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Abstract
This note gives a summary of corresponding papers [KBr1], [KBr2], [KBr3] in
www.riemann-hypothesis.de.

The Riemann Hypothesis states that the non-trivial zeros of the Zeta function all have real
part one-half. The Hilbert-Polya conjecture states that the imaginary parts of the zeros of the
Zeta function corresponds to eigenvalues of an unbounded self-adjoint operator. All
attempts failed so far to represent the Riemann duality equation in the critical stripe as
convergent (!) Mellin transforms of an underlying self-adjoint integral equation relation. The
constant, not vanishing Fourier terms of the Theta functions are the root cause of only
formally self-adjoint invariant operator definitions with corresponding (Mellin) transform of
the Riemann duality equation ((HEd) 10.3). The idea of our two proofs is built
on appropriately defined (weak) self-adjoint integral equations in a distribution sense and its
related Mellin transforms. The distributional approachis the prize to be paidto
build convergent (!) Mellin transform integrals ((HEd) chapter 10). The Mellin transform can
be seen as a Fourier transformation on the multiplicative group of positive real numbers
[AZe]. It corresponds to an isometry between Hilbert spaces of functions.

Let H=L;(r) with T":= S*(R?) . i.e. Tis the boundary of the unit sphere. Let y(s) being a
271 — periodic function and § denotes the integral from Q to 27 in the Cauchy-sense. Then

foryeH = L‘; () with = S*(R?) and for realﬁ the Fourier coefficients
1

U =——qu(x)e " dx
V= (x)

enable the definitions of the norms (e.g. [ILi] 11.1.5, [KBr0])

o

2, 2812 .

July = 220 .|
We give two distributional representations &, (s),i =-1,0 of the Zeta function ([BPe], [AZe])
as Mellin transforms of proper Hilbert space (distributional) functions @ (X)eH,- They are
built on the Hilbert transforms

fa(X) = 47[]3 f(&)sinzEx)dE " p,(X) = —log 2sin(z) = iCOSZm/x
0 1

v

of the Gauss-Weierstrass function ¢ ) —¢-=* and the fractional part function

< Sin 27vX
21: 27[M

P9 = x-[x= -

The corresponding convolution integral representations in the Hilbert spaces H, enable the
application of spectral analysis arguments ([GP0o]) to prove that all zeros of & (s) lie on the

critical line, which is characterized by the identitys =1—s.

The distributional “functions” & (s)are identical to the Zeta function £ (s) in a weak sense with
respect to the inner products of the Hilbert spaces of functions H;- This proves the RH in a

weak sense. By standard (functional analysis) density arguments then it follows that the RH
is also valid in the strong sense.


http://www.riemann-hypothesis.de/

Notations

Let H=Ly(r) with T = S*(R?), i.e. T'is the boundary of the unit sphere. Let u(s) being a
2z — periodic function and § denotes the integral from o to 2 in the Cauchy-sense. Then

for ueH = L,(I") with T:=S*(R?*) and for real # the Fourier coefficients
1 .
u, :=—qu(x)e " dx
s=ofu

enable the definitions of the norms (see e.g. [ILi] Remark 11.1.5, [KBr0], see also [BBa])

2

uV

2 <oy 28
ol = >
There is a natural representation of the Fourier decomposition
u(x) = % +a,c0s(x) + Y b, sin(x) =D ue™ e,
1 1 -0
as Laurent series description in terms of a complex variable, defined on a circle z =e™:

U(z)=u(x) :iuvzv eH=L,T) -

with =&y :=1a —-ib ) c :=1 a,+ib,) » v>0.
uO' 2 v 2(v v) —v 2(1/ 1/)

Then H is the space of L, —periodic function in R.

Remark (*): From [DGa] pp.63 and [SGr] 1.441, we recall

sinng - —cos(n -
2 ot 2= %qg {7, 1 feot2=2ag=0
27 35,, €SNI 2 sin(ng) 27 2

027

resp.

g —ie"™ n=123,..
— :fei”"’cot%d19= 0 n=0
oo ie"™ n=-1-2,.

From [ILi] (1.2.34) we recall the following identity with a hypersingular integral equation of
kernel of Hilbert type

. 1 *Fa_cosnx-+b,_ sinnx
—n(a, cos nx, +b, smnxo):—J‘ L L dx
4 , Xo —X

0 sin



This identity is related to the following integral operators ([ILi] (1.2.31)-(1.2.33), [lli1])

(A) (Au)(x) = —ilog 2sin X;Zyu(y)dy = §k(x— yu(y)dy and D(A)=H =L,(I)

H)  (Hu) =[u]x ::iicot%(y)dyz—m;i[u(m y) —u(x— y)]cot %dy

For a relationship between conjugate functions on the open unit disk and the Hilbert
transform (H) above we recall from [DGa] Chapter Il, 81:

Theorem 1.1.: Let f(2) =u(z) +iv(z) (u,Vvreal) be regular in the open unit disk |z| <land
continuous on the closed unit disk|z| <1. Then for v(e'’)the following integral representation

of u(e'?)is valid (Cauchy integral):
v(ei‘”):v(0)+2i_|'2”v(e“”)cot%‘9)dl9 -
V4 0

The following properties for the operators (A) and (B) are valid (e.g. [DGa] Chapter I, 81,
[ESt] chapter IIl, [NMu] 8§28, [BPe] 9.3):

Lemma: i) The operator H is skew symmetric in the space L,(0,27z) and maps the space
H =L, (0,27) — R isometric onto itself, and it holds

[Hu|=[u] and HZ=—1 , (HuV)=—(uHY) . [W]o=[u] 0
(H), =-isign()u,  +  (Hu)=i> [ e -ue"leL, for uel,

ii) The operator A is symmetric in its domain D(A) and the Fourier coefficients of the
convolutions of both operators are

(Au), =k u, = iuv 'D(A)cH,=H_,,(I) -

2

Remark: As a consequence there are several relationships in the context of Euler’'s formula
(see ([ETi] 2.1), [BPe]): Let [x] denote the largest integer not exceeding the real number x

and let p(x) = {x}:= x—[x] be the fractional part (sawtooth) function of x .

i 1 &sin2
) Pt = =x-[d-3- 22
i) _isign(x) = —ZiTSin(tX)dt _ ZT sinh(tx)dt =[P.v.(l)} ]
o 0 t X
iii) Ssinvx  r—X , c~coswx 1 1 , O<x<2r1 .
Zl“ v 2 Zl: v _2092(1—cosx)



Remark: The Hilbert spaces H ,,,,H_, are characterized by

Ho =Wllvls,, = (Awap)o <o} o Ho =Wl = (Av, Ap), <oof-

In [AZy], 5.28, 7.2, 13.11 the concept of “logarithmic”, o —capacity” of sets and convergence
of Fourier series to functions with

in[an2+bf]<oo
1

is given. In this context we also refer to [BRi] and the still unanswered question in it. In
([AZy)) the following two examples are provided (see also [HEd] 9.7):

whereby

<log( )+C ’

i) A(X)zicoshvx
14

=—log 2sin(7x)

COS VWX
ze

1

1

i) l(x)zzcols_‘:(gca\x\"“ y (x—>00<a<l) -
-y

In [CBe] 8, Entry17(iv) its relationship to Ramanujan’s divergent series technique is
mentioned: “Ramanujan informs us to note that

Z.::sin(Zm/x) = %cot(;zx) !

which also is devoid of meaning”.... “may be formally established by differentiating the well
known equality”

=—log 2sin(zx)

s COS 271X
2

There is also a related representation of the Dirac function in the form

2z T
S5(x) == [e™dk =1jcos(kx)dk eH., cH, forn=1.
272' ) T 0

We further note that in harmonic analysis the energy of the harmonic continuation h = g(y) to
the boundary is given by

ol = v(@?+b?)==|||dh(z)|" dxdy = Mds(w)dcj«zo
[l =52 Mol oy = ]|

Relationships to the Gamma function and the Euler constant are given e.g. by ([CBe] 8, entry
17(iv), [NNi]: Gammafunktion 8§78, 888; Theorie des Integrallogarithmus V, 833):
sm(27zkx)

i) logsin zx = log—— 2ot Z(y+| 9(27K)) for 0<x<1



The Gauss-Weierstrass function and the fractional part function

The Theta function  is given by
900=3 1 (M) =14 0¢) = 96)
whereby f denotes the Gauss-Weierstrass density function
f(x):= e .
Lemma: We note the identity ([NNi] 888) (a>0)
I
i) o= —1)10 (000 log x = (5= DI+ ™7 = (s —1)I 0 0 &
iii) The Hilbert transform of the Gauss-Weierstrass function is given by
[HCE 00 =] f@)sinazgoz

iv) It holds the identity ([CFo], appendix):

g TESMCS e
[H(H)]x) = > §C s x*ds = - §Ctan(§s)r(§)x ds
2

where one can take C also to be the critical line.

The corresponding duality relationships to the Zeta function are given by ([ETi] 2.1, [HEd]
1.6ff):

0

i) &(s) =< (s)Q(s) = £(1—s) for all complex se C



Rational: We refer to [HEd] 10.1, 10.3, 10.5, [ETi]2.11: The constant, non-vanishing Fourier
terms of

1 &sin2owx N
== v 9(X)=1+2> f(nx
PO=5-% 2 (x) nZ:l: (nx)

jeopardize the application of the Mintz formula to build the Riemann duality equation as
transforms of a self-adjoint integral operator. The alternatively defined density function
f (x) = xf'(x) with its corresponding Mellin transform

S -s/2 rDs 2 dX ws
Tl+—= = x*(xf'(x))— = | x*df
W+ J (4 '00) j

is the today’s basic “trick/idea” to overcome the conceptual problem of the non-vanishing
Fourier term (just by differentiating). Its consequence of a reduced regularity of f’ is

balanced/leveraged by a corresponding multiplication with the factor x again. This then
rebuilds the original structural properties of f (but just enabled by the special exponential

function structure of f , only). The (too high!) prize to be paid is the loss of the essential
Theta function property. Our alternative solution concept is applying as alternative density
function just the Hilbert transform of f (which doesn’t change the regularity (in aL, —sense),

keeps the Theta function property, while leading to a vanishing Fourier term at the same
time), i.e. the alternative concept is about (in a distributional sense) a replacement of

xF'(x) = f, () =[H(H)]x) = 4;;T f(£)sin(2ax)d¢

Q(s) = (s —1)]: XS (xF (X)) o —>Qy(s) = ]' X £, (X) o _ 72092 tan(Z s)l“(i) :
5 X 5 X 2 2

Remark: Correspondingly with respect to the fractional part function we put

> 10
Q—l(s) == \/% 21,5 13 S
22 r(T)

The (only) prize to be paid by our “distributional approach” is, that the corresponding
Riemann duality relationship is “only” valid in a weak sense as the Hilbert transform creates

L, —function only, but at the same time it transforms L, —function to L, —function, i.e. it's a
isometry onto L,. For an analysis of periodic distributions (also in the context of the Poisson
summation formula) and Fourier series we refer to [BPe] chapter 2, §11.

We note that the structure of fH corresponds to the structure of cxf'(ax) ((KBr3], appendix),
i.e. it holds




Two H_,H,-related distributional Zeta functions

as transforms of self-adjoint integral operators

For u,vel,(0,27) Hilbert space theory provides the properties (e.g. [BPe], [KBr1/2/3/4]).
Hu Hvel,(027) , (Huv)=-(u,Hv) , (Hu),_,=(Hv),,=0
and
u,)=(v,A) forall 1eH = (Hu, ) = (Hv, ) forall A=HueH,uecH .

We apply the properties above to the two Theta function relationships based on the Gauss-
Weierstrass function and the fractional part functions in corresponding Hilbert scale
framework: Let @, (x) := Hp(x) = —log 2sin(zx) resp. m,(x):=H4(x) denote the (periodical)

Hilbert transforms of the fractional part function resp. of the Theta function. Let § be defined
by

JOBETICR

Then with respect to the inner products of the Hilbert spaces H_,,H, the integral “density”
functions o, (x) for i =—1,0 fulfill (in the following weak sense) the Theta function property
(remark (*), [BPe] examples 9.9-9.11, 9.13, 11.12, Corollary 11.9, 812, [KBr1], [KBr2]):

(w,, 1), =(@,,2), forall AeH,.

The Theta function property is equivalent to a Riemann duality type equation for the
corresponding Mellin transformed holomorphic functions ~ s=: ¢, (s) ((HHa]), if all integrals

are convergent. This is ensured in the corresponding Hilbert space frameworks H ;,H,:

As a consequence in the critical stripe the “functions” ¢, s = ¢, (s) fulfill in a weak
(distributional) H, —sense following duality equations ([KBr3], see also [RDu])

Dit ci90.0=[e.0r T=[x*0,0 %<, a-90.0)

Dot 4000 =[on Ot T =[x 0,0 X =5, 0-9902,0-9)

At the same time the Hilbert space frameworks provide a self-adjoint integral function
representation (with distributional Zeta function transforms defined within the critical
stripe) along the “symmetry” line defined by the identity s=1-s.



This puts a new light also on the results and propositions of Ramanujan, which are
gualified/“described” in a form like e.qg.:

[CBe] 8, Entry17(iv): “Ramanujan informs us to note that ...... which also is devoid of
meaning” .... “may be formally established by differentiating the well known equality” ....

As a consequence it holds:

Proposition: The complex functions ¢, (s) defined by D ,, D, are identical to the Zeta function
in a weak sense with respect to the norms of the Hilbert spaces H_,,H,. Atthe same time
they are transforms of convolution integrals and “symmetric” with respect to

s=1—s. Therefore all its zeros lie on the critical line.

This proves the Riemann Hypothesis as by definition the zeros of the Zeta function are (in a
distributional sense) the same as those of £ (s). Therefore, by density arguments it follows,

that this is also valid in a strong sense.

Remark: The Hilbert spaces H ,, H, above provide an alternative framework for current

tauberian theory (see also [LGa]). In order to give obvious reasons for this we recall from
[HPi], 1.1,1.2, 2.1:

“Tauberian theorems are concerned with relationships
(Ts)(u) = Ik(u,v)s(v)dv =g(u)

and ...(about) ... conclusions about the behavior of s(v) derived from assumptions about of
g(x) - . they”are generally much deeper than corresponding abelian theorem. Tauberian
theorems are mainly concerned with convergence or other order properties of s(x)y and g(x)

as x—»« . .... The role of the tauberian condition in the tauberian theorem is shown clearly in
the proof of the following simple theorem.

THEOREM 1. Suppose that k(x) e L., Ik(x)dx =1, s(x) =o(@) and that, if £ >0, we

define 5 = §(¢, x), so that

lims(s,x) =0 aNd |s(y)—s(x)|<e for |y—x<s -

X—>00

Then

(Ts)(X) = g(x) > oo fOr x—oo implies that s(x) —» o for x —oo



Appendix

Lemma: The Mellin transform of f, (x) is given by

sI2 145" 1 __@=s)/2 T S for Re(1— 0
M[ £, Is) = 22~/ r(=—= )! o dr=7" an 9rE) e(l-s)>
with f ) J;Hl_TS) for Re(l-s)>0
cos® 7 T=7 2—-s
)
and r(lﬁ)r(—) sin(Zs)
21 = tanZ)r) = cotZ @ sHre)
r(1-§) ncos(%s) 2 272 2 2

Proof: It follows by the substitution of variables by zx*(1—t)=y , t=22 and z =sinz¢

T s dx if s+l 4 -2 (1-t) dx dt
Ix fH(x)7=2\/;_!'J'x e 7\/{7

149 1 (s+1)/2 dt e dy 1+s 1 (s+1) /" dt
=2 = t— |y /2g-y 2 = pesiep ot
‘/;J;Z{;z(l—t)} Wy y ¢ )(I a-v Ao

X

and therefore _ sip (1+S)I|: 1 ](s+1)/22 %=”-s/z (1_'_5),,"/_2[ 1 i|(s+1)/22 dx
@-x @L—x3)

(s+1)/2
= ‘5’2r(1+s) J'{ 1 ] cosdr

cos’t
From [SGr] 3.621 we get ”j;inMXCOSHdX _1g#yy o Re(u),Re(v)>0
: 2 22
Corollary: It holds 1 % dx resp. 7 or .
y ﬁ! f, (X)?zg p tan(2 X)F(Z)onﬂ

Proof: It follows with s — 0and the following formulas ([SGr] 0.234, 1.421, 8.322):

< 1 b4 3 = 1 X, 212 1 X
=" 1 tan(=x)= [ — == 1+ )2 )1+ 2 -
2" GO Ly QI g

Remark: IntheH , —sense it holds for 0< Re(s) <1

1 1 %1 d 7 d
j K P09, =3 j x cos(m) & =32 [y cos(y) Y = ¢(9)] y* cosy L -y cos(Z )
X n 0 y 0 y 2
and therefore T 5 r(%)
X Py (X) SONEE=
: 2 o7 1_(173)



Remark: From [SGr] 3.952 we recall

fu (x) = 4z [ £ (&)sin(275)d¢ = 4md (X)IFI(%%HXZ) ,

1 1
x> 1 d 2 dt

fo)=20axfF )l e™ Y 2dt = —— | t7V/2 — e~ @D
100 ( )‘! 2%'! dx ]T —t

whereby
(—a
(0),2" & n'?" '(p) [ stpamt —a-1
Pl =3 G LG ar@ )T

n

(@), =a(a+D..(a+n=-1);(x), =1

denote the confluent hyper-geometric function (series) (see also [NNi] 865).

Lemma: The Fourier transform of the odd function

-1/2 d o (1—t)| dt
fu (0= J.t dx 1-t

is given by
. i X dt “ |t ix 2 -
f(x)=—— t-1/2 4”(1-0 =i t-1/2 4”(1—0 -——2 (e 4rcos’y
ey 2,,! = j o ”!
i xSl
f X) = —— g 40D
n () 27r;[1/t(1—t) 1-t

resp. ,xﬂmx>:zjif,e%;4:t;, with  h(t) = t@-1) -
) T

hd-7)

Proof: As f,, (X) is odd, one gets
£ (&) =F{f.(&}= j f, ()sin(x€)dx °

We recall the property

Flo@}=igF{a©®)} -

Hence it holds

X2

d 2 . 2 iX -
=3 il ISR } — ixF {e—m( (1—t)}= g 470-v
{dx ] Ji-t

and therefore

.1 x? .1 X2
A i X T dt i X —dr
fo(xX)=—— t71/27e Az(l-t) M+ % 2 e 4m Z°
n () 2;;! 1-t 1-t 2;:!:1/1(1_7) z

dy

cos® y



Known criteria

There is a “modified” Zeta function representation
E(9)=¢OI ()

which can be realized

either

i) as a “convolution” £ U2+i) = GdF)) - [ G(z-iu)dF (W)

or

ii) as “Fourier integral” £ () ZTUH F(W)(log u)‘L“
) u

where

g(z) :=J'u1’ZF(u)du—u

has all its zeros on the critical line.

11



Holomorphic function in the distributional sense

Definition (HF), [BPe] 8§15, 16, Distribution valued and boundary values of holomorphic
functions:

Let z— g, be a function defined on an open subset U = c with values in the distribution
space. Then g, is called a holomorphic in u = c(or g(z) := g, is called holomorphic in

U cc inthe distribution sense, if for each ¢ < C> the function z — (g, ,¢) is holomorphic in
U < in the usual sense.

Remark: ([BPe]) In the one-dimensional case any complex-analytical function, as any
distribution f on R, can be realized as the “jump” across the real axis of the corresponding in

C — R holomorphic Cauchy integral function

F(x) :zi ft(i)f(" !

given by (f.p)=lim TF(X+ iy) - F(x—iy))e(x)dx

In the one-dimension case the Riesz operator is identical with Hilbert transform ([BPe] 2.9),
that is a Cauchy principle-valued function, expressed in the form

*) RU0)= (R =lim L § gy 17U q  for & -0,
T e XY 7 x-y

whereby the Fourier coefficients are given by
(Hu), =—isgn(v)u, ,

i.e. the Hilbert transform is a classical pseudo-differential operator ([BPe] 3.6) with symbol
isgn(s) .

The principle value P.v.(1/X) of the not locally integrable function 1/ x is the distribution g
defined by ([BPe] 1.7)

ax

X _ J.Iog\Xgo’(x)dx foreach p e C? .
X —00

(9,¢)=1im | p(x)

X=&

The relationship of this specific principle value to the Fourier and Hilbert transforms is given
by ([BPe] 2.9)

[P.v(i)} ——izsgn(s) and [P.v.(ﬂ -2

The Hilbert transform of the function sin(at) is given by cos(at) . This gives a ;. Z _phase-
2

shift operator, which is another basic property of the Hilbert transform. It can be used to
remove the not needed negative frequency axis.

12



There is an obvious relationship between the Mellin and the Laplace transform:

© -0

F(s)=[ fordt= | f(e’*)e’sxdx:—_lf f(l){log(il)} _ ‘l;’ -

) o o Y

If f L, (R") has compact support the Laplace transform of f is the entire function F
defined by ([BPe] §12)

F(s)=[e ™ f ()dx=f (7 -i¢) -

This definition extends immediately to distributions with compact support. If f < E'(R") we
define the Laplace transform F of f by

F(s)=(f.e"") -

In the context of characterizations of differentiability we recall from [ESt] VIII, 85:

Theorem 6 (Zygmund condition): Suppose f  L,(R"). Then for aimost every x, « R"the
following two conditions are equivalent:

i) f has a derivative in the L, —sense at x, ¢ R"
i) i \f(x0+x)+f(xo—x)—f(xo)\zdx<w
R ‘X‘n+2

13
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