functions where 𝛹(1/2) = −𝛾 − 2𝑙𝑜𝑔2 , i.e.  𝛹(1) − 𝛹 (
1

2
) = 2𝑙𝑜𝑔2.  

 

(*) The approach also puts the spot on Schoenberg’s theory of totally positive functions, the Laguere-Polya class, and to the Riemann zeta function, 

(GrK), (LeB). Regarding the condition 𝑂(|𝑥|
1

2
+ ) we note that the embedding of 𝐻1

2
+

 into 𝐶0 is compact, i.e. for 𝑢 ∈ 𝐻1

2
+

 it holds 𝑂(|𝑥|
1

2
+ ). 

 

(**) We note the properties (appendix, (NiN)) 
 

𝛾 + 𝛹 (
𝑝

𝑞
) = −𝑙𝑜𝑔𝑞 −

𝜋

2
𝑐𝑜𝑡 (𝜋

𝑝

𝑞
) − ∑ (𝑐𝑜𝑠2𝑘𝜋

𝑝

𝑞

≤
𝑞

2
 ,

𝑘=1 )(𝑙𝑜𝑔 (2 − 2 𝑐𝑜𝑠(2𝑘
𝑝

𝑞
))  

𝛽 (
𝑝

𝑞
) =

𝜋

2𝑠𝑖𝑛 (𝜋
𝑝

𝑞
)

− ∑ (𝑐𝑜𝑠(2𝑘 + 1)𝜋
𝑝

𝑞

≤
𝑞−1

2

𝑘=0 )(𝑙𝑜𝑔 (2 − 2 𝑐𝑜𝑠((2𝑘 + 1)
𝑝

𝑞
))  

                               𝛽(𝑛𝑥) =
1

𝑛
∑ (−1)𝑛𝛽 (𝑥 +

𝑘

𝑛
)𝑛−1

𝑘=0    for 𝑛 odd     ,     −𝛽(𝑛𝑥) = 
1

𝑛
∑ (−1)𝑛𝛹 (𝑥 +

𝑘

𝑛
)𝑛−1

𝑘=0  for 𝑛 even. 
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Remark: With respect to the theory of irrational and transcendental numbers it is proposed to revisit the 
theory of differences accompanied with the above proposed „2-Semi-Circle“ method: 
 
(NöN): A „difference of 1st order“ (or difference) of a function 𝑓(𝑥) is given by the averages 

∆𝜔𝑓(𝑥) ≔
𝑓(𝑥+𝜔)−𝑓(𝑥)

𝜔
 ,  𝛻𝜔𝑓(𝑥) ≔

𝑓(𝑥+𝜔)+𝑓(𝑥)

2
. 

One of the most famous example of a solution of the difference equation is given by the Gamma 
function as solution of the difference equation 𝑓(𝑥 + 1) − 𝑥𝑓(𝑥) = 0. The concept of „differences“ is 
accompanied by the concept of „fonctions interpolaires“ („divided differences“, „Steigungen“), 
relating „differences“ to the Newton and Lagrange interpolation formulae.  
 
The most important and difficult problem of differences calculus is the solution of the difference 
equation 𝑓(𝑥 + 1) − 𝑓(𝑥) = 𝜑(𝑥) for given 𝜑(𝑥). In case 𝜑(𝑥) is a polynomial of a certain degree the 
two differences definitions, ∆𝜔𝑓(𝑥), 𝛻𝜔𝑓(𝑥), lead to the Bernoulli and Euler polynomials.  
 
The most general solution of the difference equation is given by the sum of a specific polynomial 
solution and an arbitrary, periodical function 𝜋(𝑥) with period 1, i.e. 𝜋(𝑥 + 1) − 𝜋(𝑥) = 0. In other 
words, every solution, which is not a polynomial soltuion is a transcendental function, i.e. a 
polynomial solution is a special solution characterized by simple function theoretical properties.  
 
There are many trivial solutions of the difference equations. The main challenge of difference theory 
is to find the inverse operation of the difference operation, i.e. a function 𝑓(𝑥) as the sum of 𝜑(𝑥) in 
that way, that 𝜑(𝑥) is the difference of 𝑓(𝑥), whereby 𝑓(𝑥) is a so-called main solution, i.e. function 
theory relvant analytical function (like the Gamma function). The theory of differences is also 
concerned with properties of such main solutions, like analytical continuity, representation as faculty 
series, reciprocal differences and reciprocal derivatives, the Thiele‘s interpolation formula, and the 
solution of 2nd order differences and ordinary differential equations by Continued Fractions (CF). 

 
Remark: : For CF-representations involving 𝛹(𝑧) we refer to (WaH) p. 372, e.g. 
 

𝛹 (
1

2
+ 𝑧) −

𝛹(z)+𝛹(z+1)

2
=

(
1

2
)3

𝑧2+
𝑝1

1+
𝑞1

𝑧2+
𝑝2

1+
𝑞2

𝑧2+⋯

  

 

with 𝑝𝑛 = 𝑞𝑛 =
𝑛(𝑛+

1

2
)

4
. From (NöN) S. 454, we recall the reciprocal differences and the related Continued Fraction 

(CF) representation of the function 𝛹(𝑥), (𝑅𝑒(2𝑥 + 𝑦) > 1),  
 

𝜌2𝑛−1(𝑥 − 𝑛 + 1, 𝑥 − 𝑛 + 2, … . , 𝑥 + 𝑛) = 𝑛2𝑥  ,  𝜌2𝑛(𝑥 − 𝑛, 𝑥 − 𝑛 + 1, … . , 𝑥 + 𝑛) = 𝛹(𝑥) + 2(1 +
1

2
+

1

3
+ ⋯ +

1

𝑛
) 

 

𝛹(𝑥 + 𝑦) = 𝛹(𝑥) +
𝑦

𝑥+
𝑦−1

2
1+

𝑦+1

3𝑥+
𝑦−2

2
2+

𝑦+2

5𝑥+
𝑦−3
2
3+⋯

       𝐻𝑛 =
𝑛

1+
𝑛−1

2
1+

𝑛+1

3+
𝑛−2

2
2+

𝑛+2

5+
𝑛−3
2
3+⋯

         

 
Taking the limit of 𝛹(𝑥 + 𝑦) − 𝛹(𝑥) leads to, (NöN) S. 454, (WaH) p.373,  

 

        𝛹′(𝑥) =
1

𝑥−
12

2+
12

3𝑥−
22

2+
22

5𝑥−
32

2+

       𝑔(𝑥) =
1

𝑥−
1

2+
1

𝑥−
2

2+
2

𝑥−
3

2+
3

𝑥−⋯

 

 
Remark: For CF-representations of the considered Kummer functions we refer to ((PeO) §81 ff., (WaH) p. 347. 
For the CF representation of the „error term“ 𝐽(𝑧) in (𝑅𝑒(𝑧) > 0)   
 

𝑙𝑜𝑔𝛤(𝑧) = −𝑧 + (𝑧 −
1

2
) 𝑙𝑜𝑔𝑧 + 𝑙𝑜𝑔√2𝜋 + 𝐽(𝑥) 

 
we refer to (WaH) p. 364. 
 

Remark: Beside the reciprocal differences of  𝛹(𝑧) another link to the harmonic series, 𝐻𝑛 ≔ ∑
1

𝑘

𝑛
𝑘=1 , 𝐻0 ≔ 0, 

is given by the curvature vector 𝜌 at the zeros of 
1

𝛤(𝑧)
. For the curvature vector 𝜌(−𝑛) of the purely imaginary 

streamlines through the zeros 𝑧𝑛 = −𝑛 of 𝑓(𝑧) (and therefore also for the curvature vector 𝜌(−𝑛) through 

the zeros of 𝛤(𝑧)) it holds, (GiI) 
 

𝜌(−𝑛) =
1

2(𝛾−𝐻𝑛)
 ~ −

1

2𝛹(1+𝑛)
 ~ −

1

2log (𝑛+1/2)
 . 
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With respect to the generalization of Lagrange’s periodical CF criteron for algebraic numbers of 2nd order we refer 
to (MiH). 
 
With respect to the measure theory of continued fractions we recall from (KhA) extracts from  

 
Chapter III, 11, The Measure Theory of Continued Fractions 

 
Beside the basic divisions of the real numbers into rational and irrational or algebraic and transcendental 
numbers, there are several considerably finer subdivisions of these numbers based on a whole series of criteria 
characterizing their arithmetic nature (most importantly, criteria involving the approximation by rational fractions 
that these numbers admit). Thus, we know that numbers exist admitting approximation by rational fractions of the 

form 𝑝/𝑞 with order of accuracy not exceeding 1/𝑞2  (for example, all quadratic irrational numbers); but we also 
know that there exists numbers admitting approximation of much higher order (Theor. 22, Chap. II). The following 
question naturally arises: which of these opposite properties should we consider the more „general“, that is, which 
of these two types of real numbers do we „encounter more often“? … The question is … clearly reduces to a 
comparative study of the two sets, (1) the set of numbers possessing a property, (2) the set of numbers not 
possessing it, with the purpose of determining which of them contains more numbers. … As regards both 
methods and results, the study of the measure of sets of numbers defined by a given property of their elements 
has proven the most interesting. This study … we shall call the measure arithmetic of the continuum … As with 
every study of the arithmetic nature of irrational numbers, the apparatus of continued fractions ist he most natural 
and the best investigating instrument. … We must, in other words, learn to determine the measure of numbers 
whose expansions in CF possess some priously stated property. Questions of this kind can be quite varied; … 
The methods used in solving problems such as these constitute the measure theory of continued fractions. 
 

Chapter III, 15, Gauß‘s problem and Kusmin’s theorem 
 
Setting 𝛼 = [0; 𝛼1, 𝛼2, … 𝛼𝑛 , … ] , 𝑟𝑛 = 𝑟𝑛(𝛼) = [𝛼𝑛; 𝛼𝑛+1, 𝛼𝑛+2, . … ] we denote by 𝑧𝑛 = 𝑧𝑛(𝛼) the value of the continued 
fraction [0; 𝛼𝑛+1, 𝛼𝑛+2, . … ]. Obviously we 

 

0 ≤ 𝑧𝑛 = 𝑟𝑛 − 𝑎 < 1. 
 
We denote by 𝑚𝑛(𝑥) the measure of the set of numbers 𝛼 in the interval (0,1) for which 𝑧𝑛(𝛼) < 𝑥, satisfying the 
functional equation 
 

𝑚𝑛+1
′ (𝑥) = ∑ {𝑚𝑛 (

1

𝑘
) − 𝑚𝑛 (

1

𝑘+𝑥
)}∞

𝑘=1  , 0 ≤ 𝑥 ≤ 1, 𝑛 ≥ 0. 

 
 In 1928, Kusmin published his proof of the Gauß problem and gave a good approximation estimate, i.e. it holds 
 

lim
𝑛→∞

𝑚𝑛(𝑥) =
log (1+𝑥)

𝑙𝑜𝑔2
 , 0 ≤ 𝑥 ≤ 1 

and 

|𝑚𝑛(𝑥) −
log (1+𝑥)

𝑙𝑜𝑔2
| < 𝐴1𝑒−𝐴2√𝑛 , 𝐴1, 𝐴2  absolute positive constants. 

 
Remark: Kusmin’s approximation estimate can be applied to obtain an approximation of the measure of the set of 
points for which 𝑎𝑛 = 𝑘 for sufficiently large values of 𝑛, given by  
 

|𝑀𝐸(𝑛
𝑘

) −
𝑙𝑜𝑔 (1+

1

𝑘(𝑘+2)
)

𝑙𝑜𝑔2
| <

𝐴1

𝑘(𝑘+1)
𝑒−𝐴2√𝑛−1 . 

 
Remark: The central element of the proof of the Gauß conjecture is Theorem 33 ((KhA) p. 74). It also enables a 
more general result regarding the measure 𝑀𝑛(𝑥) of the set of numbers belonging to some fixed interval of rank 𝑘 
and satisfying the condition 𝑧𝑘+𝑛 < 𝑥. 
 
 

Chapter III, 16, Average values 
 
The solution of the Gauß problem enable a proof of the following general proposition 
 

Theorem 35: Suppose that 𝑓(𝑟) is a non-negative function of a natural argument 𝑟 and suppose 
that there exist positive constants 𝐶 and 𝛿 such that 
 

𝑓(𝑟) < 𝐶𝑟
1

2
−𝛿

,  𝑟 = 1,2, … 
 
Then, for all numbers in the interval (0,1) with the exception of a set of measure zero, 

 

lim
𝑛→∞

1

𝑛
∑ 𝑓(𝑎𝑘) =𝑛

𝑘=1 ∑ 𝑓(𝑟)
𝑙𝑜𝑔 (1+

1

𝑘(𝑘+2)
)

𝑙𝑜𝑔2
𝑛
𝑘=1  . 
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Remark: Theorem 33 enables the establishment of quite a number of properties of continued fractions that are 
satisfied for almost all irrational numbers. For example, let us set 
 

𝑓(𝑟): = 1, for 𝑟 = 𝑘, and 𝑓(𝑟): = 0, for 𝑟 ≠ 𝑘, 
 
where 𝑘 is some (arbitrary) natural number. In this case, the sum 
 

𝜓𝑛(𝑘): = ∑ 𝑓(𝑎𝑖)𝑛
𝑖=1   

 
obviously represents the number of times the integer 𝑘 occurs among the first 𝑛 elements of a given continued 
fraction. On the other hand, the ratio 
 

𝜓𝑛(𝑘)

𝑛
=

1

𝑛
∑ 𝑓(𝑎𝑖)𝑛

𝑖=1   

 
gives us the density of the number 𝑘 among the first 𝑛 elements of the given continued fraction. Finally, the limit 
 

lim
𝑛→∞

𝜓𝑛(𝑘)

𝑛
= 𝑑(𝑘), 

 
if it exists, is naturally interpreted as the density of the number 𝑘 in the entire sequence of elements of a given 
continued fraction. 
 
Since the function 𝑓(𝑟) that we have defined clearly satisfies all of the requirements of Theorem 35, we conclude, 

on the basis of that theorem, that, for arbitrary 𝑘, this density exists almost everywhere and that it has the same 
value almost everywhere.  Furthermore, the same theorem makes it possible for us to calculate the value of that 
density. Obviously we have almost everywhere 
 

𝑑(1) =
𝑙𝑜𝑔4−𝑙𝑜𝑔3

𝑙𝑜𝑔2
 , 𝑑(2) =

𝑙𝑜𝑔9−𝑙𝑜𝑔8

𝑙𝑜𝑔2
 , 𝑑(3) =

𝑙𝑜𝑔16−𝑙𝑜𝑔15

𝑙𝑜𝑔2
 , 

 
and so on. Thus, an arbitrary natural number occurs as an element in the expansion of almost all numbers with 
equal average frequency.  
 
We obtain another interesting result by setting 
 

𝑓(𝑟): = 𝑙𝑜𝑔𝑟  for 𝑟 = 1,2,3, … . 
 
All the conditions of Theorem 35 are then satisfied. Therefore, we see that almost everywhere 
 

1

𝑛
∑ 𝑙𝑜𝑔(𝑎𝑖)𝑛

𝑖=1 → ∑ 𝑙𝑜𝑔(𝑟)
𝑙𝑜𝑔 (1+

1

𝑘(𝑘+2)
)

𝑙𝑜𝑔2
∞
𝑘=1  , 𝑛 → ∞, 

 
or, equivalently, 

𝑔( √𝑎1𝑎2….𝑎𝑛

𝑛 → ∏ {1 +
1

𝑘(𝑘+2)
}

𝑙𝑜𝑔𝑟

𝑙𝑜𝑔2
 . 

 
Thus, the geometric mean of the first elements approaches the absolute constant 
 

∏ {1 +
1

𝑘(𝑘+2)
}

𝑙𝑜𝑔𝑟

𝑙𝑜𝑔2
= 2,6, …  

 
almost everywhere as 𝑛 → ∞. 
 
Obviously Theorem 35 makes it possible to establish analogous results for a series of other types of average 
values. However, investigating of arithmetic mean 
 

(*)       
1

𝑛
∑ 𝑎𝑖

𝑛
𝑖=1  

 
by this method is impossible, because the correspoding function 𝑓(𝑟): = 𝑙𝑜𝑔𝑟 does not satisfy the conditions of 
Theorem 35. However, it is easy to see from more elementary considerations that, almost everywhere, the 
expression (*) cannot have any kind of finite limit. The Theorem 30 (sec 13) tells us that almost everywhere 𝑎𝑛 >
𝑛𝑙𝑜𝑔𝑛 for an infinite number of values of 𝑛, and hence, a fortiori, 
 

∑ 𝑎𝑖
𝑛
𝑖=1 > 𝑛𝑙𝑜𝑔𝑛,   and hence,   

1

𝑛
∑ 𝑎𝑖

𝑛
𝑖=1 > 𝑙𝑜𝑔𝑛. 

 
Thus, the quantity (*) is almost everywhere unbounded and therefore, as we stated, cannot have finite limit. 
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With respect to orthogonal polynomials on the unit circle we recall from (SzG) the section 
 

 
11.1 Definition; preliminaries 

 

Let 𝑓(𝜃) be a non-negative function of period 2𝜋, integrable on [−𝜋, 𝜋] in Lebesgue’s sense, and assume 

∫ 𝑓(𝜃)𝑑𝜃 > 0
𝜋

−𝜋
. We introduce the Fourier constants  

 

𝑐𝑛 =
1

2𝜋
∫ 𝑓(𝜃) ⋅ 𝑒−𝑖𝑛𝜃𝑑𝜃

𝜋

−𝜋
   𝑛 = 0, ±1, ±2, …. 

 
Obviously, 𝑐−𝑛 = 𝑐�̅�so that the matrix of “Toeplitz type” 𝑇𝑛 = (𝑐𝜈−𝜇), 𝜈, 𝜇 = 0,1,2, . . . 𝑛 is Hermitian. The corresponding 

Hermitian form 
 

𝐻𝑛 = ∑ ∑ 𝑐𝜈−𝜇𝑢𝜇�̄�𝜈
𝑛
𝜇=0

𝑛
𝜈=0 =

1

2𝜋
∫ 𝑓(𝜃) ⋅ |𝑢0 + 𝑢1𝑧 + 𝑢2𝑧2+. . . +𝑢𝑛𝑧𝑛|2𝑑𝜃

𝜋

−𝜋
  

 

where 𝑧 = 𝑒𝑖𝜃, is positive definite and has the positive determinant 𝐷𝑛 = [𝑐𝜈−𝜇]   ,  𝜈, 𝜇 = 0,1,2, . . . 𝑛. 

 
Definition: If we orthogonalize the system 
 

{𝑧𝑛 ⋅ √𝑓(𝜃)}  , 𝑧 = 𝑒𝑖𝜃  𝑛 = 0,1,2, . . . 𝑛 

 

we obtain a system of polynomials 𝜑0(𝑧), 𝜑1(𝑧), 𝜑2(𝑧), … . 𝜑𝑛(𝑧), … with the following properties: 
 
i) 𝜑𝑛(𝑧) is a polynomial of precise degree 𝑛 in which the coefficients of 𝑧𝑛 is real and positive; 

 

ii) the system {𝜑𝑛(𝑧)} is orthogonal; that is, 
 

1

2𝜋
∫ 𝑓(𝜃)𝜑𝑛(𝑧)�̄�𝑚(𝑧)𝑑𝜃 = 𝛿𝑛𝑚

𝜋

−𝜋
  ,  𝑧 = 𝑒𝑖𝜃 , 𝑛, 𝑚 = 0,1,2, . .. 

 
Moreover, the system {𝜑𝑛(𝑧)} is uniquely determined by the conditions i) and ii). If 𝑓(𝜃) is an even function the 

coefficients of 𝜑𝑛(z) are real. The coefficient of 𝑧𝑛 in 𝜑𝑛(𝑧) is 𝜎𝑛 = √𝐷𝑛−1𝐷𝑛
−1. 

 
 

Theorem 11.1.1: Let 𝐹(𝑒−𝑖𝜃) be a given measurable function for which ∫ 𝑓(𝜃)|𝐹(𝑒−𝑖𝜃)|
2

𝑑𝜃
𝜋

−𝜋
 exists. 

The weighted quadratic deviation 
 

1

2𝜋
∫ 𝑓(𝜃)|𝐹(𝑧) − 𝜌(𝑧)|2𝑑𝜃

𝜋

−𝜋

 

 
where 𝜌(𝑧) ranges over the set of all (polynomials of degree 𝑛) 𝜋𝑛, is a minimum, if 𝜌(𝑧) is the nth 
partial sum of the Fourier expansion 
 

𝐹(𝑧) ~ 𝐹0𝜑0(𝑧) + 𝐹1𝜑1(𝑧) + ⋯ . +𝐹n𝜑𝑛(𝑧)+.. 
 

𝐹n =
1

2𝜋
∫ 𝑓(𝜃)F(z)𝜑𝑛(𝑧)̅̅ ̅̅ ̅̅ ̅̅ 𝑑𝜃

𝜋

−𝜋
 , ,  𝑧 = 𝑒𝑖𝜃 , 𝑛 = 0,1,2, . .. 

 
As a ready consequence, there follows Bessel’s inequality 
 

|𝐹0|2 + |𝐹1|2 + ⋯ + |𝐹n|2 + ⋯ . ≤ ∫ 𝑓(𝜃)|𝐹(𝑒−𝑖𝜃)|
2

𝑑𝜃
𝜋

−𝜋
.  

 
In addition, the equality sign holds (i.e. the Parseval’s formula) if one of the following sets of conditions is 
satisfied: 

 
i) F(z) is regular and bounded for |𝑧| < 1 

 

ii) 𝑓(𝜃) is bounded and F(z) is of the class 𝐻2 (see §10.1; Fatou’s theorem) 
 
A consequence of theorem 11.1.1 is the following 
 

Theorem 11.1.2: The polynomial 𝜎𝑛
−1𝜑𝑛

(𝑧) minimizes the integral 

 
1

2𝜋
∫ 𝑓(𝜃) ⋅ |𝑧𝑛 + 𝑎1𝑧𝑛−1 + 𝑎2𝑧n−2+. . . +𝑎𝑛|2𝑑𝜃

𝜋

−𝜋
, 𝑧 = 𝑒𝑖𝜃 

 

if 𝑧𝑛 + 𝑎1𝑧𝑛−1 + 𝑎2𝑧n−2+. . . +𝑎𝑛 ranges over the set of all 𝜋𝑛 with the highest term 𝑧𝑛. The minimum 
is 𝜎𝑛

−2. 
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6.4 Theorem of Pólya-Szegö on trigonometric polynomials  
 

with monotonic coefficients 
 
 

Theorem 6.4:  Let 𝑎0 > 𝑎1 >. . . > 𝑎𝑛 > 0. Then the functions 
 

𝑓(𝑡) = 𝑎0 𝑐𝑜𝑠( 𝑚𝑡) + 𝑎1 𝑐𝑜𝑠( (𝑚 − 1)𝑡)+. . . +𝑎𝑛−1 𝑐𝑜𝑠 𝑡 + 𝑎𝑛 
 

𝑔(𝑡) = 𝑎0 𝑐𝑜𝑠( (𝑚 +
1

2
)𝑡) + 𝑎1 𝑐𝑜𝑠( (𝑚 −

1

2
)𝑡)+. . . +𝑎𝑛−1 𝑐𝑜𝑠

3

2
𝑡 + 𝑎𝑛 𝑐𝑜𝑠(

1

2
𝑡) 

 
have only real and simple zeros; there is, respectively, exactly one zero in each of the intervals 
 

𝜇−
1

2

𝑚+1/2
𝜋 < 𝑡 <

𝜇+
1

2

𝑚+1/2
𝜋    and    

𝜇−
1

2

𝑚+1
𝜋 < 𝑡 <

𝜇+
1

2

𝑚+1
𝜋 

 
where   𝜇 = 1,2, . . .2𝑚, and 𝜇 = 1,2, . . .2𝑚 + 1, respectively. 

 
 
 
Remark: Bagchi's "Hilbert space based reformulation of the Nyman-Beurling RH criterion" (BaB), is about the 
Hilbert space of all sequences 𝑎 = {𝑎𝑛|𝑛 ∈ 𝑁} of complex numbers such that 
 

∑ 𝜎𝑛|𝑎𝑛|2∞
𝑛=1 < ∞    with    

𝑐1

𝑛2 ≤ 𝜎𝑛 ≤
𝑐2

𝑛2 

 

 which is isomorph to the Hilbert space 𝐻−1 ≅ 𝑙2
−1. For  𝛾: = {1,1,1,1, . . . . . . } it holds ‖𝛾‖−1

2 = ∑
1

𝑛2
∞
1 =

𝜋2

6
 , i.e. 𝛾 ∈ 𝑙2

−1. 

 
 
Remark: In order to link Bagchi's conclusion text (*) in (BaB) to the above Riesz basis we mention one of the 
characteristic properties of Riesz bases (YoR) p. 27: 
 

The sequence {𝜆𝑛} is complete in 𝐻, and its Gram matrix ((𝜆𝑖, 𝜆𝑗))𝑖,𝑗=1
∞   generates a bounded 

invertable operator on  {𝑙2 }. 

 
 

Remark: In order to link the considered vector 𝛾: = {1,1,1,1, . . . . . . } in (BaB) we note that the Haar wavelet sinc(x)-
function with its infinite product representation in the form  
 

𝑠𝑖𝑛𝑐(𝜋𝑥) = 𝑒−𝑖𝜋𝑥 ∏(𝐹0,𝑚 (
x

𝑚𝑛
)) = ∏(1 − (

𝑥2

𝑛2
)) =

1

𝛤(1+𝑥)𝛤(1−𝑥)
   , where   𝐹0,𝑚(𝑥): =

1

𝑚
∑ 𝑒2𝜋𝑖𝑘𝑥𝑚−1

𝑘=0  

 
is the Fourier transform of the scaling vector 𝛾, (ReH) p.145. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(*) „So where does the undoubtedly elegant reformulation of RH in Theorem 1 leave us? One possible approach is as follows. For positive integers 
𝐿, let 𝐷(𝐿) denote the distance of the vector 𝛾 ∈ 𝐻 from the (𝐿 − 1) −dimensional subspace of 𝐻 spanned by 𝛾1, 𝛾2, 𝛾3, … 𝛾𝐿. In view of Theorem 1, 

RH is equivalent to the statement 𝐷(𝐿) → 0 as 𝐿 → ∞. So one might try to estimate 𝐷(𝐿). Indeed, as a discrete analogue of a conjecture of Baez-

Duarte et. al. in [3], one might expect that 𝐷2(𝐿) is asymptotically equal to 
𝐴

𝑙𝑜𝑔𝐿
 for𝐴 = 2 + 𝐶 − 𝑙𝑜𝑔 (4𝜋), where 𝐶 is Euler’s constant. (But, of 

course, this is far stronger than RH itself.) A standard formula gives 𝐷2(𝐿) as a ratio of two Gram determinants, i.e., determinants with the inner 

products (𝛾𝑙 , 𝛾𝑚) as entries. It is easy to write down these inner products as finite sums involving the logarithmic derivative of the Gamma function. 

But such formulae are hardly suitable for calculation/estimation of determinants.“ 
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In the late 1930s A. Beurling observed that the entire function of exponential type 2𝜋 
 

𝐵(𝑧) = (
𝑠𝑖𝑛𝜋𝑧

𝜋
)2{∑ (𝑧 − 𝑛)−2 − ∑ (𝑧 − 𝑚)−2 − 2𝑧−1−1

𝑚=−∞
∞
𝑛=0 }   

 

satisfies simple and useful extremal property (*). It holds 𝐵(𝑧) ≥ 𝑠𝑔𝑛(𝑥) for all real 𝑥. Beurling showed that if 

𝐹(𝑧) is any entire function of exponential type 2𝜋 satisfying 𝐹(𝑥) ≥ 𝑠𝑔𝑛(𝑥) for all real 𝑥, then 

 

∫ 𝐹(𝑥) − 𝑠𝑔𝑛(𝑥)𝑑𝑥 ≥ 1
∞

−∞
  

 

 and equality occurs if and only if 𝐹(𝑧) = 𝐵(𝑧). 
 
In 1974 A. Selberg used the function 𝐵(𝑧) to obtain a sharp form of the large sieve inequality, see e.g. 
(CaJ1). Selberg noted that if 𝜎𝑰 is the characteristic function of the interval 𝑰 ≔ ]𝑎, 𝑏] and 
 

𝐶𝑰(𝑧): =
1

2
{𝐵(𝛽 − 𝑧) + 𝐵(𝑧 − 𝛼)}  

 
then 
 

𝐶𝑰(𝑧) ≥ 𝜎𝑰 
 
for all real 𝑥. Moreover, the Fourier transform 
 

�̂�𝑰(𝑧) = ∫ 𝐶𝑰(𝑥)𝑒(−𝑡𝑥)𝑑𝑥
∞

−∞
  

  
vanishes outside the interval [−1,1] (*). 
 
 
Beurling found the following interesting inequality for almost periodic functions: 
 
 

Theorem 15 (VaJ): Let 𝜆1, 𝜆2, … . , 𝜆𝑁 be real numbers and 
 

𝑓(𝑥) ≔ ∑ 𝑎(𝑛)𝑒(𝜆𝑛𝑥) = ∑ 𝑎(𝑛)𝑒2𝜋𝑖𝜆𝑛𝑥𝑁
𝑛=1

𝑁
𝑛=1  . 

 
If |𝜆𝑛| ≥ 𝛿 > 0 for 𝑛 = 1,2, … . 𝑁, then 
 

𝑠𝑢𝑝𝑥|𝑓(𝑥)| ≤ (4𝛿)−1𝑠𝑢𝑝𝜔|𝑓′(𝜔)|. 
 
If, additionally, 𝑓(𝑥) is real valued, then 
 

𝑠𝑢𝑝𝑥|𝑓(𝑥)| ≤ (2𝛿)−1𝑠𝑢𝑝𝜔|𝑓′(𝜔)|. 
 
Moreover, the constants (4𝛿)−1 and (2𝛿)−1 are asymptotically best possible as 𝑁 → ∞. 

 
 
In (VaJ) the Beurling function is applied for a simple proof of a general form of Hilbert’s inequality, which 
was first obtained by Montgomery and Vaughan, (see also (SeA1): 
 

Theorem 16 (VaJ): Let 𝜆1, 𝜆2, … . , 𝜆𝑁 be real numbers satisfying |𝜆𝑚 − 𝜆𝑛| ≥ 𝛿 > 0 whenever 𝑚 ≠ 𝑛, 

and let 𝑎(1), … 𝑎(𝑛) be arbitrary complex numbers. Then 
 
 

|∑ ∑
𝑎(𝑚)𝑎(𝑛)̅̅ ̅̅ ̅̅ ̅

𝜆𝑚−𝜆𝑛

𝑁
𝑛=1
𝑛≠𝑛

𝑁
𝑚=1
𝑚≠𝑛

| ≤
𝜋

𝛿
∑ |𝑎(𝑛)|2𝑁

𝑛=1 . 

 
 
 
 
 
 
 
 
 
 
 
 
(*)  (GrS) appendix, see also (MoH) chapter 2: „van der Corputs sets“ 
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We briefly sketch the main formulae and their relationships, (GrS), (VaJ): 
 
Putting 
 

𝐻(𝑧): = (
𝑠𝑖𝑛𝜋𝑧

𝜋
)2 {∑

𝑠𝑔𝑛(𝑛)

(𝑧−𝑛)2 +
2

𝑧
∞
𝑛=−∞ }, 

 

𝐽(𝑥) ≔
1

2
𝐻′(𝑧), z𝐾(𝑧): = (

𝑠𝑖𝑛𝜋𝑧

𝜋
)2 

 
and 
 

𝐸(𝑥) = 𝐻(𝑥) − 𝑠𝑔𝑛(𝑥) for real 𝑥, 

 

it holds: 
 

Lemma A.1: If 𝑥 is real then |𝐻(𝑥)| ≤ 1 and  |𝐸(𝑥)| ≤ 𝐾(𝑥). 
 
 

Lemma A.2: The Fourier transform 𝐽(𝑡)satisfies 
 

𝐽(𝑡) = {

1                                      𝑖𝑓 𝑡 = 0

𝜋𝑡(1 − |𝑡|) cot(𝜋𝑡) + |𝑡|,    𝑖𝑓 0 < |𝑡| < 1
0                                      𝑖𝑓 ≥ 1

  

 
 

Corollary A.3: The Fourier transform of 𝐸(𝑥) = 𝐻(𝑥) − 𝑠𝑔𝑛(𝑥) is 
 

�̂�(𝑡) = {
0

𝐽(𝑡)−1

𝜋𝑖𝑡

𝑖𝑓
𝑖𝑓

𝑡=0
𝑡≠0

  

 
 

Theorem A.4: Define 𝐵(𝑧): = 𝐻(𝑥) + 𝐾(𝑧) and 𝑏(𝑧): = 𝐻(𝑧) − 𝐾(𝑧). Let 𝑰 be the interval [𝛼, 𝛽] and 
let 𝜎𝑰 be the characteristic function of 𝑰. Finally, define 

 

𝐶𝑰(𝑧): =
1

2
{𝐵(𝛽 − 𝑧) + 𝐵(𝑧 − 𝛼)} , 𝑐𝑰(𝑧): =

1

2
{𝑏(𝛽 − 𝑧) + 𝑏(𝑧 − 𝛼)}. 

 

i) If 𝑥 is real, then 𝑏(𝑥) ≤ 𝑠𝑔𝑛(𝑥) ≤ 𝐵(𝑥) 
 

ii) If 𝑥 is real, then 𝑐𝑰(𝑥) ≤ 𝜎𝑰(𝑥) ≤ 𝐶𝑰(𝑥) 
 

iii) �̂�𝑰(0) = 𝛽 − 𝛼 − 1 and �̂�𝑰(0) = 𝛽 − 𝛼 + 1 
 

iv) If |𝑡| ≥ 1 then �̂�𝑰(𝑡) = 0 and �̂�𝑰(𝑡) = 0. 
 
 
Theorem A.5: Let 𝑁 and 𝑇 be positive real numbers, and let 𝑎𝑛 be a sequence of complex numbers 

with 𝑎𝑛 = 0 if 𝑛 ≤ 𝑁 or 𝑛 > 2𝑁. Suppose 𝑔 is a real-valued function with |𝑔(𝑚) − 𝑔(𝑛)| > 𝛿  whenever  

𝑁 < 𝑚, 𝑛 ≤ 2𝑁 and 𝑚 ≠ 𝑛. Then 
 

(𝑇 − 𝛿−1) ∑ |𝑎𝑛|2 ≤ ∫ |∑ 𝑎𝑛𝑒(𝑡𝑔(𝑛)𝑛 |2𝑑𝑡 ≤ (𝑇 + 𝛿−1) ∑ |𝑎𝑛|2
𝑛

2𝑇

𝑇𝑛 . 

 
In 1985, J. Vaaler showed how Beurling’s function could be used to construct trigonometric 

polynomial approximation to 𝜓(𝑥) ≔ 𝜌(𝑥) −
1

2
= 𝑥 − [𝑥] −

1

2
= − ∑

𝑠𝑖𝑛 2𝜋𝜈𝑥

𝜋𝜈
)∞

1 , (GrS) appendix: 

 
 
Theorem A.6: The trigonometric polynomial 
 

𝜓∗(𝑥) = − ∑
1

2𝜋𝑖𝑛
𝐽𝑁+1(𝑛)𝑒(𝑛𝑥)1≤|𝑛|≤𝑁   

 
satisfies 
 

|𝜓(𝑥) − 𝜓∗(𝑥)| ≤
1

𝑁+1
∑ (1 −

|𝑛|

𝑁+1
)𝑒(𝑛𝑥)1≤|𝑛|≤𝑁  . 
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Turán’s first main theorem, (see (MoH) chapter 5), is concerned with lower bounds of exponential sums, 
resulting into the representive application of  
 

Fabry’s Gap Theorem: Suppose that 𝑇(𝑥) is an exponential polynomial of 𝑁 terms and period 1, 
say 
 

𝑇(𝑥) = ∑ 𝑏𝑛𝑒(𝜆𝑛𝑥)𝑁
𝑛=1   

 
where the 𝜆𝑛 are integers. Let 𝐼 be a closed arc on the circle group 𝑻, and let 𝐿 denote the length of 

𝐼. Then 
 

max
𝑥∈𝐼

|𝑇(𝑥)| ≥ (
𝐿

2𝑒
)𝑁−1 max

𝑥∈𝑻
|𝑇(𝑥)|. 

 
 
Remark: The striking feature of this bound is that it does not depend on the size of the 𝜆𝑛. 
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Appendix 

 
 

Remark: The 휁(𝑠) function representation, (TiE) (2.1.5), 
 

휁(𝑠) = 𝑠 ∫
[𝑥]−𝑥

𝑥𝑠

∞

0

𝑑𝑥

𝑥
= −𝑠 ∫ 𝑥−𝑠𝜌(𝑥)

∞

0

𝑑𝑥

𝑥
= ∫ 𝑥1−𝑠(−𝜌′(𝑥))

∞

0

𝑑𝑥

𝑥
       0 < 𝑅𝑒(𝑠) < 1 

 
in combination with the formulas, (GrI) 3.761, 

 

∫ 𝑥𝑠𝑠𝑖𝑛(𝑎𝑥)
∞

0

𝑑𝑥

𝑥
=

𝛤(𝑠)

𝑎𝑠
𝑠𝑖𝑛 (

𝜋

2
𝑠) for 0 < |𝑅𝑒(𝑠)| < 1 and  ∫ 𝑥𝑠𝑐𝑜𝑠(𝑥)

∞

0

𝑑𝑥

𝑥
=

𝛤(𝑠)

𝑎𝑠
𝑐𝑜𝑠(

𝜋

2
𝑠) for 0 < 𝑅𝑒(𝑠) < 1 

 
leads to (see also (PeB))  
 

∫ 𝑥1−𝑠(−𝜌𝐻
′ (𝑥))

∞

0

𝑑𝑥

𝑥
= ∫ 𝑥1−𝑠 𝑐𝑜𝑡(𝜋𝑥)

∞

0

𝑑𝑥

𝑥
= 휁(1 − 𝑠)(2𝜋)𝑠−1𝛤(1 − 𝑠)sin (

𝜋

2
(1 − 𝑠)) , for 0 < |𝑅𝑒(𝑠)| < 1 

resp. 

 (*)     ∫ 𝑥𝑠(−𝜌𝐻
′ (𝑥))

∞

0

𝑑𝑥

𝑥
= ∫ 𝑥𝑠 𝑐𝑜𝑡(𝜋𝑥)

∞

0

𝑑𝑥

𝑥
= 휁(𝑠)(2𝜋)−𝑠𝛤(𝑠)sin (

𝜋

2
𝑠) = 휁(𝑠)tan (

𝜋

2
𝑠)(2𝜋)−𝑠𝛤(𝑠)cos (

𝜋

2
𝑠).  

 
 
Applying the duality equations in the form 
 

휁(𝑠) = 𝜒(𝑠)휁(1 − 𝑠) resp. 휁1 − 𝑠) = 𝜒(1 − 𝑠)휁(𝑠) 
with 

𝜒(𝑠) =
1

𝜋
(2𝜋)𝑠𝛤(1 − 𝑠)𝑠𝑖𝑛 (

𝜋

2
𝑠)   resp.    𝜒(1 − 𝑠) = 2(2𝜋)−𝑠𝛤(𝑠)𝑐𝑜𝑠 (

𝜋

2
𝑠) 

 
results into the following Mellin transform representations 
 

∫ 𝑥1−𝑠𝜋 𝑐𝑜𝑡(𝜋𝑥)
∞

0

𝑑𝑥

𝑥
= 휁(𝑠)

𝜋

2
𝑐𝑜 𝑡 (

𝜋

2
𝑠) =

(𝑠)

𝑠
[(

𝜋

2
𝑠)𝑐𝑜 𝑡 (

𝜋

2
𝑠)]    resp.  ∫ 𝑥𝑠𝜋 𝑐𝑜𝑡(𝜋𝑥)

∞

0

𝑑𝑥

𝑥
= 휁(1 − 𝑠)

𝜋

2
𝑡𝑎𝑛 (

𝜋

2
𝑠). 

 
We note the formulas 
 

𝜋 𝑐𝑜𝑡(𝜋𝑥) =
𝜋

2
𝑐𝑜𝑡 (

𝜋

2
𝑥) −

𝜋

2
𝑐𝑜𝑡 (

𝜋

2
(1 − 𝑥)) and (

𝜋

2
𝑥)𝑐𝑜 𝑡 (

𝜋

2
𝑥) = 1 − ∑

|𝐵2𝑘|

(2𝑘)!
(𝜋𝑥)2𝑘∞

𝑘=1  , 𝑥2 < 4.  

 
From the latter one the following approximation formula for 휁(𝑠) can be derived: 
 

휁(𝑠) ≈ 𝑠 ∫ 𝑥1−𝑠𝜋 𝑐𝑜𝑡(𝜋𝑥)
∞

0

𝑑𝑥

𝑥
= 𝑀 [

𝜋𝑥

𝑠𝑖𝑛2(𝜋𝑥)
] (1 − 𝑠) = ∫ 𝑥1−𝑠 𝜋𝑥

𝑠𝑖𝑛2(𝜋𝑥)

∞

0

𝑑𝑥

𝑥
. 

 
The duality equation 

 

휁(𝑠) =
1

𝜋
(2𝜋)𝑠𝛤(1 − 𝑠)𝑠𝑖 𝑛 (

𝜋

2
𝑠) 휁(1 − 𝑠) =

𝜋
𝑠
2

𝜋
1−𝑠

2

𝛤(
1−𝑠

2
)

𝛤(
𝑠

2
)

휁(1 − 𝑠)  

 
In combination with the formulas 
 

𝑠𝑖𝑛 (
𝜋

2
𝑠) 𝛤(𝑠) = √𝜋2𝑠−1

𝛤(
𝑠

2
)

𝛤(
1−𝑠

2
)

𝑡𝑎𝑛 (
𝜋

2
𝑠)  

𝑐𝑜𝑠 (
𝜋

2
𝑠) 𝛤(1 − 𝑠) = √𝜋2−𝑠

𝛤(
1−𝑠

2
)

𝛤(
𝑠

2
)

𝑐𝑜𝑡 (
𝜋

2
𝑠)  

 
results into the following representations 

 

∫ 𝑥1−𝑠 𝑐𝑜𝑡(𝜋𝑥)
∞

0

𝑑𝑥

𝑥
=

1

2
𝑐𝑜 𝑡 (

𝜋

2
𝑠) 휁(𝑠) =

(2𝜋)𝑠

2𝜋
𝑐𝑜 𝑠 (

𝜋

2
𝑠) 𝛤(1 − 𝑠)휁(1 − 𝑠) =

1

2

𝜋
𝑠
2

𝜋
1−𝑠

2

𝛤(
1−𝑠

2
)

𝛤(
𝑠

2
)

𝑐𝑜𝑡 (
𝜋

2
𝑠) 휁(1 − 𝑠)  

 

∫ 𝑥𝑠 𝑐𝑜𝑡(𝜋𝑥)
∞

0

𝑑𝑥

𝑥
=

1

2
𝑡𝑎𝑛 (

𝜋

2
𝑠) 휁(1 − 𝑠) =

(2𝜋)1−𝑠

2𝜋
𝑠𝑖𝑛 (

𝜋

2
𝑠) 𝛤(𝑠))휁(𝑠) =

1

2

𝜋
1−𝑠

2

𝜋
𝑠
2

𝛤(
𝑠

2
)

𝛤(
1−𝑠

2
)

𝑡𝑎𝑛 (
𝜋

2
𝑠) 휁(𝑠)  

 
which we summarize in the  
 

Lemma: In the critical stripe the distribution valued Mellin transform of the (in a weak 𝐻−1/2
# (0,1) sense 

convergent (*)) Fourier series representation of 𝑐𝑜 𝑡(𝜋𝑥) = ∑ 𝑠𝑖𝑛 2 𝜋𝜈𝑥∞
1  is given by 

 

i) 
1

√𝜋
∫ 𝑥1−𝑠 𝑐𝑜𝑡(𝑥)

∞

0

𝑑𝑥

𝑥
=

𝜋1/1−𝑠

2
𝑐𝑜 𝑡 (

𝜋

2
𝑠) 휁(𝑠) =

1

2

𝛤(
1−𝑠

2
)

𝛤(
𝑠

2
)

𝑐𝑜𝑡 (
𝜋

2
𝑠) 휁(1 − 𝑠) 

 

ii) 
1

√𝜋
∫ 𝑥𝑠 𝑐𝑜𝑡(𝑥)

∞

0

𝑑𝑥

𝑥
=

𝜋𝑠−1/2

2
𝑡𝑎𝑛 (

𝜋

2
𝑠) 휁(1 − 𝑠) =

1

2

𝛤(
𝑠

2
)

𝛤(
1−𝑠

2
)

𝑡𝑎𝑛 (
𝜋

2
𝑠) 휁(𝑠). 

 
Corollary: In the critical stripe it holds 
 

𝛤 (
𝑠

2
) cot (

𝜋

2
(1 − 𝑠)) ∫ 𝑥1−𝑠 𝑐𝑜𝑡(√𝜋𝑥)

∞

0

𝑑𝑥

𝑥
= 𝛤 (

1−𝑠

2
) cot (

𝜋

2
𝑠) ∫ 𝑥𝑠 𝑐𝑜𝑡(√𝜋𝑥)

∞

0

𝑑𝑥

𝑥
 . 
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Remark (NiN): For the tool set functions 
 

𝑙𝑜𝑔𝛤(𝑥) = ∫ 𝛹(𝑡)𝑑𝑡
𝑥

1
, 𝜈(𝑥): = 𝑙𝑜𝑔𝑥 − 𝛹(𝑥) , 

 

𝛽(𝑥): = ∑
(−1)𝑘

𝑥+𝑘
∞
𝑘=0 =

1

2
(𝛹 (

𝑥+1

2
) − 𝛹 (

𝑥

2
)), 𝜗(𝑥) ≔

1

2
− 𝑥 + [𝑥] = ∑

𝑠𝑖𝑛 2𝜋𝜈𝑥

𝜋𝜈
∞
1  

 
the following properties are valid 
 

i) 𝛹(𝑥) = −𝛾 + ∑ (
1

1+𝑘

𝑛
𝑘=0 −

1

𝑥+𝑘
) , 𝛹 (

1

2
) = −𝛾 − 2𝑙𝑜𝑔2 , 𝛹(1) = −𝛾 , 𝛹(𝑛 + 1) = −𝛾 + ∑

1

𝑘

𝑛
𝑘=1   

 

ii) 𝛹(1 − 𝑥) − 𝛹(𝑥) = 𝜋cot (𝜋𝑥) ,  𝛹(𝑥 + 1) − 𝛹(𝑥) =
1

𝑥
, 𝛹(𝑥) = lim

𝑛→∞
( 𝑙𝑜𝑔𝑛 − ∑

1

𝑥+𝑘
)𝑛−1

𝑘=0  

 

iii) 𝛹(𝑠) = logs −
1

2𝑠
+ 𝑂(

1

|𝑠|2
), 𝛹′(𝑠) =

1

𝑠
+ 𝑂(

1

|𝑠|2
), 

1

2𝑠
|arg (𝑠)| ≤ 𝜋 − 𝛿, 𝛿 > 0 , (PrK) §7 

 

iv) 𝛹(0)(1) = −𝛾, but 𝛹(𝑛)(1) = (−1)𝑛+1𝑛!  휁(𝑛 + 1), resp. 𝛹(1 + 𝑧) = −𝛾 + ∑ (−1)𝑛+1 휁(1 + 𝑛)𝑧𝑛∞
𝑛=1 , |𝑧| < 1 

 

v) 
1

𝑛
∑ 𝛹 (𝑥 +

𝑘

𝑛
)𝑛−1

𝑘=0 = 𝛹(𝑛𝑥) − 𝑙𝑜𝑔𝑛 , (NöN) chapter V, §1, multiplication theorem 

 

vi) 𝛽(𝑥) = ∫
𝑡𝑥−1

1+𝑡
𝑑𝑡

1

0
= ∫

𝑒−𝑡𝑥

1+𝑒−𝑡
𝑑𝑡

∞

0
 , 𝛽(𝑥) + 𝛽(1 − 𝑥) =

𝜋

𝑠𝑖𝑛𝜋𝑥
, 𝛽(1) = 𝑙𝑜𝑔2 , 𝛽 (

1

2
) =

𝜋

2
 , , lim

𝑅𝑒(𝑥)→∞
𝛽(𝑥) = 0 

 

vii) 𝛽(𝑥) =
1

2𝑛+1
∑ (−1)𝑘𝛽 (

𝑥+𝑘

2𝑛+1
)2𝑛

𝑘=1 , 𝛽(𝑥) = ∑
𝑘!

𝑥(𝑥+1)…(𝑥+𝑘)
∞
𝑘=1

1

2𝑘+1
, 𝛽(𝑥 + 1) + 𝛽(𝑥) =

1

𝑥
 

 

viii) 
1

𝑛
∑ (−1)𝑛𝛽 (𝑥 +

𝑘

𝑛
)𝑛−1

𝑘=0 = 𝛽(𝑛𝑥) for 𝑛 odd,  
1

𝑛
∑ (−1)𝑛𝛹 (𝑥 +

𝑘

𝑛
)𝑛−1

𝑘=0 = −𝛽(𝑛𝑥) for 𝑛 even, (NöN) chapter V, §1 

 

ix) 𝛹(2𝑥) =
1

2
[𝛹 (𝑥 +

1

2
) + 𝛹(𝑥)] + 𝑙𝑜𝑔2, 𝛽(2𝑥) =

1

2
[𝛹 (𝑥 +

1

2
) − 𝛹(𝑥)], (NöN) chapter V, §1 

 

x) 𝜈(𝑥) = ∫ [
1

𝑒𝑡−1
−

1

𝑡
+ 1] 𝑒−𝑡𝑥𝑑𝑡

∞

0
= ∑ (

1

𝑥+𝑘
− log (1 +

1

𝑥+𝑘
)∞

𝑘=0  , 𝜈(𝑥) =
1

2𝑥
− ∫

𝜗(𝑡)

(𝑡+𝑥)2
𝑑𝑡

∞

0
 

 

xi) 𝛹 (
𝑝

𝑞
) + 𝛾 = 𝑙𝑜𝑔𝑞 −

𝜋

2
cot (𝜋

𝑝

𝑞
) + ∑ cos (

2𝑘𝜋

𝑞
𝑝)

≤
𝑞

2

𝑘=1
(log (2 − 2 cos (

2𝑘𝜋

𝑞
))    𝑝, 𝑞 ∈ 𝑁, 𝑝 < 𝑞 

 

xii) 𝛽 (
𝑝

𝑞
) =

𝜋

2sin (𝜋
𝑝

𝑞
)

− ∑ (cos
2𝑘+1)𝜋

𝑞
𝑝

≤
𝑞−1

2

𝑘=0
)(log (2 − 2 cos(

(2𝑘+1)𝜋

𝑞
)) , because of 2𝛽 (

𝑝

𝑞
) = 𝛹 (

𝑝+𝑞

2𝑞
) − 𝛹 (

𝑝

2𝑞
) 

  

xiii) 𝛹(𝑥) = 𝑙𝑜𝑥 −
1

2𝑥
+ 2 ∫

1

𝑥2+𝑡2

∞

0

𝑡𝑑𝑡

(1−𝑒2𝜋𝑡)
 , 𝛹 (𝑥 +

1

2
) = 𝑙𝑜𝑥 + 2𝑥 ∫

1

𝑥2+𝑡2

∞

0

𝑡𝑑𝑡

(1+𝑒2𝜋𝑡)
 (NöN) chapter V, §1 

 

xiv)  𝛽 (𝑥 +
1

2
) = 𝑥 ∫

1

𝑥2+𝑡2

∞

0

𝑑𝑡

cosh (𝜋𝑡)
  (NöN) chapter V, §1 

 

xv) 
1

𝛤(𝑧)
= 𝑧 ∏ (1 +

𝑧

𝑘
) (1 +

1

𝑘
)−𝑧 = 𝑧𝑒𝛾𝑧 ∏(1 +

𝑧

𝑘
)𝑒−

𝑧

𝑘 , 𝑅𝑒(𝑧) > 0, (GrI) (8.322) 

 

xvi) 𝑒𝛹(x) = 𝑥 ∏ (1 +
1

𝑥+𝑘
) 𝑒−

1

𝑥+𝑘, (GrI)(8.363), (NiN) p. 65. 
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Remark: The circular counterparts of the log 𝑥 − function for the full circle |𝑥| ≤ 𝜋, resp. for the semi-circle |𝑥| ≤ 𝜋/2 
are given by, (GrI) (1.518), 
 

i) log (sin 𝑥) = log(𝑥) +
1

2
∑

(−1)𝑘

𝑘
𝐵2𝑘

(2𝑥)2𝑘

(2𝑘)!
∞
𝑛=1  . 

 

ii) log (tan 𝑥) = log(𝑥) + ∑
(−1)𝑘

𝑘
(1 − 22𝑘−1)𝐵2𝑘

(2𝑥)2𝑘

(2𝑘)!
∞
𝑛=1 . 

 
Remark: From Euler’s formula, (NiN) §4, (6), it follows for 0 < 𝑅𝑒(𝑥) < 1, (NiN) §53, (17), 

 

log (𝑡𝑎𝑛
𝜋

2
𝑥) = ∫ 𝑡−1/2 𝑡𝑥−1/2−𝑡−𝑥+1/2

(1+𝑡)

1

0

𝑑𝑡

𝑙𝑜𝑔𝑡
= ∫

sinh [(
1

2
−𝑥)𝑡]

(1+𝑒𝑡)

∞

0

𝑑𝑡

𝑡
. 

 
From (GrI) we recall the following formulae 

 

Lemma 9:  
 

i) ∫ 𝑙𝑜𝑔(𝑠𝑖𝑛𝑥)𝑑𝑥
𝜋/2

0
= −

𝜋

2
𝑙𝑜𝑔2   ,      (GrI) (4.224) 

 

ii) ∫ 𝑙𝑜𝑔2(𝑠𝑖𝑛𝑥)𝑑𝑥
𝜋/2

0
=

𝜋

2
((𝑙𝑜𝑔2)2 +

𝜋2

12
),     (GrI) (4.224) 

 

iii) ∫ 𝑙𝑜𝑔(𝑡𝑎𝑛𝑥)𝑑𝑥
𝜋/4

0
= −𝐺 with the Catalan constant  𝐺~0,915965594 …  (GrI) (4.224) 

 

iv) ∫ 𝑙𝑜𝑔2(𝑡𝑎𝑛𝑥)𝑑𝑥
𝜋/4

0
=

𝜋3

16
,         (GrI) (4.227) 

 

v) ∫ 𝑙𝑜𝑔(𝑡𝑎𝑛𝑥)𝑠𝑖𝑛𝑥𝑑𝑥
𝜋/2

0
= 𝑙𝑜𝑔2   ,   ∫ 𝑙𝑜𝑔(𝑡𝑎𝑛𝑥)𝑐𝑜𝑠𝑥𝑑𝑥

𝜋/2

0
= −𝑙𝑜𝑔2 (GrI) 4.393) 

 

vi) ∫ 𝑙𝑜𝑔 (𝑐𝑜𝑡
𝑥

2
) 𝑠𝑖𝑛𝑥𝑑𝑥

𝜋/2

0
= 𝑙𝑜𝑔2     (GrI) (4.393). 

 
Corollary:  
 

i) ∫ log (
1

2
|sin (

𝑥

2
)|)𝑑𝑥

𝜋

−𝜋
= −4𝜋𝑙𝑜𝑔2    

 

ii) ∫ 𝑙𝑜𝑔2 (
1

2
|sin (

𝑥

2
)|)𝑑𝑥

𝜋

−𝜋
=

𝜋

2
((4 ∙ 𝑙𝑜𝑔2)2 +

𝜋2

3
) 

 

iii) ∫ 𝑙𝑜𝑔 |tan (
𝑥

2
)| 𝑑𝑥

𝜋/2

−𝜋/2
= −4𝐺 

 

iv) ∫ 𝑙𝑜𝑔2 (
1

2
|tan (

𝑥

2
)|)𝑑𝑥

𝜋/2

−𝜋/2
= 8𝐺 ∙ 𝑙𝑜𝑔2 + 𝜋((𝑙𝑜𝑔2)2 +

𝜋2

4
)  

 

i.e.  log
1

2
| sin

𝑥

2
| ∈ 𝐿2 (−𝜋, 𝜋) and log

1

4
| tan

𝑥

4
| ∈ 𝐿2 (−𝜋, 𝜋). 

 

Putting 𝑇(𝑟) ≔ ∫ 𝑙𝑜𝑔(𝑡𝑎𝑛 𝑥) 𝑑𝑥
𝑟

𝜋

2
0

, 0 ≤ 𝑟 ≤ 1, we recall from (BrD) the following properties  

 
Lemma 10:  
 

i) 𝑙𝑜𝑔(𝑡𝑎𝑛 𝑥) = −2 ∑
𝑐𝑜𝑠(2(2𝑛+1)𝑥)

2𝑛+1
∞
𝑛=0   ,  − ∫ 𝑙𝑜𝑔(𝑡𝑎𝑛 𝑦)

𝑥

0
𝑑𝑦 = ∑

sin(2(2𝑛+1)𝑥)

(2𝑛+1)2
∞
𝑛=0 , for 𝑥 ∈ (0,

𝜋

2
) 

 

ii) 𝑇(𝑟) = 𝑇(
1

2
− 𝑟) for 0 ≤ 𝑟 ≤ 1   whereby  𝑇(0) = 𝑇(1) = 0 

 

iii) 
𝑇((2𝑛+1)𝑟)

(2𝑛+1)
= ∑ 𝑇 (

𝑗

2𝑛+1
+ 𝑟) − ∑ 𝑇 (

𝑗

2𝑛+1
− 𝑟)𝑛

𝑗=1
𝑛
𝑗=0  for 0 ≤ 𝑟 ≤

1

2(2𝑛+1)
. 

 
 

Remark (BoJ): Let 𝐸𝑛(𝑥) denote the Euler polynomials and 𝐸𝑛 = 2𝑛𝐸𝑛(
1

2
), 𝐸2𝑛+1 = 0, the corresponding Euler 

numbers. Putting 
 

𝑇𝑛: = (−1)𝑛2𝑛𝐸𝑛(1), 𝑇0: = 1 
 
the series representations of the 𝑡𝑎𝑛 −and 𝑠𝑒𝑐 −functions are given by (𝐸2𝑛+1 = 𝑇2𝑛 = 0) 
 

𝑡𝑎𝑛(𝑧) = ∑ (−1)𝑛+1 𝑇2𝑛+1𝑧2𝑛+1

(2𝑛+1)!
∞
𝑛=0    ,  sec (𝑧) = ∑ (−1)𝑛 𝐸2𝑛𝑧2𝑛

(2𝑛)!
∞
𝑛=0 , |𝑧|2 <

𝜋2

4
, 

 

whereby for 𝑛 ≥ 1, ∑ (
𝑛
𝑘

)𝑛
𝑘=0 2𝑘𝑇𝑛−𝑘 + 𝑇𝑛 = 0,  ∑ (

2𝑛
2𝑘

)𝑛
𝑘=0 𝐸2𝑘 = 0, (GrI) 1.411. 

 
We note that the Euler numbers are integral and the tangent numbers are integers. 
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„looking back, part (A)“  

 

on a 10 year journey to … 

 

 

Riemann Hypothesis solutions 
 
 
A modified Zeta function theory is proposed to overcome current challenges 

 

 
(a) to verify several Riemann Hypothesis (RH) criteria 
 
(b) to prove the binary Goldbach conjecture  

 
 
The current two baseline functions to define the Zeta functions, the Gaussian function and the 

(periodical) fractional part function (resp. their corresponding Mellin transforms) are replaced by 
their corresponding Hilbert transforms, which are the Dawson function (which is a specific Kummer 

function) and the Fourier series representation of the log (sin 𝑥)-function. The convergence analysis 

is based on corresponding Hilbert space frameworks, supporting especially Cardon’s „convolution 
operator representation“ and Bagchi’s "Nyman-Beurling" RH criteria applied to the modified entire 
Zeta function. Thereby, the convolution operator representation goes along with convergent (Mellin 
transform) integrals, overcoming the corresponding challenge of an only formally valid self-adjoint 

invariant operator representation of the standard entire Zeta function ((EdH) 10.3).  
 

Basically, the Bagchi RH criterion and the Cardon RH criterion are two sides of the same coin, 
which is about the construction of appropriately defined operators, i.e. a defined mapping rule in 
combination with a defined domain.  
 
The Bagchi-"Nyman-Beurling" RH criteria comes along with the log (sin 𝑥) 𝐿2

#(0,1)-function (the Hilbert 

transform of the fractional part function 𝜌(𝑥)) in the form 
 

𝜌𝐻(𝑥) = ∑
𝑐𝑜𝑠 2 𝜋𝜈𝑥

𝜋𝜈

∞

1

= −
1

𝜋
𝑙𝑜𝑔 2 𝑠𝑖𝑛( 𝜋𝑥) ∈ 𝐿2

#(0,1) 

 

defined in the (periodical) Hilbert scale framework 𝐻0
#(0,1). It enables the definition of new 

arithmetical functions going along with a Hilbert space based "circle method" defined on the 
„boundary of the unit circle“, alternatively to the "open unit disk" domain of the Hardy-Littlewood 

circle method. The counterpart of the zeros of the 𝑒𝑖𝑥-function are the zeros of the Kummer 

function 𝐹1 1(
1

2
;

3

2
, −𝑥) = ∑

(−1)𝑛

2𝑛+1

𝑥𝑛

𝑛!
∞
𝑛=0  enabling the definition of a pair of two different arithmetical functions 

to analyse (𝑝, 𝑞)-binary number theoretical problems. The concept also supports the verification of 

the Snirelmann density criterion to prove the Goldbach conjecture. 
 

The proposed modified Zeta function theory supports the proof of several RH criteria, which might 
be grouped into the following three classes (A1)-(A3), basically defined by the applied underlying 
function space frameworks: 
 

(A1) this class is about RH criteria which can be re-formulated in terms of distributional Hilbert 

scale functions 𝐻𝛼 (−∞, ∞) 
 

(A2) this class is about RH criteria which can be re-formulated in terms of periodical distributional 
Hilbert scale functions 𝐻𝛼

#(0,1) 
 

(A3) this class is about RH criteria formulated by distributional arithmetical functions going beyond 
the distributional arithmetical functions applied for "a distributional way to prove the Prime Number 
Theorem" (ViJ). 

http://www.fuchs-braun.com/
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The common key challenge is in the context of the "Polya theorem", where the not-vanishing 

constant Fourier term provides the key handicap. From the related "Polya theorem" pdf (see pdf in 
the "literature" page) we quote: 
 
"Attempts have been made to apply Polya’s general theorem about the zeros of the Fourier 
transform of a real function to the Zeta function (PoG). After a change of variable 𝑡 → 𝑙𝑜𝑔𝑥 and 

approximating the integral over the half-line (positive x-axis) by integrals over finite intervals 
(which are the essential restriction/handicap of Polya’s theorem to be applied to the Zeta function), 

one can obtain a theorem about zeros of Mellin transforms. For the Zeta function, the Müntz 
formula has been used, but the Polya theorem only applies in the interval (0,1), and no information 
is obtained about the zeros of the Zeta function in the critical open stripe of validity of Müntz’s 
formula". 
 
(OlJ): „The theory of Dirichlet series offers a bridge between number theory and analysis. Perhaps 
the most appealing example of the power of this connection is given by the tauberian approach tot 

the classical prime number theorem.“ … The asymptotic behavior in terms of the related 
Chebyshev-type inequality can be connected to local function theoretic properties of (distributional) 
(Bagchi-type) Hilbert spaces 𝐻𝜔 . 
 

The Hilbert-Polya conjecture (which is about the existence of a proper self-adjoint integral operator 
going along with the concept of convolution operators, (CaD)) needs to overcome the mathematical 
problem of the not vanishing constant Fourier term of the Jacobian theta function.  
 

Every Hilbert transformed 𝐿2 function has a vanishing constant Fourier term. The Paley-Wiener 

functions form a Hilbert subspace of 𝑃𝑊 of 𝐿2(𝑅), which is a reproducing kernel Hilbert space (HiJ). 

Thus, the inner product of any 𝑓 ∈ 𝑃𝑊 with 𝑤: = 𝑤(𝑡, 𝑥) =
sin (𝜋(𝑡−𝑥))

𝜋(𝑡−𝑥)
, i.e. 𝑓(𝑡) = (𝑓, 𝑤)0 = ∫ 𝑓(𝑥)𝑤(𝑡 − 𝑥)𝑑𝑡

∞

−∞
. 𝑃𝑊 

and 𝑃𝑊⊥ are invariant subspaces for the Hilbert transforms on 𝐿2(𝑅). Calderón’s reproducing 

formula provided the baseline for the continuous wavelet transformation theory coming along with 

the concept of „windowed Fourier transforms“ (LoA). The 𝑃𝑊𝜋 reproducing kernel provided the 

baseline for the cardinal series theory, addressing e.g. the question „how power series coefficients 

𝑎𝑛  of a function  𝑓(𝑧) = ∑ 𝑎𝑛𝑧𝑛 determine its singularities“, (HiJ). Corresponding 𝜋 −cardinal series are 

convergent under the condition ∑
|𝑎𝑛|

𝑛
< ∞. Cardinal series can be obtained formally by considering 

the Lagrange interpolation formula, which is proposed alternatively to the Euler-Mclaurin /Newton-
Gauss summation formulas. 
 

The canonical resolution of the „𝐸𝜇 spectrum of the dynamical Hamiltonian mechanics system“ 

(consisting of a discontinuous and a continuous part) is concerned with certain self-adjoint and 
unitary operators in a Hilbert space. The conception that such a spectrum reveals the mechanical 

properties of the system in its own structure lead to the concepts of an inner product (𝐸𝜇 𝑓, 𝑔) on 

the Hilbert space, 𝑃𝑊-like formulas (KoB1), which is the well known spectral theory in Hilbert 

spaces for unitary operators (e.g. (HiF)). The physical motivations for related ergodic theorems are 
based on the Maxwell-Boltzmann gas theory and the Gibbs statisical mechanics (HoE). 
 

With respect to part B, the common mathematical tools to analyze the proposed complementary 
kinematical energy space 𝐻1

⊥ and the non-linear Landau damping phenomenon are 
 

- the wavelets, where a vanishing constant Fourier term of a  𝐿2 function is a sufficient condition 

to be a wavelet function (HoM), (MeY); the underlying „theory of frames“, especially the 
Nonharmonic, but exact Fourier frames are closely related to the Riesz basis of a separable 
Hilbert space, (YoR) p. 157, (NaA); the latter one plays a key role in the context of the Kadec 
1/4-theorem (related to the Paley-Wiener space 𝑃𝑊 (DuR), resp. indefinite metrics, (AzT), 

(BoJ), as applied in (A2), (A3) below; general references to frames are provided in (YoR) p. 
190. 

 

- ergodic theory on a Hilbert space (HaP), which is about measure-preserving transformation, 
e.g. in relationship to turbulence problems in hydrodynamics (HoE), (LiP), in combination with 
non-harmonic Fourier series theory (YoR), based on complex exponentials forming a Riesz 

basis for 𝐿2
# and sequences of real or complex numbers with uniform density one (DuR). 
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The parts (A1-A3) below are concerned with Hilbert scales in the form 𝐻𝛼 , 𝑙2
𝛼,  𝛼 ∈ 𝑅: 

 

The Dirichlet series theory is an extension of the concept of power series replacing  ∑ 𝑎𝑛𝑒−𝑥𝑛∞
1 →

∑ 𝑎𝑛𝑒−𝑥 𝑙𝑜𝑔 𝑛∞
1 . The relationship between the Dirichlet series 

 

𝑓(𝑠): = ∑ 𝑎𝑛𝑒−𝑠 𝑙𝑜𝑔 𝑛∞
1   𝑔(𝑠): = ∑ 𝑏𝑛𝑒−𝑠 𝑙𝑜𝑔 𝑛∞

1  
 

and the Hilbert space 𝐻−1/2
# ≅ 𝑙2

−1/2on the critical line is given by ([LaE] §227, Satz 40): 

 

((𝑓, 𝑔))−1/2: = 𝑙𝑖𝑚
𝜔→∞

1

2𝜔
∫ 𝑓(

1

2
+ 𝑖𝑡)𝑔(1/2 − 𝑖𝑡)𝑑𝑡 =

𝜔

−𝜔
∑

1

𝑛
𝑎𝑛𝑏𝑛

∞
1 . 

 

The cardinal series theory is an extension of the Dirichlet series theory. In our case this is 

about absolute convergent series 𝐶(𝑥) =
𝑠𝑖𝑛 (𝜋(𝑥−𝜆))

𝜋
∑ (−1)𝑛 𝐶(𝑛+𝜆)

𝑥−𝜆−𝑛

∞
𝑛=1   with cardinal series 𝐶(𝑥) =

𝑤

𝜋
∑ 𝑎𝑛

𝑠𝑖𝑛
𝑤

𝜋
(𝑥−𝑎−𝑛𝑤)

𝑥−𝑎−𝑛𝑤

∞
−∞  for the points  (𝑎 + 𝑛𝑤, 𝑎𝑛), whereby ∑ (|𝑎𝑛|∞

2 + |𝑎−𝑛|)
𝑙𝑜𝑔𝑛

𝑛
< ∞ to ensure that the 

cardinal series  
𝑠𝑖𝑛𝜋𝑥

𝜋
[

𝑎0

𝑥
+ ∑ (−1)𝑛(

𝑎𝑛

𝑥−𝑛
+

𝑎−𝑛

𝑥+𝑛
)∞

𝑛=1 ] is absolutely convergent (WhJ1). 

 

Remark: The inverse mapping of 𝜎(𝑥): = �̃�(𝑙𝑜𝑔 𝑥): = ∑
1

𝑛
log (

𝑥

𝑛𝑛≤𝑥 ),  𝑥 ≥ 1, is given by ((ScW), 

lemma 3.3, p.36) 𝜎−1(𝑥) = �̃�−1(𝑙𝑜𝑔 𝑥) = ∑
𝜇(𝑛)

𝑛
log (

𝑥

𝑛𝑛≤𝑥 ). The link to the Riemann, von Mangoldt and 

Landau density functions 𝐽(𝑥) ≔
1

2
[∑

1

𝑛𝑝𝑛<𝑥 + ∑
1

𝑛𝑝𝑛≤𝑥 ], 𝜓(𝑥): = ∑ 𝛬(𝑥)𝑛≤𝑥 , 𝜗(𝑥) = ∑ 𝛬(𝑛) 𝑙𝑜𝑔(
𝑥

𝑛
) = 𝜓(𝑥) 𝑙𝑜𝑔 𝑥∞

𝑛=1  

(fulfilling 𝑑[𝑥𝜗′] = 𝑑𝜓 = 𝑙𝑜𝑔 𝑥 𝑑𝐽) is given by 𝑥𝜎′(𝑥) = ∑
1

𝑛𝑛≤𝑥 . The considered sequences below enable 

modified Riemann density functions 𝐽∗(𝑥), 𝜓∗(𝑥), 𝜗∗(𝑥) with 𝑑𝐽 = 𝑑𝐽∗, 𝑑𝜓∗ = 𝑑𝜓, 𝑑𝜗 = 𝑑𝜗∗ (see also 
lemma 5 v), vii), viii) below). 
 

From (ApT) p. 66 we recall that the PNT can be derived from the formula ∑
𝜇(𝑛)

𝑛

∞
𝑛=1 = 0. What cannot 

derived from the PNT is the convergence of the series, (LaE) §160,  ∑
𝜇(𝑛)

𝑛

∞
𝑛=1 𝑙𝑜𝑔(

1

𝑛
) = − ∑ 𝜇(𝑛)

𝑙𝑜𝑔𝑛

𝑛

∞
𝑛=2 = 1. 

 

Putting 𝑎𝑛 ≔ √𝑛𝜇(𝑛)log (
1

𝑛
) (𝑎𝑛

∗ ≔ 𝜇(𝑛)log (
1

𝑛
)) and 𝑏𝑛 ≔

1

√𝑛
 (𝑏𝑛

∗ ≔ 1) one gets 
 

((𝑓, 𝑔))−1/2 = ((𝑓∗, 𝑔∗))−1/2 = 1 and ((𝑔, 𝑔))−1/2 = ((𝑔∗, 𝑔∗))−1 = ∑
1

𝑛
∞
1 𝑏𝑛

2 = ∑
1

𝑛2
∞
1 =

𝜋2

6
,     

 

i.e. 𝑓(
1

2
+ 𝑖𝑡), 𝑔(

1

2
+ 𝑖𝑡) ∈ 𝐻−1/2 resp. 𝑔∗(

1

2
+ 𝑖𝑡) ∈ 𝐻−1 and therefore 𝑓∗(

1

2
+ 𝑖𝑡) ∈ 𝐻0. 

 

We note that the RH is equivalent to an order of magnitude 𝑂(𝑥
1

2
+ ) (휀 > 0) of 𝑀(𝑥) ≔ ∑ 𝜇(𝑛)𝑛≤x , ((ApT) 

p. 301), i.e., that 𝑀 ∈ 𝐻1

2
+

. From (LaE6), (MiM), (MiM1), we recall the equivalent Farey series based 

criterion of 𝑀(𝑥) ≔ ∑ 𝜇(𝑛)𝑛≤x = ∑ cos (2𝜋𝑟𝑘)
𝐴(𝑥)
𝑘=1  with 𝐴(𝑥) ≔ ∑ 𝜑(𝑛)𝑛≤x . From the Sobolev embedding theorem 

we recall, that 𝐻1

2
+

 is a sub-space of 𝐶0 (more precisely the space of Hölder continuous functions 

with exponent 1/2) and that the Dirac function 𝛿 is an element of the dual space 𝛿 ∈ 𝐻
−

1

2
−

. The link to 

„a quick distributional way to the Prime Number Theorem (PNT)“, (ViJ)  is given by the  

distributions 𝛿, 𝐻[𝛿] ∈ 𝐻−1/2− , where 𝜋𝐻[𝛿(𝑥)] =
1

𝑥
= 𝑙𝑜𝑔′(

𝑥

𝑛
) and 𝜓′(𝑥) = ∑ 𝛬(𝑛)𝛿(𝑥 − 𝑛)𝑛≤𝑥 . We further note, 

that 𝐻𝛼+  is compactly embedded into 𝐻𝛼. 

 

We mention the Riemann error function  
 

∫
𝑑𝑡

𝑡(𝑡2−1) 𝑙𝑜𝑔 𝑡

∞

𝑥
=

1

2𝜋𝑖

1

𝑙𝑜𝑔 𝑥
∫

𝑑

𝑑𝑠
[

𝑙𝑜𝑔 𝛤(1+
𝑠

2
)

𝑠
]

𝑎+𝑖∞

𝑎−𝑖∞
𝑥𝑠𝑑𝑠 ≅ −

1

2𝜋𝑖
∫ 𝑙𝑜𝑔𝛤(1 +

𝑠

2
)

𝑎+𝑖∞

𝑎−𝑖∞
𝑥𝑠 𝑑𝑠

𝑠
 , 

 

derived from the 𝛤(1 +
𝑠

2
) term of the entire Zeta function ((EdH) 1.16).  
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The parts (A1-A3) below are also concerned with the Kummer functions are 𝐹1 1 (1,
3

2
; −x) and 

𝐹1 1 (
1

2
,

3

2
; −𝑥), which are connected by the formula 𝐹1 1 (

1

2
,

3

2
; x) = 𝑒𝑥 𝐹1 1 (1,

3

2
; −x), (AbM) (7.1.21), (GrI) 

9.212.  
 

The challenging part to verify the RH criterion 𝜋(𝑥) − 𝑙𝑖(𝑥) = 𝑂(√𝑥 𝑙𝑜𝑔 𝑥) = 𝑂(𝑥
1

2
+ ), (which could be 

even 𝑂(𝑥
1

2) in a variational representation avoiding the 𝐿∞ − norm) is the asymptotical behavior of 
the exponential (integral) function ((EdH) 1.14 ff., (BeB) IV)   
 

𝐸𝑖(𝑥): = − ∫ 𝑒−𝑦𝑑 𝑙𝑜𝑔 𝑦
∞

𝑥
= − ∫ 𝑒−𝑦 𝑑𝑦

𝑦

∞

𝑥
= ∫

𝑒𝑡

𝑡
𝑑𝑡 ≈

𝑒−𝑥2

𝑥2
∑ (−1)𝑘+1 𝑘!

𝑥2𝑘
∞
𝑘=0

𝑥

−∞
 . 

 

In the following we summarize some properties of the concerned Kummer functions and their 
relationships to the baseline functions of the Zeta function theory: 
 

The Kummer function based representations of the 𝑙𝑖(𝑥) function is given by 
 

𝑙𝑖(𝑥) = ∫
𝑑𝑡

𝑙𝑜𝑔𝑡
𝑑𝑡 =

𝑥

..
− 𝑥 𝐹1 1(1; 1, −𝑙𝑜𝑔 𝑥) = 𝐸𝑖(𝑙𝑜𝑔𝑥) = − ∫

𝑒−𝑡

𝑡
𝑑𝑡 = ∫

𝑒𝑡

𝑡
𝑑𝑡

𝑙𝑜𝑔𝑥

−∞

∞

−𝑙𝑜𝑔𝑥
 ~ 

1

𝑙𝑜𝑔𝑥
  

 

with 

𝐸𝑖(𝑥) = 𝑙𝑜𝑔𝑥 + 𝛾 + ∑
1

𝑘

𝑥𝑘

𝑘!

∞
𝑘=1  . 

 

The series representations and asymptotics of the error function 
 

𝐸𝑟𝑓(𝑧): = ∫ 𝑒−𝑡2
𝑑𝑡

𝑧

0
 resp. 𝐸𝑟𝑓𝑐(𝑧): = ∫ 𝑒−𝑡2

𝑑𝑡
∞

z
 

 

are given by (AbM) 7.1.1, 7.1.5, 7.1.23, (OlF) 3 §1, 
 

𝐸𝑟𝑓(𝑧): = z ∑
(−1)𝑘

2𝑘+1

𝑧2𝑘

k!
∞
𝑘=0      ,  𝐸𝑟𝑓𝑐(𝑧) ≈

1

𝑧
𝑒−𝑧2

[1 + ∑ (−1)𝑘 1⋅3⋅....(2𝑘−1)

𝑥2𝑘
∞
𝑘=1 ]. 

 

The relationships to the concerned Kummer functions and the related functions Ψ(𝑎, 𝑐, 𝑧2) and 
𝑒𝑥−1

𝑥
 

are given by (LeN) 9.13, 
 

𝑙𝑖(𝑧) = −𝑧 𝐹1 1(1,1, −logz)  ,  𝐸𝑖(𝑧) = −𝑒𝑧Ψ(1,1, −z) ,  
𝑒𝑥−1

𝑥
= 𝐹1 1(1,2; 𝑥) 

 

𝐸𝑟𝑓(𝑧) = 𝑧 𝐹1 1(
1

2
,

3

2
, −𝑧2) = 𝑧𝑒−𝑧2

𝐹1 1(1,
3

2
, 𝑧2)  

 

𝐸𝑟𝑓(𝑧) =
1

2
𝑒−𝑧2

Ψ(
1

2
,

1

2
, 𝑧2) , 𝐸𝑟𝑓𝑐(𝑧) =

1

2
𝑧𝑒−𝑧2

Ψ(1,
3

2
, 𝑧2) . 

 

The asymptotics of the Kummer functions are given by, (LeN) 9, 
 

𝐹1 1(a, c; 𝑧) =
𝛤(𝑐)

𝛤(𝑐−𝑎)
𝑒±𝑖𝜋𝑎𝑧−𝑎 [∑

(−1)𝑘

𝑘!
(𝑎)𝑘(1 + 𝑎 − 𝑐)𝑘𝑧−𝑘 + 𝑂(|𝑧|−𝑛−1𝑛

𝑘=0 ] +  

 

                                                               +
𝛤(𝑐)

𝛤(𝑎)
𝑒−(𝑐−𝑎)𝑧−(𝑐−𝑎) [∑

(−1)𝑘

𝑘!
(1 − 𝑎)𝑘(𝑐 − 𝑎)𝑘𝑧−𝑘 + 𝑂(|𝑧|−𝑛−1𝑛

𝑘=0 ] , 

 

It especially holds 𝑧 𝐹1 1(
1

2
,

3

2
, z) =

1

2𝑒
[∑ (−1)𝑘(

1

2
)𝑘𝑧−𝑘 + 𝑂(|𝑧|−𝑛−1𝑛

𝑘=0 ] , i.e. 

 

𝐸𝑖(𝑥) ≈ −2𝑒 𝐹1 1(
1

2
,

3

2
, −x)  ≈

1

𝑥
[∑ (

1

2
)𝑘(

1

𝑥
)𝑘∞

𝑘=0 ]. 

 

We further note that the function represented by the series  ∑
(−1)𝑘

(2𝑘+1)⋅𝑥2𝑘+1
∞
𝑘=0 , |𝑥| > 1, has the value 𝜋/2 

as 𝑥 → 0, 𝑥 > 0, (BeB) IV, (10.2).  
 

The Hilbert transform of the Gaussian function is the Dawson function given by 

 

𝐹(𝑥) ≔ 𝑒−𝑥2
∫ 𝑒𝑡2

𝑑𝑡 = ∫ 𝑒−𝑡2
sin (2𝑥𝑡)𝑑𝑡 = 𝑥 𝐹1 1 (1,

3

2
; −𝑥2) = 𝑥𝑒−𝑥2

𝐹1 1 (
1

2
,

3

2
; 𝑥2)

∞

0

𝑥

0
 . 

 

and it holds (GaW) 
 

𝐻[𝑒−𝑥2
] = 2√𝜋𝐹(𝑥) 

resp. 

𝐻+ [
𝑒−𝑥

√𝜋𝑥
] = 2

𝐹(√𝑥)

√𝑥
≈

1

𝑥
[1 + ∑

1⋅3⋅...(2𝑘−1)

(2𝑥)𝑘
∞
𝑘=1 ] . 
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The link of the Hermite polynomials is given by (AbM), 7.1.15, resp. (RyG) 
     

1

√𝜋
𝐻[𝑒−𝑥2

] = 𝐹(𝑥) =
1

√𝜋
𝑙𝑖𝑚
𝑛→∞

∑
𝐻𝑘

(𝑛)

𝑥−𝑥𝑘
(𝑛)

𝑛
𝑘=1 =

1

√𝜋
𝑙𝑖𝑚 ∑

𝑒−(𝑥−𝑛ℎ)2

𝑛𝑛 𝑜𝑑𝑑

ℎ→0

≈
1

𝑥
. 

   

where 𝑥𝑘
(𝑛)

 and 𝐻𝑘
(𝑛)

 are the zeros and weight factors of the Hermite polynomials.  

 

Let 𝑓(𝑥) ≔ ∫
𝑒−𝑡2

𝑡+𝑥
dt

∞

0
, then, 𝑓(𝑥) = √𝜋𝐹(𝑥) −

𝑒−𝑥2

2
𝐸𝑖(𝑥2) = −𝑙𝑜𝑔𝑥 −

𝛾

2
+ 𝑜(1), 𝑥 → 0 , (OlF) 2 §4. 

 

Remark: The functions 𝐹1 1 (
1

2
,

3

2
; −z)  and 𝐹1 1 (1,

3

2
; z) possesses the same zeros (SeA), as the related 

Whittaker function 𝑧−3/4𝑀1

4
,
1

4

(𝑧), which is the solution of the corresponding self-adjoint (ODE) 

Whittaker operator, (BuH), §17.1.  
 
 

Lemma: 
 

i)  𝐹1 1 (
1

2
,

3

2
; x) = ∑

1

𝑘+
1

2

𝑥𝑘

𝑘!
∞
𝑘=0 = ∑

2

2𝑘+1

𝑥𝑘

𝑘!
∞
𝑘=0 =

1

2
∫

𝑒𝑥𝑡

√𝑡
𝑑𝑡

1

0
 ,  𝐹1 1 (

1

2
,

3

2
; 0) = 1 (LeN) (9.11.1) 

 
 

ii) 𝑥𝑒−𝑥2
𝐹1 1 (

1

2
,

3

2
; 𝑥2) = 𝑥 𝐹1 1 (1,

3

2
; −𝑥2) = ∫ 𝑒−𝑡2∞

0
sin(2𝑥𝑡) 𝑑𝑡 

 

 

iii)   𝐹1 1
′ (

1

2
,

3

2
; x) =

1

3
𝐹1 1 (

3

2
,

5

2
; x) 

 

iv) 𝐹1 1 (
1

2
,

3

2
; x) + 𝑥 𝐹1 1

′ (
1

2
,

3

2
; x) = 𝑒𝑥 

 

v) 𝐹1 1 (
1

2
,

3

2
; 𝑥2) =

2

𝑥
∫ 𝑒𝑡2

𝑑𝑡
𝑥

0
     resp. 𝐹1 1 (

1

2
,

3

2
; 𝑥) =

1

√𝑥
∫ 𝑒𝑡 𝑑𝑡

√𝑦

𝑥

0
 (AbM) 7.1.5, (GaW)   

 

vi) ∫ 𝑥𝑠/2 𝐹1 1 (
1

2
,

3

2
; −x)

𝑑𝑥

𝑥
=

𝛤(
𝑠

2
)

1−𝑠

∞

0
   resp. ∫ 𝑥𝑠/2 [−𝑥 𝐹1 1

′ (
1

2
,

3

2
; −x)]

𝑑𝑥

𝑥
=

𝑠

1−𝑠
𝛤(

𝑠

2

∞

0
)   (GrI) 7.612 

 

resp.        𝛤 (1 +
𝑠

2
) = 𝑠(1 − 𝑠) ∫ 𝑥𝑠 𝐹1 1 (

1

2
,

3

2
; −𝑥2)

𝑑𝑥

𝑥

∞

0
 in the critical stripe 

 
Putting 

𝑔(𝑥) ≔ 𝐹1 1 (
1

2
,

3

2
; −x) + 𝑥 𝐹1 1

′ (
1

2
,

3

2
; −x) = ∑

𝑘+1

𝑘+1/2

(−𝑥)𝑘

𝑘!
∞
𝑘=0   

one gets 
 

−𝑥𝑔(𝑥) = ∑
𝑘+1

𝑘+
1

2

(−𝑥)𝑘+1

𝑘!
∞
𝑘=0 = −𝑥 𝐹1 1 (

1

2
,

3

2
; −x) − 𝑥2 𝐹1 1

′ (
1

2
,

3

2
; −x)  ≈ [∑ (

1

2
)

𝑘
(

1

𝑥
)

𝑘
∞
𝑘=0 ] + [∑ (

1

2
)

𝑘
(𝑘 + 1)(

1

𝑥
)𝑘∞

𝑘=0 ]  

 

− ∫ 𝑥1−𝑠𝑔(𝑥)
𝑑𝑥

𝑥

∞

0
= − ∫ 𝑥1−𝑠 𝐹1 1 (

1

2
,

3

2
; −x)

𝑑𝑥

𝑥
+ ∫ 𝑥1−𝑠 [−𝑥 𝐹1 1

′ (
1

2
,

3

2
; −x)]

𝑑𝑥

𝑥

∞

0

∞

0
=

𝑠𝛤(1−𝑠)   

1−2𝑠
. 

 
 

Putting 𝑇(𝑥) ≔ ∫ 𝑔(𝑡)𝑑𝑡
𝑥

0
 resp. �̃�(𝑥) ≔ − ∫ 𝑡𝑔(𝑡)𝑑𝑡

𝑥

0
 it follows  

 

i)  𝑇(𝑥) = ∫ [∑ (−1)𝑘 𝑘+1

𝑘+
1

2

𝑡𝑘

𝑘!
∞
𝑘=0 ]

𝑥

0
𝑑𝑡 = 𝑥 ∙ [∑ (−1)𝑘 1

𝑘+
1

2

𝑥𝑘

𝑘!
∞
𝑘=0 ]  with  𝑑𝑇(𝑥) = 𝑔(𝑥)𝑑𝑥 

 

ii) lim
𝑥→∞

1

𝑥
∫ 𝑔(𝑡)𝑑𝑡

𝑥

0
= lim

𝑥→∞

𝑇(𝑥)

𝑥
= 1  i.e. 𝑇(𝑥) ~ 𝑥, as (*)   𝑠𝑓(𝑠) = s ∫ 𝑥−𝑠𝑔(𝑥)

𝑑𝑥

𝑥

∞

0
= −

𝑠+1   

2𝑠+1
𝛤(1 − 𝑠)  

 

iii) 𝑔(𝑥) = ∑
𝑘+1

𝑘+1/2

(−𝑥)𝑘

𝑘!
∞
𝑘=0 = ∑

1

𝑘+1/2

(−𝑥)𝑘

𝑘!
∞
𝑘=0 + ∑

𝑘

𝑘+1/2

(−𝑥)𝑘

𝑘!
=∞

𝑘=0
𝑇(𝑥)

𝑥
+ ∑

𝑘

𝑘+1/2

(−𝑥)𝑘

𝑘!
∞
𝑘=0  

 

iv) ∫ 𝑥−𝑠 𝑑�̃�(𝑥)

𝑥

∞

0
= − ∫ 𝑥1−𝑠𝑔(𝑥)

𝑑𝑥

𝑥

∞

0
=

𝑠𝛤(1−𝑠)   

1−2𝑠
  i.e. lim

𝑥→∞

�̃�(𝑥)

𝑥
= 0 . 

 

 
 
. 

 

 
(*) Lemma: (OsH) Vol1, 89): Let  𝑇(𝑥) monotone increasing, and  

 

𝑓(𝑠) = ∫ 𝑒−𝑠𝑥𝑑𝑇(𝑥) = ∫ 𝑥−𝑠𝑑𝑇(𝑙𝑜𝑔𝑥)
∞

0

∞

0
= ∫ 𝑥−𝑠 𝑑𝑇(𝑥)

𝑥

∞

0
    , 𝑠 = 𝜎 + 𝑖𝑡,   𝜎 > 0 

 

convergent. Then, if lim
𝑠→0+

𝑠𝑓(𝑠) exists, this holds also for lim
𝑥→∞

𝑇(𝑥)

𝑥
, and both limits are identical, i.e. lim

𝑠→0+
𝑠𝑓(𝑠) = lim

𝑥→∞

𝑇(𝑥)

𝑥
  . 
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In the context with „the connection between 휁(𝑠) and primes“ we refer to (EdH) 1.11.  

 

 
In the context with Polya’s theorem (PoG) we recall from (EdH) 12.5, „Transforms with zeros on 
the line“: 
 

„Polya’s theorem is that a real self-adjoint (*) operator of the form  𝑓(𝑥) →  ∫ 𝑓(𝑢𝑥)𝐹(𝑢)𝑑𝑢
𝑎

1/𝑎
 (where 𝐹(𝑢) 

is real and satisfies 𝑢−1𝐹(𝑢−1) = 𝐹(𝑢)) which has the property that 𝑢
1

2𝐹(𝑢) (**) is nondecreasing on the 
interval [1, 𝑎] has the property that the zeros of its transform all lie on the line 𝑅𝑒(𝑠) = 1/2. 

 
(*) The notion „self-adjoint“ is different from the definition in functional analysis, but very much close to it, when 

considering the operator equation in a Hilbert space framework for functions with domain on the critical line. In this 

case it means that the Polya condition has the same effect than replacing s by (1-s). 
 
 

(**) The unnatural-seeeming factor 𝑢−1 can be eliminated by renormalizing so that ∫ 𝑥−𝑠𝐹(𝑥)𝑑𝑥
∞

0
 is written 

∫ 𝑥
1

2
−𝑠 [𝑥

1

2�̃�(𝑥)] 𝑑𝑙𝑜𝑔(𝑥) = ∫ 𝑥−𝑠�̃�(𝑥)𝑑𝑙𝑜𝑔(𝑥)
∞

0

∞

0
. Then the self-adjoint condition is simply  �̃�(𝑢−1) = �̃�(𝑢). Polya’s condition is 

that �̃� be non-decreasing on [1, 𝑎], and the conclusion of the theorem is that the zeros lie on 𝐼𝑚(𝑠) = 0. 

 
 
In the context with „the connection between 휁(𝑠) and Tauberian theorems resp. Abel or Cesaro 

average“ we refer (EdH) 12.7. 

 
 
In the context with some relevance of the considered Kummer functions to plasma physics we refer 

to (KoV), (PaY) regarding 
 

- the linear response of magnetized Bose plasmas at T=0 for large and small values of its 

parameter; the large parameter expansion plays a determining role in the behaviour of 

these Bose systems in the limit that the external magnetic field B approaches zero. This 

particular expansion is generalized for the Hurwitz zeta function, (KoV) 

-  

- the linearized collision operator in the Boltzmann equation with repulsive intermolecular 

(inverse-power) potentials 𝑉(𝑟) = 𝑎 ∙ 𝑟−𝛼 for 𝛼 > 2; the collision operator has a purely 

discrete spectrum and its eigenfunctions are infinitely differentiable 𝐿2 -functions which are 

complete in 𝐿2 . The proof relies on the formalism of pseudo-differential operators; the 

special case 𝛼 = 2 is about the Maxwell’s molecules, (PaY). 

 
In the context with the building of distributional Hilbert scales based on a linear operator with 

discrete spectrum and eigenfunctions, which are complete in 𝐿2 , its underlying approximation 

theory, and an „exponential decay“ inner product resp. norm with parameter 𝑡 > 0, given by 

 

(𝑥, 𝑦)𝛼.(𝑡) = ∑ 𝜎𝑘
𝛼𝑒−√𝜎𝑘𝑡(𝑥, 𝜑𝑘)(𝑦, 𝜑𝑘)𝑘    ,   ‖𝑥‖𝛼.(𝑡)

2 ≔ (𝑥, 𝑥)𝛼.(𝑡)  

 
govering all „polynomial decay“ Hilbert scale norms we refer to (NiJ), (NiJ1). 
 
 
In the context with some relevance of the considered Kummer functions to the Navier-Stokes 

equation we refer to (PR1) regarding an integral representation of the Navier-Stokes equations for 

an incompresslble viscous fluid. „Making use of standard integral transform methods and 

considering the longitudinal components of the velocity field, thereby eliminating the pressure field, 

the Navier-Stokes equations are cast in integral form. The intrinsically non linear character of the 

equations has proved to be an unsurmountable difficulty that has severely restricted their practical 

use. The limited understanding of the turbulent motion of fluids and the lack of a comprehensive 

theory of turbulence is a consequence of this mathematical complication. … The final result is a non 

linear integral equation for the velocity fieId alone, involving a single convolution over the space 

and time variables.“ 

 

The convolution kernel of the integral representation of the Navier-Stokes equations is build on the 

functions 

 

𝐼0(𝑟, 𝑡) ≔
1

(4𝜋𝜈𝑡)3/2 𝑒−
�⃗⃗⃗�2

4𝜈𝑡  ,  𝐼1(𝑟, 𝑡) ≔ (
𝜈𝑡

𝑟2)
1

(4𝜋𝜈𝑡)3/2 𝐹1 1 (
1

2
,

3

2
; −

𝑟2

4𝜈𝑡
) . 
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The following part (A1) is related to RH criteria which can be re-formulated in terms of 

distributional Hilbert scale functions 𝐻𝛼 (−∞, ∞).  
 

 
Part (A2) is related to RH criteria which can be re-formulated in terms of periodical distributional 
Hilbert scale functions 𝐻𝛼

#(0,1). 
 

 
Part (A3) is about RH criteria formulated by distributional arithmetical functions going beyond the 

distributional arithmetical functions applied for "a distributional way to prove the Prime Number 
Theorem" (ViJ). 
 

The parts (A2) and (A3) are concerned with appropriate sequences of real numbers and sequences 
of vectors; the latter ones are called Riesz sequences, it the sequence is a Riesz basis in the 
closure of the space spanned by those vectors.  
  

With respect to the Bagchi criterion below we emphasis that there is only a positive answer to the 
following question in a certain „weak“ sense (SeK): „can every frame of complex exponentials {𝑒𝑖𝜆𝑛𝑥}  

in 𝐿2(−𝜋, 𝜋) be made into a Riesz basis by removing from {𝑒𝑖𝜆𝑛𝑥} a suitable collection of the functions 

𝑒𝑖𝜆𝑛𝑥 resp. can every Riesz sequence {𝑒𝑖𝜆𝑛𝑥} in 𝐿2(−𝜋, 𝜋) be made into a Riesz basis by adjoining to 

{𝑒𝑖𝜆𝑛𝑥} a suitable collection of exponentials 𝑒𝑖𝜆𝑥 not elements of {𝑒𝑖𝜆𝑛𝑥} ?“ For the critical sequence in 

our cases (part (A2) and (A3)) this is about 𝜆: = 𝛽1: =
𝜔1+𝜔2

2
−

1

4
 to ensure a Snirelmann density of ½ of 

the concerned sequence {𝛽n}𝑛∈𝑁 (see also (ReR)). 

 
Following part (A3), there is a section about a new tool set to prove the binary Goldbach 
conjecture, taking advantage of (A2-A3), e.g. the sequences based on the imaginary parts of the 
zeros of the considered Kummer functions with underlying domains with Snirelmann density of ½. 

The final tool is about a „2-semi-(truly)-circle (even/odd integer) method“ with an underlying 
„major/minor arcs I/II“ concept alternatively to the Hardy-Littlewood circle method. 

(A1) This class is about RH criteria which can be re-formulated in terms of distributional Hilbert 

scale functions 𝐻𝛼 (−∞, ∞). 
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(A1) The Euler product formula connects the Riemann function 휁(𝑠) (the analytic continuation of the 

power function representation beyond the halfplane 𝑅𝑒(𝑠) > 1) with primes. Taking the log of both 

sides of the Euler product formula results into a Stieltjes integral representation of the 𝑙𝑜𝑔휁(𝑠) 

function with a (prime) density 𝑑𝐽(𝑥) in the form ((EdH) 1.11) 
 

𝑙𝑜𝑔 휁 (𝑠) = 𝑠 ∫ 𝑥−𝑠−1𝐽(𝑥)𝑑𝑥
∞

0

= ∫ 𝑥−𝑠𝑑𝐽(𝑥)
∞

0

 

 

The entire Zeta function 
 

𝜉(𝑠): =
𝑠

2
𝛤(

𝑠

2
)(𝑠 − 1)𝜋−𝑠/2휁(𝑠) = 𝜉(1 − 𝑠) 

 

is basically a product of the three functions 휁(𝑠), (𝑠 − 1) and 𝛤(1 +
𝑠

2
), whereby 𝛤(𝑠) denotes the 

Gamma function ((EdH) 1.13).  
 

The method for deriving the formula for 𝐽(𝑥) is basically about the calculation of the Fourier 

inverses of 𝑙𝑜𝑔𝜉(𝑠), −log (𝑠 − 1) and −𝑙𝑜𝑔𝛤(1 +
𝑠

2
). The Fourier inverse of the principle term −log (𝑠 − 1) 

becomes the logarithmic integral represention of the 𝑙𝑖(𝑥) function. The Fourier inverse of the term 

−𝑙𝑜𝑔𝛤(1 +
𝑠

2
) leads to the famous Riemann approximation error function between the prime density 

function J(x) and the 𝑙𝑖(𝑥) function, ((EdH) 1.16), 

 

∫
𝑑𝑡

𝑡(𝑡2−1)𝑙𝑜𝑔𝑡
= ∫

1

𝑡𝑙𝑜𝑔𝑡
(∑ 𝑡−2𝑛)𝑑𝑡 = ∑ ∫ 𝑡−2𝑛 𝑑𝑡

𝑡𝑙𝑜𝑔𝑡
=

1

2𝜋𝑖

1

𝑙𝑜𝑔𝑥
∫

𝑑

𝑑𝑠
[

𝑙𝑜𝑔𝛤(1+
𝑠

2
)

𝑠
] 𝑥𝑠𝑑𝑠

𝑎+𝑖∞

𝑎−𝑖∞

∞

𝑥
∞
𝑛=1

∞

𝑥

∞

𝑥
  

 

An appropriate convergence behavior of the Riemann error function is one of several RH criteria. 
Let 𝑓(𝑥) denote the Gaussian function. Then the entire Riemann Zeta function is given by 
 

𝜉(𝑠) =
𝑠

2
𝛤(

𝑠

2
)(𝑠 − 1)𝜋−𝑠/2휁(𝑠) = (1 − 𝑠) ⋅ 휁(𝑠)𝑀[−𝑥𝑓′(𝑥)](𝑠) = 𝜉(1 − 𝑠). 

 

The Hilbert transform of the Gaussian function is the Dawson function given by 

 

𝐹(𝑥) ≔ 𝑒−𝑥2
∫ 𝑒𝑡2

𝑑𝑡 = ∫ 𝑒−𝑡2
sin (2𝑥𝑡)𝑑𝑡 = 𝑥 𝐹1 1 (1,

3

2
; −𝑥2) = 𝑥𝑒−𝑥2

𝐹1 1 (
1

2
,

3

2
; 𝑥2)

∞

0

𝑥

0
 . 

 

Replacing the Gaussian function by its Hilbert transform leads to an alternative entire Zeta function 

definition 𝜉∗(𝑠) with same zeros in the critical stripe as 𝜉(𝑠) resulting into a modified Riemann error 

function with improved approximation property. It is given by 
 

𝜉∗(𝑠): =
1

2
(𝑠 − 1)𝜋

1−𝑠

2 𝛤(
𝑠

2
) 𝑡𝑎𝑛(

𝜋

2
𝑠) ⋅ 휁(𝑠) = 휁(𝑠) ∙ 𝑀 [

𝑑

𝑑𝑥
[−𝑥 ∙ 𝑓𝐻(𝑥)]] (𝑠)  

resp. 

휁∗(𝑠): =
cot(

𝜋

2
𝑠)

1−𝑠
∙ 휁(𝑠) =

tan(
𝜋

(2
(1−𝑠))

1−𝑠
∙ 휁(𝑠)  

 

with same zeros as 𝜉(𝑠), as it holds 𝑠(1 − 𝑠)𝜉∗(𝑠)𝜉∗(1 − 𝑠) = 𝜋𝜉(𝑠)𝜉(1 − 𝑠). It is basically about a 

replacement of the term 𝜋
𝑠

2
 of the term 𝜋𝛤 (1 +

𝑠

2
) =

𝜋

2
𝑠𝛤 (

𝑠

2
) by the term 𝑡𝑎𝑛(

𝜋

2
𝑠) = cot (

𝜋

2
(1 − 𝑠). The 

method for deriving the formula for 𝐽(𝑥) is then about the calculation of the Fourier inverses of 

𝑙𝑜𝑔𝜉(𝑠), −log (𝑠 − 1), −𝑙𝑜𝑔𝛤(
𝑠

2
) and −log (𝑡𝑎𝑛(

𝜋

2
𝑠)) = −log (cot (

𝜋

2
(1 − 𝑠)).  

 

With the series expansion of 𝑡𝑎𝑛(
𝜋

2
𝑠) resp. 

𝜋

2
𝑠 ∙ 𝑐𝑜𝑡(

𝜋

2
𝑠) ((GrI) 1.421) it follows 

 

𝜉∗(𝑠) =
𝜉(𝑠)

√𝜋
∑

1

(𝑘−
1

2
)2−(

𝑠

2
)2

∞
𝑘=1       resp.    𝜉(𝑠) =

𝜉∗(𝑠)

√𝜋
∙

2

𝜋
[1 + ∑

𝑠2

𝑠2−(2𝑘)2
∞
𝑘=1 ] . 
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(A2) This class is about RH criteria which can be re-formulated in terms of periodical distributional 

Hilbert scale functions 𝐻𝛼
#(0,1) 

 
 
Bagchi's "Hilbert space based reformulation of the Nyman-Beurling RH criterion" (BaB) is based on 
the (periodical) fractional part 𝐿2

#-function 

 

𝜌(𝑥) = 𝑥 − [𝑥] =
1

2
− ∑

𝑠𝑖𝑛 2𝜋𝜈𝑥

𝜋𝜈
∞
1  . 

 

Its convergent Mellin transform in the critical stripe defines the zeta function 휁(𝑠) given by ((TiE) II 

2.1), 
 

휁(𝑠) = s ∫
[𝑥]−𝑥

𝑥𝑠

∞

0

𝑑𝑥

𝑥
= −s ∫ 𝑥−𝑠𝜌(𝑥)

∞

0

𝑑𝑥

𝑥
       0 < 𝑅𝑒(𝑠) < 1. 

 

The conceptual challenge becomes obvious condering the general Mellin transform property 

𝑀[𝑥ℎ′](𝑠) = −𝑠𝑀[ℎ](𝑠) and the related (insufficient) Mellin transform zeta function 휁(𝑠) representation 

in the form 

휁(𝑠) = s ∫
[𝑥]−𝑥+

1

2

𝑥𝑠

∞

0

𝑑𝑥

𝑥
= −s ∫ 𝑥−𝑠 [𝜌(𝑥) −

1

2
]

∞

0

𝑑𝑥

𝑥
       −1 < 𝑅𝑒(𝑠) < 0. 

 
The considered Hilbert space in [BaB] is about of all sequences 𝑎 = {𝑎𝑛|𝑛 ∈ 𝑁} of complex numbers 

such that 
 

∑ 𝜔𝑛|𝑎𝑛|2∞
𝑛=1 < ∞    with    

𝑐1

𝑛2
≤ 𝜔𝑛 ≤

𝑐2

𝑛2
 

 

 which is isomorph to the Hilbert space 𝐻−1 ≅ 𝑙2
−1. For  𝛾: = {1,1,1,1, . . . . . . } it holds 

 

‖𝛾‖−1
2 = ∑

1

𝑛2
∞
1 =

𝜋2

6
    

 

i.e. 𝛾 ∈ 𝑙2
⊥ resp. 𝛾 ∈ (𝑙2

−1/2
)⊥ , with 𝑙2

−1 = 𝑙2 ⊗ 𝑙2
⊥, 𝑙2

−1 = 𝑙2
−1/2

⊗ (𝑙2
−1/2

)⊥ . For the Zeta function on the 

critical line it also holds 𝛯 ∈ 𝐻−1(−∞, ∞) = H−1 = 𝐻0 ⊗ 𝐻0
⊥, and more specifically, 𝛯, 𝛾 ∈ 𝐻−1/2

⊥ , i.e. the 

orthogonal projection of 𝛯, 𝛾 onto 𝐻−1/2 is 0. 

 

Theorem (Bagchi-Nyman criterion, (BaB)): Let   
              

𝛾𝑘: = {𝜌(
𝑚

𝑘
)| 𝑚 = 1,2,3, . . . . }     for  𝑘 = 1,2,3, . .. 

 

and  𝛤𝑘 be the closed linear span of 𝛾𝑘. Then the Nyman criterion states that the following 

statements are equivalent: 
 

i) The Riemann Hypothesis is true 
 

ii)   𝛾 ∈ �̄�𝑘. 

 

The verification of the Bagchi criterion is enabled by ergodic theory on a Hilbert space, specific 
properties of the Mellin and Hilbert transforms regarding the basis functions 𝑒𝜈 and the fractional 

function in combination with non-harmonic Fourier series theory (based on complex exponentials 

forming a Riesz basis for 𝐿2
#, ((DuR), (YoR)) and related approximation theory in Hilbert scales.  

 

The concerned 𝛾: = {1,1,1,1, . . . . . . } ∈ 𝑙2
−1 can be represented in the form 𝛾 = {

1

𝑛
𝛾1}

𝑛∈𝑁
= 𝑒𝑛

𝑜𝑑𝑑 + 𝑒𝑛
𝑒𝑣𝑒𝑛 with 

𝑒𝑜𝑑𝑑: = (1,0,1,0,1,0,1 … ) and  𝑒𝑒𝑣𝑒𝑛: = (1,0,1,0,1,0,1 … ) + (0,1,0,1,0, … . . ). The analogue split for 𝛾𝑘 with 𝑘 ≥ 2 is 

given by 
 

�̃�2𝑘: = {
1

𝑛
𝛾2𝑘}

𝑛∈𝑁
= {

𝑒𝑛
𝑜𝑑𝑑

𝑛
𝛾2𝑘}

𝑛∈𝑁
+ {

𝑒𝑛
𝑒𝑣𝑒𝑛

𝑛
𝛾2𝑘}

𝑛∈𝑁
   

 

�̃�2𝑘+1: = {
1

𝑛
𝛾2𝑘+1}

𝑛∈𝑁
= {

𝑒𝑛
𝑜𝑑𝑑

𝑛
𝛾2𝑘+1}

𝑛∈𝑁
+ {

𝑒𝑛
𝑒𝑣𝑒𝑛

𝑛
𝛾2𝑘+1}

𝑛∈𝑁
. 

 
Let 𝑆𝑛

𝑜𝑑𝑑 ≔ 𝑠𝑝𝑎𝑛{�̃�2𝑘}𝑘=1,..,𝑛+1 and 𝑆𝑛
𝑒𝑣𝑒𝑛 ≔ 𝑠𝑝𝑎𝑛{�̃�2𝑘+1}𝑘=1,..,𝑛+1 denote the n-dimensional subspaces of 

𝐻−1/2 ≅ 𝑙2
−1/2

 and 𝛾𝑜𝑑𝑑
(𝑛)

: = 𝑃𝑛(𝑒𝑛
𝑜𝑑𝑑)  and 𝛾𝑒𝑣𝑒𝑛

(𝑛)
: = 𝑃𝑛(𝑒𝑛

𝑒𝑣𝑒𝑛) be the orthogonal projections 𝑃𝑛 ∶  𝐻−1  → 

𝑆𝑛
𝑜𝑑𝑑 , 𝑆𝑛

𝑒𝑣𝑒𝑛 , of 𝛾 onto𝑆𝑛
𝑜𝑑𝑑 , 𝑆𝑛

𝑒𝑣𝑒𝑛. Then the Bagchi criterion is equivalent to  
 

 (𝛾 − 𝛾𝑜𝑑𝑑
(𝑛)

, 𝑣)−1/2 = (𝛾 − 𝛾𝑒𝑣𝑒𝑛
(𝑛)

, 𝑣)−1/2 = 0 ,  ∀𝑣 ∈ 𝑙2
−1/2

. 
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Lemma ([GrI] 3.761): For 𝑎 > 0 it holds 
 

   𝑀[sin(𝑎 ∙)](𝑠) = ∫ 𝑥𝑠 𝑠𝑖𝑛( 𝑎𝑥)
𝑑𝑥

𝑥
=

∞

0

𝛤(𝑠)

𝑎𝑠
𝑠𝑖𝑛(

𝜋

2
𝑠)                0 < |𝑅𝑒( 𝑠)| < 1 

 

𝑀[cos(𝑎 ∙)](𝑠) = ∫ 𝑥𝑠 𝑐𝑜𝑠( 𝑎𝑥)
𝑑𝑥

𝑥
=

∞

0

𝛤(𝑠)

𝑎𝑠 𝑐𝑜𝑠(
𝜋

2
𝑠)                0 < 𝑅𝑒( 𝑠 < 1 

 

and 𝐻[𝑠𝑖𝑛](𝜔𝑥) = −cos (𝜔𝑥) resp. 𝐻[𝑐𝑜𝑠](𝜔𝑥) = 𝑠𝑖𝑛 (𝜔𝑥). 
 

 

The ergodic theorem on a Hilbert space is about the convergent sequence 𝑥𝑘 ≔
1

𝑘
(𝑇1𝑥 + 𝑇2𝑥 + ⋯ +

𝑇𝑘𝑥) with respect to the norm topology. The underlying operator  
 

𝑇∗ ≔ lim
𝑘→∞

1

𝑘
(𝑇1 + 𝑇2 + ⋯ + 𝑇𝑘) 

 

is bounded and fulfills 𝑇𝑘°𝑇∗ = 𝑇∗, 𝑇∗°𝑇𝑘 = 𝑇∗, 𝑇∗°𝑇∗ = 𝑇∗. „The mean ergodic theorem ((HaP) p. 16) is 

an amusing and simple piece of classical analysis in case the underlying Hilbert space is one-
dimensional“ (HaP) p. 14. 
 

Lemma ((HiF): Let E denote the eigen-space of the operator T∗ with respect to the eigenvalue 1, 

i.e. E ≔ {x ∈ H|T∗y = y} then it holds 
 

i) E = (T∗ − Id)−1(0) is closed 
 

ii) the operator T∗ is a projector onto the eigen-space E (because of T∗
|E = Id|E). 

 

The choosen operator 𝑇1 ≔ 𝐻 is the Hilbert operator (e.g. (LiI1) 11.1) 
 

𝐻[𝑢](𝑡) ≔
1

𝑖
∫ cot(𝜋(𝑠 − 𝑡)) 𝑢(𝑠)𝑑𝑠

1

0
 , 𝑢 ∈∩𝛼∈𝑅 𝐻𝛼. 

 

For each 𝛼 ∈ 𝑅 the extended operators 𝐻(𝛼): 𝐻𝛼 → 𝐻𝛼 with domain 𝐻𝛼 are bounded Fredholm operators 

of index zero with ‖𝐻(𝛼)𝑢‖
𝛼

= ‖𝑢‖𝛼, with kernel 𝑁(𝐻(𝛼)) = 𝑠𝑝𝑎𝑛(1) (the set of all constants), and their 

range is 𝑅(𝐻(𝛼)) = {𝑣 ∈ 𝐻𝛼|(𝑣, 1) = 0}, ((LiI1) p.316); and for 𝑒𝜈(𝑥) ≔ 𝑒2𝜋𝑖𝜈𝑥 , 𝜈 ∈ 𝑍 it holds  𝐻𝑒𝜈 = 𝑠𝑖𝑔𝑛(𝜈) ∙ 𝑒𝜈 

(LiI1). 
 

Putting 𝑇1 ≔ 𝐻(𝛼) one gets with 𝑇𝑘𝑒𝜈 = {
𝑠𝑖𝑔𝑛(𝜈)𝑒𝜈

𝑒𝜈

𝑓𝑜𝑟
𝑓𝑜𝑟

𝑘 𝑜𝑑𝑑
𝑘 𝑒𝑣𝑒𝑛

 for 𝜈 ≠ 0 
 

∑ 𝑇𝑖𝑒𝜈
2𝑘−1
𝑖=1  = {

2𝑘 − 1
−1

 𝑓𝑜𝑟 𝜈>0
𝑓𝑜𝑟 𝜈<0

     ,     ∑ 𝑇𝑖𝑒𝜈
2𝑘
𝑖=1  = {

2𝑘
0

 𝑓𝑜𝑟 𝜈>0
𝑓𝑜𝑟 𝜈<0

   .       

 

Applying the Hilbert operator to the (periodical) fractional part 𝐿2
#-function (𝛼 = 0) 

 

𝜌(𝑥) = 𝑥 − [𝑥] =
1

2
− ∑

𝑠𝑖𝑛 2 𝜋𝜈𝑥

𝜋𝜈

∞

1

 

leads to (*) 

           ∑ 𝑇𝑖 [𝜌](𝑥)2𝑘−1
𝑖=1 = {

  ∑
𝑐𝑜𝑠 2𝜋𝜈𝑥

𝜋𝜈

∞
1                      𝑓𝑜𝑟   2𝑘 − 1 = 1,5,9,13, …

∑
𝑠𝑖𝑛 2𝜋𝜈𝑥

𝜋𝜈

∞
1                    𝑓𝑜𝑟  2𝑘 − 1 = 3,7,11, …

    

and    

           ∑ 𝑇𝑖 [𝜌](𝑥)2𝑘
𝑖=1 = {

∑
𝑠𝑖𝑛 2𝜋𝜈𝑥+𝑐𝑜𝑠 2𝜋𝜈𝑥

𝜋𝜈

∞
1        𝑓𝑜𝑟  2𝑘 = 2,6,10 …

                    0                     𝑓𝑜𝑟  2𝑘 = 4,8,12, …
 

 

whereby  ∑
𝑐𝑜𝑠 2𝜋𝜈𝑥

𝜋𝜈

∞
1 = −

1

𝜋
𝑙𝑜𝑔|2𝑠𝑖𝑛( 𝜋𝑥)| =: 𝜌𝐻(𝑥) ∈ 𝐿2

#(0,1) and ∑
𝑠𝑖𝑛 2𝜋𝜈𝑥

𝜋𝜈

∞
1 =

1

2
− 𝜌(𝑥)(**). 

 

We note that the first derivative of the Hilbert transform of 𝜌(𝑥) is given by the divergent (Cesàro 

summable) Fourier series representation of the 𝑐𝑜𝑡( 𝜋𝑥) function, 𝑐𝑜𝑡( 𝜋𝑥) = 2 ∑ 𝑠𝑖𝑛( 2𝜋𝜈𝑥)∞
1 = −𝜌𝐻

′ (𝑥) (see 

also (BeB); it is an element of the Hilbert space 𝐻−1
# (0,1), i.e. the formulas above are valid in similar 

form for 𝛼 = −1 applied to the (in 𝐻−1
# (0,1) convergent) Fourier series representation 

1

2
𝑐𝑜𝑡( 𝜋𝑥) =

𝑎0

2
+

∑ 𝑎𝜈cos (2𝜋𝜈𝑥) + 𝑏𝜈 𝑠𝑖𝑛( 2𝜋𝜈𝑥)∞
1  with 𝑎𝜈 = 0 for 𝜈 ≥ 0 and 𝑏𝜈 = 1 for 𝜈 > 0 (i.e. 𝛾: = {𝑏1, 𝑏2, 𝑏3, , . . . . . . }).  

 
 

(*) see also (CoG): 

 𝑇1 [𝜌](𝑥) = ∑
𝑐𝑜𝑠 2𝜋𝜈𝑥

𝜋𝜈
∞
1 , 𝑇2 [𝜌](𝑥) = ∑

𝑠𝑖𝑛 2𝜋𝜈𝑥

𝜋𝜈
∞
1 , 𝑇3 [𝜌](𝑥) = − ∑

𝑐𝑜𝑠 2𝜋𝜈𝑥

𝜋𝜈
= −𝑇1 [𝜌](𝑥)∞

1 , 𝑇4 [𝜌](𝑥) = − ∑
𝑠𝑖𝑛 2𝜋𝜈𝑥

𝜋𝜈
∞
1 = −𝑇2 [𝜌](𝑥), 𝑇5 [𝜌](𝑥) =

∑
𝑐𝑜𝑠 2𝜋𝜈𝑥

𝜋𝜈
= 𝑇1 [𝜌](𝑥)∞

1 , 𝑇6 [𝜌](𝑥) = ∑
sin𝜋𝜈𝑥

𝜋𝜈
∞
1 = 𝑇2 [𝜌](𝑥), 𝑇7 [𝜌](𝑥) = − ∑

𝑐𝑜𝑠 2𝜋𝜈𝑥

𝜋𝜈
∞
1 = −𝑇1 [𝜌](𝑥), 𝑇8 [𝜌](𝑥) = − ∑

sin𝜋𝜈𝑥

𝜋𝜈
∞
1 = −𝑇2 [𝜌](𝑥) , ….. 

(*[𝑥] + [𝑥 +
1

2
] = [2𝑥] resp. more general  𝜌(𝑛𝑥) = ∑ 𝜌 (𝑥 +

𝑘

𝑛
)𝑛−1

𝑘=0 , (ApT) p. 72 
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The sequence 𝜔𝑛 (the imaginary parts of the Kummer function 𝐹1 1 (
1

2
,

3

2
; 2𝜋𝑖𝑧)) enables the definition 

of two sequences 𝜆𝑛
(1)

= 𝜔𝑛 and 𝜆𝑛
(2)

=
𝜔𝑛+𝜔𝑛+1−1

2
, leading to „nearly“ harmonic even and odd winding 

numbers of the corresponding exponentials {𝑒2𝜋𝑖𝜆𝑛𝑥}
𝑛=0,±1,±2,…

 occuring on the left and right part of the 

unit circle. From (YoR) p. 36, we recall  
 

Kadec’s 
1

4
−Theorem (14): If 𝜎𝜈 is a sequence of real numbers for which 

 

|𝜎𝜈 − 𝜈| ≤ 𝐿 <
1

4
 , 𝜈 = 0, ±1, ±2, … 

 
Then {𝑒𝑖𝜎𝜈𝑥}𝜈=0,±1,±2,… satisfies the Paley-Wiener criterion and so forms a Riesz basis for 

𝐿2
#(−π, π) = 𝐻0

#(−π, π). 
 

For the extension of Kadec’s theorem to frames (being built by two real sequences {𝜃𝑘
(1)

}
𝑘∈𝑍

 {𝜃𝑘
(2)

}
𝑘∈𝑍

) 

we refer to (ChO) 9.8. 
 

If the sequence 𝜎𝜈 is symmetric, then the product ∏(1 −
𝑧2

𝜎𝑛
2) converges to an entire function 𝑓(𝑧) 

which belongs to the Paley-Wiener space, (YoR) p. 124. 
 

The exponentials 𝑒𝑖𝜎𝜈𝑥 can be transformed into the reproducing functions 
 

𝐾𝑛(𝑧) =
sin (𝜋(𝑧−𝜎𝑛))

𝜋(𝑧−𝜎𝑛)
  . 

 

For  𝐺(𝑧) ≔ 𝑧 ∏(1 −
𝑧2

𝜎𝑛
2) the related function 𝐺𝑛(𝑧) ≔

𝐺(𝑧)

𝐺′(𝜎𝑛)(𝑧−𝜎𝑛)
 can be transformed into 𝑔𝑛(𝑡): = ∫ 𝐺𝑛(𝑥)𝑒𝑖𝑥𝑡𝑑𝑡

∞

−∞
. 

The solution of the moment problem 𝑓(𝜎𝜈) = 𝑐𝜈  𝜈 = 0, ±1, ±2, …., is given by (YoR) p.126, 
 

(*)    f(z) = ∑ 𝑐𝜈
𝐺(𝑧)

𝐺′𝜎𝜈)(𝑧−𝜎𝜈)
∞
𝜈=−∞  . 

 

 
Remark (YoR) p.126: The formula (*) is a simple example of a „generalized“ Lagrange interpolation 
formula for an entire function assuming the values 𝑐𝜈 at the points 𝜎𝜈.  

 
 
Remark: The product representation of the considered Kummer function is given by ((BuH) p.184) 
 

𝐹1 1(𝑎, 𝑐, 𝑧) =
1

Γ(c)
𝑒

𝑎

𝑐
∙𝑧 ∏(1 −

𝑧

𝛼𝑛
)𝑒𝑧/𝛼𝑛. 

 
The considered imaginary parts of its zeros fulfill the Kadec requirements with 
 

𝜎𝑛 = 𝛼𝑛: = 𝜔𝑛 +
1

4
., 𝜎𝑛 = 𝛽𝑛: =

𝜔𝑛+𝜔𝑛+1

2
−

1

4
 . 

 

We mention that the approximation solution to 𝑐𝑜𝑡( 𝜋𝑥), being testing against 𝐻0
#(0,1) test functions, 

is an element of 𝐻−1/2
# (0,1). 

 

With respect to (A1) and the newly proposed entire Zeta function 𝜉∗(𝑠): =
1

2
(𝑠 − 1)𝜋

1−𝑠

2 𝛤(
𝑠

2
) 𝑡𝑎𝑛(

𝜋

2
𝑠) ⋅ 휁(𝑠) 

we note the related (classical) series representations for the log (𝑡𝑎𝑛(
𝜋

2
𝑥)) (whereby all summands 

of the first series are positive), and the (A2)-related series representations for the 𝑙𝑜𝑔 𝑠𝑖𝑛( 𝜋𝑥) 
functions, given by (GrI) 1.518, 
 

log (𝑡𝑎𝑛(
𝜋

2
𝑥)) = 𝑙𝑜𝑔 (

𝜋

2
𝑥) + ∑ (−1)𝑘+1 1

𝑘

(22𝑘−1−1)

(2𝑘)!
∞
1 𝐵2𝑘(𝜋𝑥)2𝑘  ,   𝑥2 < 1  

 

𝑙𝑜𝑔 𝑠𝑖𝑛( 𝜋𝑥) = 𝑙𝑜𝑔(𝑥𝜋) + ∑ (−1)𝑘 1

𝑘

22𝑘−1

(2𝑘)!
∞
1 𝐵2𝑘(𝜋𝑥)2𝑘 ,               𝑥2 < 1 . 

 

The term −log (𝑡𝑎𝑛(
𝜋

2
𝑠)) is 𝐿2

# -integrable and can be represented as a convergent series (ElL). It 

results into a correspondingly modified Riemann error function or a correspondingly modified 

definition of the 𝑙𝑖(𝑥) function. In both cases the approximation behavior between the 𝑙𝑖(𝑥) function 

and the prime density function gets improved. 
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(A3) This class is about RH criteria formulated by distributional arithmetical functions going beyond 

the distributional arithmetical functions applied for "a distributional way to prove the Prime Number 
Theorem" (ViJ). 
 
 
In 1927 Polya published a very different sort of theorem as in (PoG) on the same general subject 
("Über trigonometrische Integrale mit nur reellen Nullstellen") with quite weak conditions to the 
baseline function 𝐹(𝑢) (see also (EdH) 12.5). All attempts failed so far to build a proper (classical) 

baseline function 𝐹(𝑢) to prove the RH. The proposed distributional Hilbert space framework of this 

homepage provides an additional opportunity to build such a baseline function. 
 
According to E. Landau the classical proofs of the Prime Number Theorem (PNT) are not being 
scalable for "deeper going number theory problems". Ikehara's theorem ((EdH) 12.7) is about a 
deduction from Wiener's general Tauberian theorem. In (ViJ) "a distributional way to prove the 
PNT" is based on the Mellin transform of e.g. the Dirac delta "function“. The part B section is about 

a (distributional) quantum element/energy Hilbert space framework enabling a quantum gravity 

model. From a physical modelling perspective it goes along with a replacement of Dirac’s model of 
the „density“ of an „idealized point mass“ resp. an „idealized point charge“ (modelled by the Dirac 
or Delta „function“) by Plemelj’s concept of a „mass element 𝑑𝑚“ (PlJ) of the proposed „bosons“ 

quantum state Hilbert space 𝐻−1/2. „Tauberian Theorems for Generalized Functions“ come along with 

the concept of an „automodel „function“. It is claimed to be an appropriate framework to apply the 
Polya theorem to prove the RH, as the crucial condition of Polya's theorem is equivalent to one of 
the characterization criteria of an „automodel function", ((VlV) p. 57).  
 
The proposed periodical, distributional Hilbert scale framework 𝐻𝛼

# also enables also a truly unit 
circle method to tackle the binary Goldbach problem. It overcomes current handicaps of the 
famous Hardy-Littlewood circle method, which is based on the open unit circle disk.  
 

Vinogradov applied the Hardy-Littlewood circle method to derive his famous (currently best known, 
but not sufficient) estimate regarding the tertiary Goldbach problem. Vinogradov's theorem states 

that any sufficiently large odd integer can be written as a sum of three prime numbers. The „any 
sufficiently large odd integer“ condition is due to a not sufficiently "good" estimate: it is derived 
from two components based on a decomposition of the (Hardy-Littlewood) circle into two parts, the 
„major arcs“ (also called „basic intervals“) and the „minor arcs“ (also called „supplementary 
intervals“). The sufficiently good estimate is based on „major arcs“ estimate using also Goldbach 
problem relevant data; the not sufficiently good „minor arcs“ estimate are purely Weyl sums 

estimates taking not any Goldbach problem relevant data into account. However, this estimate is 
optimal with respect to Weyl sums properties. In other words, the major/minor arcs decomposition 
is inappropriate to solve both Goldbach problems. The proposed periodical, distributional Hilbert 
scale framework 𝐻𝛼

# with ist underlying domain (the boundary of the unit disk, the unit circle) is 
claimed to enable a truly unit circle based method to prove the binary Goldbach problem.  
 

The proposed change also enables the definition of two appropriately different arithmetical 
functions to analyze binary number theoretical problems for any prime number pair (𝑝, 𝑞). We note 

that the winding numbers (i.e. the set of integers) of the unit circle are related to the zeros of the 

Weyl sum components, which are the basis functions 𝑒2𝜋𝑖𝑛𝑥. The sequence 𝜔𝑛 (the imaginary parts 

of the Kummer function 𝐹1 1 (
1

2
,

3

2
; 2𝜋𝑖𝑧) enables the definition of two sequences 𝜆𝑛

(1)
= 𝜔𝑛 and 𝜆𝑛

(2)
=

1

2
(𝜔𝑛 +

𝜔𝑛+1), leading to „nearly“ harmonic even and odd winding numbers of the corresponding 
exponentials {𝑒2𝜋𝑖𝜆𝑛𝑥}

𝑛=0,±1,±2,…
 occuring on the left and right semicircle of the unit circle.  

 

Refering back to (A2) and the considered  𝛾: = {1,1,1,1, . . . . . . } with 𝛾 ∈ (𝑙2
−1/2

)⊥  we mention that 𝛾 can 

be intepreted as a „winding number list“, while running periodically through the unit circle  
 

The links of non-harmonic Fourier series theory to the cardinal series based interpolation theory in 

the Paley-Wiener space 𝑃𝑊 are given by the following theorems (YoR) p. 170, p. 157):  
 

for a complex exponentials system {𝑒2𝜋𝑖𝜆𝑛𝑥}
𝑛=0,±1,±2,…

to form a Riesz basis for 𝐿2
# it is necessary 

and sufficient to the interpolation problem 𝑓(𝜆𝑛) = 𝑐𝑛, where 𝑓 ∈ 𝑃𝑊 

 

a sequence of vectors 𝜑𝑛 belonging to a separable Hilbert space 𝐻 is a Riesz basis if and only 
if it is an exact frame, i.e. 𝐴‖𝑓‖2 ≤ ∑ |(𝑓, 𝜑𝑛)|2 ≤ 𝐵‖𝑓‖2∞

𝑛=1  (if 𝜑𝑛 is a complete orthogonal sequence 

in H, then it holds 𝐴 = 𝐵 = 1), or if and only if 𝜑𝑛 is both, a frame and a Riesz sequence (SeK) 

 
The link to a specific class of non-harmonic Fourier series is given by the considered sequences of 

real or complex numbers with uniform density one (DuR). 
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A tool set to prove the binary Goldbach conjecture 
 

 

On the occasion of the 59th birthday  

of my wife, Vibhuta 

August 25, 2020 
 

 
In the following we summaries the proposed tool set to tackle the binary Goldbach conjecture.  
 
The following two lemmata are about the building of arithmetical functions based on a certain 
integrals:  
 

Lemma 1 (Landau, (PoG1)): Let 𝑞𝑛 denote a divergent sequence of positive numbers 0 <

𝑞1 ≤ 𝑞2 ≤ 𝑞3 ≤ ⋯       lim
𝑛→∞

𝑞𝑛 = ∞, 𝜏(𝑥) the corresponding counting function of the numbers of 𝑞𝑛 

less than ≤ 𝑥 and 𝑤(𝑥) a positive, non-decreasing function with lim
𝑥→∞

𝑤(2𝑥)

𝑤(𝑥)
= lim

𝑥→∞

𝜏(𝑥)𝑤(𝑥)

𝑥
= 1.  

Then 

lim
𝑥→∞

1

𝜏(𝑥)
∑ 𝜌(

𝑥

𝑞𝑞≤𝑥 ) = 1 − 𝛾, 

 
where 𝜌(𝑥) denotes the fractional part function. 

 
 
In (PoG1) lemma 1 is generalized by 
 

Lemma 2: Let 𝑤(𝑥) a positive, non-decreasing function with lim
𝑥→∞

𝑤(𝛽𝑥)

𝑤(𝛼𝑥)
= 1 with 𝛼, 𝛽 positive 

numbers. Then  

𝑙𝑖𝑚
𝑥→∞

𝑤(𝑥)

𝑥
∑ 𝑓(

𝑥

𝑛
)𝑛≤𝑥 = ∫ 𝑓(𝑡)𝑑𝑡

1

0
. 

 

 
Remark 1: Lemma 2 is valid for two kind of conditions about 𝑓(𝑡): 
 

i) 𝑓(𝑡) is Riemann integrable in [0,1] 
 

ii) 𝑓(𝑡) is integrable in every closed sub-interval of [0,1], which does not contain 0, and it 

exists an 𝛼 ∈ (0,1) with lim
𝑡→0

𝑡1−𝛼 𝑓(𝑡) = 0. 

 
 

Remark 2: The condition lim
𝑥→∞

𝑤(𝛽𝑥)

𝑤(𝛼𝑥)
= 1 is related to the theory of quasi-asymptotics of generalized 

functions with its underlying concept of (slow) regular varying (automodel) functions 𝜗(𝑥), 

where lim
𝑥→∞

𝜗(𝛽𝑥)

𝜗(𝑥)
 (resp. lim

𝑥→∞

𝑥𝜗′(𝑥)

𝜗(𝑥)
) exists, (VlV) p. 56/57; (EsR). The latter condition, lim

𝑥→∞

𝑥𝜗′(𝑥)

𝜗(𝑥)
= 𝑐, links 

back to the famous Polya criterion in (PoG) given by 𝛼 ≤ − 
𝑥𝑓′(𝑥)

𝑓(𝑥)
≤ 𝛽 being valid for only (!) closed 

interval domains. We note that −𝑙𝑜𝑔𝑥 is slowly varying at 𝑥 = 0+, (SeE) p.47. We further note with 

respect to lemma 5 v) below, that for ℎ̃(𝑥) ≔ 𝐹1 1 (
1

2
,

3

2
; x) it holds −

𝑥ℎ̃′(𝑥)

ℎ̃(𝑥)
= 1 −

𝑒𝑥

ℎℎ̃𝑥)
 . 

 

 
In (LaE) §56, the following following lemma is provided. It has been applied in (LaE1) to derive the 

asymptotics integral formula for the Goldbach number counting function 
 

𝐻(2𝑛): = ∑ 𝐺2𝑘 =2𝑛
𝑘=1 ∑ 𝜋(2𝑛 − 𝑝)𝑝≤2𝑛   , 𝑝 + 𝑞 ≤ 2𝑛, 

 

 in the form 
 

𝐻(2𝑛)  ~  2𝑛 ∫
1

log (2𝑛−𝑢)

𝑑𝑢

𝑙𝑜𝑔𝑢
 ~  2𝑛 ∫

1

log (2𝑛−𝜗
𝑢

𝑛
)

𝑑𝑢

𝑙𝑜𝑔𝑢

𝑛

2

𝑛

2
 ~ 

1

2
(

2𝑛

log (2𝑛)
)

2
,     0 ≤ 𝜗 ≤ 1 

 

by putting 𝐹(𝑢, 𝑥) ≔ 𝜋(2𝑛 − 𝑝). 
 

We note that  ∑ 𝐺𝑘  ~
2𝑥

log (2𝑥)

2𝑥
𝑘 odd , while ∑ 𝐺2𝑘  ~

1

2
(

2𝑥

log(2𝑥)
)2𝑥

𝑘=1 , because the odd 𝑘 can be neglected as 

every odd number can be represented as sum of two primes, if 𝑘 − 2 is prime, otherwise not 

(LaE1). 
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We further note that  𝑑 [∑
1

𝜑(𝑘)
 𝑥

𝑘=1 ] ~ 𝑑[logx] ~ 
𝑑𝑥

𝑥
 (LaE1), and 𝑑𝜗 = [∑

𝜇(𝑛)

𝑛
𝑙𝑜𝑔 (

𝑥

𝑛
)𝑛≤𝑥 ] =

1

𝑥
[∑

𝜇(𝑛)

𝑛
𝑛≤𝑥  ] 𝑑𝑥 ~ 

𝑑𝑥

𝑥
 

(ApT) p.97.  
 

Lemma 3: Let  𝐹(𝑢, 𝑥) be a function with real arguments with 2 ≤ 𝑢 ≤ 𝑥 fulfilling the 

following conditions 
 

i) 𝐹(𝑢, 𝑥) ≥ 0 
 

ii) For fixed 𝑥 > 2 the function 
𝐹(𝑢,𝑥)

𝑙𝑜𝑔𝑢
 is never increasing for 𝑢 ∈ (2, 𝑥) 

 

iii) 𝐹(2, 𝑥) = 𝑜(∫
𝐹(𝑢,𝑥)

𝑙𝑜𝑔𝑢
𝑑𝑢)

𝑥

2
, 

 

then it holds 

∑ 𝐹(𝑝, 𝑥)𝑝≤𝑥  ~ ∫
𝐹(𝑢,𝑥)

𝑙𝑜𝑔𝑢
𝑑𝑢

𝑥

2
  . 

 

 
The considered Stäckel approximation formula in (LaE1) is given by 
 

H̃(2𝑛): = ∑ �̃�2k = 𝑐𝜆 ∙ ∑
1

𝜑(𝑘)
(

𝑘

log (𝑘)
)2 2𝑛

𝑘=2
𝑘 𝑒𝑣𝑒𝑛

 𝑛
𝑘=1   with 𝑐𝜆 ≔

𝜋4

105∙ (3)
~0,772 …. 

 

The factor 𝑐𝜆 was suggested to ensure that H̃(2𝑛) < H(2n).  
 

Remark 3: We note that the above (appreciated) identical asymptotical behavior of both 
summation formulas does not allow a corresponding conclusion to the approximation behavior of 

the underlying Goldbach numbers G2k  resp. �̃�2k, as in the sum formula ∑ G2k  −𝑛
𝑘=1  �̃�2k  positive and 

negative terms cancel each other out.  
 

 

Remark 4: With respect to (A2) above and the the term 
1

𝜑(𝑛)
 in the Stäckel approximation formula 

we note the inequality, (ApM) p. 71, 
𝜎(𝑘)

𝑘2
≤

1

𝜑(𝑘)
≤

𝜋2

6

𝜎(𝑘)

𝑘2
= 휁(2)

𝜎(𝑘)

𝑘2
   , 𝑘 ≥ 2, where 𝜎(𝑛) = 𝜎1(𝑛) denotes 

the sum of the divisors of 𝑛 ((ApM) p. 38), and 𝜑(𝑛) denotes the Euler totient function. It can be 

represented as discrete Fourier transform of the greatest common divisor in the form 𝜑(𝑛) =

∑ gcd (𝑘, 𝑛) ∙ cos (2𝜋
𝑘

𝑛
)𝑛

𝑘=1 . We further mention that for even integers it holds 𝜑(2𝑘) = 2𝜑(𝑘) > √𝑘. At the 

same point in time, it holds 
𝑘

 𝑙𝑜𝑔2𝑘
> √𝑘 for k ≥ 2.  

 

Remark 5: It holds  ∑
1

𝜑(𝑘)𝑘≤𝑥 = 𝑂(𝑙𝑜𝑔𝑥), 
1

𝑥
∑ d(n)𝑘≤𝑥 = 𝑙𝑜𝑔𝑥 + (2𝛾 − 1) + 𝑂(√𝑥), and  ∑

k

𝜑(𝑘)𝑘≤𝑥 = 𝑂(𝑥), ∑
1

𝜑(𝑘)𝑘≤𝑥 =

𝑂(𝑙𝑜𝑔𝑥) (ApM) p. 71. The average order of d(n) is 𝑙𝑜𝑔𝑛 i.e. 
1

𝑥
∑ d(k)𝑘≤𝑥 = 𝑙𝑜𝑔𝑥 + 2𝛾 − 1 + 𝑂(√𝑥)~𝑙𝑜𝑔𝑥, (ApM) p. 

52. For 𝜗(𝑥): = ∑
𝜇(𝑛)

𝑛
𝑙𝑜𝑔 (

𝑥

𝑛
)𝑛≤𝑥  we recall from (ApT) p. 97, that the PNT theorem is equivalent to 

𝑑𝜗(𝑥) = ∑
𝜇(𝑛)

𝑛

𝑑𝑥

𝑥
 ~ 

𝑑𝑥

𝑥
 𝑛≤𝑥 . 

 

 

 

Remark 6: ((LaE) §56 p. 214): the 𝑛-th prime number is asymptotically equal to 𝑛 ∙ 𝑙𝑜𝑔𝑛. 
 

 

Building an arithmetical function for the term 𝐹(𝑢, 𝑥) ≔ 𝜋(2𝑛 − 𝑝) is challenging because of  

 
Lemma 4, ((LaE) §56, p. 215):  
 

from a certain number 𝑥 on, there are more primes in the interval (1, 𝑥) than in the 

interval (𝑥, 2𝑥). 
 

 
Remark 7: Lemma 4 cannot be proven with the PNT; the proof requires the asymptotics 

 

𝜋(𝑥) =
𝑥

𝑙𝑜𝑔𝑥
+

𝑥

𝑙𝑜𝑔2𝑥
+ 𝑜(

𝑥

𝑙𝑜𝑔2𝑥
) 

 

 

Remark 8: The functions 𝐹1 1 (
1

2
,

3

2
; −z)  and 𝐹1 1 (1,

3

2
; z) possesses the same zeros as the related 

Whittaker function 𝑧−3/4𝑀1

4
,
1

4

(𝑧), which is the solution of the corresponding self-adjoint (ODE) 

Whittaker operator ((BuH), §17.1). The latter one also plays key role for the radial Schrödinger 

operator with a Coulomb potential or with a morse potential on the half line (DeJ), (LaJ1).  
 



43 
 

Corresponding integrals of oscillatory type for 𝐹1 1 (
1

2
,

3

2
; 𝑥) (when the variables are real) are the 

Fresnel integrals 𝐶(𝑥), 𝑆(𝑥) with lim
𝑥→∞

𝐶(𝑥) = lim
𝑥→∞

𝑆(𝑥) =
1

2
 with the exact error formula (OlF) p. 67, 

 

𝐶 (√
2𝑥

𝜋
) + 𝑖 ∙ 𝐶 (√

2𝑥

𝜋
) = √

2𝑥

𝜋
𝐹1 1 (

1

2
,

3

2
; 𝑖𝑥) = ∫

𝑐𝑜𝑠𝑡𝑑𝑡

√2𝜋𝑡

𝑥

0
+ 𝑖 ∙ ∫

𝑠𝑖𝑛𝑡𝑑𝑡

√2𝜋𝑡
= (

1

2
+ 𝑖

1

2
)

𝑥

0
−

𝑖𝑒𝑖𝑥

√2𝜋𝑥
∑

1∙3∙….(2𝑛−1)

(2𝑖𝑥)𝑛
∞
𝑛=0  . 

 

The formula allows an alternative „2-semicircle (even/odd integer) method“ with an underlying 
„major/minor arcs I/II“ concept based on two appropriately defined Fresnel integral distribution 

functions (cos (𝑡) > 0, sin (𝑡) > 0), enabled by the real part values 𝜔𝑛 of 𝐹1 1 (
1

2
,

3

2
; 2𝜋𝑖𝑧).  With respect to 

the link to exponentials Riesz bases we refer to (KoG), (NaA) and the references cited there. 
 

Lemma 5:  
 

For the real part values 𝜔𝑛 of 𝐹1 1 (
1

2
,

3

2
; 2𝜋𝑖𝑧) it holds (SeA) 

 

i) 2𝑛 − 1 < 2𝜔𝑛, 𝜔𝑛 + 𝜔𝑛+1 − 1 < 2𝑛 < 2𝜔𝑛 + 1, 𝜔𝑛 + 𝜔𝑛+1 < 2𝑛 + 1 
 

ii) 𝑛 −
3

4
< 𝜆𝑛

(1) −
1

4
≔ 𝜔𝑛 −

1

4
, 𝜆𝑛

(2) −
1

4
: =

𝜔n+𝜔n+1−1

2
−

1

4
< 𝑛 −

1

4
< 𝜔𝑛 +

1

4
,

𝜔n+𝜔n+1−1

2
+

1

4
< 𝑛 +

1

4
 

 

iii) 𝑛 −
1

2
< 𝜔𝑛 < 𝑛 , 

1

2
< 𝜔1,

𝜔1+𝜔2−1

2
< 1 , 𝑠𝑛 ≔

𝜔𝑛

𝑛
→ 1 𝑛 ∈ 𝑁 

 

iv) the non-integer sequences 2𝜔𝑛 and 𝜔𝑛 + 𝜔𝑛+1 fulfill a kind of Hadamard gap condition  
 

                   
𝜔𝑛+1

𝜔𝑛
>

𝑛+
1

2

𝑛
= 1 +

1

2𝑛
> 𝑞 > 1     resp.    

𝜔𝑛+1+𝜔𝑛+2

𝜔𝑛+𝜔𝑛+1
>

2𝑛+2

2𝑛+1
= 1 +

1

2𝑛+1
> 𝑞 > 1 

 

v)     𝜃 ≔
1

4
< 𝜔𝑛+1 − 𝜔𝑛  < 1 −

1

4
= 1 − 𝜃  

 

vi) putting 𝑎𝑛 ≔
𝜔𝑛 

𝑛
−

1

2
  , 𝑏𝑛 ≔

𝜔1+𝜔2−1

2𝑛
−

1

2
 it follows 

 

 0 < 𝑎1 = 𝜔1 −
1

2
≤ 𝑎𝑛 →

1

2
 ,   

1

2
← 𝑏𝑛 < 𝑏1 =

𝜔1+𝜔2−1

2
< 1 ,  𝑎𝑛, 𝑏𝑛 − 𝑎𝑛 ∈ (0,

1

2
)  ,   𝑏𝑛, 1 − 𝑎𝑛 ∈ (

1

2
, 1). 

 
 

Lemma 6, (BaR), (KaD):  
 

The following inequalities are valid 
 

𝑐1 ∙ [ 𝐹1 1 (
1

2
, 𝑐; 𝑥)]

2
≤ 𝐹1 1(𝑎𝑛, 𝑐; 𝑥) ∙ 𝐹1 1(1 − 𝑎𝑛, 𝑐; 𝑥) ≤ [ 𝐹1 1 (

1

2
, 𝑐; 𝑥)]

2
. 

 

Remark 9: For the sequences  𝑎𝑛 ≔
𝜔𝑛

𝑛
−

1

2
  , 𝑏𝑛 ≔

𝜔n+𝜔n+1−1

2𝑛
−

1

2
 it holds 𝑎𝑛 ∈ (0,

1

2
) resp. 𝑏𝑛 ∈ (

1

2,
, 1) with 

lim
𝑛→∞

𝑎𝑛 = lim
𝑛→∞

𝑏𝑛 = 1/2, and the domain of each sequence has Snirelmann density 
1

2
. Therefore, it 

holds 
 

−𝑥 𝐹1 1(𝑎𝑛; 𝑎𝑛 + 1, −𝑙𝑜𝑔 𝑥), −𝑥 𝐹1 1(𝑏𝑛; 𝑏𝑛 + 1, −𝑙𝑜𝑔 𝑥)   →  𝑙𝑖(𝑥) = −𝑥 𝐹1 1(1; 1, −𝑙𝑜𝑔 𝑥). 
 
 

Remark 10: In the context of non-harmonic Fourier series theory the counterpart of 𝛾: =
{11,1,1, . . . . . . } can be defined by (𝑎, 𝑏)𝑛: = {𝑎1, 𝑏1. 𝑎2, 𝑏2. . . . . }. It enables „two check points“, while 

running once through the unit circle, one „check point“ for each prime number 𝑝, 𝑞. 
 
 

Remark 11: The sequences 𝑠𝑛 ≔
𝜔𝑛

𝑛
 and  𝑡𝑛 ≔

𝜔n+𝜔n+1−1

2𝑛
 fulfill the Hardy-Littlewood condition |𝑠𝑛+1 − 𝑠𝑛| <

𝐾

𝑛
 , e.g. 𝑠𝑛 has a defined Abel average ((EdH) 12.7)  lim

𝑟↑0

𝑠1𝑟+𝑠1𝑟2+𝑠3𝑟3+⋯…

𝑟+𝑟2+𝑟3+⋯…
= 𝐿.  

  
 

Remark 12 ((KaM), (KoA), (ZyA)): Let {𝑛k} be a sequence of integers satisfying the Hadamard gap 

condition, i.e. 
𝑛k+1

𝑛k
> 𝑞 > 1, then trigonometric gap series ∑ 𝑐𝑘sin (2𝜋𝑛k𝑥)∞

𝑘=1  converges almost 

everywhere iff ∑ 𝑐𝑘
2 < ∞∞

𝑘=1 . 
 
 

Remark 13: We note that for �̃�(𝑙𝑜𝑔 𝑥): = ∑
1

𝑛
log (

𝑥

𝑛𝑛≤𝑥 ),  𝑥 ≥ 1, the inverse mapping is given by 

([ScW] lemma 3.3) 
 

𝜎(𝑥): = �̃�−1(𝑙𝑜𝑔 𝑥) = ∑
𝜇(𝑛)

𝑛
log (

𝑥

𝑛𝑛≤𝑥 ) . 
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Remark 14: With respect to Remark 7 we note that what also cannot derived from the PNT is the 

convergence of the series 
 

∑
𝜇(𝑛)

𝑛
∞
𝑛=1 𝑙𝑜𝑔(

1

𝑛
) = 1  . 

 

„The corresponding theorem goes deeper than the PNT, and from it the PNT can be easily derived“ 

((LaE) §160). From (ApT) p. 66 we recall that the PNT can be derived from ∑
𝜇(𝑛)

𝑛
∞
𝑛=1 = 0. 

 

The related point measure is given by 𝜗(𝑥) = ∑
𝜇(𝑛)

𝑛
𝑙𝑜𝑔 (

𝑥

𝑛
)𝑛≤𝑥 ) with 𝑑𝜗 =

1

𝑥
[∑

𝜇(𝑛)

𝑛
𝑛≤𝑥  ] 𝑑𝑥. Because of 

𝑑

𝑑𝑥
log (

𝑥

a
) =

1

𝑥
 it can be replaced by 

 

𝜗∗(𝑥) = ∑
𝜇(𝑛)

𝑛
log (

2𝑥

2𝜔𝑛−
1

2

)𝑛≤𝑥
𝑛 𝑜𝑑𝑑

+ ∑
𝜇(𝑛)

𝑛
log (

2𝑥

𝜔𝑛+𝜔𝑛+1−
1

2

)𝑛≤𝑥
𝑛 𝑒𝑣𝑒𝑛

 𝑛=1

  

 

with 𝑑𝜗 = 𝑑𝜗∗~
𝑑𝑥

𝑥
= 𝑑(𝑙𝑜𝑔𝑥) resp. 

 

∑
𝜇(𝑛)

𝑛
log (

2

2𝜔𝑛−
1

2

) +∞
𝑛 𝑜𝑑𝑑 ∑

𝜇(𝑛)

𝑛
log (

2

𝜔𝑛+𝜔𝑛+1−
1

2

) ≤ 1∞
𝑛 𝑒𝑣𝑒𝑛

 𝑛=1
    

 

The additional term 𝜔𝑛 + 𝜔𝑛+1 −
1

2
 for the „n even“ series (i.e. not starting the series 𝜔𝑛 + 𝜔𝑛+1 +

1

2
) is to 

get „𝑛 = 1“ as an element of the underlying domain, i.e. both domains get a Snirelmann density of 

½. Additionally both related sequences, (
2

2𝜔𝑛−
1

2

)
−1

= 𝜔𝑛 −
1

4
 and (

2

𝜔𝑛+𝜔𝑛+1−
1

2

)
−1

=
𝜔𝑛+𝜔𝑛+1

2
−

1

4
  fulfill the 

prerequisite of the ((YoR) p. 36) 
 

Kadec 
1

4
−Theorem: If 𝜎𝜈 is a sequence of real numbers for which 

 

|𝜎𝜈 − 𝜈| ≤ 𝐿 <
1

4
 , 𝜈 = 0, ±1, ±2, … , 

 
then {𝑒𝑖𝜎𝜈𝑥}𝜈=0,±1,±2,… satisfies the Paley-Wiener criterion and so forms a Riesz basis for 

𝐿2
#(−π, π) = 𝐻0

#(−π, π). 

 

The below strongly increasing sequences (𝐴𝑛
(1)

,  �̅�𝑛
(1)

) and (𝐴𝑛
(2)

,  �̅�𝑛
(2)

) (lemma 9) enable the definition 
of a twofold finer sieve method (HaH): there is the split above between „odd“ and „even“ series, 
both with underlying Snirelmann densitiy ½, governing two different arithmetical functions on 
the first level; on a second level per each series there can be built specific sieve methods per 
underlying considered „prime interval“ domains [1, 𝑝] and [𝑝, 2𝑝], to overcome the mentioned 

challenge in lemma 4 to build an arithmetical function for 𝐹(𝑢, 𝑥) ≔ 𝜋(2𝑛 − 𝑝) based on lemma 2.  
 

From (LaE1) we note that  ∑ 𝐺𝑘  ~
2𝑥

log (2𝑥)

2𝑥
𝑘 odd , while ∑ 𝐺2𝑘  ~

1

2
(

2𝑥

log(2𝑥)
)2𝑥

𝑘=1 , because the odd 𝑘 can be 

neglected as every odd number can be represented as sum of two primes, if 𝑘 − 2 is prime, 

otherwise not.  

 
Lemma 7:  
 

For the sequences pair (𝜆𝑘
(1)

, 𝜆𝑘
(2)

) it holds 𝜆𝑘
(1)

∈ (𝑘 −
1

2
, 𝑘),  𝜆𝑘

(2)
∈ (𝑘, 𝑘 +

1

2
), and therefore, 

 

2k−1

2𝑘+1
<

𝜆𝑘
(1)

𝑘
∙

𝜆𝑘
(2)

𝑘+
1

2

< 1    resp.   
1

2𝑘
∙

1

2(𝑘+1)
<

1

2𝑘
∙

2k−1

2𝑘+1
<

1

2𝑘
∙

𝜆𝑘
(1)

𝑘
∙

𝜆𝑘
(2)

𝑘+
1

2

<
1

2𝑘
  

resp. 
n

2
n < ∑ 𝜆𝑘

(1)𝑛
𝑘=1 <

n

2
(n + 1) < ∑ 𝜆𝑘

(2)𝑛
𝑘=1 <

n

2
(n + 2). 

 
 

Lemma 8:  
 

Putting 𝑎𝑘
(1)

≔ 𝜆𝑘
(1)

−
1

2
 , 𝑎𝑘

(2)
≔ 𝜆𝑘

(3)
−

1

2
  one gets 

 

(2𝑛 − 1) < 𝐴𝑛
(1)

≔
1

𝑛
∑ 𝑎𝑘

(1)
  ,   �̅�𝑛

(1)
≔

1

𝑛
∑ [2𝑛 − 𝑎𝑘

(2)
]2𝑛

𝑘=1
2𝑛
𝑘=1 < 2𝑛 <  

 

< 𝐴𝑛
(2)

≔
1

𝑛
∑ 𝑎𝑘

(2)
  , �̅�𝑛

(2)
≔

1

𝑛
∑ [2𝑛 − 𝑎𝑘

(1)
]2𝑛

𝑘=1
2𝑛
𝑘=1 < (2𝑛 + 1)  

 

and each of the two domains of the two merged, strongly increasing sequences (𝐴𝑛
(1)

,  �̅�𝑛
(1)

) 

and (𝐴𝑛
(2)

,  �̅�𝑛
(2)

) both have Snirelmann density ½. 
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The link to the proposed Kummer function based Zeta function theory is given by the theory of 

quasi-asymptotics in distributional Hilbert scales, defined via the eigenvalues of the specific 
Whittaker operator with the fundamental solutions, (AbM) 13.1.31, (GrI) 9.212,  
 

𝐹1 1 (
1

2
,

3

2
; z) = 𝑧−

3

4𝑒
𝑧

2𝑀1

4
,
1

4

(𝑧)    and    𝐹1 1 (1,
3

2
; −z) = 𝑧−

3

4𝑒−
𝑧

2𝑀1

4
,
1

4

(𝑧) . 

 

From the (A1) lemma we recall the asymptotics 
 

d [ 𝐹1 1 (
1

2
,

3

2
; logx)]

2
 ~ (

x

𝑙𝑜𝑔𝑥
)2𝑑𝑥 . 

 

For the construction of a Kummer function related arithmetical function one gets from lemma 5 
vii)) with 𝑠 = 1/2 
 

∫ 𝑡1/4 𝐹1 1 (
1

2
,

3

2
; −t)

𝑑𝑡

𝑡
= 2𝛤(

1

4
)

∞

0
, 

 

i.e. (𝑡 → −𝑙𝑜𝑔𝑥 = log (
1

𝑥
)) it holds 

 

∫ ℎ(𝑥)𝑑𝑥 = 1
1

0
    for    ℎ(𝑥) ≔

1

𝑥

𝑙𝑜𝑔
1
4(

1

𝑥
)

2𝛤(
1

4
)

𝐹1 1(
1

2
,
3

2
;logx)

𝑙𝑜𝑔𝑥
=

1

2𝛤(
1

4
)

1

√𝑥𝑙𝑜𝑔𝑥

𝑀1
4

,
1
4

(𝑙𝑜𝑔𝑥)

𝑙𝑜𝑔𝑥
 . 

 
 

Remark: Recalling  𝐹1 1(𝑎, 𝑎 + 1; 𝑥)~
1

𝛤(𝑎)

𝑒𝑥

𝑥
 and 

1

2

𝑑

𝑑𝑥
𝐹𝑎

2(𝑥) =
𝑎

𝑎+1
𝐹𝑎(𝑥) ∙ 𝐹𝑎+1(𝑥)  two (strongly increasing resp. 

strongly decreasing) sequences 𝜗𝑛
(𝑖)

 with 0 < 𝜃𝑛 < 1 and lim
𝑛→∞

𝜗𝑛
(𝑖)

=
1

2
 ( 𝑖 = 1,2) allow to approximate the 

𝑑 [ 𝐹1 1
′ (

1

2
,

3

2
; logt)]

2

integral density in the following form 

  

𝑙𝑖𝑚
𝑛→∞

[ 𝐹1 1 (𝜗𝑛
(1)

, 𝜗𝑛
(1)

+ 1; 𝑙𝑜𝑔𝑥) ∙ 𝐹1 1 (𝜗𝑛
(2)

+ 1, 𝜗𝑛
(2)

+ 2; 𝑙𝑜𝑔𝑥)] =
1

2

𝑑

𝑑𝑥
[ 𝐹1 1 (

1

2
,
3

2
; 𝑙𝑜𝑔𝑥)]

2

 

 

 
𝜋

2
𝐹1 1 (𝜗𝑛

(1)
, 𝜗𝑛

(1)
+ 1; logx) ∙ 𝐹1 1 (𝜗𝑛

(2)
+ 1, 𝜗𝑛

(2)
+ 2; logx) ~ 

𝜋

2

1

𝛤(𝜗𝑛
(1)

)

1

𝛤(𝜗𝑛
(2)

)
[

𝑥

𝑙𝑜𝑔𝑥
]

2
 ~ 

1

2
[

𝑥

𝑙𝑜𝑔𝑥
]

2
. 
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