
1. PÓLYA’S THEOREM

In 1918, G. Pólya ([1], §4, I, p.364), obtained the following general theorem about
zeros of the Fourier transform of a real function.

Theorem 1.1. Let a < b be finite real numbers and let f(t) be a strictly positive con-
tinuous function on the open interval (a, b) and differentiable in (a, b) except possibly
at finitely many points. Suppose that

α ≤ −f ′(t)
f(t)

≤ β (1.1)

at every point of (a, b) where f(t) is differentiable. Then every zero of the integral

f̂(z) =
∫ b

a

f(t)eztdt

lies in the open infinite strip
α < <(z) < β,

with the exception of the function

f(t) = ect+d (1.2)

with c, d, real constants.

Remark. If f(t) = ect+d then

f̂(z) = 2e
b+a
2 (z+c)+d

sinh
(

b−a
2 (z + c)

)
z + c

.

For this function, any α and β with α ≤ −c ≤ β are admissible, while the zeros of
f̂(z) occur at z = −c + 2πık/(b− a) for k = ±1,±2, . . . . Thus the theorem fails for
this function.

After the change of variable log x ← t and approximating the integral over the
half-line (0,∞) by integrals over finite intervals, one can obtain a theorem about zeros
of Mellin transforms. This (after the above change of variable) is mentioned explicitly
in [1], p.365.

Theorem 1.2. Let 0 ≤ a < b ≤ +∞ and let f(x) be a strictly positive continu-
ous function on (a, b) and differentiable there except possibly at finitely many points.
Suppose that

α ≤ −x
f ′(x)
f(x)

≤ β (1.3)

at every point of (a, b) where f(x) is differentiable. Suppose further that the integral

F (s) :=
∫ b

a

f(x)xs dx

x

is convergent for1 α∗ < <(s) < β∗. Then all zeros ρ of F (s) in this strip satisfy
α ≤ <(ρ) ≤ β.

1 By <(z) and =(z) we denote the real and imaginary part of the complex number z.
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2. APPLICATIONS

Attempts have been made to apply Pólya’s theorems to the Riemann zeta function and
to L-functions. So far, no positive information has been gleaned from such tries.

For the zeta function, the Müntz Formula has been used, namely

F̃ (s)ζ(s) =
∫ ∞

0

( ∞∑
n=1

F (nx)− 1
x

∫ ∞

0

F (t)dt
)
xs dx

x

with F̃ (s) the Mellin transform, valid for 0 < <(s) < 1 and F (x) satisfying certain
general conditions. A set of conditions under which the formula holds is spelled out
in Titchmarsh’s well-known monograph [2], 2.11. For example, the formula holds
for F (x) and F ′(x) continuous and bounded in every finite interval and F (x) =
O(x−1−δ), F ′(x) = O(x−1−δ) as x → +∞, for some δ > 0. The last condition
on F (x) and F ′(x) can be relaxed to |F | and |F ′| integrable on [1,∞).

If we take F (x) = −e−x we obtain the well-known formula

−Γ(s)ζ(s) =
∫ ∞

0

( 1
x
− 1

ex − 1

)
xs dx

x

valid for 0 < <(s) < 1. If we apply Theorem 1.2 to this situation to the function

f(x) = −
∞∑

n=1

e−nx +
1
x

∫ ∞

0

e−tdt

we see that f(0) = 1
2 , f(∞) = 0 and f(x) is decreasing. The function −xf ′(x)/f(x)

is increasing from 0 to 1 in (0,∞), hence Theorem 1.2 applies only with α = 0, β = 1,
and no information is obtained about zeros of Γ(s)ζ(s) in the open strip 0 < <(s) < 1
of validity of Müntz’s formula.

The function −xf ′(x)/f(x)

If Theorem 1.2 could be applied non trivially for an instance of Müntz’s formula
valid in the strip 0 < <(s) < 1, then either α > 0 or β < 1 must be satisfied. If F (x)
is analytic in a neighborhood of x = 0 and all its derivatives up to order 2J decay at
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∞ as F (j)(x) = O(x−α) with α > 1, then by the Euler–MacLaurin Formula we have

−
∞∑

n=1

F (nx) +
1
x

∫ ∞

0

F (t)dt =
1
2
F (0)−

J−1∑
j=1

B2j

(2j)!
F (2j−1)(0)x2j−1

+
x2J

(2J)!

∫ 1

0

B2J(t)
{ ∞∑

n=0

F (2J)(n(x + t))
}

dt

where Bn denotes the n-th Bernoulli number and Bn(t) is the n-th Bernoulli polyno-
mial. Also, the integral in the right-hand side of this formula is O(1/x) as x → 0.
Taking J = 2 we then see that

f(x) := −
∞∑

n=1

F (nx) +
1
x

∫ ∞

0

F (t)dt =
1
2
F (0)− F ′(0)

x

12
+ O(x2)

and in particular f(0) = 1
2F (0), f ′(0) = −F ′(0)/12, and finally α = 0 if F (0) 6= 0.

Moreover, the hypothesis about the behavior of F (x) at infinity shows that

−
∞∑

n=1

F (nx) +
1
x

∫ ∞

0

F (t)dt ∼ x−1

∫ ∞

0

F (t)dt

which certainly implies β ≥ 1. Therefore, application of Pólya’s theorem to Müntz’s
formula yields no information about the location of non-trivial zeros of the zeta func-
tion, at least if F (0) 6= 0. If F (0) = 0 and F ′(0) 6= 0 then −xf ′(x)/f(x) → −1 as
x→ 0, so it is not positive and Pòlya’s theorem does not apply.
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