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The Riemann Hypothesis states that the non-trivial zeros of the Zeta function all have real part one-
half. The Hilbert-Polya conjecture states that the imaginary parts of the zeros of the Zeta function 
corresponds to eigenvalues of an unbounded self adjoint operator. All attempts failed so far to 
represent the Riemann duality equation in the critical stripe as convergent (!)  Mellin transforms of an 
underlying self adjoint integral operator equation.  
       
The RH analysis is mainly built on the Fourier series representation of the Zeta function on the critical 
line ([EdH] 1.2). G. Polya defined a Zeta fake function, for which all its zeros lie on the critical line 
([EdH] 12.5). If there would be a convolution representation of the Zeta function spectral theory can be 
applied to answer the RH positively ([CaD]).  
 
Spectral analysis of convolution integral operators goes along with generalized Fourier analysis for 
linear, self-adjoint, positive definite operators, defined on appropriate Hilbert space domains. The 
kernel functions of our two convolution integral operators of the 1

st
 and 2

nd
 proof are built as Hilbert 

transforms of the Theta function (based on the Gauss-Weierstrass function) and the fractional part 
function. The corresponding domains are the Hilbert spaces 

0H  and 
1H . The later one is proposed 

as alternative modeling framework for the quantum oscillator to overcome the issue of not convergent 
ground state energy series ([BeM], [FeR]). 
 
The Mellin transforms of the corresponding operator duality equation (with respect to the inner product 
of the Hilbert space) give the Riemann duality equation in a complex-valued distributional sense 
([PeB]). This can be interpreted as a representation of the Riemann duality equation built by a 
generalized (only weak, but self-adjoint) modified Müntz formula, defined in an appropriate Hilbert 
space framework to ensure convergent integrals ([TiE] 2.11). This proves the RH and the Hilbert-Polya 
conjecture in a weak sense. With Hilbert scale and spectral theory then the RH is also valid in a strong 
sense. 
 
The (Hilbert) transformation from a Fourier integral representation to a convolution integral 
representation of the Zeta function goes along with the following introduction notes from ([EdH] 10.2 
“ADJOINTS AND THEIR TRANSFORMS”: “In order to define the adjoint of an invariant operator (on 
the vector space V  of complex-valued functions on the multiplicative group R  of positive real 

numbers), it is necessary to define an inner product on the vector space V. The natural definition 
would be”   ….based on a measure d , … ”which is invariant on the group R , namely xdd log   . 

…However, the functional equation )1()( ss  involves an inner product on V , which is natural with 

respect to the additive group R , ….namely dx .” 

 
The Hilbert transform properties ensure the self-adjoint property (appendix). The chosen (domain) 
Hilbert scale factors (“0”resp. “-1”) ensure positive definite operators. 
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1st proof based on 

Hilbert space ),(: 20  LH  

 

The Jacobi  function resp. Riemann’s auxiliary function  are given by 
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The Mellin transform M in the form 
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gives the Riemann duality equation 
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The RH would be proven, if  ))(()( sMs   would be valid. Then the duality equation )1()( ss   

would be a Mellin transform of an underlying dual integral equation relation (with respect to the 
(multiplicative) density xdxxd /log  ), whereby the Theta function )(x would be the density function. 

This means that by variable substitution ux /1  (i.e. uduudxdxxd /log/log    ) the duality relation of the 

integral operator would reproduce the duality relation of the complex-valued Riemann duality equation. 
Unfortunately the integrals ))(( sM   are not convergent for any s in opposite to ))(( sM   ([EdH] 10). 

The root cause of this is the fact that the constant Fourier term of the Theta function series is not 
vanishing. As work around Riemann replaced the Theta function )(x by )(x , which unfortunately is 

no Theta function anymore. To “generate” the duality equation based on )(x , his “trick” was to 

replace the original Gauss-Weierstrass function by its derivative. This “cuts” out the constant Fourier 
term of the Theta function. To compensate this change and in order to keep the “duality equation 
balance” he then multiplied the resulting term again with x . The prize to be paid by this “trick” 

(appendix) is the “unnatural” factor )1( s  of the Zeta function 
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Alternatively, we proposed to apply the Hilbert transformed Gauss-Weierstrass function to define 

)(xH in order to achieve the same (“duality equation creation”) effect, but without “destroying” the 

structure of the Theta function itself (enabled by the Hilbert transform property: 0),( fHf ). As the 

Hilbert transform is an isomorphism onto the 2L Hilbert space its application to solve the RH requires 

an upfront analysis in a weak 2L sense ([PeB] I §15). Then with standard density arguments the 

RH follow in a strong sense. The Hilbert transforms changes the constant Fourier term to zero, i.e. 

))(( xH   has a vanishing constant Fourier term. At the same time the purely Gauss-Weierstrass 

structure of the Theta function series elements does not go lost. The crucial equations are given by 
(appendix) 
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As a consequence there is a Mellin transformation equation in a weak 2L sense in the form 

)1()( sTsT  , where all its zeros lie on the critical line. This proves the RH as there cannot be two 

different complex-valued functions with same set of zeros. We also note that a duality equation 
relation in the form )1()( sTsT   is equivalent to a Theta function property of the underlying density 

function ([HaH]). 



2nd proof based on 

Hilbert space )1,0(: #

2

#

0 LH   

 
 

Let )(: 21 RS , i.e.  is the boundary of the unit sphere. Let )(su  being a 2 periodic function and 

 denotes the integral from 0  to 2  in the Cauchy-sense. Then for )(: 2  LHu  with )(: 21 RS  
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Beside the Hilbert transform ))(( xHu  (see also appendix) the integral operator 
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is applied, which is related to the Hilbert transform ([StE]) by 
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The operator A

 
can be extended to an isomorphism 

01: HHA 
 ([BrK]). For its kernel function it 

holds ([GrI] 4.2247/8): 
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i.e.  
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xk    and  0ˆ
0 k  i.e.  )(xk  is a wavelet (appendix) . 

 
 
Let  x denote the largest integer not exceeding the real number x . The fractional part (saw tooth) 

function of x is defined by 
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It holds ([ZyA] I, theorem 2-7): 
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The operator A is applied to put the following criticism of a proposition of Ramanujan ([BeB] 8, Entry 
17 (iv)) into the context of Hilbert space theory:    
 

 “Ramanujan informs us to note that 
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which also is devoid of meaning, ....  may be formally established by differentiating the 
equality 
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We also note from [BeB] Chapter 6:  

 
"Ramanujan's theory of divergent series emanates from the Euler-Maclaurin summation 
formula, building on sophisticated constant "c" (1.1) of the series   
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Then “differentiating” of a not defined “function” is no longer only formally as it´s defined in a weak 
sense with respect to the inner product of the Hilbert space #

1H  i.e. 
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We note that the Hilbert space #

1H  (resp. the smaller Hilbert space #

2/1H for a weak variational form 

representation) is proposed as answer to the still open question from B. Riemann ([RiB]) about a 
characterization of all functions represented by its trigonometric series ([LaD] 2.2).  
 
  
The fractional part function is linked to the Zeta function by [TiE] (2.1.5) 
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From ([TiE] 2.1) we recall the duality relation in the critical stripe 
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The crucial relationship of the Hilbert transformed fractional part function and the Zeta function 
is given by (appendix): 
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Appendix 
 
 

 
The two relevant formulas from [GrI] 3.621, 3.761 are: 
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Lemma: The Mellin transform of )(xfH

 is given by 
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Proof: It follows by variable substitutions  ytx  )1(2  , 2zt   and sinz  
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Lemma: It holds 
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Proof: With the formula from ([GrI] 3.761) above it holds for 1)Re(0  S  
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Hilbert, Fourier (wave), wavelet and Mellin transformations 
 
 
Let and ),(: 20  LH  the Hilbert space of (complex-valued) 2L functions and let 

0,, Hgf  ,  the 

conjugate of   and xRRzy ),( . Then the Fourier F , the Hilbert H and the wavelet 
W transformation 

operators are defined by 

 
 
Definition ((wave) Fourier (inverse) transformation): The Fourier transform is defined by 
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Definition (Hilbert (inverse) transformation) ([PeB] example 9.11): The Hilbert transform is defined 
by 
 

dt
tx

tf
xHf

tx




 



 

)(1
lim:))((

0    

and it holds

 
))(()( 2 xfHxf 

 

. 

 

Lemma: Let )(ˆ),(ˆ  gf  denote the Fourier coefficients of 2L function gf , . Then it holds 
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Definition (wavelet (inverse) transformations): For a normalized, valid wavelet   and for )(2 RLf  it 
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In case of a real valued  then ̂  is symmetric.  
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Definition (Mellin (inverse) transformation): If )(sF is analytic in the strip bsa  )Re( , and if it 

tends to zero uniformly as )Im(s  for any real value c between a and b , with its integral along 
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Conversely, suppose )(xf is piecewise continuous on the positive real numbers, taking a value halfway 

between the limit values at any jump discontinuities, and suppose the integral 
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from its Mellin transform )(sF . 

 

 
Lemma: It holds  

 
i)      )1()1()(  shMsshM  

 
ii)      )()( shsMshxM    

 
iii)      )()1()()( shMssxhM   

 
iv)      )2()2)(1()(  shMssshM  

 

v)    







00

)()()()())((
u

du
uug

u

x
hu

u

du
ug

u

x
hsgMh ss  . 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



References 
 
 
 
[BeB] Berndt B. C., “Ramanujan´s Notebooks Part I”, Springer Verlag, New York, Berlin, Heidelberg, 
Tokyo, 1985 
 

[BeM] Berry M. V., Keating J. P.,” xpH   and the Riemann zeros”, in Super symmetry and Trace 

Formulae: Chaos and Disorder, Ed. I.V. Lerner, J.P. Keating, D.E. Khmelnitski, Kluver, New York 
(1999) pp. 355–367 
 
[BrK] Braun K., “Interior Error Estimates of the Ritz Method for Pseudo-Differential Equations”, Jap. 
Journal of Applied Mathematics, 3, 1, 59-72, (1986)  
 
[CaD] Cardon D. A., “Convolution operators and zeros of entire functions”, Proc. Amer. Math. Soc. 
130, 6 (2002) pp. 1725-1734 
 
[EdH] Edwards H. M., “Riemann´s Zeta Function”, Dover Publications, Inc., Mineola, New York, 1974 
 
[FeR] Feyman R. P., Hibbs A. R., “Quantum Mechanics and Path Integrals”, Dover Publications, Inc., 
Mineola, New York, 1965 
 
[GrI] Gradshteyn I. S., Ryzhik I. M., Table of Integrals Series and Products, Fourth Edition, Academic 
Press, New York, San Francisco, London, 1965 
 
[HaH] Hamburger H., „Über einige Beziehungen, die mit der Funktionalgleichung der Riemannschen 
Zeta-Funktion äquivalent sind”, Math. Ann. 85 (1922) pp. 129-140 
 
[LaD] Laugwitz D., "Bernhard Riemann 1826-1866“, Birkhäuser Verlag, Basel, Boston, Berlin, 1996 
 
[PeB] Petersen B. E., "Introduction to the Fourier Transform and the Pseudo-Differential Operators", 
Pitman Advanced Publishing Program, Boston, London, Melbourne, 1983 
 
[GPo] Polya G., “Bemerkungen über die Integraldarstellung der Riemannschen Zeta-Funktion“, Acta 
Mathematica 48, 305-317 (1926) 
 
[RiB] Riemann B., "Über die Darstellbarkeit einer Funktion durch eine trigonometrische Reihe" 
 
[StE] Stein E. M., “Singular integrals and Differentiability Properties of Functions”, Princeton University 
Press, Princeton, 1970 
 
[TiE] Titchmarsh E. C., "The Theory of the Riemann Zeta-function", Clarendon Press, Oxford, 1951  
 

[ZyA] Zygmund A., “Trigonometric series”, Vol. I, Cambridge University Press, 1968 
 


