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Abstract 

This note gives a summary of corresponding papers [KBr1], [KBr2], [KBr3] in 

 

www.riemann-hypothesis.de. 

 

The Riemann Hypothesis states that the non-trivial zeros of the Zeta function all have real 

part one-half. The Hilbert-Polya conjecture states that the imaginary parts of the zeros of the 

Zeta function corresponds to eigenvalues of an unbounded self-adjoint operator. All 

attempts failed so far to represent the Riemann duality equation in the critical stripe as 

convergent (!) Mellin transforms of an underlying self-adjoint integral equation relation. The 

constant, not vanishing Fourier terms of the Theta functions are the root cause of only 

formally self-adjoint invariant operator definitions with corresponding (Mellin) transform of 

the Riemann duality equation ((HEd) 10.3). The idea of our two proofs is built 

on appropriately defined (weak) self-adjoint integral equations in a distribution sense and its 

related Mellin transforms. The distributional approach is the prize to be paid to 

build convergent (!) Mellin transform integrals ((HEd) chapter 10). The Mellin transform can 

be seen as a Fourier transformation on the multiplicative group of positive real numbers 

[AZe]. It corresponds to an isometry between Hilbert spaces of functions. 

Let  )(*

2  LH  with )(: 21 RS , i.e.  is the boundary of the unit sphere. Let )(su  being a 

2 periodic function and  denotes the integral from 0 to 2 in the Cauchy-sense. Then 

for )(: 2  LHu  with )(: 21 RS  and for real  the Fourier coefficients   


 dxexuu xi
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:  

enable the definitions of the norms (e.g. [ILi] 11.1.5, [KBr0]) 
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We give two distributional representations 0,1),( isi  of the Zeta function ([BPe], [AZe]) 

as Mellin transforms of proper Hilbert space (distributional) functions  
ii Hx )( . They are 

built on the Hilbert transforms  
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of the Gauss-Weierstrass function 2
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The corresponding convolution integral representations in the Hilbert spaces
iH  enable the 

application of spectral analysis arguments ([GPo]) to prove that all zeros of )(si  lie on the 

critical line, which is characterized by the identity ss 1 . 

  

The distributional “functions” )(si are identical to the Zeta function )(s in a weak sense with 

respect to the inner products of the Hilbert spaces of functions
iH . This proves the RH in a 

weak sense. By standard (functional analysis) density arguments then it follows that the RH 

is also valid in the strong sense. 

 

 

http://www.riemann-hypothesis.de/
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Notations 

 

Let  )(*

2 LH   with )(: 21 RS , i.e.  is the boundary of the unit sphere. Let )(su  being a 

2 periodic function and  denotes the integral from 0  to 2  in the Cauchy-sense. Then 

for )(: 2  LHu  with )(: 21 RS  and for real   the Fourier coefficients   


 dxexuu xi




)(
2

1
:  

enable the definitions of the norms (see e.g. [ILi] Remark 11.1.5, [KBr0], see also [BBa]) 
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There is a natural representation of the Fourier decomposition 
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Then H

 

is the space of 2L periodic function in R .  

 

Remark (*): From [DGa] pp.63 and [SGr] 1.441, we recall  
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From [ILi] (1.2.34) we recall the following identity with a hypersingular integral equation of 

kernel of Hilbert type 
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This identity is related to the following integral operators ([ILi] (1.2.31)-(1.2.33), [Ili1]) 
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For a relationship between conjugate functions on the open unit disk and the Hilbert 

transform (H) above we recall from [DGa] Chapter II, §1: 

Theorem 1.1.: Let )()()( zivzuzf  ( vu, real) be regular in the open unit disk 1z and 

continuous on the closed unit disk 1z . Then for )( iev the following integral representation 

of )( ieu is valid (Cauchy integral): 
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The following properties for the operators (A) and (B) are valid (e.g. [DGa] Chapter II, §1, 

[ESt] chapter III, [NMu] §28, [BPe] 9.3): 

Lemma: i) The operator H  is skew symmetric in the space )2,0(2 L  and maps the space 

RLH  )2,0(: 2   isometric onto itself, and it holds 
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ii) The operator A  is symmetric in its domain )(AD  and the Fourier coefficients of the 

convolutions of both operators are 
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Remark: As a consequence there are several relationships in the context of Euler’s formula 

(see ([ETi] 2.1), [BPe]): Let  x  denote the largest integer not exceeding the real number x  
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Remark: The Hilbert spaces 12/1 ,  HH   are characterized by 
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In [AZy], 5.28, 7.2, 13.11 the concept of “logarithmic”,  capacity” of sets and convergence 

of Fourier series to functions with
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is given. In this context we also refer to [BRi] and the still unanswered question in it. In 

([AZy]) the following two examples are provided (see also [HEd] 9.7): 
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In [CBe] 8, Entry17(iv) its relationship to Ramanujan’s divergent series technique is 
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There is also a related representation of the Dirac function in the form
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We further note that in harmonic analysis the energy of the harmonic continuation )(h
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Relationships to the Gamma function and the Euler constant are given e.g. by ([CBe] 8, entry 

17(iv), [NNi]: Gammafunktion §78, §88; Theorie des Integrallogarithmus V, §33): 
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The Gauss-Weierstrass function and the fractional part function 

 

The Theta function  is given by 






 )
1

(
1

)(1:)(:)( 2

xx
xnxfx   , 

whereby f denotes the Gauss-Weierstrass density function  

2

:)( xexf   . 

Lemma: We note the identity ([NNi] §88) ( 0a ) 

i) 








ia

ia

s
s

dsx
s

i
xf )

2
(

2
)(

2/



   

ii) 
 
 

 
0 0

2/ ))(()1()
2

1()1(log))(()1(:)(
x

dx
xfxxs

s
sxdxfxxss sss   

iii) The Hilbert transform of the Gauss-Weierstrass function is given by 
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The corresponding duality relationships to the Zeta function are given by ([ETi] 2.1, [HEd] 
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Rational: We refer to [HEd] 10.1, 10.3, 10.5, [ETi]2.11: The constant, non-vanishing Fourier 

terms of 
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Fourier term (just by differentiating). Its consequence of a reduced regularity of f   is 

balanced/leveraged by a corresponding multiplication with the factor x again. This then 

rebuilds the original structural properties of f (but just enabled by the special exponential 

function structure of f , only). The (too high!) prize to be paid is the loss of the essential 

Theta function property. Our alternative solution concept is applying as alternative density 
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The (only) prize to be paid by our “distributional approach” is, that the corresponding 

Riemann duality relationship is “only” valid in a weak sense as the Hilbert transform creates 

2L function only, but at the same time it transforms 2L function to 2L function, i.e. it´s a 

isometry onto 2L . For an analysis of periodic distributions (also in the context of the Poisson 

summation formula) and Fourier series we refer to [BPe] chapter 2, §11.  
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Two  01,HH related distributional Zeta functions 

as transforms of self-adjoint integral operators 

 

For  )2,0(, 2 Lvu   Hilbert space theory provides the properties (e.g. [BPe], [KBr1/2/3/4]): 
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At the same time the Hilbert space frameworks provide a self-adjoint integral function 

representation (with distributional Zeta function transforms defined within the critical 

stripe) along the “symmetry” line defined by the identity ss 1 . 
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This puts a new light also on the results and propositions of Ramanujan, which are 

qualified/“described” in a form like e.g.:  

[CBe] 8, Entry17(iv): “Ramanujan informs us to note that …… which also is devoid of 

meaning” .... “may be formally established by differentiating the well known equality” …. 

 

As a consequence it holds: 

 

Proposition: The complex functions )(si defined by 
01, DD
 are identical to the Zeta function 

in a weak sense with respect to the norms of the Hilbert spaces 
01,HH
.

 

 At the same time 

they are transforms of convolution integrals and “symmetric” with respect to 

 ss 1 . Therefore all its zeros lie on the critical line.   

This proves the Riemann Hypothesis as by definition the zeros of the Zeta function are (in a 

distributional sense) the same as those of )(si . Therefore, by density arguments it follows, 

that this is also valid in a strong sense. 

 

Remark: The Hilbert spaces 01,HH  above provide an alternative framework for current 

tauberian theory (see also [LGa]). In order to give obvious reasons for this we recall from 

[HPi], 1.1, 1.2, 2.1:  
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the proof of the following simple theorem. 
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Appendix 

 

Lemma: The Mellin transform of )(xfH
 is given by 
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Remark: From [SGr] 3.952 we recall 

 

       
);

2

3
;

2

1
()(4)2sin()(4)( 2

11

0

xFxxfdxfxfH   


  , 

      
  

 

1

0

)1(2/1

1

0

2/1

12

1
)(2)(

22

t

dt
e

dx

d
tdttexxfxf txtx

H




  

whereby  

 


















1

0

11

00

11 )1(
)()(

)(

!
)(

)(

!)(

)(
);;( dttte

n

z

n

n

n

z
zF zt

n

n

n

n n

n 

















  

, 

1:)();1)...(1()( 0   nn
  

 

denote the confluent hyper-geometric function (series) (see also [NNi] §65). 
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Known criteria 

 

 

There is a “modified” Zeta function representation 
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Holomorphic function in the distributional sense 

 

Definition (HF), [BPe] §15, 16, Distribution valued and boundary values of holomorphic 
functions: 

Let  
zgz   be a function defined on an open subset CU   with values in the distribution 

space.  Then 
zg  is called a holomorphic in CU  (or 
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CU   in the distribution sense, if for each  cC  the function ),( sgz   is holomorphic in 

CU   in the usual sense.  

Remark:  ([BPe]) In the one-dimensional case any complex-analytical function, as any 

distribution f on R , can be realized as the “jump” across the real axis of the corresponding in 
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In the one-dimension case the Riesz operator is identical with Hilbert transform ([BPe] 2.9), 
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i.e. the Hilbert transform is a classical pseudo-differential operator ([BPe] 3.6) with symbol 
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The relationship of this specific principle value to the Fourier and Hilbert transforms is given 
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The Hilbert transform of the function )sin( t  is given by )cos( t . This gives a  
2

 phase-

shift operator, which is another basic property of the Hilbert transform. It can be used to 

remove the not needed negative frequency axis.  
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There is an obvious relationship between the Mellin and the Laplace transform: 
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nRLf   has compact support the Laplace transform of f  is the entire function F  

defined by ([BPe] §12)
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This definition extends immediately to distributions with compact support. If )( nREf   we 

define the Laplace transform F  of f  by 

.
,)(

si
efsF


  . 

 

In the context of characterizations of differentiability we recall from [ESt] VIII, §5: 

Theorem 6 (Zygmund condition): Suppose )(2

nRLf  . Then for almost every nRx 0
the 

following two conditions are equivalent: 

i)  f  has a derivative in the 2L sense at nRx 0
  

ii) 
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