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Summary. The discussion centers around three applications of heat kernel consid-
erations on R, Z and their quotients. These are Euler’s formula for ζ(2n), Gauss’
quadratic reciprocity law, and the evaluation of certain integrals of Bessel functions.
Some further applications are mentioned, including the functional equation of Rie-
mann’s ζ-function, the reflection formula for the Γ -function, and certain infinite
sums of Bessel functions.

1 Introduction

It was a well-known open problem in the beginning of the 18th century to
determine the value of

∞∑
k=1

1
k2

.

In fact, Wallis and Leibniz failed in their attempts and the question was much
discussed among the Bernoullis. It was therefore a sensation when the solution
came in 1734 from the young Euler, who later also found the general formula
for ζ(2n), see Theorem 1 below.

Now consider instead the problem of solving quadratic equations mod p.
A general quadratic equation reduces to studying

x2 = q mod p

for any two distinct primes p and q. The main theorem for answering when
this equation has a solution is the quadratic reciprocity law proved by Gauss
in 1796, see Theorem 3 below.
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It is a striking fact that both these two classic theorems of number theory,
on the surface so different in character, can be deduced from one single ana-
lytical formula. We will see this in sections 3 and 4. The analytical formula
in question is the classical Poisson-Jacobi theta inversion identity which ex-
presses the heat kernel on R/2πZ in two ways. This proof of Gauss’ theorem
is known and can be found in e.g. [4], while the deduction of Euler’s evalua-
tion of ζ(2n) appears to be new (this proof is analogous to how Selberg’s zeta
function with functional equation is derived in [17]).

In section 6 we will moreover see how to evaluate integrals of Bessel func-
tions such as ∫ x

0

Jn(t)dt or
∫ x

0

Jn(t)Jm(x− t)dt

through a determination of the heat kernal on the space consisting of two(!)
points.

Of course there are several other extraordinary applications of heat kernels,
and theta inversion, even on R, see e.g. [15]. Here I selected the evaluation
of ζ(2n) because the proof is both appealing and suggestive, and I chose to
include the case of quadratic reciprocity because Lang liked it particularly
much and he told to me that one should try to do the same to every theta
inversion in sight.

As will be clear, the approach is influenced by the ideas of Jorgenson and
Lang. In sections 2 and 5 I try to put the material in the framework of their
program, where R and Z correspond to the lowest (or next to lowest) levels
in the ladder structures. See [12] and [13] for more details on this.

2 Theta inversion on R

The Poisson summation formula is usually stated in the following way:

∞∑
n=−∞

f(n) =
∞∑

n=−∞
f̂(n), (1)

where f̂ is the Fourier transform of f , an infinitely differentiable function
such that f and all its derivatives decrease rapidly at infinity, which means
that lim|x|→∞ |x|

m
f (k)(x) = 0 for every m, k ≥ 0. Although elegant as this

formula no doubt is, it comes especially alive when one takes f to be the heat
kernel on R,

KR(t, x) :=
1√
4πt

e−x2/4t.

Actually, as Lang pointed out to me, two important features are left out in the
”roof formula” (1) as compared to e.g. (2) below: first, the spectral expansion
on the quotient present in the proof is hidden, and second, the crucial t-
variable structure is missing. In more detail, we start with KR(t, x) which we



Heat kernels on abelian groups 3

periodize to make it 2π-periodic in x (see e.g. [15]). As such it has a Fourier
series expansion and one has after a computation of Fourier coefficients that

1√
4πt

∞∑
n=−∞

e−(x+2πn)2/4t =
1
2π

∞∑
n=−∞

e−n2teinx. (2)

Now specializing by letting x = 0 one gets the Poisson-Jacobi theta inversion
formula:

1√
4πt

∞∑
n=−∞

e−π2n2/t =
1
2π

∞∑
n=−∞

e−n2t (3)

proved for t > 0, but a posteriori valid for Re(t) > 0 since both sides are
analytic in that region. Riemann attributes this formula to Jacobi who in
turn attributes it to Poisson (see [7, p. 15]). Note that (3) is what we would
get from (1) with f(x) = KR(t, 2πx).

Define the theta function θ(t) =
∑∞

k=−∞ e−πk2t. Then the identity (3)
becomes in a more compact form

1√
t
θ(

1
t
) = θ(t), (4)

which explains the name theta inversion.
In the many applications of these formulas the t plays a crucial role. The

theorems of Euler and Gauss are discussed below, and then there is also the
original Riemann’s meromorphic continuation and functional equation of his
zeta function, which is recalled without the proof in section 3.

Note that although these theorems of Euler, Gauss, and Riemann are
discussed in most basic textbooks on number theory (e.g. [3], [7], [11], and
[19]), it seems that nowhere it is pointed out that, remarkably, all three are
consequences of the Poisson-Jacobi theta inversion formula. Considering this,
we may be well-advised to study analogs of this formula more closely, which
is what we do in section 5 although only to a modest extent.

3 Special values of Riemann’s zeta function

What follows is a proof of the following theorem:

Theorem 1 (Euler). For any k > 0 it holds that

ζ(2k) :=
∞∑

n=1

1
n2k

= (−1)k−1 (2π)2kB2k

2(2k)!

where Bn denotes the Bernoulli numbers.
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Recall that the Bernoulli numbers Bk are defined via

x

ex − 1
=

∞∑
k=0

Bk
xk

k!
= 1− 1

2
x +

∞∑
k=1

B2k
x2k

(2k)!
.

See [11, Ch. 15] for more information on Bernoulli numbers, and in this refer-
ence it is also remarked that the theorem above ”constitutes one of [Euler’s]
most remarkable calculations” which in Euler’s case does not mean little....
Since B2 = 1/6, B4 = −1/30, and B6 = 1/42, we get for example that
ζ(2) = π2/6, ζ(4) = π4/90 and ζ(6) = π6/945.

Let f be a measurable function which |f(t)| = O(ebt) for some b as t →∞.
The Gauss transform of f(t) following Jorgenson-Lang, see e.g [16, p. 301] or
[13, p. 1], is

Gf(s) = 2s

∫ ∞

0

f(t)e−s2tdt

and is an analytic function in s for Re(s2) > b. From [6, p. 25] one has that
the Laplace transform of

1√
πt

e−a2/4t, for a ≥ 0, is
1√
σ

e−a
√

σ.

Now if we take the Gauss transform of the left hand side LHS of (3), we
get for s > 0, by repeatedly interchanging the order of sums and integrals
(justified by absolute and uniform convergence of the series and integrals in
question) that

G(LHS)(s) = 2s

∞∑
n=−∞

∫ ∞

0

1√
4πt

e−π2n2/te−s2tdt =
2s

2

∞∑
n=−∞

1
s
e−2π|n|s

=
∞∑

n=−∞
e−2π|n|s = 1 + 2

e−2πs

1− e−2πs
=

1 + e−2πs

1− e−2πs
.

The right hand side RHS becomes

G(RHS)(s) =
2s

2π

∞∑
n=−∞

∫ ∞

0

e−tn2
e−s2tdt =

2s

2π

∞∑
n=−∞

[
e−(n2+s2)t

−(n2 + s2)

]∞
0

=
1
2π

∞∑
n=−∞

2s

s2 + n2
.

Therefore we have that the Gauss transform of the theta identity on R gives:

Proposition 1. For real s 6= 0 it holds that

1 + e−2πs

1− e−2πs
=

1
2π

∞∑
n=−∞

2s

s2 + n2
.
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We now expand both sides in series expansions in s, for small s > 0.

1
2π

∞∑
n=−∞

2s

s2 + n2
=

1
πs

+
2
πs

∞∑
n=1

s2

n2 + s2
=

1
πs

+
2
πs

∞∑
n=1

(s/n)2

1 + (s/n)2

=
1
πs

+
2
πs

∞∑
n=1

∞∑
k=1

(−1)k−1
( s

n

)2k

=
1
πs

+
2
πs

∞∑
k=1

( ∞∑
n=1

1
n2k

)
(−1)k−1s2k.

On the other hand, in view of the definition of Bn, the left hand side becomes

1 + e−2πs

1− e−2πs
= −1− 2

e−2πs − 1
= −1 +

1
πs

−2πs

e−2πs − 1

= −1 +
1
πs

+ 1 +
1
πs

∞∑
k=1

B2k
(−2πs)2k

(2k)!

=
1
πs

+
1
πs

∞∑
k=1

B2k
(2π)2ks2k

(2k)!
.

Hence for integers k > 0

∞∑
n=1

1
n2k

=
(−1)k−1(2π)2k

2(2k)!
B2k

which proves the theorem.
Let ξ(s) = π−s/2Γ (s/2)ζ(s). It is worth to here recall that Riemann ap-

plied the Mellin transform to the theta inversion on R, see [7, pp. 15-16] or
[15], proving:

Theorem 2 (Riemann). The function ξ(s) admits an analytic continuation
for all s 6= 0, 1 and

ξ(s) = ξ(1− s).

From this and Theorem 1, it follows that

ζ(1− 2n) = −B2n

2n

and, because of the poles of Γ, that at the negative even integers ζ(−2n) = 0.
These special values were found by Euler in 1749.

4 Quadratic reciprocity

We consider the following equation
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x2 = q mod p

for any two distinct primes p and q. The Legendre symbol(
q

p

)
is defined to be 1 if the above equation has a solution for some integer x and
−1 otherwise unless q = 0 mod p in which case the symbol is 0. The quadratic
reciprocity law is:

Theorem 3 (Gauss). For any two distinct odd primes p and q it holds that(
p

q

)(
q

p

)
= (−1)(p−1)(q−1)/4.

Euler stated the theorem in 1783 but without proof. Legendre wrote only a
partial proof and the first correct proof was published by Gauss in 1796. This
theorem was perhaps Gauss’ favorite in number theory, which is also indicated
by the name he attached to it: theorema aureum - the golden theorem.

The proof we present is based on a beautiful formula, due to Schaar from
1848, and which is of independent interest. It will here arise as the asymp-
totical expansion in the theta inversion formula for t = ε + ip/q, ε → 0. We
follow Bellman [4] who attributes this proof to Landsberg. A similar method
of proof was employed by Hecke [10] to establish quadratic reciprocity for an
arbitrary number field, see also [8], [3], and [18]. This might indicate that it is
one of the better proofs out of the hundred or so published proofs of Gauss’
theorem.

Let

S(p, q) :=
q−1∑
r=0

e−iπr2p/q.

Proposition 2. Let p and q be two relatively prime integers. Then

1
√

q
S(p, q) =

e−iπ/4

√
p

S(q, p),

or written out in full,

1
√

q

q−1∑
k=0

e−iπk2p/q =
e−iπ/4

√
p

p−1∑
l=0

eiπl2q/p.

Proof. Let

θ(t) =
∞∑

k=−∞

e−πk2t = 1 + 2
∞∑

k=1

e−πk2t.

For ε > 0 we have
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θ(ε+ip/q) = 1+2
∞∑

k=1

e−πk2εe−iπk2p/q = 1+2
q−1∑
k=0

(
e−iπk2p/q

∞∑
l=0

e−π(k+lq)2ε

)
.

The inner sum can be interpreted as a Riemann sum as ε → 0 so that

∞∑
l=0

e−π(k+lq)2ε =
∫ ∞

0

e−π(k+xq)2εdx + o(1) =
1

πq
√

ε

∫ ∞

πk
√

ε

e−w2
dw + o(1)

=
1

πq
√

ε

(√
π

2
+ o(1)

)
.

Hence

θ(ε + ip/q) = 1 + 2
1

πq
√

ε

(√
π

2
+ o(1)

)
S(p, q) =

1
q
√

πε
(S(p, q) + o(1))

as ε → 0.
On the other hand, start by noting that

1
t

=
1

ε + ip/q
=

ε

ε2 + p2/q2
− i

p/q

ε2 + p2/q2
= ε

q2

p2
− i

q

p
+ O(ε2).

Therefore by the same argument, although with some extra care due to the
presence of O(ε2) above, we get the asymptotics as ε → 0 for

θ

(
1

ε + ip/q

)
=

1
p
√

πεq2/p2
(S(−q, p) + o(1)) =

1
q
√

πε
(S(q, p) + o(1)).

Finally, in view of that

1√
t

=
1√

ε + ip/q
= e−iπ/4

√
q

p
+ o(1)

and comparing the two asymptotics in the theta inversion formula (4), the
proposition is proved. ut

Let the quadratic Gauss sum be

G(n, m) = S(2n, m) =
m−1∑
r=0

ei2πr2n/m.

We have:

Lemma 1. Let p and q be two distinct primes. Then

G(1, pq) = G(p, q)G(q, p).
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Proof. Note that k2p2 + l2q2 equals (kp + lq)2 mod pq, so we see that

G(p, q)G(q, p) =
q−1∑
k=0

ei2πk2p/q

p−1∑
l=0

ei2πr2q/p =
p−1∑
l=0

(
q−1∑
k=0

ei2πk2p/q

)
ei2πl2q/p

=
p−1∑
l=0

q−1∑
k=0

ei2π(k2p2+l2q2)/pq = G(1, pq),

since kp + lq runs through all the values 0 to pq− 1 mod pq exactly once. ut

The connection to the Legendre symbol comes next:

Lemma 2. Let p be an odd prime and assume that p does not divide n. Then

G(n, p) =
(

n

p

)
G(1, p).

Proof. This is a simple calculation keeping in mind that as r runs from 1
to p − 1, r2 mod p goes through all the quadratic residues Q, exactly twice
because (p− r)2 = r2 mod p:

G(n, p) = 1 + 2
∑
k∈Q

ei2πkn/p.

Now if n is a quadratic residue then clearly kn is a quadratic residue and so

G(n, p) = 1 + 2
∑
m∈Q

ei2πm/p = G(1, p) =
(

n

p

)
G(1, p).

On the other hand if n is a quadratic nonresidue then kn runs through the
quadratic nonresidues Q′ and we get

G(n, p) = 1 + 2
∑

m∈Q′

ei2πm/p = −1− 2
∑
l∈Q

ei2πl/p =
(

n

p

)
G(1, p),

where the second equality comes from the evaluation of a geometric series:

1 +
∑
m∈Q

ei2πm/p +
∑

m∈Q′

ei2πm/p =
p−1∑
m=0

ei2πm/p = 0. ut

We now prove Gauss’ theorem. First we have using Proposition 2 for an
odd number m that

G(1,m) = S(2,m) =
√

m√
2

eiπ/4(1 + e−iπm/2) = i(m−1)2/4
√

m.

In view of the two lemmas we finally get
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p

q

)(
q

p

)
=

G(p, q)
G(1, q)

G(q, p)
G(1, p)

=
G(1, pq)

G(1, q)G(1, p)
= (−1)(p−1)(q−1)/4

as required.

Finally note that also the two so-called supplements come out directly
from Proposition 2:(

−1
p

)
=

G(1, p)
G(1, p)

=
(−i)(p−1)2/4√p

i(p−1)2/4√p
= (−1)(p−1)2/4 = (−1)(p−1)/2

and for an odd prime p,(
2
p

)
=

G(2, p)
G(1, p)

=

√
p

2 eiπ/4
(
1 + eiπp/4 + eiπp + eiπ9p/4

)
i(p−1)2/4√p

=
eiπ(p+1)/4 + eiπ(9p+1)/4

2i(p−1)2/4
= (−1)(p

2−1)/8.

5 Theta inversion on Z

The heat kernel KZ(t, x) on Z is the fundamental solution of(
∆ +

∂

∂t

)
f(t, x) = 0

where
∆g(x) = g(x)− 1

2
(g(x− 1) + g(x + 1)).

It is easily verified that
KZ(t, x) = e−tIx(t),

where x ∈ Z, t ≥ 0 and I is the Bessel function

Iν(z) =
∞∑

k=0

zν+2k

2ν+2kk!Γ (ν + k + 1)
.

(The relation to the more standard J-Bessel funtion is In(z) = (−i)nJn(iz).)
This can basically be found in Feller [9, pp. 58-60], see also my paper with
Neuhauser [14] for a discussion. When passing to a quotient Z/mZ, we obtain
the analogy of (2), except for a cancellation of the factor e−z,

∞∑
k=−∞

Ikm+x(z) =
1
m

m−1∑
j=0

ecos(2πj/m)z+2πijx/m, (5)

for any z ∈ C and integers x and m > 0, as was proved in [14]. Specializing
to x = 0 we have the theta inversion formula on Z,
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∞∑
k=−∞

Ikm(z) =
1
m

m−1∑
j=0

ecos(2πj/m)z, (6)

or in more perfect analogy with (3)

e−t
∞∑

k=−∞

Ikm (t) =
1
m

m−1∑
j=0

e−2 sin2(πj/m)t.

The beautiful formula (6) was in fact established earlier by Al-Jarrah, Dempsey,
and Glasser [2] (compare also with Theorem 9 in [5]) by a very different
method. Note however that these formulas do not seem to have been noticed
previously in the vast classical literature on Bessel functions.

If we take the Gauss transform on this identity (now again multiplied by
e−t) it is possible, see [14], to get an explicit formula, which is thus the analog
of Proposition 1:

Proposition 3. For real s 6= 0, and m > 0 an integer,

2s√
s4 + 2s2

1 +
(
s2 + 1−

√
s4 + 2s2

)m
1−

(
s2 + 1−

√
s4 + 2s2

)m =
1
m

m−1∑
j=0

2s

s2 + 2 sin2(πj/m)
.

This is the logarithmic derivative (up to the factor m) of a Selberg-type
zeta function ZZ/mZ (the analogy coming from [17]). In this way we obtain
the following [14]:

22−m sinh2
(m

2
arccosh(s2 + 1)

)
= ms2

m−1∏
n=1

(
1 +

s2

2 sin2(πn/m)

)
=: ZZ/mZ(s)

which holds for any s ∈ C.
In the case of R, one gets (cf. the remarks on p. 5 in [13]) in an analogous

fashion

2 sinh πs = 2πs
∞∏

n=1

(
1 +

s2

n2

)
=: ZR/2πZ(s). (7)

This in turn can be recasted into the well-known reflection formula due to
Euler:

Proposition 4. For z ∈ C \ Z,

π

sinπz
= Γ (z)Γ (1− z).

Proof. Recall that the gamma function can be defined through a Weierstrass
product (where γ is Euler’s constant):

1
Γ (z)

= zeγz
∞∏

n=1

(
1 +

z

n

)
e−z/n.

In view of this and using Γ (w + 1) = wΓ (w), the formula (7) with s = iz
becomes the desired identity. ut

I hope this brief discussion further illustrates the wealth of identities which
come out of formulas like (3) or (6).
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6 Integrals of Bessel functions

Already the fact that e−tIx(t) is the heat kernel on Z, gives an alternative
way of looking at Bessel functions, for example the addition theorem

Jn(t + s) =
∞∑

k=−∞

Jn−k(t)Jk(s)

becomes obvious if one thinks probabilisticly.
From one of the basic recurrence formulas for J ,

Jν−1(z)− Jν+1(z) = 2J ′ν(z)

one can deduce that ([1, 11.1.2]) for ν > −1∫ x

0

Jν(t)dt = 2
∞∑

k=0

J2k+ν+1(x).

In the cases where ν = l an integer, this latter sum can be simplified to a
finite sum from the theta inversion formula for Z with m = 2 recalling that
I−n = In. One gets that∫ x

0

J2l(t)dt =
∫ x

0

J0(t)dt− 2
l−1∑
k=0

J2k+1(x),

∫ x

0

J2l+1(t)dt = 1− J0(x)− 2
l∑

k=1

J2k(x)

which are [1, 11.1.3] and [1, 11.1.4] respectively.
Other examples, even more adapted to our formula, are the convolution-

type integrals ∫ x

0

Jl(t)Jn(x− t)dt.

Here the following formula holds ([1, 11.3.37])∫ x

0

Jl(t)Jn(x− t)dt = 2
∞∑

k=0

(−1)kJ2k+l+n+1(x).

for integers l, n ≥ 0. We now carry out an example of how to compute this in
detail. First we rewrite the sum in terms of I-Bessel functions:∫ x

0

Jl(t)Jn(x− t)dt = 2
∞∑

k=0

(−1)ki2k+l+n+1I2k+l+n+1(−ix)

= 2il+n+1
∞∑

k=0

I2k+l+n+1(−ix).
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We continue, but now assuming that l + n is even, and then using (5) with
m = 2,

∫ x

0

Jl(t)Jn(x− t)dt = (−1)
l+n
2

i

∞∑
k=−∞

I2k+1(−ix)− 2i

(l+n)/2−1∑
k=0

I2k+1(−ix)


= (−1)

l+n
2

 i

2
(
e−ix + eix+iπ

)
− 2i

(l+n)/2−1∑
k=0

I2k+1(−ix)


= (−1)

l+n
2

sinx− 2
(l+n)/2−1∑

k=0

(−1)kJ2k+1(x)


Similarily if l + n is odd, one gets

∫ x

0

Jl(t)Jn(x− t)dt = (−1)
l+n+1

2

cos x + J0(x)− 2
(l+n−1)/2∑

k=0

(−1)kJ2k(x)

 .

In the special cases n = −l, or n = 1 − l with l = 0 these formulas become
(compare with [1, 11.3.38] and [1, 11.3.39] which hold also for nonintegers
−1 < l < 1) ∫ x

0

J0(t)J0(x− t)dt = sinx∫ x

0

J0(t)J1(x− t)dt = J0(x)− cos x.

7 Personal remarks

I had the great privilege to attend in total around ten semesters of mathe-
matics courses taught by Serge Lang. Like many others I am grateful to him
for his teaching, generosity, and constant encouragement. During the spring
semester of 2005, when I was his office neighbor at Yale – a very special and
interesting experience in itself – we often had conversations on topics related
to the present paper. I was struck by the sad news of his death on Septem-
ber 12, 2005. I miss Serge, in particular his great sense of humor, and I feel
fortunate for having known him.
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