1. PÓLYA'S THEOREM

In 1918, G. Pólya ([1], $\S 4, ~ I, ~ p .364), ~ o b t a i n e d ~ t h e ~ f o l l o w i n g ~ g e n e r a l ~ t h e o r e m ~ a b o u t ~$ zeros of the Fourier transform of a real function.

Theorem 1.1. Let $a<b$ be finite real numbers and let $f(t)$ be a strictly positive continuous function on the open interval (a, b) and differentiable in (a, b) except possibly at finitely many points. Suppose that

$$
\begin{equation*}
\alpha \leq-\frac{f^{\prime}(t)}{f(t)} \leq \beta \tag{1.1}
\end{equation*}
$$

at every point of (a, b) where $f(t)$ is differentiable. Then every zero of the integral

$$
\widehat{f}(z)=\int_{a}^{b} f(t) e^{z t} \mathrm{~d} t
$$

lies in the open infinite strip

$$
\alpha<\Re(z)<\beta
$$

with the exception of the function

$$
\begin{equation*}
f(t)=e^{c t+d} \tag{1.2}
\end{equation*}
$$

with c, d, real constants.
Remark. If $f(t)=e^{c t+d}$ then

$$
\widehat{f}(z)=2 e^{\frac{b+a}{2}(z+c)+d} \frac{\sinh \left(\frac{b-a}{2}(z+c)\right)}{z+c}
$$

For this function, any α and β with $\alpha \leq-c \leq \beta$ are admissible, while the zeros of $\widehat{f}(z)$ occur at $z=-c+2 \pi \imath k /(b-a)$ for $k= \pm 1, \pm 2, \ldots$. Thus the theorem fails for this function.

After the change of variable $\log x \leftarrow t$ and approximating the integral over the half-line $(0, \infty)$ by integrals over finite intervals, one can obtain a theorem about zeros of Mellin transforms. This (after the above change of variable) is mentioned explicitly in [1], p. 365.
Theorem 1.2. Let $0 \leq a<b \leq+\infty$ and let $f(x)$ be a strictly positive continuous function on (a, b) and differentiable there except possibly at finitely many points. Suppose that

$$
\begin{equation*}
\alpha \leq-x \frac{f^{\prime}(x)}{f(x)} \leq \beta \tag{1.3}
\end{equation*}
$$

at every point of (a, b) where $f(x)$ is differentiable. Suppose further that the integral

$$
F(s):=\int_{a}^{b} f(x) x^{s} \frac{\mathrm{~d} x}{x}
$$

is convergent for ${ }^{1} \alpha^{*}<\Re(s)<\beta^{*}$. Then all zeros ρ of $F(s)$ in this strip satisfy $\alpha \leq \Re(\rho) \leq \beta$.

[^0]
2. Applications

Attempts have been made to apply Pólya's theorems to the Riemann zeta function and to L-functions. So far, no positive information has been gleaned from such tries.

For the zeta function, the Müntz Formula has been used, namely

$$
\widetilde{F}(s) \zeta(s)=\int_{0}^{\infty}\left(\sum_{n=1}^{\infty} F(n x)-\frac{1}{x} \int_{0}^{\infty} F(t) \mathrm{d} t\right) x^{s} \frac{\mathrm{~d} x}{x}
$$

with $\widetilde{F}(s)$ the Mellin transform, valid for $0<\Re(s)<1$ and $F(x)$ satisfying certain general conditions. A set of conditions under which the formula holds is spelled out in Titchmarsh's well-known monograph [2], 2.11. For example, the formula holds for $F(x)$ and $F^{\prime}(x)$ continuous and bounded in every finite interval and $F(x)=$ $O\left(x^{-1-\delta}\right), F^{\prime}(x)=O\left(x^{-1-\delta}\right)$ as $x \rightarrow+\infty$, for some $\delta>0$. The last condition on $F(x)$ and $F^{\prime}(x)$ can be relaxed to $|F|$ and $\left|F^{\prime}\right|$ integrable on $[1, \infty)$.

If we take $F(x)=-e^{-x}$ we obtain the well-known formula

$$
-\Gamma(s) \zeta(s)=\int_{0}^{\infty}\left(\frac{1}{x}-\frac{1}{e^{x}-1}\right) x^{s} \frac{\mathrm{~d} x}{x}
$$

valid for $0<\Re(s)<1$. If we apply Theorem 1.2 to this situation to the function

$$
f(x)=-\sum_{n=1}^{\infty} e^{-n x}+\frac{1}{x} \int_{0}^{\infty} e^{-t} \mathrm{~d} t
$$

we see that $f(0)=\frac{1}{2}, f(\infty)=0$ and $f(x)$ is decreasing. The function $-x f^{\prime}(x) / f(x)$ is increasing from 0 to 1 in $(0, \infty)$, hence Theorem 1.2 applies only with $\alpha=0, \beta=1$, and no information is obtained about zeros of $\Gamma(s) \zeta(s)$ in the open strip $0<\Re(s)<1$ of validity of Müntz's formula.

If Theorem 1.2 could be applied non trivially for an instance of Müntz's formula valid in the strip $0<\Re(s)<1$, then either $\alpha>0$ or $\beta<1$ must be satisfied. If $F(x)$ is analytic in a neighborhood of $x=0$ and all its derivatives up to order $2 J$ decay at
∞ as $F^{(j)}(x)=O\left(x^{-\alpha}\right)$ with $\alpha>1$, then by the Euler-MacLaurin Formula we have

$$
\begin{aligned}
-\sum_{n=1}^{\infty} F(n x)+\frac{1}{x} \int_{0}^{\infty} F(t) \mathrm{d} t= & \frac{1}{2} F(0)-\sum_{j=1}^{J-1} \frac{B_{2 j}}{(2 j)!} F^{(2 j-1)}(0) x^{2 j-1} \\
& +\frac{x^{2 J}}{(2 J)!} \int_{0}^{1} B_{2 J}(t)\left\{\sum_{n=0}^{\infty} F^{(2 J)}(n(x+t))\right\} \mathrm{d} t
\end{aligned}
$$

where B_{n} denotes the n-th Bernoulli number and $B_{n}(t)$ is the n-th Bernoulli polynomial. Also, the integral in the right-hand side of this formula is $O(1 / x)$ as $x \rightarrow 0$. Taking $J=2$ we then see that

$$
f(x):=-\sum_{n=1}^{\infty} F(n x)+\frac{1}{x} \int_{0}^{\infty} F(t) \mathrm{d} t=\frac{1}{2} F(0)-F^{\prime}(0) \frac{x}{12}+O\left(x^{2}\right)
$$

and in particular $f(0)=\frac{1}{2} F(0), f^{\prime}(0)=-F^{\prime}(0) / 12$, and finally $\alpha=0$ if $F(0) \neq 0$. Moreover, the hypothesis about the behavior of $F(x)$ at infinity shows that

$$
-\sum_{n=1}^{\infty} F(n x)+\frac{1}{x} \int_{0}^{\infty} F(t) \mathrm{d} t \sim x^{-1} \int_{0}^{\infty} F(t) \mathrm{d} t
$$

which certainly implies $\beta \geq 1$. Therefore, application of Pólya's theorem to Müntz's formula yields no information about the location of non-trivial zeros of the zeta function, at least if $F(0) \neq 0$. If $F(0)=0$ and $F^{\prime}(0) \neq 0$ then $-x f^{\prime}(x) / f(x) \rightarrow-1$ as $x \rightarrow 0$, so it is not positive and Pòlya's theorem does not apply.

References

[1] G. Pólya, Über die Nullstellen gewisser ganzer Funktionen, Math. Zeit., 2 (1918), 352383. Also, Collected Papers, Vol II, 166-197.
[2] E.C. Titchmarsh, The Theory of the Riemann Zeta function, Clarendon Press, Oxford 1951.

[^0]: ${ }^{1}$ By $\Re(z)$ and $\Im(z)$ we denote the real and imaginary part of the complex number z.

